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The so-called black-bounce mechanism of singularity suppression, proposed by Simpson and Visser,
consists of replacing the spherical radius r in the metric tensor with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
, a ¼ const > 0. This

removes a singularity at r ¼ 0 and its neighborhood from space-time and there emerges a regular minimum
of the spherical radius that can be a wormhole throat or a regular bounce (if located inside a black hole).
Instead, it is proposed here to make r ¼ 0 a regular center by proper (Bardeen type) replacements in the
metric, preserving its form at large r. Such replacements are applied to a class of metrics satisfying the
condition Rt

t ¼ Rr
r for their Ricci tensor, in particular, to the Schwarzschild, Reissner-Nordström, and

Einstein-Born-Infeld solutions. A simpler version of nonlinear electrodynamics (NED) is considered,
for which a black hole solution is similar to the Einstein-Born-Infeld one but is simpler expressed
analytically. All new regular metrics can be presented as solutions to NED-Einstein equations with radial
magnetic fields.
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I. INTRODUCTION

In general relativity (GR) and its classical extensions, the
presence of singularities is quite a common though unde-
sirable phenomenon, where a theory itself shows the
boundaries of its applicability. In general, the researchers
probably do not believe in the existence of singularities in
nature and hope that they must be somehow suppressed by
effects of quantum gravity. However, the numerous models
and approaches in quantum gravity, being translated to
the language of classical physics, produce quite different
results, see, e.g., [1–8] and a discussion in [9]. Thus, when
applied to black holes, some models predict black hole–
white hole transitions [2–5], while others describe scenar-
ios to a nonzero constant value of the spherical radius at late
times of the evolution [6], there also emerge configurations
without any horizons [8], etc. Different ways of quantum
gravity regularization of black hole singularities are also
discussed in the recent papers [10–12]. One can conclude
that quantum gravity at its present stage of development is
not yet ready to produce clear and unique predictions.
Therefore, it looks natural that the proposal made by

Simpson and Visser (SV) [13] to obtain a regular static,
spherically symmetric metric from a singular one by
replacing the spherical radius r with the expression
rðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
, thus removing a singularity at r ¼ 0,

has caused significant interest and was followed by a

number of extensions and discussions.1 This simple trick
may be an easy way to simulate possible quantum gravity
effects in the framework of classical gravity, leaving aside
any details of quantization methods. Additionally, it turned
out that new geometries that emerge in this way can have
their own features of interest.
This proposal, being applied to the Schwarzschild

solution, results in the globally regular metric [13]

ds2 ¼
�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
�
dt2 −

�
1 −

2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
�

−1
du2

− ðu2 þ a2Þðdθ2 þ sin2 θdφ2Þ: ð1Þ

At small values of the regularization constant a relative to
the Schwarzschild mass M (a < 2M) (its smallness looks
most natural), the metric (1) describes a black hole with two
horizons at u ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2 − a2

p
. Larger values of a lead to

an extremal regular black hole with a horizon at u ¼ 0
(if a ¼ 2M) and a wormhole with a throat at u ¼ 0 at still
larger a. In the black hole case a < 2M, the minimum of
rðuÞ, observed at u ¼ 0, is located in a Kantowski-Sachs
anisotropic cosmological region between two horizons,
where u is a temporal coordinate. Thus at u ¼ 0 happens a

*Contact author: kb20@yandex.ru

1Here, u∈R is a new radial coordinate instead of r. The
notation r is here kept for the quantity of evident geometric
meaning, the spherical radius, r ¼ ffiffiffiffiffiffiffiffiffiffi−gθθ

p
, other radial coordi-

nates are denoted by other letters to avoid confusion.
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bounce in one of the two scale factors, rðuÞ, of this cosmol-
ogy, called a “black bounce” as suggested in [13]. (The other
scale factor in this cosmology is 2M=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
− 1, and it

takes a maximum value at the same instant u ¼ 0.) With a
discussion of other families of space-time metrics obtained
with the same trick, all of them received the slang name of
“black-bounce space-times” or simply black bounces. One
can also recall that black bounces in the precise meaning of
this term appear as a common feature in many solutions of
GR and its extensions in the presence of phantom scalar
fields. Such geometries have been named “black universes;”
these are black hole space-times containing beyond their
horizon an expanding universe that becomes isotropic at late
times, see, e.g., [14–19].
A black-bounce regularization of the Reissner-

