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We investigate the well-posedness of the characteristic initial-boundary value problem for the Einstein
equations in Bondi-like coordinates (including Bondi, double-null and affine). We propose a definition of
strong hyperbolicity of a system of partial differential equations of any order, and show that the Einstein
equations in Bondi-like coordinates in their second-order form used in numerical relativity do not meet it,
in agreement with results of Giannakopoulos et al. for specific first-order reductions. In the principal part,
frozen coefficient approximation that one uses to examine hyperbolicity, we explicitly construct the general
solution to identify the solutions that obstruct strong hyperbolicity. Independently, we present a first-order
symmetric hyperbolic formulation of the Einstein equations in Bondi gauge, linearized about Schwarzs-
child, thus completing work by Frittelli. This establishes an energy norm (L2 in the metric perturbations
and selected first and second derivatives), in which the initial-boundary value problem, with initial data on
an outgoing null cone and boundary data on a timelike cylinder or an ingoing null cone, is well posed, thus
verifying a conjecture by Giannakopoulos et al. Unfortunately, our method does not extend to the pure
initial-value problem on a null cone with regular vertex.
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I. INTRODUCTION

Well-posedness of a system of partial differential equa-
tions (from now on, PDEs) is defined as the existence and
uniqueness of solutions and their continuous dependence
on the initial and boundary data. For formulations of the
Einstein equations where surfaces of the time coordinate u
are outgoing null cones, three PDE problems, among
others, are of interest: (1) the double null initial value
problem, with free data posed on an outgoing null cone
u ¼ 0 and ingoing null cone v ¼ 0 that intersect in a
spacelike 2-sphere; (2) the initial-boundary value problem,
with free initial data posed on u ¼ 0 and boundary data on
a timelike cylinder r ¼ r0, again intersecting in a spacelike
2-sphere; and (3) the initial value problem on a null cone
u ¼ 0 with regular vertex r ¼ 0.
The mathematical literature has focused on the proof of

well-posedness of such problems in some coordinate
system and formulation that is convenient for the proof.
This might be called geometric well-posedness. By con-
trast, in numerical relativity, well-posedness of the con-
tinuum problem is necessary for the existence of a stable
discretization, but other considerations are equally impor-
tant for the choice of formulation of the Einstein equations,
and so one wants a proof of well-posedness in the
formulation of choice.
We give two examples of this difference in emphasis. A

famous proof of geometric well-posedness of the Cauchy
problem was given by Fourès-Bruhat in harmonic coor-
dinates [1], but these became useful for numerical relativity

only through the breakthrough work of Pretorius [2], which
incorporated two key modifications of lower-order terms:
specific choices of the “gauge source functions” of [3]
that avoid coordinate singularities, and the addition of
“constraint damping” terms to suppress violations of the
harmonic and Einstein constraints arising from numerical
error [4]. In a second example, much of the mathematical
relativity literature uses double-null coordinates on ingoing
and outgoing null cones, but these are not expected to be
useful in numerical relativity beyond spherical symmetry
because the ingoing null cones form caustics. (It is one
purpose of the present series of papers to establish if
outgoing null cones also form caustics in specific strong-
field applications.)
Geometric well-posedness for the double initial value

problem was established by Rendall [5] for smooth data,
covering a small neighborhood of the intersection 2-sphere.
The proof used harmonic coordinates, made to coincide
with u and v on the initial surfaces u ¼ 0 and v ¼ 0. This
result was improved by Luk [6] for a larger region (small
finite distances to the future of the two initial null surfaces)
and rougher data. The proof used double-null coordinates,
and estimates in H1 of a null tetrad and the Ricci rotation
coefficients and curvature components in this tetrad.
The initial value problem on a regular null cone is even
harder because of the need to characterize data near the tip
that will give a regular solution. Existence was proved by
Chruściel [7], see also [8].
In the present series of papers, we focus on class of

coordinates ðu; x; θ;φÞ introduced in [9,10], and called
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“Bondi-like” in [11], where the surfaces of constant
(retarded) time u are outgoing null cones and the lines
of constant ðu; θ;φÞ are their generators. (To avoid con-
fusion about terminology, we mention already that “Bondi
coordinates” are further defined by the radial coordinate x
being the area radius.)
In addition, we are interested in formulations of the

Einstein equations where a maximum number of equations
can be solved as ordinary differential equations (from now
on, ODEs) along the generators of the coordinate null
cones, and only a minimum number, namely two or three,
contain u-derivatives: intuitively, the latter are evolution
equations for the two polarizations of gravitational waves,
plus, in double-null coordinates only, a third one for the
area radius R.
Such formulations are attractive for numerical relativity

because they are “maximally constrained,” meaning that
one solves the same constraint equations on each time
slice as on the initial time slice (so that only free data are
evolved), and because these constraints are not elliptic
equations but inhomogeneous first-order linear ODEs that
can be solved by integration. (An exception to this state-
ment are affine null coordinates, where one of the con-
straints is a homogeneous linear second-order ODE.)
Time evolutions beyond spherical symmetry on null

cones emanating from a regular center have been carried
out, for example, for supernova core collapse [12] and for
scalar field critical collapse [13], and vacuum evolutions
using Cauchy-characteristic matching along a timelike
cylinder, for example in [14].
However, we are not aware of any previous well-

posedness result specifically in Bondi-like coordinates.
In an incomplete attempt, Frittelli [15] constructed a first-
order symmetric hyperbolic form of the vacuum Einstein
equations in Bondi coordinates, linearized about Minkowski
space. An “energy” estimate, in L2 of the reduction varia-
bles, then follows. However, the perturbation Ṽ of the metric
coefficient V was omitted from the system. This is possible
in the linearization about Schwarzschild because Ṽ couples
to the other perturbations, but not vice versa.
The present paper is an attempt to reconcile the results

of [5–7], and the suggestive incomplete result of [15], with
recent work of Giannakopoulos and collaborators. Their
paper [11] found that a first-order reduction of the null cone
formulation is weakly, but not strongly, hyperbolic (and
hence not symmetric hyperbolic), that the lack of strong
hyperbolicity is essentially a gauge problem in any Bondi-
like gauge [16], and that it appears to indeed break the
convergence of numerical solutions with resolution, both in
toy models and in an open-source code for the null initial-
boundary value problem [17].
The structure of the paper is as follows. As in the

previous papers in this series [13,18], in Sec. II we restrict
to twist-free axisymmetry, with a minimally coupled
massless scalar field ψ as matter. We briefly restate the

metric, the mathematical structure of the field equations
and the gauge choices we consider. We then linearize the
equations, first around an arbitrary background and then
around Minkowski spacetime, drop lower-order terms, and
“freeze” the background coefficients by treating them as
constants. We now have a homogeneous system of linear
PDEs with constant coefficients that we shall call the
“toy model” of the original system. The symbol of the toy
model is also the principal symbol of the original system,
and strong hyperbolicity is an algebraic property of this
principal symbol.
In contrast to [11,15], we do not reduce the PDEs to first

order, but leave them in the form in which they are solved
numerically. We generalize the textbook definition of
strong hyperbolicity of first-order systems of PDEs to
systems of PDEs of arbitrary order. We show that, by this
criterion, all known Bondi-like null gauges are only weakly
hyperbolic. We also find the general solution of the toy
model itself in closed form, and hence identify the poly-
nomial solutions that obstruct strong hyperbolicity.
(Appendix A reminds the reader of a textbook example
of this phenomenon).
In Sec. III, we use a completely different approach. We

relax the restriction to twist-free axisymmetry, but linearize
about the Schwarzschild solution, and restrict to Bondi
gauge. We present a first-order symmetric hyperbolic form
of the full linearized equations, thus completing the result
of [15]. (We correct some minor errors in Appendix B.) To
include all 6 metric coefficients in the estimate, we need to
include also 10 first and 7 second derivatives of the metric
as variables in the system and hence in the estimate. These
are far from all first and second derivatives, and their choice
is crucial for symmetric hyperbolicity. To connect with
Sec. II with Sec. III, we give the equivalent symmetric
hyperbolic form of the toy model in Appendix C.
We then present well-posedness estimates for the initial

value problem on two intersecting null cones and the
initial-boundary value problem on a null cone intersecting
a timelike world tube, closely following [19,20].
Unfortunately, these methods do not allow us to derive
an estimate for the pure Cauchy problem on an outgoing
null cone with regular vertex, see Appendix D for the
technical obstructions.
We summarize and conclude in Sec. IV.

II. OBSTRUCTIONS TO STRONG
HYPERBOLICITY OF THE SECOND-ORDER

FORM OF THE EINSTEIN EQUATIONS
IN BONDI-LIKE GAUGES

A. Metric and field equations in twist-free
axisymmetry

We begin with a brief review of our setup in this ection,
see [18] for full details. We can write the metric of any
twist-free axisymmetric spacetime in the form
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ds2 ¼ −2Gdudx −Hdu2

þ R2
�
e2SfS−1ðdyþ SbduÞ2 þ e−2SfSdφ2

�
: ð1Þ

We use the angular coordinate y ≔ − cos θ, so that the
range 0 ≤ θ ≤ π corresponds to −1 ≤ y ≤ 1, and the short-
hand S ≔ 1 − y2. The other angular coordinate φ has the
usual range 0 ≤ φ < 2π. The Killing vector generating the
axisymmetry is ∂φ. (We use the convention of equating
vector fields with derivative operators.) ðG;H; R; b; fÞ and
the scalar field ψ depend on ðu; x; yÞ. In [18] we assumed
that R ¼ 0 occurs at x ¼ 0 and is a regular center, but we do
not make this assumption here.
Each surface N þ

u of constant u is an outgoing null cone,
and is ruled by the null geodesics Lþ

u;y;φ, which are also
coordinate lines. Each surface Su;x of constant u and x is
assumed to be spacelike, and has topology S2 and area
4πR2. The outgoing future-directed null vector field normal
to Su;x is U ≔ G−1

∂x, and is also tangent to the affinely
parametrized generators of N þ

u . The ingoing null normal
on Su;x is

Ξ ¼ ∂u −
H
2G

∂x − bS∂y: ð2Þ

It is normalized to ΞaUa ¼ −1.
The field equations we want to solve are the Einstein

equations

Eab ≔ Rab − 8π∇aψ∇bψ ¼ 0 ð3Þ

and the massless, minimally coupled wave equation

∇a∇aψ ¼ 0: ð4Þ

(We use units where c ¼ G ¼ 1.) A subset of the Einstein
equations, plus the wave equation, take the form�

ln
G
R;x

�
;x
¼ SG½R; f;ψ �; ð5Þ

�
R4e2Sfb;x

G

�
;x
¼ Sb½R; f;ψ ; G�; ð6Þ

ðRΞRÞ;x ¼ SR½R; f;ψ ; G; b�; ð7Þ

ðRΞfÞ;x ¼ Sf½R; f;ψ ; G; b� − ðΞRÞf;x; ð8Þ

ðRΞψÞ;x ¼ Sψ ½R; f;ψ ; G; b� − ðΞRÞψ ;x; ð9Þ

where Ξ is the derivative operator defined in (2). We call
these the “hierarchy equations.”H and ∂u appear only in the
combination Ξ. The right-hand sides S½f;…� are given in
full in [18]. They contain the derivatives f;x, f;y, f;xy and

f;yy (but not f;xx), and similarly for R, G, b and ψ , with the
exception that ψ ;xy and b;yy do not appear.

