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We present the first numerical simulations in null coordinates of the collapse of nonspherical regular
initial data to a black hole. We restrict to twist-free axisymmetry, and reinvestigate the critical collapse of a
nonspherical massless scalar field. We find that the Choptuik solution governing scalar field critical
collapse in spherical symmetry persists when fine-tuning moderately nonspherical initial data to the
threshold of black hole formation. The nonsphericity evolves as an almost-linear perturbation until the end
of the self-similar phase, and becomes dominant only in the final collapse to a black hole. We compare with
numerical results of Choptuik et al., Baumgarte, and Marouda et al., and conclude that they have been able
to evolve somewhat more nonspherical solutions. Future work with larger deviations from spherical
symmetry, and in particular vacuum collapse, will require a different choice of radial coordinate that allows
the null generators to reconverge locally.
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I. INTRODUCTION

In a companion paper [1] (from now on Paper I), we have
reviewed various formulations of the Einstein equations in
twist-free axisymmetry on outgoing null cones emanating
from a regular center, intending to simulate gravitational
collapse with them.
As a first physics application, here we reinvestigate the

problem of twist-free axisymmetric scalar field critical
collapse. By critical collapse we understand the investigation
of the threshold, along a 1-parameter family of initial data,
between regular data that do and do not form a black hole in
their time evolution. In “type-II” critical collapse, increased
fine-tuning to the threshold p ¼ p� gives rise to arbitrarily
small black hole masses, arbitrarily large curvatures, and in
the limit, it is conjectured, to a naked singularity [2].
We choose scalar field critical collapse because it

provides a continuous bridge from spherical symmetry,
where simulations on null cones work well, to the twist-free
axisymmetric vacuum case that is our long-term goal. But it
is also of physical interest in its own right.
In [3] it was claimed, based on the numerical solution

of a mode ansatz, that all nonspherical linear perturba-
tions of the spherical scalar field critical solution decay,
with the least damped l ¼ 2 perturbation only decaying
quite slowly. Subsequent numerical time evolutions in

axisymmetry in cylindrical coordinates by Choptuik et al.
[4] appeared to indicate a slowly growing l ¼ 2 perturba-
tion of slightly nonspherical critical collapse that eventually
leads to the formation of two centers of collapse.
This tension between the results of [3 and [4] was

resolved by fresh simulations, in axisymmetry in spherical
coordinates by Baumgarte [5], which indicated that suffi-
ciently small nonspherical perturbations decay (in agree-
ment with the mode stability claimed in [3]) but that larger
perturbations do grow (in agreement with [4]).
Interestingly, both [4] and [5] observe that in a regime of

small finite deviations from spherical symmetry, the spheri-
cal Choptuik solution [6,7] is still observed as an approxi-
mate critical solution but with a period that decreases from
Δ ≃ 3.44with increasing nonsphericity, and that the critical
exponent also decreases from γ ≃ 0.374.
The authors of [4] and [5], in axisymmetry, achieved

fine-tuning to jp − p�j ∼ 10−15 and jp − p�j ∼ 10−13,
respectively (except that [5] achieved only 10−8 at the
largest deviation from spherical symmetry). Other investi-
gations of nonspherical scalar field collapse had achieved
much less fine-tuning: [8] achieved∼10−3.5, and [9]∼10−5.5,
both for nonaxisymmetric initial datap, and [10] achieved
∼10−1 in axisymmetry. Incidentally, [8–10] also evolve
initial data that are nonsmooth at R ¼ 0.
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Reid and Choptuik [11] have fine-tuned axisymmetric,
time-symmetric, antisymmetric in z initial data to ∼10−14
and found that two (mirror-symmetric) centers of collapse
form (as one would expect). These start out in a highly
nonspherical state (although this was not quantified).
However, critical phenomena were observed with Δ and
γ as in spherical symmetry, and it was concluded that there
is no evidence of a growing nonspherical mode (in the
evolution of each separate center of collapse).
Marouda et al. [12] have examined twist-free axisym-

metric collapse of a complex massless scalar field, fine-
tuning to ∼10−10. As they treat a slightly different matter
model, none of their families of initial data coincides
exactly with those of [4] and [5], but their results are
consistent with those of [4] and [5] in the sense that δΔ and
δγ observed in their two nonspherical families fit into a
monotonic ordering of families by (inferred) nonsphericity.
See already Table II below.
The achievable level of fine-tuning matters, as the l ¼ 2