Nordström solution of GR was constructed in [20]. The
same approach was used to obtain a wide class of regular
black hole and wormhole space-times in [21]. The diverse
geometries found in this manner have attracted much
attention, and further studies involved their rotating coun-
terparts [22–24], quasinormal modes, gravitational wave
echoes at possible black hole/wormhole transitions, and
gravitational lensing parameters [25–39].
A separate issue is to present SV-like space-times as

possible solutions to the equations of GR with different
field sources. For static, spherically symmetric space-times,
such representations were obtained in [40] and [41], and it
was shown [40] that a large class of such space-times are
obtainable as solutions to the Einstein equations with a
combined source consisting of a minimally coupled phan-
tom scalar field with a self-interaction potential and an
electromagnetic field within nonlinear electrodynamics
(NED), whereas NED alone or a scalar field alone are
unable to form a necessary source. A phantom field is
necessary for the existence of a minimum of the spherical
radius r, while a NED source is required for adjusting the
total stress-energy tensor (SET) Tν

μ. The explicit forms of
scalar and NED sources of SV-regularized Schwarzschild
and Reissner-Nordström metrics were obtained in [40],
along with their global structure diagrams, including
metrics with three and four horizons. A similar method
was applied to some cosmological space-times in [42,43].
SV-like regularizations for other two families of singular

solutions ofGRwere constructed in [44]: thesewere Fisher’s
solution with a massless canonical scalar field [45] and a
subset of dilatonic black hole solutions with interacting
massless scalar and electromagnetic fields [46–49]. In both
cases, the SV substitution was applied in the simplest
possible way (x ↦

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ a2

p
) to the factor x that produced

a space-time singularity at its zero value. Scalar-NED
sources for the regularized versions of these space-times
were also found, and it turned out that such a scalar field
cannot be only canonical (with positive kinetic energy) or
only phantom (with negative kinetic energy), but has to
change its nature from one region to another, in other words,

demonstrated what had been previously called a “trapped
ghost” behavior [50,51]. The possible role of such fields in
the stability properties of black hole and wormhole space-
times was discussed in [19,52]. More generally [44], a
combination of NED and a minimally coupled scalar field
(in general, of trapped ghost nature) in GR is able to provide
a source for any static, spherically symmetric metric, while,
according to [53], any suchmetric may be produced (though
only piecewise) with a nonminimally coupled scalar field as
the only source.
A general feature of the SV proposal and its extensions is

that the singularity in a geometry under study is simply
removed from space-time together with its neighborhood,
being replaced by a throat or a black bounce. It leads tomore
complex geometries and causal structures, which may be
considered, from different viewpoints, both as an advantage
and a shortcoming. There is, however, a natural alternative to
this approach: to try, instead of removing the singularity
location r ¼ 0, to convert it to a regular center. There are a
great number of stellar and fieldmodelswith regular centers,
in particular, with NED sources (see, e.g., [54,55] and
references therein) and those whose origin is ascribed to
vacuum properties of various quantum fields including the
gravitational one, see, e.g., [56,57] and references therein.
However, our goal here is not to construct nonsingular
models from the outset but to try to cure the already existing
singularities at r ¼ 0 by introducing small regularizing
parameters which may be hopefully ascribed to quantum
gravity effects. As such examples, we will consider metrics
obeying the conditionRt

t ¼ Rr
r for their Ricci tensors since it

is the property of many of the most important solutions of
GR (which previously received regularization by the SV
method): the Schwarzschild, Reissner-Nordström solutions,
their extensions with a cosmological constant, and some
others. Moreover, if we construct a regular metric that
preserves the propertyRt

t ¼ Rr
r, its source can be constructed

with NED alone, with no need for other kinds of matter.
The paper is organized as follows. In Sec. II we make

some preparations, recalling the regular center conditions
and the way to obtain NED sources for the metrics under
consideration. Section III is devoted to regular versions of
the Schwarzschild and Reissner-Nordström solutions and
finding their pure NED sources. In Sec. IV we discuss a
possible regularization of the Einstein-Born-Infeld space-
time and one more solution of GR with a new NED
resembling the Born-Infeld one but leading to simple
analytical expressions. Section V contains some conclud-
ing remarks. The metric signature ðþ−−−Þ is adopted,
along with geometrized units such that 8πG ¼ c ¼ 1.