B. Gauges and solution algorithm

WithH given (for exampleH ¼ 0 in double-null gauge),
the hierarchy equations take the form of first-order linear
ODEs in x for b, G, ΞR, Ξf, and Ξψ that can be solved by
integration. With R given (for example R ¼ x in Bondi
gauge), (7) is solved for H, given R;u. In a third group
of gauges, where G is given (for example G ¼ 1 in affine
gauge), (5) becomes a second-order linear ODE in x for R
that is solved first, the other equations are again solved by
integration for b, ΞR and Ξf, and ð7Þ;x and ð5Þ;u are
combined to find an equation that can be solved for H by
integration.
With f;u, R;u and ψ ;u now known, f, ψ , and in double-

null gauge also R, are now advanced in u, and the hierarchy
equations are then solved again. Note that the algorithm is
“maximally constrained” in the sense that the hypersurface
equations are solved at each time step, as they are from the
free initial data.
Consider now the characteristic initial-boundary value

problem, with outgoing null boundary ðu ¼ 0; x > 0Þ and
timelike or null inner boundary ðx ¼ 0; u > 0Þ. (Geo-
metrically, one can think of the problem on two intersecting
null cones as a pure initial-value problem, but in Bondi-like
coordinates it is more natural to think of data on u ¼ 0 as
initial data and data on v ¼ 0 as boundary data, as we solve
the constraints by integration in v.)
In double null gauge we specify R, f and ψ on u ¼ 0,

and ΞR, Ξf, Ξψ , b, b;x and G on x ¼ 0, or nine functions
of two variables. In Bondi gauge we specify f and ψ on
u ¼ 0, and Ξf, Ξψ , b, b;x, G and H on x ¼ 0, or eight
functions of two variables. Finally, in affine gauge, we
specify f and ψ on u ¼ 0, and R, R;x, Ξf, Ξψ , b, b;x,H and
H;x on x ¼ 0, or ten functions of two variables.
In each case, the data on u ¼ 0 can be specified freely,

while the data on x ¼ 0 are constrained by some of the
remaining Einstein equations, which do not contain
x-derivatives. We do not discuss these constraints here,
but evaluate the hyperbolicity of the evolution equations
with the constraints relaxed.

C. Definition of strong hyperbolicity

As already noted, a necessary condition for well-
posedness of a nonlinear PDE is well-posedness of its
linearization, in the principal part, frozen coefficient
approximation. We denote the field equations linearized
around a background solution ϕ by

Lðx;ϕ;∇Þδϕ ¼ 0; ð10Þ

We denote the principal part of L by Lp. The principal
symbol is the matrix-valued function Lpðx;ϕ; ikÞ of the
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wave number covector k. For a quasilinear system (such as
the Einstein equations), the principal symbol of the
linearization is the same as the principal part of the full
equations.
We can use the principal symbol to find plane-wave

solutions to the linearized field equations in the frozen co-

efficient approximation: substituting δϕðxÞ ¼ eik·xcδϕðkÞ
into Lð∇ÞδϕðxÞ ¼ 0 gives LðikÞcδϕðkÞ ¼ 0, which is now
a system of linear algebraic equations. Nontrivial solutions
exist only for k such that detLðikÞ ¼ 0. These k are called

characteristic covectors, and vectors dδϕðkÞ in the corre-
sponding null space of LðikÞ are called characteristic
variables. The linearized problem with frozen coefficients
is well-posed in L2 if the plane-wave solutions with real k
are complete in the sense that we can map them smoothly
and one-to-one to the boundary and initial data.
Consider now the Cauchy problem for a system of linear

PDEs with constant coefficients. Initial data are imposed on
a spacelike surface t ¼ 0, with normal covector n ≔ dt,
and we assume that the initial data fall off as jxj → 0, so
that we can Fourier-transform the initial data and the
solution in x. Then a sufficient criterion for well-posedness
is given by strong hyperbolicity. We offer the following
definitions:
A system of PDE is defined to be strictly hyperbolic in

the time direction n, in a neighborhood of the solution ϕ,
if, first, detLpðϕ; inÞ ≠ 0, and second, all roots ω of
detLpðϕ; iωnþ ik̄Þ ¼ 0 are real and distinct, for all
real k̄ that are not zero or proportional to n (see, for
example, [21]). (We shall use the notation k for arbitrary
covectors, k̄ for what intuitively are vectors in “space”,
and kω ≔ ωnþ k̄.)
If the roots are not all distinct, then the system is strongly

hyperbolic if the null spaces of Lpðϕ; iωnþ ik̄Þ have
dimension corresponding to the multiplicity of each root ω,
and these null spaces depend smoothly on ω. This general-
izes the textbook definition for first-order systems (see, for
example, [22]).

If the roots are all real, but the system is not strongly
hyperbolic, it is called weakly hyperbolic.
Strict hyperbolicity implies strong hyperbolicity, and for

the linearized equations with frozen coefficients both mean
that after Fourier-transforming in x, initial data on a surface
with normal covector n can be decomposed into plane
waves expðik · xÞδϕðkÞ, with δϕðkÞ in the null spaces
mentioned above, each of which propagates with a speed ω
in the direction −k. This in turn implies local well-
posedness of the pure initial-value problem.
If we reduce a strongly hyperbolic system of arbitrary

higher order to first order by introducing suitable deriva-
tives of the original variables as reduction variables, the
general solution translated into these variables still consists
of purely oscillating plane waves. Hence any such first-
order reduction is strongly hyperbolic. However, the con-
verse is not true: a higher order system that is only weakly
hyperbolic according to our definition may or may not
admit a strongly hyperbolic first-order reduction.

D. The principal symbol

To fix notation, we write our variables in the order
ϕ† ≔ ðG; b; R; f;H;ψÞ, the coordinates in the order x ≔
ðu; x; yÞ, so that ∇ ≔ ð∂u; ∂x; ∂yÞ, and we use the notation
k ≔ ðμ; ξ; ηÞ for the wave number covector.
For our field equations, the principal terms clearly

include the second derivatives of G, b, R, f and ψ . The
only derivative of H that appears is H;x, and this should
therefore be considered principal. Finally, because we want
to think of (5) as determining G, we include the first
derivativeG;x as a principal term in this equation, but not in
the other equations, which also contain second derivatives
of G. The equations are quasilinear in this sense.
Note that until we have fixed a specific null gauge, the

principal symbol will have five rows, corresponding to the
linearizations of the field equations (5)–(9), but six col-
umns, corresponding to six metric perturbations. The
preliminary principal symbol and the corresponding vector
of perturbation variables are

Lpðx;ϕ; ikÞ ¼

0BBBBBBBB@

i
G ξ 0 1

R;x
ξ2 0 0 0

− R2

G ηξ − e2SfR4

G ξ2 −2Rηξ 2R2Sηξ 0 0

R2

4
Y R2S

4
ηξ X þ GR

2
Y − GR2S

2
Y −i RR;x

2G ξ 0

R
4S Y

R
4
ηξ 0 X −i Rf;x

2G ξ 0

0 0 0 0 −i Rψ ;x

2G ξ X þ GR
2
Y

1CCCCCCCCA
; δϕðxÞ ≔

0BBBBBBBB@

δG

δb

δR

δf

δH

δψ

1CCCCCCCCA
: ð11Þ

We have defined the shorthands

X ≔ Rξ

�
−μþ bSηþ H

2G
ξ

�
; ð12Þ
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Y ≔
e−2SfS
R2

η2: ð13Þ

X is the principal symbol of the derivative operator ∂xRΞ
that appears on the left-hand side of each of the hierarchy
equations. Y is the symbol of the principal angular
derivative −gyy∂y∂y.
Each of the three classes of Bondi-like gauges that we

have already discussed simply eliminates one of the
columns of (11), giving us a square 5 × 5 symbol: this
is the δH column in generalized double-null gauges, where
H is given and δH ¼ 0; the δR column in Bondi and related
gauges, whereR is given and δR ¼ 0; and the δG column in
affine and related gauges, where G is given and δG ¼ 0.
We do not write the 5 × 5 principal symbols for these
gauges out explicitly, as they can be read off trivially
from (11).
In any null gauge, the “time” direction n¼ du¼ð1;0;0Þ,

that is, using u as the time coordinate, fails the first criterion
for strong hyperbolicity. That is of course expected, as
the surfaces of constant u are characteristic. Instead we
follow [11] and analyse hyperbolicity on spacelike time
slices with normal covector

n ≔
�
1;

1

A
; 0

�
; ð14Þ

with A > 0. For now we leave A and k̄ ¼ ðμ; ξ; ηÞ general,
so that

kω ¼
�
ωþ μ;

ω

A
þ ξ; η

�
: ð15Þ

E. Double-null and related gauges

In double-null gauge H ¼ 0 and δH ¼ 0. In related
gauges [18], δH is given in terms of δG, and so the resulting
δH;x is not principal in the equations where it appears,
because these contain second derivatives of G. In either
case we can delete the δH column in the temporary
principal symbol to obtain the 5 × 5 principal symbol
for these gauges, and we remover δH from δϕ.
The first row of Lpðϕ; ikÞ now contains first and second

order in k terms, and the other rows are homogeneous in k
of second order. However, the cofactor of the entry ξ2=R;x

in the first row, third column, of Lpðϕ; ikÞ is zero, and so
detLpðϕ; ikÞ is homogeneous of order nine, rather than
ten, in k.
The nine roots ω of Lpðϕ; iωnþ ikÞ ¼ 0 are

ω0 ≔ −Aξ ð16Þ

with multiplicity four,

ω� ≔ ωc � Δω; ð17Þ

each with multiplicity two, and

ω2 ≔ 2ωc þ Aξ ¼ −2Zμ̄ − Aξ; ð18Þ

with multiplicity one. Here we have defined the shorthand

ωc ≔ −Zμ̄ − Aξ; ð19Þ

Δω ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2μ̄2 þ AGZY

q
; ð20Þ

μ̄ ≔ μ − Aξ − bSη; ð21Þ

Z ≔
AG

2AG −H
: ð22Þ

The roots ω� with multiplicity two have corresponding null
spaces of dimension two, and the null space of ω2 has
dimension one, but the null space of ω0 has only dimension
two, not four, so two fewer than the multiplicity of the root.
Attention must also be given to special directions in

which roots ω merge. In the special direction given by
μ̄ ¼ 0, the roots ω2 ¼ ω0 have merged and ω0 is now a
quintuple root, but the corresponding null space is still only
two-dimensional, so (exceptionally) three fewer than the
multiplicity of the root.
The characteristic covectors kω themselves are indepen-

dent of the parameter A of the time slicing, as long as
A > 0, and to find all of them it is sufficiently general to
give k̄ only two algebraically independent components. In
particular, k� and k2 can be written as

k� ¼
�
GY

2ξ̃
þ H
2G

ξ̃þ bSη; ξ̃; η

�
; ð23Þ

k2 ¼
�
H
2G

ξ̃þ bSη; ξ̃; η

�
; ð24Þ

where now ξ̃ and η are arbitrary, except that ξ̃ > 0 for kþ
and ξ̃ < 0 for k−. Similarly, k0 can be written as

k0 ¼ ðμ̃; 0; ηÞ; ð25Þ

where now μ̃ and η are arbitrary. We see that k0 para-
metrizes plane waves that do not depend on x. The k� are
null covectors, while k0 and k2 are spacelike. They obey
U · k0 ¼ 0 and Ξ · k2 ¼ 0.