unstable mode claimed in [4] would be very slowly growing:
its authors see no bifurcation for nonsphericity parameter
ϵ2 ≤ 2=3 [see Eq. (10) below for a definition], but they see
one after 2 and 1.5 echoes, respectively, for ϵ2 ¼ 3=4 and
5=6, where 3 echoes is the best that can be achieved in
double-precision arithmetic, with jp − p�j ∼ 10−15. [12] see
about 4 echoes in their family IV before bifurcation.
In principle, being in polar coordinates, our code, as

presented in detail in Paper I, should resolve small devia-
tions from spherical symmetry as well as that of [5],
whereas our choice of null gauge should be able to resolve
the critical solution well, even without the adaptive mesh
refinement of [4]. It turns out that this is true.
The plan of the paper is as follows: In Sec. II we briefly

summarize our metric ansatz, gauge choice and diagnos-
tics, give our two-parameter family (strength and non-
sphericity) of initial data, and describe the bisection to the
threshold of collapse. In Sec. III we describe in detail our
results for spherical critical collapse of a massless scalar
field. In particular, we plot the fine structure of the curva-
ture and black hole mass scaling laws with high accuracy
and compare with the available literature.
Section IV gives our results for nonspherical (twist-free

axisymmetric) critical collapse. Our initial data, being set
on an outgoing null cones, cannot be compared directly
with those of [4,5]. However, by comparing the amplitude
of the l ¼ 2 deviation of the scalar field ψ from spherical
symmetry during the phase of the evolution where the
solution is well approximated by the Choptuik solution, we
infer that our most nonspherical family, ϵ2 ¼ 0.75, com-
pares to ϵ2 ¼ 0.5 of [4,5]. With the gauge choice presented
here we cannot fine-tune families of initial data that are
more nonspherical.
We conclude in Sec. V with a discussion of the physical

results and an outlook for our code.

II. SETUP

A. Metric and field equations

We state here the equations we solve numerically, with
full details of the formulation and its discretization given in
Paper I. The field equations we want to solve are the
Einstein equations

Rab ¼ 8π∇aψ∇bψ ; ð1Þ

and the massless, minimally coupled wave equation

∇a∇aψ ¼ 0: ð2Þ

We use units where c ¼ G ¼ 1.
We write the general twist-free axisymmetric metric in

the form

ds2 ¼ −2Gdudx −Hdu2

þ R2
�
e2SfS−1ðdyþ Sb duÞ2 þ e−2SfS dφ2

�
: ð3Þ

We assume that the central worldline R ¼ 0 is at x ¼ 0
and that spacetime is regular there. We have defined
y ≔ − cos θ, so that the range 0 ≤ θ ≤ π corresponds to
−1 ≤ y ≤ 1. The azimuthal angle φ has range 0 ≤ φ < 2π.
The Killing vector generating the axisymmetry is ∂φ. (We
use the convention of equating vector fields with derivative
operators.) In (3) we have used the shorthand

S ≔ 1 − y2 ¼ sin2θ: ð4Þ

Each surface Nþ
u of constant u is an outgoing null cone,

assumed to have a regular vertex. Each surface Su;x of
constant u and x is assumed to be spacelike, and has
topology S2. The outgoing future-directed null vector field
normal to Su;x is U ≔ G−1

∂x, and is also tangent to the
affinely parametrized generators of N þ

u . The ingoing
future-directed null vector normal to Su;x is

Ξ ≔ ∂u − B∂x − Sb∂y; ð5Þ

where we have defined the shorthand

B ≔
H
2G

: ð6Þ

As we see from (5) B plays the role of a “shift” in the
x-direction, with B and b relating our time direction ∂u to
the ingoing null direction Ξ. U and Ξ are normalized
relative to each other as ΞaUa ¼ −1. See Fig. 1 of Paper I
for a sketch of our coordinate null cones and these vector
fields.
As described in Paper I, we can solve a subset of the

Einstein equations and the wave equation (which we call
the hierarchy equations) for G, b, ΞR, Ξf and Ξψ on one
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time slice, given R, f and ψ there, and this can be done by
explicit integration in x in the right order. H and ∂u do not
appear in the hierarchy equations except in the combination
Ξ, and H remains undetermined.
This means that we have a time evolution scheme where

R, f and ψ are specified at u ¼ 0. We then find G, b, ΞR,
Ξf and Ξψ , choose B freely and thus obtain R;u, f;u and
ψ ;u, and then evolve R, f and ψ forward in u.
We discretize in x and u using finite differencing,

and in y using a pseudospectral expansion in Legendre
polynomials (that is, spherical harmonics restricted to
axisymmetry).