II. PRELIMINARIES

A. Regularity conditions

In this subsection we recall some well-known facts to be
used in what follows. Consider a pseudo-Riemannian
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space-time M with an arbitrary static, spherically symmet-
ric metric

ds2 ¼ AðxÞdt2 − dx2

AðxÞ − r2ðxÞdΩ2;

dΩ2 ¼ dθ2 þ sin2 θdφ2; ð2Þ
written here in terms of the so-called quasiglobal radial
coordinate x [58]. This choice of the radial coordinate is
well suited for the description of any static, spherically
symmetric space-times including black holes [where hori-
zons appear as regular zeros of AðxÞ provided rðxÞ is finite]
and wormholes [where throats appear as regular minima of
rðxÞ provided AðxÞ > 0].
If our space-time contains a location where r → 0 under

the condition A > 0, this location is called a center, and it is
indeed a center of symmetry in spatial sections of M. If
r → 0 in a region where A < 0 (as happens inside black
holes), it is a cosmological-type singularity instead of a
center since x can there be used as a time coordinate.
A center is regular if all algebraic curvature invariants

are there finite and smooth, which includes, in particular,
the existence of a tangent flat space-time at this point.
For the metric (2) it implies that, at some x → x0,

AðxÞ ¼ A0 þOðr2Þ; AðxÞr02ðxÞ ¼ 1þOðr2Þ;
A0 ¼ const > 0; ð3Þ

where the prime denotes d=dx, and the symbol Oðr2Þ
means a quantity of the same order as r2 or smaller. The
second condition provides a correct circumference to radius
ratio for small circles around the center.

B. Space-times with Rt
t =R

x
x and their NED sources

It makes sense to single out the important case of space-
times where the Ricci tensor satisfies the condition
Rt
t ¼ Rx

x. Then, by the Einstein equations

Gν
μ ≡ Rν

μ −
1

2
δνμR ¼ −Tν

μ; ð4Þ

the SET of matter satisfies the same condition, and it holds
not only for vacuum and a cosmological constant but also
for NED under spherical symmetry. Moreover, with the
metric (2), the equality Rt

t ¼ Rx
x leads to the condition

r00ðxÞ ¼ 0, and almost without loss of generality we can put
rðxÞ≡ x (we thus only reject “flux tubes” with r ¼ const),
so the quasiglobal coordinate x coincides with the more
frequently used Schwarzschild coordinate r, and we are
dealing with the metric

ds2 ¼ AðrÞdt2 − dr2

AðrÞ − r2dΩ2: ð5Þ

Since now r0 ≡ 1, in the regularity conditions (3) we must
put A0 ¼ 1.

Now, the only two nontrivial components of the Einstein
equations read (the prime denotes d=dr)

Gt
t ¼ Gr

r ¼
1

r2
½−1þ Aþ rA0� ¼ −Tt

t; ð6Þ

Gθ
θ ¼ Gφ

φ ¼ 1

2r
½rA00 þ 2r0A0� ¼ −Tθ

θ: ð7Þ

This structure of the Ricci and Einstein tensors, hence the
SET, can be represented by spherically symmetric NED
fields. In particular, if we consider the NED Lagrangian
in the form −LðF Þ, where F ¼ FμνFμν, and Fμν is the
electromagnetic field tensor, the SET is in general

Tν
μ½F� ¼ −2LFFμσFνσ þ 1

2
δνμLðF Þ; ð8Þ

with LF ¼ dL=dF , and the electromagnetic field equa-
tions are

∇μðLFFμνÞ ¼ 0: ð9Þ
With the present space-time symmetry, we may consider
only radial electric and magnetic fields, the only nonzero
components of Fμν being Frt ¼ −Ftr and Fθφ ¼ −Fφθ. Let
us suppose the existence of only the magnetic components,
such that

Fθφ ¼ −Fφθ ¼ q sin θ; ð10Þ

where q is a monopole magnetic charge. Then Eq. (9)
is trivially satisfied, while the invariant F is expressed
as F ¼ 2q2=r4, independent of the choice of LðF Þ. The
electromagnetic SET takes the form