F. Bondi and related gauges

In Bondi and related gauges, R is given and δR ¼ 0, and
so we eliminate the column corresponding to it. We now
have eight roots ω: ω0 with multiplicity four and null space
of dimension two, so two fewer than the multiplicity of the
root, and ω� with multiplicity two and the same null spaces
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of dimension two as in the double null case. There is no
problem of merging roots.

G. Affine and related gauges

In affine gauge, G is given and δG ¼ 0, and so we
eliminate the column corresponding to it. With G ¼ GðuÞ,
(5) and (7) take the form

R;xx ¼ ð…ÞR; ð26Þ

ðRR;uÞ;x þ
1

2G
ðRR;xHÞ;x ¼ ð…Þ; ð27Þ

where the dots stand for terms already known at the point
where the equations are solved. (26) is then solved as a
second-order ODE in x for R. Starting from ð27Þ;x, we use
ð26Þ;u to eliminate R;uxx and (27) to eliminate R;ux, and
obtain an equation of the form H;xx ¼ ð…Þ.
To reflect this, in affine gauge we multiply the third row

of (11), which comes from (7), by iξ. This will obviously

multiply detLpðikÞ by a factor of iξ, and hence will gives
us an extra root ω0, without changing the dimension of the
corresponding null space.
We now have ten roots ω: ω0 with multiplicity six and

null space of dimension three, so three fewer than the
multiplicity of the root and ω� with multiplicity two and
the same null spaces of dimension two as in the double null
case. There is no problem of merging roots.

H. Linearization about Minkowski spacetime
and frozen coefficient approximation

The principal symbol, and hence the characteristic
covectors and variables are simpler in the linearization
about Minkowski, but the multiplicities of the roots and
dimensions of the corresponding null spaces are un-
changed, so we now restrict to this case.
Linearizing about Minkowski spacetime, so that

b ¼ f ¼ ψ ¼ 0, G ¼ H ¼ 1 and R ¼ x in the background,
we have the 5 × 6 principal symbol

Lp
Minkðx; ikÞ ¼

0BBBBBBBB@

iξ 0 ξ2 0 0 0

−r2ηξ −r4ξ2 −2rηξ 2r2Sηξ 0 0

S
4
η2 r2S

4
ηξ S

2r η
2 − rμξþ r

2
ξ2 − S2

2
η2 −i r

2
ξ 0

1
4r η

2 r
4
ηξ 0 −rμξþ r

2
ξ2 0 0

0 0 0 0 0 S
2r η

2 − rμξþ r
2
ξ2

1CCCCCCCCA
: ð28Þ

In the frozen coefficient approximation, we denote the frozen value of R in the background by r, but the radial argument of
the linear perturbations by x.
We can simplify (28) further, as follows. We define the coordinate ȳ and corresponding wave number k as

k ≔
ffiffiffi
S

p

r
η; ȳ ≔

rffiffiffi
S

p y; ⇒ kȳ ¼ ηy; ∂y ¼
rffiffiffi
S

p ∂ȳ: ð29Þ

Note that in the frozen coefficient approximation both y and ȳ are considered to have infinite range, while S appears only as
a frozen coefficient, ignoring that S ¼ 1 − y2 ¼ sin2 θ. Similarly, r stands for a frozen coefficient, while x is considered to
have infinite range. We multiply the rows of (28) by the constants ð1; ffiffiffi

S
p

; 4; 4S; 2Þ respectively, and renormalize the
perturbations by constants as

δϕ† ≔
�
δG; ðr

ffiffiffi
S

p
Þδb; ð2=rÞδR; ð2SÞδf; ð2=rÞδH; δψ

�
≔
�
δG; δb; δR; δf; δH; δψ

�
; ð30Þ

which corresponds to multiplying the columns of (28) by constants. With this notation, the preliminary 5 × 6 principal
symbol of the linearization about Minkowski space takes the form

Lp
Mink;frozenðikÞ ¼

0BBBBBB@
iξ 0 r

2
ξ2 0 0 0

−kξ −ξ2 −kξ kξ 0 0

k2 kξ k2 − 2μξþ ξ2 −k2 −iξ 0

k2 kξ 0 −2μξþ ξ2 0 0

0 0 0 0 0 k2 − 2μξþ ξ2

1CCCCCCA: ð31Þ
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We have been able to absorb all but one of the background-
dependent coefficients into our redefinitions.
We also simplify the calculation of characteristic cov-

ectors by restricting our ansatz to n ≔ ð1; 1; 0Þ and
k̄ ¼ ð0; ξ; kÞ, so that

kω ¼ ðω;ωþ ξ; kÞ: ð32Þ

In all three classes of Bondi-like gauges, detLpðikωÞ ¼ 0
has roots

ω� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k2

p
; ð33Þ

corresponding to characteristic covectors

k� ¼
	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k2

p
; ξ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ k2

p
; k


; ð34Þ

with multiplicity two and null spaces of dimension two. In
addition, in double null gauge we have ω0 ¼ −ξ, or

k0 ¼ ð−ξ; 0; kÞ; ð35Þ

with multiplicity four but null space of dimension two, and
ω2 ¼ ξ, or

k2 ¼ ðξ; 2ξ; kÞ; ð36Þ

with multiplicity one. In Bondi gauge we have ω0 with
multiplicity four but null space of dimension two, and in
affine gauge ω0 with multiplicity six but null space of
dimension four. So in each gauge the obstruction to strong
hyperbolicity is that the multiplicity of the characteristic
vector k0 is two more than the dimension of the corre-
sponding null space.
In the special case ξ ¼ 0, we have

k� ¼ ð�k;�k; kÞ; k2 ¼ k0 ¼ ð0; 0; kÞ; ð37Þ

and in the special case k ¼ 0, we have

kþ ¼ k2 ¼ ðξ; 2ξ; 0Þ; k− ¼ k0 ¼ ð−ξ; 0; 0Þ: ð38Þ

For ξ ¼ k ¼ 0, there are no characteristic covectors.

I. A toy model for the obstruction
to strong hyperbolicity

If a weakly hyperbolic system of homogeneous linear
PDEs with constant coefficients fails to be strongly hyper-
bolic because there are not enough plane-wave solutions,
the missing solutions must be a polynomial times a plane
wave. (The reader is reminded of a well-known textbook
example in Appendix A.)
We now use the principal part, frozen coefficient

approximation as a toy model for the full linearized

equations. The fact that it has constant coefficients allows
us to find the general solution in closed form, and in
particular the polynomial solutions that obstruct strong
hyperbolicity.
In the linearization about Minkowski spacetime the

scalar wave equation decouples from the metric perturba-
tion in any choice of Bondi-like null gauge, and so we can
consider it separately. In the frozen coefficient approxima-
tion, it takes the form

−2δψ ;ux þ δψ ;xx þ δψ ;ȳ ȳ ¼ 0: ð39Þ

Note this is the actual wave equation on 2þ 1-dimensional
Minkowski spacetime with metric

ds2 ¼ −2dudx − du2 þ dx2 þ dȳ2: ð40Þ

A plane-wave ansatz gives the solution

δψðu; x; ȳÞ ¼
X
�

Z Z cδψ�ðξ; kÞeik�·xdξdk: ð41Þ

The functions cδψ�ðξ; kÞ map one-to-one to, for example,
characteristic data in L2 on null cones u ¼ 0 and v ≔
uþ 2x ¼ 0, or to Cauchy data in L2 on t ≔ uþ x ¼ 0.
Hence this solution is complete by function counting, with
no polynomial solutions required.
We now derive the general solution for the metric

perturbations. We restrict to vacuum, δψ ¼ 0, without loss
of generality. As the missing plane-wave solutions are for
k0 ¼ ð−ξ; 0; kÞ, which parametrizes functions that are
independent of x, we expect the missing solutions to be
polynomial in x. The physical gravitational waves can be
expressed in terms of derivatives of a solution Ψ of the
scalar wave equation [18,23], which can be para-
metrized as

Ψðu; x; ȳÞ ¼
X
�

Z Z
ĉ�ðξ; kÞeik�·xdξdk; ð42Þ

in complete parallel to (41). In double-null gauge, we also
introduce the shorthand

Ψ2ðu; x; ȳÞ ¼
Z Z

ĉ2ðξ; kÞeik2·xdξdk: ð43Þ

for the general solution in L2 of the advection equation

2Ψ2;u −Ψ2;x ¼ 0 ð44Þ

along ingoing null cones.
In double null gauge and its generalizations, we set

δH ¼ 0. The equations in the principal part, frozen coef-
ficient approximation can be read off from (31) with the cδH
column deleted. They are
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δG;x −
r
2
δR;xx ¼ 0; ð45Þ

δG;xȳ þ δb;xx þ δR;xȳ − δf;xȳ ¼ 0; ð46Þ

− δG;ȳ ȳ − δb;xȳ þ 2δR;ux

− δR;xx − δR;ȳ ȳ þ δf;ȳ ȳ ¼ 0; ð47Þ

−δG;ȳ ȳ − δb;xȳ þ 2δf;ux − δf;xx ¼ 0: ð48Þ

The general solution is

δG ¼ δG0;u þ
r
2
Ψ2;x; ð49Þ

δb ¼ δb0 þ δb1;ux −
r
2
Ψ2;ȳ þ Ψ;ȳ; ð50Þ

δR ¼ δf0 þ
1

2
ðδb1;ȳ þ δG0;ȳ ȳÞxþ Ψ2; ð51Þ

δf ¼ δf0 þ
1

2
ðδb1;ȳ þ δG0;ȳ ȳÞxþ Ψ2 þ Ψ;x: ð52Þ

The five free functions (of two variables) ĉ�, ĉ2, δb0, δf0
parametrize plane waves, while the free functions δG0 and
δb1 parametrize linear-in-x solutions. These seven free
functions correspond to seven characteristic covectors: k�
and k2, all with multiplicity one, and k0 with multiplicity
four. They also correspond to the freedom to set five
functions ðb; b;x; G;ΞR;ΞfÞ of ðu; ȳÞ at x ¼ 0 and two
functions ðR; fÞ of ðx; ȳÞ at u ¼ 0. Hence our solution is
complete by function counting.
The linear-in-x solutions are problematic not because

they grow (and so are not in L2), but because they grow
arbitrarily rapidly in x for boundary data at x ¼ 0 that
oscillate arbitrarily rapidly in y.
In Bondi gauge and its generalizations, we set δR ¼ 0.