B. Gauge choice

Our numerical domain is 0 ≤ x ≤ xmax, 0 ≤ u ≤ umax.
We choose H within a class of gauge choices with the
property that R ¼ 0 remains at x ¼ 0 (and is timelike and
regular), and that x ¼ xmax is future spacelike. This means
that our numerical domain is a subset of the domain of
dependence of the initial data on 0 ≤ x ≤ xmax, u ¼ 0, and
no boundary condition is required on the outer boundary
x ¼ xmax. We set H ¼ G ¼ 1 at x ¼ R ¼ 0, so that the
proper time along this “central wordline” is given by u.
Furthermore, we impose that x ¼ x0 is marginally future

spacelike, in the sense that Hðu; x0; yÞ ≤ 0, with equality
for some y, for some fixed constant x0 in the range
0 < x0 ≤ xmax. Our expectation is that, if a part of the
spacetime we are constructing numerically is approximated
by a self-similar critical spacetime (with accumulation
point on the central worldline x ¼ 0), then we can (by
trial and error) adjust x0 so that x ¼ x0 remains close to the
past light cone of the accumulation point of scale echoes.

The resulting coordinate system will then zoom in on the
accumulation point and maintain resolution of the ever
smaller spacetime features as it is approached, without the
need for adaptive mesh refinement. This approach to
critical collapse in null coordinates was used in [13,14],
using regridding, and in [15,16] using a shift term, all in
spherical symmetry.
More specifically, for this paper we have settled on a

class of gauges we call “local shifted Bondi gauge” (from
now on, lsB gauge), defined by Rðu; x; yÞ ¼ R̄ðu; xÞ.
Within that class, we choose the “lsB4” flavor, defined
by the shift B defined in (6) taking the value

BlsB4 ¼ −
ΞR −minyðΞRÞ

R;x
þ
�
1 −

x
x0

��
−
ΞR
R;x

�
x¼0

: ð7Þ

(Note that in Paper I we extensively tested the slightly
different lsB2 gauge.) In this gauge, every surface of
constant x > x0 is future spacelike. We refer the reader
to Paper I for more details. Note that Bðu; x; yÞ is
continuous but has discontinuous transverse derivative
across the hypersurfaces x ¼ x�ðuÞ where the y-location
of minyðΞRÞ jumps.

C. Diagnostics

For any closed spacelike 2-surface S, we define its
“Hawking compactness”

CðSÞ ≔ 1þ 1

2π

Z
S
ρþρ−dS; ð8Þ

where ρþ and ρ− are the outgoing and ingoing null
divergence. It is related to the well-known Hawking mass by

MðSÞ ≔ 1

2

ffiffiffiffiffiffiffiffiffiffi
AðSÞ
4π

r
CðSÞ; ð9Þ

where AðSÞ is the area of S.
The standard indicator of black hole formation used in

numerical relativity on a spacelike time slicing is the
appearance of a marginally outer-trapped surface (from
now on, MOTS) embedded in a time slice. An outer trapped
surface is defined by ρþ ≤ 0 at every point (and hence
C > 1), and a MOTS by ρþ ¼ 0 (and hence C ¼ 1). As we
have discussed in Paper I, we cannot expect the ingoing
past light cone of a MOTS to converge to a point, and so we
cannot expect to find any MOTS embedded in a coordinate
null cone.
Instead we use the Hawking compactness Cðu; xÞ of our

coordinate 2-surfaces Su;x as an indicator of black-hole
formation. When maxx Cðu; xÞ ≥ 0.99 is first reached
during an evolution, we use the Hawking mass M of the
Su;x where that happens as an indication of the “initial
mass” of the black hole. Similarly, we use maxx Cðu; xÞ ≤
0.01 as an indicator of dispersion. In spherical symmetry,

FIG. 1. ϵ2 ¼ 0: Numerical determination of the curvature
scaling function fT . Here and in all following plots of fT , the
horizontal axis shows lnðp� − pÞ þ B and the vertical axis shows
−1=2 lnT − A. To make the plots larger, we omit axis labels in all
line plots throughout. Circles indicate our data points, 30 per
decade in p − p�. We show only the range where the function is
approximately periodic. The gray line represents a fit as a sine
wave of amplitude 0.147. For comparison, in all following plots
of fT and fM the range of lnðp� − pÞ þ B, will be the same as
here, namely ½−30.8;−5.8�.