Tν
μ½F� ¼

1

2
diag

�
L;L;L −

4q2

r4
LF ;L −

4q2

r4
LF

�
: ð11Þ

The way of obtaining the corresponding solutions
with magnetic fields is described in a number of papers
devoted to GR-NED regular black holes, e.g., [54,55] and
references therein. Thus, Eq. (6) may be presented in the
integral form

AðrÞ ¼ 1 −
2MðrÞ

r
; MðrÞ ¼ 1

2

Z
ρðrÞr2dr; ð12Þ

where MðrÞ is called the mass function, ρðrÞ ¼ Tt
t is the

matter density, and thus LðF Þ ¼ 2ρ can be found as a
function of r as follows:

LðF ðrÞÞ ¼ 2

r2
ð1 − A − rA0Þ; ð13Þ

and it can be verified that the derivative LF ¼ L0=F 0
calculated from (13) coincides with LF determined using
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Eq. (7), as must be the case. Moreover, in such solutions, as
should happen in regular magnetic black holes [54], LðF Þ
is finite at the center. Let us remark that to obtain a solution
regular at r ¼ 0, the integration in (12) must be carried
out from 0 to r, which leads to a total mass of purely
electromagnetic origin.
One might consider NED sources with a radial electric

field instead of a magnetic one, as is done, in particular,
in [59] for a number of black-bounce space-times. This may
be implemented using, in addition to F , the auxiliary
electromagnetic invariant P ¼ FL2

F , and the whole con-
struction does not look much more complicated than with
magnetic fields. It is, however, necessary to mention that
electric NED solutions generically involve different
Lagrangians LðF Þ in different regions of space, and this
happens each time when PðF Þ, or conversely, F ðPÞ is not
a monotonic function. As was observed in [59], in electric
sources of black-bounce space-times this ambiguity
does emerge, but not in every solution. Unlike that, for
space-times with a regular center we can predict that the
multivaluedness of LðF Þ will necessarily emerge, in full
analogy with the reasoning used in [54,60]. Indeed, in such
cases PðrÞ ¼ −2q2e=r4 is a monotonic function (qe is an
electric charge), while F ðrÞ is not since it has to vanish
both at infinity and at a regular center.

III. CURING SINGULARITIES IN
SCHWARZSCHILD AND REISSNER-

NORDSTRÖM SOLUTIONS

A. General considerations

The regularity conditions now reduce to the requirement
AðrÞ ¼ 1þOðr2Þ at small r. The only function to be
modified is AðrÞ obeying Eq. (12), from which it follows
that a regular center corresponds to a finite value of ρð0Þ.
Let us assume that, in a singular metric to be cured,

AðrÞ ≈ 1þ A1=rm as r → 0; A1 ¼ const;

m ¼ const > 0: ð14Þ

It is then easy to verify that the substitution in the argument
of AðrÞ

r ↦
ðr2 þ a2Þnþ1=2

r2n
; n ¼ const ≥ 1=m;

a ¼ const > 0 ð15Þ

leads to AðrÞ ≈ 1þ A1a−mð2nþ1Þr2mn at small r, with
2mn ≥ 2. A subtle point is that in (14) the number m is
the smallest power in an expansion of A in powers of 1=r,
even though the singular asymptotic behavior of AðrÞ is
determined by the largest power in this expansion.
It is easy to find that, if n ¼ 1=m, the resulting density

ρð0Þ is nonzero, and the metric near r ¼ 0 is asymptotically

de Sitter if ρð0Þ > 0 and anti–de Sitter (AdS) if ρð0Þ < 0. If
n > 1=m, then ρð0Þ ¼ 0, and the metric near r ¼ 0 is
asymptotically Minkowskian. One can notice that in the
case m ¼ n ¼ 1 the substitution (15) actually coincides
with the one used by Bardeen in [61] to convert a
Schwarzschild black hole to a regular one. The angular
part of the metric does not change, and with any value of n
the metric “cured” with (15) remains at large values of r
approximately the same as the original, singular one.
We see that the recipe (15) smooths out singularities

of the form (14) with m > 0, producing different regular
near-center density profiles depending on the constant n.
There can be, however, a “softer” singularity characterized
by m ¼ 0, it requires a somewhat finer approach to be
considered in the next section.