The equations in the principal part, frozen coefficient

approximation can be read off from (31) with the cδR
column deleted. They are

δG;x ¼ 0; ð53Þ

δG;xȳ þ δb;xx − δf;xȳ ¼ 0; ð54Þ

− δG;ȳ ȳ − δb;xȳ þ δf;ȳ ȳ − δH;x ¼ 0; ð55Þ

−δG;ȳ ȳ − δb;xȳ þ 2δf;ux − δf;xx ¼ 0: ð56Þ

The general solution is

δG ¼ δG0; ð57Þ

δb ¼ δb0 − δG0;ȳxþ Ψ;ȳ; ð58Þ

δf ¼ δf0 þ Ψ;x; ð59Þ

δH ¼ δH0 þ δf0;ȳ ȳx: ð60Þ

The four free functions ĉ�, δb0 and δH0 parametrize plane
waves, while δG0 and δf0 parametrize linear-in-x solutions.
These six free functions correspond to six characteristic
covectors: k� with multiplicity one and k0 with multi-
plicity four. They also correspond to the freedom to set
five functions ðb; b;x; G;Ξf;HÞ at x ¼ 0 and one function
f at u ¼ 0. Hence our solution is complete by function
counting.
Finally, in affine gauge and its generalizations, we set

δG ¼ 0. The equations in the principal part, frozen coef-

ficient approximation can be read off from (31) with the cδG
column deleted. They are

δR;xx ¼ 0; ð61Þ

δb;xx þ δR;xȳ − δf;xȳ ¼ 0; ð62Þ

−δb;xȳþ2δR;ux−δR;xx−δR;ȳȳþδf;ȳȳ−δH;x¼0; ð63Þ

− δb;xȳ þ 2δf;ux − δf;xx ¼ 0: ð64Þ

Following what is done in the full nonlinear equations, we
take an x-derivative of (63), and use derivatives of the other
equations to simplify it. In the principal part, frozen
coefficient approximation the result is simply

δH;xx ¼ 0: ð65Þ

The general solution of (61)–(65) is

δb ¼ δb0 þ 2δR1;uxþΨ;ȳ; ð66Þ

δR ¼ δR0 þ δR1;ȳx; ð67Þ

δf ¼ δf0 þ δR1;ȳxþΨ;x; ð68Þ

δH ¼ δH0 þ δH1x: ð69Þ

The six free functions ĉ�, δb0, δH0, δR0 and δf0 para-
metrize plane waves, while δR1 and δH1 parametrize
linear-in-x solutions. These eight free constants correspond
to eight characteristic covectors: k� with multiplicity
one and k0 with multiplicity six. They also correspond
to the freedom to set seven functions ðb; b;x; G; R; R;x;Ξf;
H;H;xÞ at x ¼ 0 and one function f at u ¼ 0. Hence our
solution is once again complete by function counting.
If we solved (63) instead of (65) then δH1 would not be

free, but given by δH1 ¼ δf0;ȳ ȳ − δR0;ȳ ȳ. However, this is a
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feature of the toy model only, where are able to solve in
closed form for δR.
Table I gives an overview of free null data and normal

data, the characteristic covectors, and the free functions in
our explicit solution (in the frozen-coefficient approxima-
tion, in the linearization about Minkowski). In each case, if
we add δψ back in, the number of free function, matching
the free data, becomes 9, 8 and 10 respectively, as discussed
above in Sec. II E–II G. In all gauges, the boundary data
at x ¼ 0 are subject to constraints, which we do not
impose here.

III. SYMMETRIC HYPERBOLIC FIRST-ORDER
REDUCTION OF THE LINEARIZED EINSTEIN

EQUATIONS IN BONDI GAUGE

A. Balance laws from symmetric hyperbolic
first-order systems

This subsection reviews relevant parts of [20] for
completeness and to establish notation. A system of linear
first-order PDEs

Cμϕ;μ ¼ Dϕ; ð70Þ

where ϕ∈RN is a vector of dependent variables, Cμ and D
are real N × N matrices that depend smoothly on xμ ∈Rn,
and the Cμ are symmetric, implies the balance law

jμ;μ ¼ S; ð71Þ

jμ ≔ ϕ†Cμϕ; ð72Þ

S ≔ ϕ†Dϕ; ð73Þ

D ≔ DþD† þ Cμ
;μ: ð74Þ

The matrix D is real and symmetric, and so can be
diagonalized with real eigenvalues.
If furthermore Cμkμ depends smoothly on the covector

kμ ≠ 0, Gauss’ law gives

Z
∂V

jμdΣμ ¼
Z
V
SdV ð75Þ

for any “control” spacetime volume V with boundary ∂V.
If furthermore there exists a time coordinate t (a smooth

function with ðdtÞμ everywhere future pointing), such that

jt ≔ jμðdtÞμ ð76Þ

is positive definite in ϕ, the system is called symmetric
hyperbolic with respect to t.
We now consider two elementary generalizations. If we

redefine the dependent variables as

ϕ ≔ Aϕ̃; ð77Þ

where A is invertible and depends smoothly on the xμ, (70)
becomes

C̃μϕ̃;μ ¼ D̃ ϕ̃; ð78Þ

where

C̃μ ≔ A†CμA; ð79Þ

D̃ ≔ A†ðDA − CμA;μÞ: ð80Þ

The resulting balance law is the same as before, namely

j̃μ ≔ ϕ̃†C̃μϕ̃ ¼ jμ; ð81Þ

S̃ ≔ ϕ̃†D̃ ϕ̃ ¼ S; ð82Þ

D̃ ≔ A†DA; ð83Þ

In particular, the A;μ term in D̃ in (80) cancels out of D̃
in (83). However, we can change the eigenvalues of D̃ and
C̃μ by choosing an invertible but nonorthogonal A. To see
this, note that because D is symmetric, we have

D ¼ RΛR†; R†R ¼ I; ð84Þ

TABLE I. Function counting for the general solution (in the frozen coefficient approximation) versus free initial and boundary data.
Here all barred functions are arbitrary functions of ðu; yÞ, while all hatted functions are arbitrary functions of ðξ; ηÞ. The mixed physical
space/Fourier space notation has been chosen simply for ease of function counting, but see (41)–(43) for how to translate everything into
real space. The massless scalar matter field decouples from the metric perturbations in the linearization about Minkowski, in any gauge,
and is therefore listed separately. Initial data are imposed on u ¼ 0 and boundary data are imposed on v ¼ 0 or r ¼ r0.

Gauge Initial data Boundary data Characteristic covectors Free functions Number

Double null R, f b; b;x; G;ΞR;Ξf k�;k2;k0 × 4 ĉ�; ĉ2; δG0; δb0; δb1; δf0 7
Bondi f b; b;x; G;Ξf;H k�;k0 × 4 ĉ�; δG0; δb0; δf0; δH0 6
Affine f b; b;x; R; R;x;Ξf;H;H;x k�;k0 × 6 ĉ�; δb0; δR0; δR1; δf0; δH0; δH1

8

Scalar field ψ Ξψ k� ψ̂� 2
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so

D̃ ¼ A†RΛR†A; ð85Þ

Hence D̃ has the same eigenvalues as D if and only if A is
orthogonal. The same is true for the matrices the C̃μ.
As a second modification, we consider a change of

integration weight dV in (88). The balance law (71) is
equivalent to

ðωjμÞ;μ ¼ ωSω ð86Þ

with

Sω ≔ Sþ ω;μ

ω
jμ ¼ ϕ†

�
Dþ ω;μ

ω
Cμ

�
ϕ; ð87Þ

and so we have Z
∂V

jμωdΣμ ¼
Z
V
SωωdV ð88Þ

for any smooth function ω > 0.

B. Estimate on an arbitrary control volume

We now review how a symmetric hyperbolic system
of homogeneous first-order PDEs gives rise to “energy”
estimates that demonstrate well-posedness in the corre-
sponding “energy norm.” We follow the basic idea of [20],
but give an alternative derivation.
Let nμ ≠ 0 denote an outward-pointing covector field on

∂V. As the Cμ are real and symmetric, at any point in ∂V the
matrix Cμnμ can be diagonalized with real eigenvalues, and
so the space RN of dependent variables ϕ can be written
as the sum of the positive, negative and zero eigenspaces
of Cμnμ, or RN ¼ Vþ ⊕ V− ⊕ V0. Hence the outward-
pointing flux jμnμ ¼ ϕ†Cμnμϕ can be written as a term that
is positive definite on Vþ plus one that is negative definite
on V−. Integrating over ∂V, we can then write (88)
schematically asZ

V
S dV≕ koutk2 − kink2: ð89Þ

In applications, we will split koutk2 into

koutk2 ¼ kout0k2 þ kout00k2; ð90Þ

where kout00k2 denotes any part of the outgoing flux that we
do not want to include in our estimate. We trivially obtain

kout0k2 ≤ kink2 þ
Z
V
S dV: ð91Þ

Now assume there is a slicing of V by hypersurfaces of
constant t such that the system is symmetric hyperbolic

with respect to t. Let c > 0 be the smallest eigenvalue of
Ct ≔ CμðdtÞμ anywhere in V, and let d be the largest
positive eigenvalue of D anywhere in V, or zero if D is
negative definite everywhere in V. We have S ≤ dϕ†ϕ and
jt ≥ cϕ†ϕ, and so we can bound the source term S of the
balance law as

S ≤
d
c
jt: ð92Þ

We slice V into surfaces of constant t,Z
V
S dV ¼

Z
t1

t0

St dt; St ≔
Z
V∩Σt

S dΣt; ð93Þ

where t1 ≔ supVt and t0 ≔ infVt, and use the bound (92) to
obtain

St ≤
d
c
Et; Et ≔

Z
V∩Σt

jtdΣt: ð94Þ

We now evaluate (91) on the control volume Vt ≔ V ∩
ft0 < tg (the part of V to the past of t0 ¼ t) to obtain

Et ¼ kink2ð∂VÞt − koutk2ð∂VÞt þ
Z

t

t0

St0 dt0 ð95Þ

≤ kink2 þ d
c

Z
t

t0

Et0dt0; ð96Þ

where we have defined ð∂VÞt ≔ ∂V ∩ ft0 < tg ⊆ ∂V.
In (96) we have used kink2

∂Vt
≤ kink2, which follows from

∂Vt ⊆ ∂V.
We now differentiate to turn the integral inequality (96)

into a differential one,

d
dt

Et ≤
d
c
Et; Et0 ≤ kink2; ð97Þ

and solve this to obtain

Et ≤ e
d
cðt−t0Þkink2: ð98Þ

We then haveZ
V
S dV ≤

Z
t1

t0

d
c
Etdt ≤

�
e
d
cðt1−t0Þ − 1

�kink2; ð99Þ

and substituting (99) into (91) we obtain the desired
estimate

kout0k2 ≤ e
d
cðt1−t0Þkink2; ð100Þ

as derived in [20], but here for arbitrary t1 − t0 and V.
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C. The scalar wave equation on Schwarzschild