SIMULATIONS OF …. II. CRITICAL COLLAPSE … PHYS. REV. D 110, 024019 (2024)

024019-3



this works perfectly well: C ¼ 1 is actually equivalent to a
MOTS, and this MOTS is approached uniformly at all
angles ðθ;φÞ. Beyond spherical symmetry, for current lack
of a better alternative, we still use Cðu; xÞ to distinguish
between dispersion and collapse.
However, CðSÞ ≥ 1 is clearly only necessary, not suffi-

cient, for S to be outer-trapped, and we are not aware of any
rigorous results linking 2-surfaces with C ≃ 1 to black
holes, nor of their previous use in the numerical relativity
literature beyond spherical symmetry.
In lsB gauge, where R ¼ R̄ðu; xÞ, the Hawking mass

Mðu; xÞ of the coordinate 2-surfaces Su;x obeys
M;xðu; xÞ ≥ 0. There are separate integrals for Cðu; xÞ
and Mðu; xÞ, and this gives to two separate ways of
computing C, whose numerical results we denote by C
and C̃, and similarly M and M̃. Their agreement is strong
test of numerical accuracy, as they are discretized in
different ways, see Paper I for details.

D. Initial data

The authors of [4] investigate nonspherical scalar field
collapse in axisymmetry, using two families of initial data
on a Cauchy surface. One is time-symmetric, with the
initial value of the scalar field a Gaussian elongated along
the rotation axis, with equatorial symmetry. The other is
approximately ingoing, with ψ antisymmetric under reflec-
tions through the equator. Like the code of [5], ours is
optimized for a single center of collapse, while the
antisymmetric data have two, so we evolve only a family
of data designed to be similar to the first family of [4].
The time-symmetric initial data of [4] and [5] at t ¼ 0,

written in our notation, are

ϕð0; r; yÞ ¼ pe−
r2ð1−ϵ2y2Þ

d2 ; ϕ;tð0; r; yÞ ¼ 0: ð10Þ

Here r is the standard radial coordinate in a 3-metric
assumed to be conformally flat at t ¼ 0. With ϵ2 > 0, the
initial data are elongated along the symmetry axis y ¼ �1,
and with ϵ2 < 0 they are squashed. In [4,5], ϵ2 is written as
ϵ2 and only positive values are considered, but there is no
reason not to consider ϵ2 < 0, hence our change of
notation. Given the initial data for the scalar field, [4,5]
obtain full initial data for the Einstein-scalar system by
making the initial 3-metric conformally flat and solving the
Hamiltonian constraint for the conformal factor.
As we set initial data on an outgoing null cone u ¼ 0

rather than a time slice t ¼ 0, we cannot construct initial
data giving exactly the same solutions. Instead we identify
the two datasets as different cross sections of an (approxi-
mate) solution of the flat spacetime wave equation. For this
purpose, we consider the function

ϕðt; r; yÞ ≔ 1

2r

h
ðtþ rÞe−ðtþrÞ2

d2
ð1−ϵ2y2Þ

− ðt − rÞe−ðt−rÞ2
d2

ð1−ϵ2y2Þ
i
: ð11Þ

For ϵ2 ¼ 0 only, this a spherically symmetric analytic
solution of the scalar wave equation on flat spacetime.
For any ϵ2, it also reduces to (10) at t ¼ 0. We now identify
the null cone u ¼ 0 where we impose initial data with the
conical cross section r ¼ t − t0 − r ¼ 0 of (11) for some
constant t0, and we identify r with R on this cross section.
Finally, we set an overall amplitude p. Hence we set

ψð0; R; yÞ ¼ pϕðt0 þ R;R; yÞ; ð12Þ

where ϕ is defined by (11). We also set

fð0; x; yÞ ¼ 0: ð13Þ

This is simply for lack of an alternative likely to be closer to
the corresponding data at t ¼ 0 being conformally flat, and
is at least consistent with spacetime being flat in the limit
p → 0. Finally, we set

Rð0; x; yÞ ¼ x
2
; ð14Þ

which is essentially a gauge choice.
Formally, as p → 0 and ϵ2 → 0, the solution from these

data corresponds to that arising from (10), with the identifi-
cation u ¼ t − R. We also initialize Rð0; x; yÞ ¼ x=2,
which can be considered our initial choice of an lsB gauge.
Obviously, with gravity and/or with ϵ2 ≠ 0, (11) is no

longer an exact solution of the curved-spacetime wave
equation, and the solution evolved from the null initial
data (12) no longer has a moment of exact time symmetry,
but it should approximate the solutions arising from (10),
with ϵ2 playing a quantitatively similar role.
Without loss of generality we set d ¼ 1 to fix an overall