B. The Schwarzschild metric

In the Schwarzschild vacuum solution we have
A ¼ 1–2M=r, where M ¼ const is the mass parameter.
In the above scheme it corresponds to m ¼ 1, and applying
(15) with n ¼ 1, we obtain the regularized function
A ¼ AregðrÞ of the form suggested by Bardeen [61] in
his first regular black hole model,

AregðrÞ ¼ 1 −
2Mr2

ðr2 þ a2Þ3=2 : ð16Þ

From (13) we then find the Lagrangian function of the
corresponding NED source

LðF Þ ¼ 12a2M

ðr2 þ a2Þ5=2 ¼
12a2MF 5=4

ð
ffiffiffiffiffiffiffi
2q2

p
þ a2

ffiffiffiffi
F

p Þ5=2
; ð17Þ

coinciding with that obtained in [62] (up to notations).
With the function (16), the metric is asymptotically de

Sitter at r ¼ 0. An asymptotically Minkowskian metric at
r ¼ 0 can be obtained with any n > 1 in (15). For example,
choosing n ¼ 3=2, we find

AregðrÞ ¼ 1 −
2Mr3

ðr2 þ a2Þ2 ;

LðF Þ ¼ 16a2Mr
ðr2 þ a2Þ3 ¼

16a2Mð2q2Þ1=4F 5=4

ð
ffiffiffiffiffiffiffi
2q2

p
þ a2

ffiffiffiffi
F

p Þ3
: ð18Þ

Note that the function LðF Þ tends to a finite limit as
F → ∞ (to zero if n > 1), as should be the case at a regular
center [54], but does not have a correct Maxwell limit
(L ∼ F ) at small F .
The behavior of AregðrÞ is quite generic for regular NED-

GR solutions, as can be seen in Fig. 1: it is a solitonlike
structure at small masses, at some critical value of M
emerges an extremal horizon, and at larger M there is a
black hole with two horizons and a global structure similar
to the Reissner-Nordström one. Quite naturally, a plot of
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AregðrÞ for an asymptotically Minkowski (at r ¼ 0) metric
has a flattened summit, unlike the one for an asymptotically
de Sitter metric, as illustrated in Fig. 1(c).

C. The Reissner-Nordström metric

The Reissner-Nordström electrovacuum solution corre-
sponds to the metric function

A¼ 1−2M=rþQ2=r2; M¼mass; Q¼ charge: ð19Þ

We have again m ¼ 1, and using the Bardeen replacement
(15) with n ¼ 1, we obtain

AregðrÞ ¼ 1 −
2Mr2

ðr2 þ a2Þ3=2 þ
Q2r4

ðr2 þ a2Þ3 ; ð20Þ

with a de Sitter behavior near the regular center r ¼ 0. For
the corresponding NED source we have according to (13),

LðrÞ ¼ 2½6a6M þ 12a4Mr2 þQr4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
þ a2ð6Mr4 − 5Qr2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
Þ�

ðr2 þ a2Þ9=2 ; ð21Þ

here and henceforth in similar formulas, an expression for
LðF Þ is readily obtained by substituting r2 ↦

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2q2=F

p
(please note that the charge q refers to the NED source and
has nothing to do with the “original” charge Q in the
Reissner-Nordström metric). For convenience, to avoid
writing jQj in many relations, we assume Q > 0.
At small r the function (20) behaves as

AregðrÞ ¼ 1 −
2Mr2

a3
þ 3aM þQ

a6
r4 þOðr6Þ; ð22Þ

so that the central asymptotic is de Sitter as long asM > 0.
The case M ¼ 0 is treated separately in Sec. III E since it
requires another substitution for AðrÞ.

As a whole, the behavior of AregðrÞ is rather diverse, as
shown in Fig. 2 for a particular value of a ¼ 0.4, taken to be
sufficiently large for illustration purposes. Two special
cases deserving separate attention are discussed below.
Taking n > 1, we would obtain regularizations with a

Minkowski central asymptotic, with slightly other proper-
ties than (20) and (21), not to be described here in detail.