In spherical polar coordinates, symmetry of the matrices
Cμ is less obvious than it is in Cartesian coordinates. This is
best illustrated if we consider the scalar wave equation on
the Schwarzschild background, which decouples to linear
order from the metric perturbations, as already noted. It is

− 2ψ ;ur −
2

r
ψ ;u þA

�
ψ ;rr þ

2

r
ψ ;r

�
þ 2m

r2
ψ ;r þ

1

r2
∇a∇aψ ¼ 0: ð101Þ

Here and in the following, we write all equations in
covariant form with respect to the coordinates xa on S2.
Following [19], we denote by qab the abstract round unit
metric on S2, by qab its inverse, and by ∇a the covariant
derivative with respect to qab, so ∇aqbc ¼ 0. Note that ∇a
commutes with partial ∂u and ∂x.
Following [19], we define the reduction variables

P ≔ ðrψÞ;r; Qa ≔ ∇aψ ; ð102Þ

and obtain the first-order system

2P;u −AP;r −
1

r
∇aQa ¼

2m
r2

ðP − ψÞ; ð103Þ

Qa;r −
1

r
∇aP ¼ −

1

r
Qa; ð104Þ

ψ ;r ¼
1

r
ðP − ψÞ: ð105Þ

Let xa ¼ ðθ;φÞ be the usual coordinates on S2, in terms
of which qab ¼ diagð1; sin2θÞ. Then

∇a∇aψ ¼ ψ ;θθ þ cot θψ ;θ þ
1

sin2θ
ψ ;φφ: ð106Þ

To make the nondiagonal matrices Cθ and Cφ symmetric,
we need to expand the covector Qa in components with
respect to the noncoordinate, orthonormal basis

∂θ; ∂φ̂ ≔
1

sin θ
∂φ: ð107Þ

The system becomes

2P;u −AP;r −
1

r

�
Qθ;θ þ

1

sin θ
Qφ̂;φ

�
¼ 2m

r2
ðP − ψÞ þ 1

r
cot θQθ; ð108Þ

Qθ;r −
1

r
P;θ ¼ −

1

r
Qθ; ð109Þ

Qφ̂;r −
1

r sin θ
P;φ ¼ −

1

r
Qφ̂; ð110Þ

ψ ;r ¼
1

r
ðP − ψÞ: ð111Þ

The matrices Cu and Cr are diagonal and Cθ and Cφ are
now symmetric. Replacing the coordinate θ by y ≔ − cos θ
gets rid of the cot θ term in D, see [19] (s there is −y here).
However, a more elegant approach to both establishing

the symmetry of the Ca and keeping track of Christoffel
terms from covariant derivatives is to keep the equations
covariant on S2. From (103)–(105) we read off

ju ¼ 2P2; ð112Þ

jr ¼ −AP2 þQaQa þ ψ2; ð113Þ

ja ¼ −
2

r
PQa; ð114Þ

S ¼ 4m
r2

P2 −
2

r
ðQaQa þ ψ2Þ þ A

r
Pψ : ð115Þ

It is easy to check that

ju;u þ jr;r þ∇aja ¼ S ð116Þ

holds if and only if (103)–(105) hold, where ∇aja is the
covariant divergence. This means that our integration
measure dV must contain the covariant measure dΩ on
the round two-sphere, or dΩ ¼ sin θdθdφ in the standard
coordinates.

D. The vacuum Einstein equations, linearized
in Bondi gauge about Schwarzschild

In [19], the metric is written as

ds2 ¼ −
e2βV
r

du2 − 2e2βdu dr

þ r2habðdxa − UaduÞðdxb − UbduÞ: ð117Þ

Keeping in mind that y ¼ − cos θ and S ≔ 1 − y2 ¼ sin2 θ,
we read off the identifications of the metric components of
Secs. II and III given in Table II.
We denote the perturbations of V, β, hab and Ua about

the vacuum Schwarzschild solution by Ṽ, β̃, h̃ab and Ũa. (In
contrast to [15], we have added the tildes on the perturba-
tions β̃ and Ũa to distinguish them from the full variables.)
We also replace Ũa and Ṽ by

ũa ≔ rŨa; ð118Þ

ṽ ≔
Ṽ
r
: ð119Þ
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This makes all variables dimensionless, and therefore all
lower-order terms become proportional to 2m=r2 or 1=r.
Our perturbation variables are summarised in Table III.
We introduce the reduction variables of [15], which are

Pab ≔ ðrh̃abÞ;r; ð120Þ

Qa ≔ ðrũaÞ;r − 2β̃;a; ð121Þ

Ja ≔ ∇bh̃ab þ ðrũaÞ;r; ð122Þ

Ta ≔ β̃;a: ð123Þ

These comprise 8 first derivatives of the 6 metric
perturbations.
Note that the linearization of the Bondi gauge condition

det hab ¼ det qab is qabh̃ab ¼ 0, or in coordinates,

h̃φφ ¼ −sin2θh̃θθ: ð124Þ

By definition, Pab is also trace-free, and so

Pφφ ¼ −sin2θPθθ: ð125Þ

To complete the system with an evolution equation for ṽ
while maintaining the symmetric hyperbolic form, we
introduce the further variables

Pa ≔ ∇bPab; ð126Þ

Q ≔ ∇aQa; ð127Þ

Q̂ ≔ ϵab∇aQb; ð128Þ

J ≔ ∇aJa; ð129Þ

Ĵ ≔ ϵab∇aJb; ð130Þ

U ≔ ∇aũa; ð131Þ

Û ≔ ϵab∇aũb; ð132Þ

T ≔ ∇aTa: ð133Þ

These comprise 2 additional first derivatives of the metric
(namely U and Û, for a total of 10) and 7 second derivatives
of the metric. We move tensor indices a; b;… on S2 with
qab and qab, and note that this commutes with taking
derivatives in u and r. ϵab is the volume form on the unit
2-sphere, with defining properties

∇aϵbc ¼ 0; ϵacϵ
b
c ¼ qab: ð134Þ

We can decompose the vector field Qa in terms of
potentialsQ and Q̂ that are determined (up to a constant) as
solutions of the Poisson equation on the unit 2-sphere, as
follows:

Qa ¼ ∇aQ − ϵa
b∇bQ̂; ð135Þ

∇a∇aQ ¼ Q; ð136Þ

∇a∇aQ̂ ¼ Q̂: ð137Þ

We can use (135) to show that

∇bð∇aQb þ∇bQa − qab∇cQcÞ ¼ ∇b∇bQa þQa

¼ ∇aQ − ϵa
bQ̂þ 2Qa;

ð138Þ
where in both lines we have used

ð∇a∇b −∇b∇aÞQb ¼ −RabQb ¼ −Qa; ð139Þ
with Rab ¼ qab the Ricci tensor on the unit round 2-sphere.
The potentials Q and Q̂ were introduced only to derive
(138), and are not part of our system.

TABLE III. Comparison of our notation for the linear pertur-
bations in Secs. II and III. We only list the independent
perturbations present in twist-free axisymmetry, see (124),
(125) for h̃φφ and Pφφ.

Sec. III Sec. II Toy model

β̃ 1
2
δG 1

2
δG

ṽ δH − δG r2
2
δH − rδG

h̃θθ 2Sδf δf
ũθ −r

ffiffiffi
S

p
δb −δb

Pθθ 2SðrδfÞ;r rδf;x
Qθ −

ffiffiffi
S

p ðr2δbÞ;r −
ffiffiffi
S

p
δG;y −rQ

Tθ
1
2

ffiffiffi
S

p
δG;y

r
2
T

Jθ
ffiffiffi
S

p ð2SδfÞ;y −
ffiffiffi
S

p ðr2δbÞ;r rJ

TABLE II. Comparison of our notation for the nonlinear
variables in Secs. II and III.

Sec. III Sec. II Schwarzschild

r R ¼ x ¼ r r
β 1

2
lnG 0

V rH
G

r − 2m

hθθ e2Sf 1
hφφ Se−2Sf S
hθφ 0 0

Uθ −
ffiffiffi
S

p
b 0

Uφ 0 0
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The evolution equations for the reduction variables
already introduced in [15] are

2Pab;u −APab;r þ
1

r

�
2∇ðaQbÞ − qab∇cQc

�
¼ 2m

r2
�
Pab − h̃ab

�
; ð140Þ

Qa;r þ
1

r
∇bPab ¼

1

r

�
Ja −Qa − 2Ta þ 2ũa

�
; ð141Þ

Ja;r ¼
1

r
ð2ũa − 4TaÞ; ð142Þ

ũa;r ¼
1

r
ðQa þ 2Ta − uaÞ: ð143Þ

Ta;r ¼ 0; ð144Þ

h̃ab;r ¼
1

r
ðPab − h̃abÞ; ð145Þ

β̃;r ¼ 0: ð146Þ

Equations (140)–(142) incorporate minor corrections of
their counterparts in [15], see Appendix B. The evolution
equations for our additional variables are

2Pa;u −APa;r þ
1

r
ð∇aQ − ϵa

b∇bQ̂Þ

¼ −
2

r
Qa þ

2m
r2

ðPa − Ja þQa þ 2TaÞ;
ð147Þ

Q;r þ
1

r
∇aPa ¼

1

r
ðJ −Q − 2T þ 2UÞ; ð148Þ

Q̂;r þ
1

r
ϵab∇aPb ¼

1

r
ðĴ − Q̂þ 2ÛÞ; ð149Þ

J ;r ¼
1

r
ð2U − 4T Þ; ð150Þ

Ĵ ;r ¼
2

r
Û; ð151Þ

U ;r ¼
1

r
ðQþ 2T − UÞ; ð152Þ

Û ;r ¼
1

r
ðQ̂ − ÛÞ; ð153Þ

T ;r ¼ 0; ð154Þ

ṽ;r ¼
1

r

�
1

2
J − T þ U þ 2β̃ − ṽ

�
: ð155Þ

The explicit matrices Cμ are given in Appendix B. For
the more elegant covariant-on-S2 approach to symmetric
hyperbolicity, we define

Xab
cd ≔

1

2

�
qacqbd þ qbcqad − qabqcd

�
; ð156Þ

the projection operator into the space of symmetric trace-
free 2-tensors on S2. We can then write (140) and (141) as