scale. We also choose t0 ¼ −5, which means that the null
initial data (12) represents a Gaussian that is well separated
from the center and still essentially ingoing. In the flat-
space, spherical limit ϵ2 ¼ 0, p → 0 the wave reaches the
center at u ¼ −t0, and the moment of time symmetry t ¼ 0
corresponds to uþ R ¼ −t0. Hence (always in this limit)
our null initial data u ¼ 0 intersect t ¼ 0 at R ¼ −t0. For
ϵ2 ¼ 0, we shall choose xmax ¼ 11, so that R ¼ −t0
intersects our initial data surface.
We realized only near the completion of this paper, from

the convergence tests in Appendix B, that for ϵ2 ≠ 0 and
t ≠ 0 (11) is not actually single-valued at the origin r ¼ 0,
but depends on y. Our null initial data (12) are therefore
also not single-valued at the origin. In Appendix C we
present an analytic solution of the flat space wave equation
valid for all values of ϵ2 that also reduces to (10) for all
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values of ϵ2, and null initial data (C6) derived from this
solution. These are the initial data we intended to create.
However, convergence tests in the strong-gravity regime

of the nonanalytic null data (12) with (11) show that the
breakdown of convergence is limited to a small region near
the origin, at early times. The code seems to smooth out the
data to something that then converges. The corrected null
data (C6) also converge, but preliminary tests show that at
ϵ2 ¼ 0.75 they require very large values of xmax in near-
critical evolutions. For both these reasons—the error in the
nonanalytic data does not seem to matter, and the analytic
data are much harder to evolve—we present here only
evolutions with the nonanalytic initial data, and we believe
that the following results are still reliable.

E. Bisection to the threshold of black hole formation

Beginning from a value of p that disperses and one that
collapses, we find the threshold value p� by bisection. We
use supern as shorthand for lnðp − p�Þ ≃ −n and subn for
lnðp� − pÞ ≃ −n. (This makes sense because p is dimen-
sionless and p� ∼ 1.) We can find p� to machine precision
(15 digits), and the accumulation point of echoes u� to
about 7 digits, but our numerical values of p�, u� and x�
will agree with their continuum value to fewer digits. This
is a well-known feature of numerical simulations of critical
collapse. Below we give their values at different resolutions
as a rough indication of numerical error.
Beyond spherical symmetry, during bisection in p�, or

later when we sample ln jp − p�j more finely, we occa-
sionally obtain inconclusive evolutions. For small ϵ2 at
least there is a heuristic workaround: when the evolution
stops as the time step goes below an acceptable threshold,
we always find that maxx;yρ− > 0 as well. (The expansion
of ingoing null cones, which is negative in flat space-
time, has become positive at least one point, presumably
because the spacetime and our coordinate null cones have
become highly nonspherical.) We take this combination
as a (completely heuristic) indicator of collapse, even if
C ¼ 0.99 has not yet been reached. At the largest non-
sphericity and highest resolution, this collapse criterion
also fails, and we replace it by maxxCðu; xÞ ≥ 0.8.
We cannot be sure that what we thus classify as collapse

or dispersion really is, but if we then see subcritical
curvature scaling on the “dispersion” side, and approximate
self-similarity on both sides, we take this to be a strong
indication that we really are bisecting to the collapse thresh-
old. Furthermore, any masslike quantity in near-critical
evolutions will also scale, in particular the Hawking mass
on the first surface Su;x where C ¼ 0.99 (or C ¼ 0.8), and
seeing this scaling at least provides further confirmation
that we are bisecting to the black hole threshold, even if the
mass we measure is related to the black hole mass only by a
factor of order one.
Once we have an estimate for p� (which depends on all

the numerical parameters), we evolve super and subcritical

values of p that are equally spaced in ln jp − p�j, with 30
values per power of 10, to give us better-resolved plots of
the mass and curvature scaling laws.