D. The extreme Reissner-Nordström metric

In the case Q ¼ M, the function (19) is a full square,
AðrÞ ¼ ð1 −M=rÞ2 (the same line element also belongs to
a black hole with a conformal scalar field [63–65]). As
before, to obtain a regular metric with de Sitter behavior
near r ¼ 0 we take n ¼ 1 and obtain

AregðrÞ¼
�
1−

Mr2

ðr2þa2Þ3=2
�
2

; LðF Þ¼2M½Mr4þa2r2ð−5Mþ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þr2

p
Þ�þ6a4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2þr2

p

ða2þr2Þ4 ; ð23Þ

while an asymptotically Minkowski center can be formed by choosing n ¼ 3=2, which leads to

AregðrÞ ¼
�
1 −

Mr3

ðr2 þ a2Þ2
�
2

; LðF Þ ¼ 2MrðMr5 þ a2r3ð−7M þ 8rÞ þ 16a4r2 þ 8a6Þ
ða2 þ r2Þ5 : ð24Þ

FIG. 1. Plots of AðxÞ for the regularized Schwarzschild metric with a ¼ 0.4: (a) the function (16) with M ¼ 0.35, 0.517, 0.7 (upside
down); (b) the function (18) with M ¼ 0.45, 0.612, 0.8 (upside down); (c) comparison of AregðxÞ with the same M ¼ 0.5 and
n ¼ 1; 3=2; 2; flattened plots at r ¼ 0 correspond to asymptotically Minkowski metrics.
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In both cases AregðrÞ is non-negative, but, depending on M
(at fixed a), it can have up to two zeros corresponding to
extremal horizons, as illustrated in Fig. 3. The Carter-
Penrose global structure diagram in Fig. 3(c) for a space-
time with two extremal horizons indefinitely extends up
and down; region I and its analogs are those near the center,
regions II and III are those between the horizons, and
regions like IV are the external asymptotically flat ones.

E. The massless Reissner-Nordström metric

Consider the only case of Reissner-Nordström metric
corresponding to (14) with m ¼ 2, with

AðrÞ ¼ 1þQ2=r2; Q ¼ const ¼ charge: ð25Þ

Thus everywhere A > 1, and there is a naked repulsive
singularity at r ¼ 0.
In (15), to obtain an (A)dS behavior near r ¼ 0, we must

take n ¼ 1=2, with the results

AregðrÞ¼ 1þ Q2r2

ðr2þa2Þ2 ; LðF Þ¼ 2Q2ðr2−3a2Þ
ðr2þa2Þ3 : ð26Þ

Near r ¼ 0 we have LðF Þ ¼ 2ρ < 0, corresponding to
an anti–de Sitter center, as illustrated in Fig. 4(a). A
Minkowski asymptotic behavior near r ¼ 0 is obtained,
for example, with n ¼ 1, which leads to

AregðrÞ¼1−
Q2r4

ðr2þa2Þ3 ; LðF Þ¼2Q2r2ðr2−5a2Þ
ðr2þa2Þ4 ; ð27Þ

and again LðF Þ ¼ 2ρ < 0 near r ¼ 0, but it is zero at the
center itself due to the factor r2 [Fig. 4(b)]. It is the case
where AregðrÞ has the shape of a pure barrier, while barriers
along with depressions are observed in the more general
pictures in Fig. 2.

IV. CURING SINGULARITIES IN SOME
EINSTEIN-NED SOLUTIONS

The metric (14) withm ¼ 0 and finite Að0Þ ≠ 1, also has
a singularity at r ¼ 0, such that ρ ∼ 1=r2 at small r, and
the integral in (12) taken from zero to small r behaves as
const · r and adds a constant to A according to (12). In this
case, replacements like (15) do not work because there is
no particular r dependence of A to be modified. Instead,

FIG. 3. Plots of AregðrÞ for the regularized extremal Reissner-Nordström metric (20) with a ¼ 0.4: (a) for the function (23) with
M ¼ 0.7, 1, 1.4, 1.8, curves 1–4; (b) for the function (24) with M ¼ 0.8; 1.2; 1.6, 2, curves 5–8. (c) The Carter-Penrose diagram for a
configuration with two extremal horizons.

FIG. 2. Plots of AregðrÞ for the regularized Reissner-Nordström metric (20) with a ¼ 0.4: (a) for fixed Q ¼ 2 and different M, (b) for
fixed M ¼ 1 and different Q. The plane A ¼ 0 is shown in each panel to visualize the regions where Areg < 0 corresponding to black
hole interiors.
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one can either directly modify LðF Þ to lead it to a finite
limit at largeF or make finite the density ρðrÞ, for example,
replacing there 1=r2 with 1=ðr2 þ a2Þ. Let us consider two
such examples.