2Pab;u −APab;r þ
2

r
Xab

cd∇dQc ¼ l:o:; ð157Þ

Qc;r þ
1

r
Xabc

d∇dPab ¼ l:o:; ð158Þ

and the conserved current as

ju ≔ 2P†P ð159Þ

jr ≔ −AP†PþQ†Q ð160Þ

jd ≔
2

r
XabcdPabQc þ

1

r
ðqdaQþ ϵdaQ̂ÞPa; ð161Þ

S ¼ 1

r
ð…Þ þ 2m

r2
ð…Þ; ð162Þ

where we have defined the shorthand

P†P ≔
1

2
PabPab þ PaPa ð163Þ

¼ P2
θθ þ P2

θφ̂ þ P2
θ þ P2

φ̂; ð164Þ

Q†Q ≔ QaQa þ � � � ¼ Q2
θ þQ2

φ̂ þ � � � ; ð165Þ

The factor of 1=2 in front of PabPab compensates for
double-counting of its algebraically independent compo-
nents, see (125). The balance law(116) holds if and only if
our first-order reduction of the linearized Einstein equa-
tions holds.
For brevity, we have not written out S in full. Our

introduction of ũa and ṽ has the advantage, relative to [15],
that in the Minkowski case m ¼ 0 D becomes 1=r times a
matrix of integers, so all its eigenvalues take the form
λiðrÞ ¼ λ̄i=r, and d ¼ d̄=r0, where d̄ is the largest λi.
Looking at the evolution equations, in order to add ṽ to

our system and then close it as first-order symmetric
hyperbolic system we have effectively introduced a system
of variables and equations that duplicates Frittelli’s original
system, but at one derivative higher. Geometrically, this is
the level of curvature, rather than of the connection. How-
ever, our estimate includes, beside the 6 metric perturba-
tions, only 10 first and 7 second derivatives of the metric,
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far short of the full set of Ricci rotation coefficients and null
curvature components. These are listed in Table IV.
At both the level of the connection and the level of

curvature, we have in effect two pairs of wave equations,
but in different objects, ðPab;QaÞ, with Pa

a ¼ 0, and Pa,
Q, Q̂. Using (138) in (147) was essential for bringing the
pair (147), (148) into a form similar to (140), (141), with
the same matrices Cμ.
As the background solution is spherically symmetric, all

perturbations can be split into polar and axial parts, where
the axial perturbations change sign under a reflection of S2,
or reflection in space. All genuine scalars on S2, in our case
ψ , Ṽ and β̃ are polar. Vectors on S2 can be split into polar
and axial parts as in (135) for the example of Qa. Tracefree
symmetric tensors can be split as, for example,

Pab ¼
�
2∇ða∇bÞ − qab∇c∇c

�
Pþ 2ϵðac∇bÞ∇cP̂; ð166Þ

in terms of a scalar P and pseudoscalar P̂. Axial parts are
hatted. Then axial and polar perturbations decouple from
each other.
In twist-free axisymmetry, only the polar perturbations

are present. We note in passing that substituting the solution
β̃ ¼ Ta ¼ 0 of β̃;r ¼ 0, and restricting the background
solution to the Minkowski spacetime by setting m ¼ 0,
makes Eqs. (140) and (141) equivalent to Eqs. (D25), (D26)
of Paper I.
We could also write the linear perturbation equations in

terms of scalars and pseudoscalars only, in order to expli-
citly decouple polar and axial perturbations. This form of
the system would not be symmetric hyperbolic, as all
angular derivatives would appear in the form ∇c∇c,
but it could be made symmetric hyperbolic again by
reintroducing first angular derivatives as reduction varia-
bles, as for the scalar wave equation. However, this would

mean duplicating all vectors, for example defining Qa ¼
∇aQ to be a true vector (polar) and adding Q̂a ¼ ϵab∇bQ̂
as a pseudovector (axial).
Looking back, to merely write the second-order Einstein

equations first-order form with a minimum number of
variables, one already has to introduce all the reduction
variables (first derivatives of the metric) (120)–(123). This
is true if ṽ is included or not. There is one reduction
constraint

∇bPab ¼
�
r∇bh̃ab

�
;r ¼

�
rðJa −Qa − 2TaÞ

�
;r: ð167Þ

The second derivative ðr∇bh̃abÞ;r that can be thus written
in two ways appears in only one place, and so there is a
one-parameter family of first-order reductions with inequi-
valent principal parts. It turns out this contains the
symmetric hyperbolic first-order form of the equations
with the equation for ṽ excluded found by Frittelli. To bring
the full system, with ṽ included, into a first-order sym-
metric hyperbolic form, we had to further add all the
variables (126)–(133).

E. Estimates for characteristic initial value
and initial-boundary value problems

We now use the symmetric hyperbolic form of the
linearized Einstein equations in Bondi gauge to obtain
energy estimates on control volumes of interest. We
introduce the Schwarzschild time coordinate

t ≔ uþ r� ⇒ dt ¼ duþ dr� ¼ duþA−1dr; ð168Þ

where r� is the usual tortoise radius, and where we have
defined the shorthand

A ≔ 1 −
2m
r

: ð169Þ

Following [15], we observe that

Ct ≔ CμðdtÞ;μ ¼ Cu þA−1Cr; ð170Þ

where Cu and Cr are explicitly given in (B4) and (B5), is
positive definite on RN with smallest eigenvalue 1 for our
system, independently of r, so for the smallest eigenvalue
anywhere in V we have c ¼ 1. Equivalently, with ju and jr

given by (159) and (160), we have

jt ≔ ju þA−1jr ¼ P†PþA−1Q†Q; ð171Þ

where P†P and Q†Q were defined in (163)–(165).
The estimates in [15,19,20] are on the control volume V1

shown in Fig. 1: the product of S2 with the triangle bounded
by u ¼ u0, r ¼ r0, and t ¼ t1. We have

TABLE IV. List of the quantities involved in our L2 estimates,
written out in terms of metric perturbations and their derivatives,
and ordered by derivative of the metric and by left-moving
variables P and right-moving variables Q. The quantities in the
first line before the semicolon, the second line, and the third line
before the semicolon were already introduced as variables in [15].
We have introduced the remaining quantities as variables to
obtain a symmetric hyperbolic first-order system including all
metric perturbations.

P Q

g — β̃; h̃θθ; h̃θφ̂; ũa; ṽ
∂rg ðrh̃abÞ;r ðrũaÞ;r
∇g — β̃;a;∇bh̃ab;∇aũa; ϵab∇aũb
∂r∇g ∇aðrh̃abÞ;r, ∇aðrũaÞ;r; ϵab∇aðrũbÞ;r
∇∇g — ∇a∇aβ̃;∇a∇bh̃ab; ϵcb∇a∇ch̃ab
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−
Z
u¼u0

ju −
Z
r¼r0

jr þ
Z
t¼t1

jt ¼
Z
V1

S: ð172Þ

The signs come from du at u ¼ u0 and dr at r ¼ r0
pointing into V, and dt at t ¼ t1 pointing out. We will
ignore the flux out of r ¼ r0 (as is standard practice for
initial-boundary value problems), and so

kink2 ¼
Z
u¼u0

2P†Pþ
Z
r¼r0

Q†Q; ð173Þ

kout0k2 ¼
Z
t¼t1

P†PþA−1Q†Q ð174Þ

kout00k2 ¼
Z
r¼r0

AP†P: ð175Þ

Hence, from the general formula (100), and with c ¼ 1, our
estimate isZ

t¼t1

�
P†PþA−1Q†Q

�

≤ edðr0Þðt1−t0Þ

0@ Z
u¼u0

2P†Pþ
Z
r¼r0

Q†Q

1A: ð176Þ

Recall that d is defined as the largest positive eigenvalue of
D in V. All elements ofD are constants times 1=r or 2m=r2,
so d depends only on r0, the smallest value of r in V, and
we have written d ¼ dðr0Þ to emphasize this. On the
Minkowski background, the 2m=r2 terms are absent, and
so d ¼ d̄=r0, where d̄ is the largest eigenvalue of rD
(with m ¼ 0).
A second control volume of interest is shown in Fig. 2:

the product of S2 with the null rectangle triangle bounded
by u ¼ u0 and v ¼ v0, and u ¼ u1 and v ¼ v1. The
null coordinate v on the Schwarzschild background is
defined by

v ≔ uþ 2r� ⇒ dv ¼ duþ 2A−1dr; ð177Þ

and hence

jv ≔ ju þ 2A−1jr ¼ 2A−1Q†Q: ð178Þ

The corresponding estimate isZ
u¼u1

2P†Pþ
Z
v¼v1

2A−1Q†Q

≤ edðr0Þðt1−t0Þ

0@ Z
u¼u0

2P†Pþ
Z
v¼v0

2A−1Q†Q

1A: ð179Þ

A third control volume of interest is shown in Fig. 3: the
product of S2 with the null right trapezoid bounded by
u ¼ u0, r ¼ r0, and u ¼ u1 and v ¼ v1. Again we will
ignore the flux out of r ¼ r0. The corresponding estimate is

FIG. 2. Spacetime diagram of the control volume V2, bounded
by v ¼ v0 (bottom left), u ¼ u0 (bottom right), u ¼ u1 (top left)
and v ¼ v1 (top right). Otherwise as in Fig. 1. The estimate
on V2 is (179).

FIG. 1. Spacetime diagram of the control volume V1, reduced
by spherical symmetry, so that every point in the plot corresponds
to a spacelike 2-sphere. Ingoing and outgoing spherical null
surfaces are lines at 45 degrees. Horizontal lines represent
surfaces of constant t, by which we slice V1. V1 is bounded
by r ¼ r0 (left), u ¼ u0 (bottom right) and t ¼ t1 (top). The
thicker line shows the volume Vt bounded by t ¼ t0 < t1, which
is needed for the estimation of Et in (96). Arrows labeled P andQ
symbolize energy fluxes. The estimate on V1 is (176).
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Z
u¼u1

2P†Pþ
Z
v¼v1

2A−1Q†Q

≤ edðr0Þðt1−t0Þ

0@ Z
u¼u0

2P†Pþ
Z
r¼r0

Q†Q

1A: ð180Þ

A hypothetical fourth estimate would be (180) with
m ¼ 0 and r0 ¼ 0, that is the pure null initial-value
problem on an outgoing cone with regular vertex at r ¼ 0.
(We need to set m ¼ 0 so the background has a regular
center). This is the PDE problem we have been considering
in Papers I and II in this series. Regularity on the central
worldline r ¼ 0 requires that all metric variables take
their Minkowski values. Hence their perturbations, and
in particular the right-moving perturbations Q vanish at
r ¼ 0. Independently, r ¼ 0 is no longer a boundary. Hence
the last term in (180) would be absent.
However, we recall that on Minkowski spacetime

dðr0Þ ¼ d̄=r0, with d̄ ≃ 5.0 > 0. Hence expdðr0Þðt1 − t0Þ
grows arbitrarily rapidly with t as r0 → 0, so the limit
r0 → 0 of (180) as written does not exist. This problem
already arises for the scalar wave equation on Minkowski.
In Appendix D we attempt some simple ways around this
problem, and show that one of them works for the scalar
wave equation on Minkowski, but none work for the metric
perturbations. In Appendix E we carry out some numerical
tests of the hypothetical estimate on a regular null cones.