III. RESULTS IN SPHERICAL SYMMETRY

We begin with the spherical case ϵ2 ¼ 0, and run with
Ny ¼ 1 in lsB4 gauge. By experimentation we find that
x0 ¼ 8.24 allows bisection down to machine precision,
while keeping the first appearance of C ≥ 0.99 somewhere
in the middle of the grid as the bisection proceeds (in order
to resolve the critical solution). In other words, the past
light cone of the accumulation point of scaling echoes is at
x� ≃ 8.24. We also find that xmax ¼ 11 is required in order
to capture the location where C first reaches the threshold
value of 0.99 that we take as an indication of collapse. We
find p� ≃ 0.2402.
We have checked that our code shows clean pointwise

second-order convergence with Δx in the two evolutions
forming our initial bracket: the clearly subcritical p ¼ 0.2,
and the clearly supercritical p ¼ 0.3 (up to a little before
our collapse criterion stops the supercritical evolution).
As a basic check, we have evolved spherically sym-

metric initial data also with N̄y ¼ 3. This makes no visible
difference to the scaling plots or critical solution (except
where they dissolve into round-off noise). However,
round-off error in the spectral operations triggers unphys-
ical random nonspherical perturbations. These are then
smoothed out by the shrinking of the numerical grid, and
then, once their x-dependence is resolved, continue to
evolve under the continuum perturbation equations. The
l ¼ 2 spherical harmonic components of ψ and f, which
from now on we shall denote ψ2 and f2, reach an amplitude
∼10−12 and then decay in sub15, while they blow up in
super15 during the final collapse. This blowup may be
explained by the physical instability of gravitational col-
lapse to nonspherical perturbations, even if these perturba-
tions were triggered here by numerical error.
We stop the bisection to p� after 50 iterations, where we

are essentially at machine precision. However, the scaling
laws for the initial black hole mass and maximum Ricci
curvature become noisy well before we reach machine
precision, at about sub13 for the Ricci scaling (see Fig. 1)
and at about super12 for the mass scaling (see Fig. 2).
In spherical symmetry and evolving with Ny ¼ 1, the

source of the randomness is presumably round-off error,
becoming important in the evolutions already three or so
orders of magnitude before we reach machine precision
in p itself.

A. Fine structure of the mass and curvature
scaling laws

From Appendix A, which clarifies the derivation given
in [17], we expect the scaling laws
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−
1

2
lnT ≃ Aþ γ lnðp� − pÞ þ fTðlnðp� − pÞ þ BÞ; ð15Þ

lnM ≃ Aþ γ lnðp − p�Þ þ fMðlnðp − p�Þ þ BÞ; ð16Þ

for

T ≔ max
whole spacetime

��∇aψ∇aψ
��; ð17Þ

and the mass M of the first MOTS detected on our time
slicing. We consider T−1=2 because it has dimension length,
like M, and we use the natural logarithm for all our plots.
Here Δ ≃ 3.44 and γ ≃ 0.374 are universal constants, and A
and B are family-dependent constants. fT is a universal
periodic function with period Δ=ð2γÞ ≃ 4.60 in lnðp� − pÞ.
fM is also periodic with the same period, and is universal
with respect to initial data in any time slicing (such as
our null cone slicing) that is compatible with discrete
self-similarity (from now on, DSS). However, fM does
depend on the slicing, as well as on our collapse
criterion.
Note that the Ricci scalar is jRicj ¼ 8πT, so ln jRicj and

lnT differ only by a constant.
To look for these scaling laws, we plot lnM − ðAþ

γ ln jp − p�jÞ against ln ln jp − p�j, and similarly for T. We
then expect to see only the fine-structures fM and fT . To
uniquely fix A for a given family, we define fT to have zero
mean. To fix B modulo periodicity, we let the minima of
−ð1=2Þ lnT coincide with the minima of sinðγ ln jp� − pjÞ.
We find that for our family of spherical initial data
A ≃ 1.113, B ¼ 0.592, γ ¼ 0.374 and Δ ¼ 3.44 provide
a good fit to (15) for our family of spherically symmetric
initial data.
Our numerical measurement of fT with these fitting

parameters is shown in Fig. 1. We see accurate periodicity
from sub2.5 to sub13. The function fT is well

approximated by a fundamental sine wave of amplitude
0.147, except for a widened top and a clear discontinuity in
the derivative at the left edge of this flattened top. This kink
is expected: it corresponds to the appearance of a new local
maximum of T in each scale period.
Our numerical measurement of fM is shown in Fig. 2.