A. The Einstein-Born-Infeld solution

The famous Born-Infeld NED Lagrangian, which for
pure electric or magnetic fields reads

LðF Þ¼ β
�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2F=β2

q �
; β¼ const> 0; ð28Þ

is known to make finite the electromagnetic field strength
and energy in its Coulomb-like spherically symmetric
solution while, being coupled to GR, it weakens but does
not remove the curvature singularity at r ¼ 0. Thus, with
(28), integration in (12) with substituted F ¼ 2Q2=r4

(assuming a radial magnetic field with charge Q) leads
to the expression (see, e.g., [66–69])

AðrÞ¼ 1−
1

6

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Q2þβ2r4

q
−βr2

�

−
2

3r

ffiffiffiffiffiffiffiffiffi
jQj3
β

s
ð1þ iÞF

�
isinh−1

�
ð1þ iÞ r

ffiffiffi
β

p

2
ffiffiffiffiffiffiffijQjp �

;−1
�
;

ð29Þ

where F is an elliptic function. The asymptotic behavior of
AðrÞ at small r is

AðrÞ ¼ 1 − βjQj þ β2r2=6þOðr4Þ ð30Þ

and can be associated with (14) at m ¼ 0. Examples of the
behavior of AðrÞ with β ¼ 2 (used for convenience), both
corresponding to a black hole (if jQj > 1) and a naked
singularity (otherwise), are shown in Fig. 5(a).
As discussed above, to regularize the metric in this case,

it is necessary to modify the Lagrangian function for having
its finite limit as F → ∞. Such a simple way, preserving
the Born-Infeld behavior (28) of LðF Þ at moderate values
of F , can be proposed as

LðF Þ¼β

 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2F

β2þγF

s !
; β;γ¼ const>0; ð31Þ

assuming sufficiently small values of γ. For AðrÞ we then
obtain a long expression with several Appell functions
of six arguments, not to be presented here, with the near-
center behavior

AregðrÞ ¼ 1 −
1

6

�
−β þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ 2=γ

q �
r2 þOðr4Þ; ð32Þ

indicating a de Sitter asymptotic. The plots of AregðrÞ,
drawn in Fig. 5(b) for particular values of the parameters,
show the characteristic form of the metric functions known
in regular NED-GR black hole solutions.
Let us, for methodological purposes, introduce a NED

theory, whose solutions behave similarly to those of the

FIG. 4. Plots of AregðrÞ for the regularized massless Reissner-Nordström metric with a ¼ 0.4 andQ ¼ 0.2, 0.3, 0.4 (bottom-up in each
panel): (a) Eq. (26) with an AdS central asymptotic, (b) Eq. (27) with a Minkowski central asymptotic; (c) a comparison of two curves
for Q ¼ 0.2 at small r, the flattened curve near r ¼ 0 corresponding to a Minkowski asymptotic.

FIG. 5. Plots of AðrÞ in solutions with the original (a) and modified (b) Born-Infeld theory as a source of gravity. The parameters are
(a) β ¼ 2, Q ¼ 0.6, 0.8, 1, 1.2, 1.4 (upside down); (b) β ¼ 2; γ ¼ 0.5; q ¼ 2.5, 3, 3.5, 4, 4.5 (upside down).
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Born-Infeld theory but are expressed analytically in a much
simpler way.

B. A simpler NED with Born-Infeld-like behavior

Consider the NED Lagrangian (from a family of theories
considered in [70])

LðF Þ ¼ F

1þ h
ffiffiffiffiffiffiffiffiffi
F=2

p ; h ¼ const > 0: ð33Þ

Like the Born-Infeld theory, this one takes a correct
Maxwell form, L ¼ F , at small F . With F ¼ 2Q2=r4,
Eq. (12) leads to the following expression for AðrÞ:

AðrÞ ¼ 1 −
Q2

Hr
arctan

r
H
; H ≔ ðQ2h2Þ1=4; ð34Þ

with the near-center behavior similar to (30),

AðrÞ ¼ 1 −
jQj
h

þ r2

3h2
þOðr4Þ; ð35Þ

and the r dependence of the Lagrangian function (equal to
2ρ) is

LðF ðrÞÞ ¼ 2Q2

r2ðr2 þH2Þ : ð36Þ

It is now easy to regularize the system by simply
replacing 1=r2 ↦ 1=ðr2 þ c2Þ in this LðrÞ, c > 0 being
a small regularization parameter,