IV. CONCLUSIONS

In the Introduction, we motivated the desirability of a
well-posedness proof for formulations of the Einstein

equations on null cones, not just geometrically, but for
specific formulations of the Einstein equations that are
used in numerical relativity. These formulations use
“Bondi-like” coordinates, where coordinate lines of con-
stant ðu; θ;φÞ are outgoing null rays, and where we evolve
only free data and solve ODEs along the null rays to
reconstruct the full metric on each time slice.
One of these formulations, using Bondi coordinates,

has been used successfully for Cauchy-characteristic
matching [24] in full generality, see for example [14].
This and the incomplete well-posedness result of [15]
appeared to be in tension with recent results [11,16] that
showed that minimal first-order reductions of this and
similar formulations are not strongly hyperbolic, and which
we have verified in Sec. II.
Our tentative resolution is that the characteristic initial-

boundary value problem is well-posed inL2 of the metric plus
selected first and second derivatives. This is the “skewed”
norm whose existence was conjectured in [11,16,17]. In
Sec. III, we have proved this for the linearization of Bondi
gauge about Schwarzschild, for the null initial-boundary
value problem and the double null initial value problem.
Based on this proof, we conjecture that (1) the initial-

boundary value problem is well-posed for the linearization
about an arbitrary background; (2) this holds for any Bondi-
like gauge; (3) this holds also for the initial value-problem
on a null cone with regular vertex.
We expect that generalizing the symmetric hyperbolic

form of the linearized Einstein equations to an arbitrary
background solution can be done because we expect all
additional terms to be of lower order. The existence of a
symmetric hyperbolic form of the linearized Einstein
equations in other gauges seems plausible because they
can be written as two wave equations coupled to transport
equations along the outgoing null cones, coupled only
through lower-order terms.
The third conjecture appears to be the most challenging.

Unfortunately, the methods of [15,19] that we have used for
the estimates above do not allow an estimate for the initial
value problem with initial data on a regular null cone.
Chrusciel has given an existence proof for solutions of the
Einstein equations with initial data specified on a null cone
with regular vertex [7]. This uses harmonic coordinates,
relying on results of Dossa [25] for quasilinear wave
equations. Those proofs suggest that we may need to split
off the lowest powers of r and corresponding lowest
spherical harmonics Ylm as an approximate solution
(resulting in a polynomial in x and y), and control only
the remainder in an energy norm.
For a proof of well-posedness of Cauchy-characteristic

matching along the lines of the present paper to succeed,
the set of variables that are passed between the Cauchy
code and the null code probably has to coincide with the set
of variables that appear at the matching surface in the
separate well-posedness estimates on both sides.

FIG. 3. Spacetime diagram of the control volume V3, bounded by
r ¼ r0 (left), u ¼ u0 (bottom right), u ¼ u1 (top left) and v ¼ v1
(top right). Otherwise as in Fig. 1. The estimate on V3 is (180).
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Setting aside the difficulties with proving well-
posedness, one may wonder if the linearized Einstein
equations in Bondi coordinates on null cones emanating
from a regular center are actually already well-posed in the
norm

R
P†PdS on those null cones, and only our estimates

for the lower-order terms are not sharp enough to see this.
Numerical experiments with the code of [13,18] are
described in Appendix E. While these cannot of course
prove stability, they seem to be compatible with it.
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APPENDIX A: A TEXTBOOK EXAMPLE
OF A WEAKLY HYPERBOLIC SYSTEM

A textbook example of a PDE system that is weakly but
not strongly hyperbolic is given in [26], pp. 29–30:

ϕ;t ¼
�
λ 1

0 λ

�
ϕ;x; ϕ ≔

�
ϕ1

ϕ2

�
: ðA1Þ

It has the general solution

ϕðt; xÞ ¼
Z

∞

−∞

�
aðkÞ

�
1

0

�
þ bðkÞ

�
ikt

1

��
eikðxþλtÞ dk: ðA2Þ

Clearly this is not well-posed in the L2 norm
R ðϕ2

1 þ ϕ2
2Þdx

because the ikt term grows arbitrarily rapidly in t for k
arbitrarily large. The very simplest system with this
property occurs for λ ¼ 0, so that ϕ2;x ¼ 0 and ϕ1;t ¼ ϕ2;x.
Such systems are called “weakly well-posed,” which

means they are not well-posed in L2 but can be made well-
posed if a higher derivative norm is used for the initial
data than for the solutions, see [26], p. 39. In this example,
we would include ϕ2

2;x in the norm at t ¼ 0 only, or we
could introduce an additional variable ϕ3 ≔ ϕ2;x. They can
become completely ill posed if lower-order terms are
included, see [26], p. 40 for an example.
We give this example to make two points: (1) when a

plane-wave ansatz does not give all the solutions of a linear
PDE system with constant coefficients, we should look for
additional solutions that are polynomial; (2) the problem
with polynomial solutions is not that they grow but that
they can grow arbitrarily rapidly in time for initial data
that oscillate arbitrarily rapidly in space. (In our null toy
problem, read x for “time” and ȳ for “space.”)

APPENDIX B: NOTES ON [15]

Equation (140) corrects the right-hand side of (15a)
of [15] by a factor of −1=2. This error occurs already

between the nonlinear field equation (8) of [15] and its
linearization (11a).
Equation (141) corrects the right-hand side of (15b)

of [15] by the addition of Qa þ 2Ta. Equation (142)
corrects the right-hand side of (15e) of [15], by the
subtraction of Qa þ 2Ta. These errors occurs between
(11c) and (15b) and (15e), respectively. Note there is no
error between (6b) and its linearization (11c).
The last two errors are related because the definitions

(120) and (122) give rise to the integrability condition

∇bPab ¼ ðr∇bh̃abÞ;r ¼
�
rðJa −Qa − 2TaÞ

�
;r; ðB1Þ

or, using (144),

rQa;r þ∇bPab ¼ rJa;r þ Ja −Qa − 2Ta: ðB2Þ

Using the correct expression (142) for rJa;r then gives the
correct equation (141) for Qa;r.
(155) is the covariant form of Eq. (15c) of [15]. A factor

of 2 is missing from the last two terms of Eq. (12) of [15],
but is restored in Eq. (15c).
A second set of minor corrections concerns the explicit

matrices Cμ. With ϕ† ≔ ðPab;Qa;…Þ, Frittelli states that
Cu ¼ diagð1; 1; 0…; 0Þ and Cr ¼ diagð−A; 1; 1;…; 1Þ, but
this cannot be true as stated for any choice of normalization
of the equations.
The matrices Ca are not given explicitly, but become

symmetric, without terms sin2 θ appearing in Cu and Cr,
only if one introduces frame components on the 2-sphere as
in (107). With the variables in the order

ϕ† ¼ �Pθθ; Pθφ̂; Qθ; Qφ̂;Pθ;Pφ̂;Q; Q̂;…
�
; ðB3Þ

where the dots stand for all other variables, in any
order, then with our normalization of the equations the
matrices are

Cu ¼ diag
�
Cu
4; C

u
4; 0;…; 0

�
; ðB4Þ

Cr ¼ diag
�
Cr
4; C

r
4; 1;…; 1

�
; ðB5Þ

Cθ ¼ diag
�
Cθ
4; C

θ
4; 0;…; 0

�
; ðB6Þ

Cφ ¼ 1

sin θ
diag

�
Cφ̂
4 ; C

φ̂
4 ; 0;…; 0

�
; ðB7Þ

where we have defined

Cu
4 ¼ diagð2; 2; 0; 0Þ; ðB8Þ

Cr
4 ¼ diagð−A;−A; 1; 1Þ; ðB9Þ
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Cθ
4 ≔

1

r

0BBB@
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

1CCCA ðB10Þ

Cφ̂ ≔
1

r

0BBB@
0 0 0 −1
0 0 1 0

0 1 0 0

−1 0 0 0

1CCCA: ðB11Þ

APPENDIX C: SYMMETRIC HYPERBOLIC
FORM OF THE TOY MODEL

To link the considerations of Sec. II and Sec. III, in this
Appendix we construct a symmetric hyperbolic reduction
of the toy model of Sec. II in Bondi gauge, using the
methods of Sec. III.
We introduce the reduction variables

P ≔ δf;x; ðC1Þ

Q ≔ δb;x þ δG;ȳ; ðC2Þ

J ≔ δf;ȳ − δb;x; ðC3Þ

T ≔ δG;ȳ; ðC4Þ

L ≔ J;y − T;y ðC5Þ

Here P,Q, J and T are closely related to Pab,Qa, Ja and Ta
of Sec. III. They do not carry indices because of the
restriction to twist-free axisymmmetry.
A symmetric hyperbolic first-order reduction of the

system (53)–(56) in terms of these variables is

2P;u − P;x −Q;ȳ ¼ 0; ðC6Þ

Q;x − P;ȳ ¼ 0; ðC7Þ

δb;x ¼ Q − T; ðC8Þ

J;x ¼ 0; ðC9Þ

T;x ¼ 0; ðC10Þ

δf;x ¼ P; ðC11Þ

δG;x ¼ 0; ðC12Þ

L;x ¼ 0; ðC13Þ

δH;x ¼ L; ðC14Þ

in the variables

ϕ† ≔
�
P;Q; δb; J; T; δf; δG;L; δH

�
; ðC15Þ

The three matrices Cμ are symmetric and Ct ≔ Cu þ Cx is
positive definite.
The bad solution δb ¼ −δG0;ȳx of the toy model

becomes δb ¼ −T0x in the symmetric-hyperbolic form,
and the bad solution δH ¼ δf0;ȳ ȳx becomes δH ¼ L0x. To
see that the linear growth in x is by itself in conflict with our
estimates, consider a toy model of the toy model, namely

T;x ¼ 0; ðC16Þ

b;x ¼ −T; ðC17Þ

where for simplicity T and b depend only on u and x. The
general solution is

T ¼ T0ðuÞ; ðC18Þ

b ¼ b0ðuÞ − T0ðuÞðx − x0Þ: ðC19Þ

Comparing to our general framework for estimates, we see
that c ¼ 1, d ¼ 1, Q ≔ ðT; bÞ and P is absent. Hence the
estimate (176) reduces toZ

t¼t1

Q†Q ≤ et1−t0
Z
x¼x0

Q†Q: ðC20Þ

We can use u ¼ t − x, u1 ¼ t1 − x0, u0 ¼ t0 − x0 to write
both sides as integrals over u, namelyZ
t¼t1

Q†Q ¼
Z

u1

u0

�
T0ðuÞ2 þ b0ðuÞ2

�
du; ðC21Þ

Z
x¼x0

Q†Q ¼
Z

u1

u0

�
T0ðuÞ2 þ

�
b0ðuÞ − T0ðuÞðu1 − uÞ�2�du:

ðC22Þ

One can show thatR
t¼t1

Q†QR
x¼x0

Q†Q
≤ 1þ Δ2

2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Δ2

4

r !
; ðC23Þ

≤ et1−t0 for t1 ≥ t0; ðC24Þ

where Δ ≔ u1 − u0 ¼ t1 − t0, and the first inequality is
sharp. We should stress again that this is only a toy model,
similar to the one considered in Sec. 6.4 of [27].
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APPENDIX D: ATTEMPTS TO EXTEND
THE ESTIMATES TO r0 = 0