Recall that M is the Hawking mass of the first surface Su;x

with Hawking compactness C ¼ 0.99. fM is periodic with
an amplitude of about 0.026 and mean −1.4835. There is
one large discontinuity in each period, corresponding to the
formation of the first MOTS one scale period later. Again
this is expected: when a new local maximum of C takes
over, by definition it has the same C, but not the same M.
We see accurate periodicity with the same γ andΔ as for the
curvature scaling law, over a slightly smaller range from
sub4 to sub12. The range may be smaller because the
MOTS occurs near the past light cone of the singularity of
the underlying critical solution, whereas the maximum of
the Ricci curvature occurs at the center, which may be less
affected by details of the initial data.
We are aware of the following previous plots of scaling

law fine-structures in the critical collapse of a spherical
scalar field in the literature.
Pürrer, Husa and Aichelburg [18] extend compactified

Bondi coordinates to future null infinity, and so can read off
the asymptotic black hole mass. They show a periodic fine
structure of this mass which appears to be continuous, with
an amplitude of about 0.4 in lnM. Crespo, Oliveira and
Winicour [19] use an affine radial coordinate also com-
pactified to null infinity and show a similar fine structure,
but with an amplitude that seems to be closer to 0.3 in lnM.
These results are in the same time slicing, so they should
agree, and they roughly do. From a plot in Rinne [15]
we estimate the amplitude in lnM as ≃0.4, similar again
to [18,19], although this is not the asymptotic mass. By
contrast, our fM has an amplitude of only 0.026 in lnM,
and has a jump of similar amplitude. Our best guess is that
the Hawking mass of our collapse diagnostic is still very far
from the final black hole mass. We have explained why our
fM is discontinuous, but by contrast we have no theoretical
understanding of why the MðpÞ measured by the other
researchers is continuous.
Switching now to the subcritical scaling of the maximum

of the Ricci curvature, Garfinkle and Duncan [20] plot the
fine-structure in lnmax jRicj, and from this plot we
estimate the amplitude of fT as 0.3 in lnmax jRicj, or
0.15 in ð1=2Þ lnmax jTj. This is consistent with our value
of 0.147. The bottom of their curve, corresponding to the
top of ours, is flattened, again consistent with our obser-
vation. Baumgarte [5] has a fine-structure with amplitude of
about 0.35 in lnmax ρ, where ρ ¼ nanbTab is the energy
density measured by an observer normal to the time slicing.
This depends on the slicing, but the amplitude of 0.35 is
again similar to the 0.3 observed by us and [20]
for lnmax jRicj.

FIG. 2. ϵ2 ¼ 0: Numerical determination of the mass scaling
function fM. Here and in all following plots of fM, the horizontal
axis shows lnðp − p�Þ þ B and the vertical axis shows lnM − A.
The gray line represents a fit as −1.4835 plus a sine wave of
amplitude 0.026. fM is strictly periodic over a slightly smaller
range than fM.
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B. Self-similarity of the critical solution

We demonstrate self-similarity of the critical solution by
showing that the scalar field ψ , the compactness C and the
scaled curvature scalar

T ≔ ðu� − uÞ2j∇aψ∇aψ j ð18Þ

are periodic in the DSS-adapted coordinates

ξ ≔
R

u� − u
; ð19Þ

τ ≔ − lnðu� − uÞ: ð20Þ

The null slicing is already DSS-compatible, in the sense
of [21], but we call this specific coordinate system DSS-
adapted as the parameter u� needs to be adjusted to the
accumulation point of the specific DSS. Unlike the scalar
field, the metric actually has period Δ=2 because the
Choptuik solution has the property that ψ�ðξ; τ þ Δ=2Þ ¼
−ψ�ðξ; τÞ and Rab ¼ 8πψ ;aψ ;b is invariant under ψ → −ψ.
The parameter u� is a family-dependent constant. A rough
initial guess of u� is given by the time that near-critical
supercritical evolutions stop. We then refine it by making
ψ , C and T as periodic as possible. For our family, we
find u� ≃ 5.609.
Note that adjusting u� slightly will affect τðuÞ the more

the closer u gets to u�. In practice, we can therefore adjust
the τ-location of the last echo of, say, ψðx; τÞ by adjusting
u�, almost without moving the other echoes. By contrast, this
arbitrariness is absent when we use u� to make the amplitude
of the last echo of T ðx; τÞ equal to that of the preceding
echoes, and is therefore what we use to determine u�.
We use our closest super- and subcritical evolutions as a

proxy for the critical solution. They agree with each other
until one disperses and the other one forms a black hole. We
see clear echoing in ψ , C and T for 2≲ τ ≲ 10. The results
are shown in Figs. 3, 4, and 5 for our closest subcritical
evolution.