LðF Þ ↦ Lreg ¼
2Q2

ðr2 þ c2Þðr2 þH2Þ
¼ F

ð1þ h
ffiffiffiffiffiffiffiffiffi
F=2

p Þð1þ c2jQj−1=2 ffiffiffiffiffiffiffiffiffi
F=2

p Þ : ð37Þ

This leads to the regularized metric function

AregðrÞ¼ 1−
Q2

ðH2−c2Þr
�
H arctan

r
H
−carctan

r
c

�
; ð38Þ

with the near-center asymptotic behavior

AregðrÞ ¼ 1 −
jQjr2
3c2h3=2

þOðr4Þ: ð39Þ

It can be verified that the functions (34) and (38) behave
qualitatively in the same way as solutions for the Born-
Infeld theory and its modification (31), shown in Fig. 5.
One can notice that in both theories (28) and (33) the

solution has either a naked singularity or a single horizon,
whereas the regularized solution is either solitonlike or
represents a regular black hole with one or two horizons

(a single, extremal horizon emerges in the intermediate
case). This picture is common to many solutions with a
regular center and is related to the fact that the regularity
requires Að0Þ ¼ 1, hence such a center can only exist in a
static region with A > 0.

V. CONCLUDING REMARKS

Let us enumerate and discuss some results and obser-
vations made in this paper.

(i) A way of singularity removal is proposed for static,
spherically symmetric space-times satisfying the
condition Rt

t ¼ Rr
r by properly changing a neighbor-

hood of a singularity at r ¼ 0 so that it becomes a
regular center. This is achieved by a Bardeen-like
replacement in the metric function AðrÞ containing
a small regularization parameter; the condition
Rt
t ¼ Rr

r is preserved, and the resulting metric can
be interpreted as an Einstein-NED solution with a
radial magnetic field, by analogy with studies
devoted to regular NED-sourced black holes, see,
e.g., [54,71] and references therein.

(ii) More involved are cases where the original singu-
larity is of comparatively soft nature [for instance,
those with a finite value of Að0Þ ≠ 1]; its removal
requires a direct modification in the original
Lagrangian or the expression for the energy density,
as is seen in the example of the Einstein-Born-Infeld
solution. A much simpler version of NED is con-
sidered, given by Eq. (33), which leads to similar
properties of the solution near the singularity, while
its modified version (37) leads to a regular solitonic
or black hole solution.

(iii) We have dealt here with examples of asymptotically
flat space-times, with Reissner-Nordström behavior
at large r. There is a straightforward extension of
these solutions with a nonzero cosmological con-
stant Λ, similar to that described, e.g., in [72]. It is
achieved by adding the term −Λr2=3 to all functions
AðrÞ mentioned in this paper, and this term even
does not need any modification at singularity re-
moval since it does not spoil the metric behavior
near a center.

Black-bounce space-times contain regular minima of
the spherical radius r and therefore require phantom matter
as a source in the framework of GR. Obtaining regular
centers instead of singularities does not require such exotic
matter, and, in particular, all metrics with Rt

t ¼ Rr
r can be

sourced by nonlinear electromagnetic fields which (though
marginally) satisfy the null energy condition.
More general space-times, not restricted by the above

condition for the Ricci tensor, require other regularization
methods, and their formulation can be a next task.
Concerning their possible material sources, one may recall
that, as shown in [44], any static, spherically symmetric
metric may be described as a solution of GR with a
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combined source consisting of a magnetic field obeying
NED and a scalar field with a certain self-interaction
potential, and one may hope that, unlike black-bounce
space-times, those with a regular center will not require a
phantom field as a source.
Various aspects of the new proposed regular metrics can

be further studied, such as geodesics, lensing, stability,
quasinormal modes, etc. In the context of finding sources of
gravity for such metrics, one can note that the stability of a
particular geometry essentially depends on the dynamics of
its source. Thus, it has been found that the Ellis simple

wormhole geometry [65,73] can be stable or unstable,
depending on the source to which it is ascribed: a phantom
scalar field, a perfect fluid, or a k-essence field [74–76].
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