We attempt to overcome the problem that on the
Minkowski background d ¼ d̄=r with d̄ > 0, which means
that we cannot take r0 → 0 in any of our estimates. In this
Appendix we try three simple ways of overcoming this,
first by a change of integration measure dV, as in Eq. (86).
The most general weight compatible with the time trans-
lation and rotation symmetries of the Schwarzschild or
Minkowski background is

dV ¼ duωðrÞdr dΩ; ðD1Þ

where dΩ ¼ sin θdθdφ is the integration weight on S2

induced by the round unit metric qab. The choice ωðrÞ ¼ r2

gives dV induced by the background Schwarzschild
metric gμν.
From (86) we see that both d and c acquire a factor of ω,

so ω cancels out of the ratio d=c that appears in our
estimates. This leaves us with the addition of Cr to play
with. For simplicity, we make the ansatz ωðrÞ ¼ rp, so
that (87) becomes

Sω ¼ Sþ p
r
jr ¼ ϕ†

�
Dþ p

r
Cr

�
ϕ: ðD2Þ

For the wave equation on Minkowski, we find that d̄ ¼ 0
for p ¼ 1 only, while it is positive for all other p. It is also
positive on Schwarzschild for all r < ∞, for all p. So for
the wave equation on Minkowski only, the unique choice
ω ¼ r gives us d ¼ 0.
For the linearized Einstein equations on the Minkowski

background, we find that the largest eigenvalue d̄ of
rDþ pCr has a minimum of d̄ ≃ 3.4 at p ≃ −2.2, that
is, we cannot make d̄ nonpositive with any choice of p.
Hence we cannot make d̄ nonpositive in this way.
For a second attempt, we observe that, with β̃;r ¼ 0 and

β̃ ¼ 0 at regular center, β and its angular derivatives Ta and
T vanish identically, as they must vanish at the center. If we
experimentally take them out of the system, then d̄ ≃ 3.1. If
we additionally bring ωðrÞ ¼ rp into play, d̄ has a mini-
mum of d̄ ≃ 2.6 at p ≃ −1.2. Again, this is not enough to
make d̄ nonpositive.
For a third attempt, we attempt to change the ratio d=c by

a linear recombination of variables as in Eq. (77). We have
already seen that the eigenvalues of D and Ct can change if
A is not orthogonal. For the full system we cannot try out all
possible matrices A by brute force, but we can for the scalar
wave equation on Minkowski, as we shall see now.
From (108)–(111) we read off that on Minkowski

Ct ≔ Cu þ Cr is the unit matrix, while

D ¼ DþD† ¼ 1

r

0BBB@
0 0 0 1

0 −2 0 0

0 0 −2 0

1 0 0 −2

1CCCA: ðD3Þ

We have d̄ ¼ ffiffiffi
2

p
− 1 ≃ 0.4. We have also just seen that

with p ¼ 1 we can make this d̄ ¼ 0. However, we now
focus on linear recombinations of the variables other than
by an overall r-dependent factor.
Geometrically, it makes no sense to mix the components

of the vector Qa either with each other or with the scalars P
and ψ , and we can fix an overall factor in A by leaving them
completely unchanged, so A acts nontrivially only on the
pair ðP;ψÞ. Hence we can assume

A ¼

0BBB@
α 0 0 β

0 1 0 0

0 0 1 0

γ 0 0 δ

1CCCA: ðD4Þ

Two of the eigenvalues D̃ ≔ A†DA are then always −2=r
for any A. As they are negative, this is not a problem.
Furthermore, if we write A ¼ ĀR where R is orthogonal, R
does not change the eigenvalues of C̃t and D̃. Hence we
can choose the rotation R between P and ψ such that γ ¼ 0,
and without loss of generality we can then rescale ψ to
set δ ¼ 1. The nontrivial eigenvalues of D̃ are now
ðβ − 1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβ − 1Þ2 þ α2

p
. We have already used up the

rotation between P and ψ that would allows us to set α ¼ 0,
and hence one of the eigenvalues of D̃ is always positive.
In summary, none of three relatively trivial ways of

changing d=c in the estimate manage allows us to make it
nonpositive, and as d=c is always proportional to 1=r, we
cannot let r0 → 0 in estimates based on our symmetric
hyperbolic reduction.

APPENDIX E: NUMERICAL EXPERIMENTS

We have not been able to obtain an estimate (for the
linearized Einstein equations) for the PDE problems
we have been solving numerically in [13,18], where our
time slices are outgoing null cones emanating from a
regular center. The reason for this was that the factor
expdðr0Þðt1 − t0Þ in our estimates diverges as r0 → 0.
However, we did not actually notice an instability in our
code. In this appendix, we test the code a little harder by
running it with small amplitude but random initial data, and
see if there is a discrete norm that remains bounded in by its
initial value. The control volume is as in Fig. 3, but with
r0 ¼ 0, understood as a regular center.
We now construct a hypothesis to test by modifying the

estimate (180) as follows. r ¼ 0 is not actually a boundary,
but an interior world line, and no free data can be imposed
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there, so the term at r ¼ r0 disappears. In the setup of
our code we are not interested in controlling the energy
leaving the control volume through v ¼ v1, so we drop that
term from the estimate (180). The hypothesis we want
to test is that the function norms on u ¼ 0 and u ¼ u1 are
the ones that we derived but that an unknown function
Kðu1 − u0Þ takes the place of expdðr0Þðu1 − u0Þ. Hence
our hypothesis isZ

u¼u1

P†P ≤ Kðu1 − u0Þ
Z
u¼u0

P†P; ðE1Þ

where P†P was defined above in (163).
Restricting to vacuum in twist-free axisymmetry, and

translated into the notation of our code, the two terms in
P†P are

1

2
PabPab ≔

1

2
qacqbdðrh̃abÞ;rðrh̃cdÞ;r ðE2Þ

¼ ðrh̃θθÞ2;r ðE3Þ

¼ 4S2ðrfÞ2;r ðE4Þ

and

PaPa ≔ qabðr∇ch̃acÞ;rðr∇dh̃bdÞ;r ðE5Þ

¼ �rðh̃θθ;θ þ 2 cot θh̃θθÞ
�
2
;r ðE6Þ

¼ 4S
�
SðrfÞ;ry − 8yðrfÞ;r

�
2: ðE7Þ

(Recall y ≔ − cos θ and S ≔ 1 − y2.) Note, however, that
δH forms part of the variables Q, that these are not coming
in through r ¼ 0, and we do not control their leaving
through v ¼ v1. Hence instead of our full estimate we can
use Frittelli’s truncated estimate, with only the term (E4) in
the integrand.
In the linearized equations, the scalar matter field

decouples from the metric perturbations, and we conjecture
that it obeys a similar estimate with integrand

P2 ≔ ðrψÞ2;r: ðE8Þ

Our integration measure in axisymmetry isZ
dS ¼

Z
dΩ dR ¼ 2π

Z
1

−1
dy
Z

xmax

0

R;x dx; ðE9Þ

and we now drop the factor 2π. Our code requires the outer
boundary to be null or future spacelike, so we cannot
literally run in Bondi gauge R ¼ x. However, running in
lsB gauge and setting x0 ¼ xmax will turn the outer boun-
dary x ¼ xmax into an ingoing null In weak gravity, this will
result in R ¼ Rðu; xÞ ≃ cðuÞx, with cðuÞ determined so that

x ¼ x0 is ingoing null. We can then identify x ¼ x0 with
v ¼ v1. See [18] for details.
To test our conjecture, we therefore evaluate the norms

(at time u) defined by

kðrψÞ;rk2 ≔
Z

1

−1
dy
Z

xmax

0

½ðRψÞ;x�2
R;x

dx; ðE10Þ

kðrfÞ;rk21 ≔
Z

1

−1
ð1 − y2Þdy

Z
…f… ðE11Þ

and their discretizations

kðrψÞ;rk21 ≃ 2
XNy

j¼1

Að0Þ
l¼0;j

XNx

i¼1

ðRiψ i;j −Ri−1ψ i−1;jÞ2
Ri −Ri−1

; ðE12Þ

kðrfÞ;rk21 ≃ 2
X

Að0Þ
l¼0;jð1 − y2jÞ

X
…f…; ðE13Þ

where Ri has only one index as R ¼ Rðu; xÞ in lsB gauge as
R does not depend on y. We have also used that 1=2

R
ψdy

is the l ¼ 0 component of ψ , and have used the analysis
matrix Að0Þ of our pseudospectral framework to determine
it. Our radial grid starts at i ¼ 1, but in the formulas we use
R ¼ 0 at i ¼ 0. See again [18] for details.
We have evolved with noise of amplitude 10−10 in f

and ψ , at Nx ¼ 64…1024 and Ny ¼ 17…65. We set
xmax ¼ 1.1 and x0 ¼ 1, and evolve to u ¼ 0.95, when the
range of R has gone down from its initial value of 0.5
by a factor of 1 − 0.95 ¼ 0.05. We do not filter out high
frequencies, other than the components of f with l ¼
Nx þ 1 andNx (see [18] for why we do this.) At each xi, we
also set all spherical harmonic components with l > 2i to
zero (see again [18] for why we do this.)
The discrete L2 norms of ψ and f themselves do not

decrease with u, but the discretized L2 norms kðrψÞ;rk
and kðrfÞ;rk1 given in (E12), (E13) do. From about
u ¼ 0.01, both decrease approximately as u−0.35. Near
the end, kðrψÞ;rk decreases much more rapidly, while
kðrfÞ;rk increases a bit in an apparently random manor,
then decreases again. In summary, our numerical experi-
ments are easily compatible with the estimate (E1) for
Kðu1 − u0Þ ¼ 1 and including only PabPab, that isZ

u¼u1

ðrfÞ2;rdr dy ≤
Z
u¼u0

ðrfÞ2;rdr dy; ðE14Þ

and a similar estimate with ψ instead of f.
Looking at individual spherical harmonic components

flðu; xÞ and ψ lðu; xÞ of fðu; x; yÞ and ψðu; x; yÞ, we see
that the random initial dominated by the grid frequency
data quickly smooth out into well-resolved data on fre-
quencies lower than the grid frequency. Hence our method
seems to be quite dissipative. In a second phase we then see
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that these appear to be “stretched” in x, as the grid in fact
zooms in on them, with Rmax shrinking linearly in u.
For definiteness, we have implemented a specific con-

tinuum norm and its discretization, but we should stress
that this was just an informed guess. In particular, we have
arbitrarily chosen dV ¼ dΩdR, rather than, for example,
dV ¼ dΩRpdR. The “correct” choice would depend on
what (if any) estimate can be proved. We have also not gone

to particularly large values of Nx and Ny, but only ones that
we have also used in physics simulations. (A soft upper
limit on Nx is set by computing time, while a hard limit
Ny ≤ 128 is set by the accuracy of our spectral method
in y.) Hence our results should only be considered as a
slightly more challenging stability test of our code moti-
vated by the results of this paper, not a numerical test of
well-posedness.
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tique, Ann. l’Inst. Henri Poincaré Phys. Théor. 66, 37 (1997),
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