C. Comparison with gsB gauge

We have also bisected ϵ2 ¼ 0, Ny ¼ 1 in “global shifted
Bondi” (gsB) gauge. Recall from Paper I that this is given
by R ¼ sðuÞx, giving

ðBÞ ¼ ṡðuÞx − ΞR
sðuÞ ; ð21Þ

and we have settled on the particular flavor given by

ṡðuÞ ¼ 1

x0
min
y
ΞRðu; x0; yÞ: ð22Þ

We needed xmax ¼ 20 in gsB gauge (instead of 11
in lsB gauge), and correspondingly Nx ¼ 800 to maintain

Δx ¼ 0.025. Comparing the zoomed-in scaling laws with
lsB and gsB, they agree as expected down to about
super/sub12, but then begin to disagree as both become
noisy.

FIG. 3. ϵ2 ¼ 0: Surface plot of the scalar field ψðx; τÞ against
the similarity coordinates ξ and τ, in our closest subcritical
evolution (sub15). The plot has been cropped to 0 ≤ ξ ≤ 1, but
the entire range of τ is shown, starting from the initial data at
u ¼ 0 at the right edge of the plot, and ending at the left edge
when C ≤ 0.01 indicates dispersion. The center is at ξ ¼ 0 (front
edge), and the past light cone of the singularity at ξ ≃ 1 (back
edge). Approximate DSS is seen for the range 2 ≲ τ ≲ 10. Our
numerical data form a mesh made up of lines of constant u
(constant τ) and constant x (not constant ξ). Both have been
down-sampled for visual clarity.

FIG. 4. ϵ2 ¼ 0: Surface plot of the compactness C, otherwise as
described in Fig. 3.

FIG. 5. ϵ2 ¼ 0: Surface plot of the scaled curvature diagnostic
T , otherwise as in Fig. 3, except that the plot has been rotated
slightly to the right for a clearer view.
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In spite of this apparent success, we see a fundamental
problem with gsB gauge already here in spherical scalar
field collapse. While B is a monotonically decreasing func-
tion in weakly curved spacetimes, going through B ¼ 1 at
x ¼ 0 and B ¼ 0 at x ¼ x0, in near-critical spacetimes it
becomes nonmonotonic and may cross zero at x ¼ x0 with
positive slope. This means that some surfaces of constant
x > x0 are no longer future spacelike but timelike. This
could include the outer boundary, and we would then not
evolve on the domain of dependence. It is possible that B
becomes negative again for sufficiently large x, and indeed
this happens for xmax ¼ 20 in this family of spherical initial
data, but it is not something we can rely on.
Given that the only free parameter of gsB gauge is x0,

and that this needs to be set to x�, which in turn is set by the
family of initial data, in order to resolve the critical solution
this seems to be a fundamental problem with gsB gauge.
Indeed, gsB gauge fails for this reason in nonspherical
evolutions, and we present no results in this gauge.

IV. RESULTS FOR NONSPHERICAL
INITIAL DATA

As already noted, the strong-field convergence tests with
ϵ2 ¼ 0.75 in Appendix B showed an initial burst of non-
convergent error caused by our initial data not being
analytic at the origin, but we see second-order convergence
with Δx and lmax for all u≳ 0.2. Here we present results for
these nonanalytic initial data, as we believe the initial error
does not affect our results in the critical regime.
We have bisected in the families with ϵ2 ¼ 0, 10−4, 10−2,

0.1, 0.5 and 0.75, using lsB4 gauge. Note our family of null
data parametrized by ðp; ϵ2Þ is equivalent to the family of
Cauchy data parametrized by ðp; ϵ2Þ of [4,5] only in the
limit of small ϵ2 and small p, as we rely on a spherically
symmetric solution of the wave equation on flat spacetime
to relate the scalar ψ field at t ¼ 0 to u ¼ 0. Table I lists the
numerical parameters and outcomes of our successful

bisections. To estimate the error from discretization in x
and y, we have run ϵ2 ¼ 0.75 at four resolutions, with
Δx ¼ 0.05 and 0.025, and N̄y ¼ 9 and 17 for both.
However, because of the large number of long evolutions
involved, we have not plotted the fine structures of the
scaling laws for the combination of the two higher
resolutions. Moreover, at higher fine-tuning during the
bisection, we had to reduce our criterion for collapse from
C ≥ 0.99 to C ≥ 0.8. This would of course affect the mass
scaling law (if we computed it), but appears to be sufficient
for the bisection, and hence finding the approximate critical
solution.
From (11), we expect that for sufficiently small ϵ2, the

nonsphericity evolves as a linear perturbation of spherical
symmetry, dominated by l ¼ 2, and that this linear pertur-
bation decays. For somewhat larger ϵ2, [4,5] also found
changes to Δ and γ. For even larger ϵ2, in particular
ϵ2 ¼ 0.75, Baumgarte [5] also found evidence of the
(nonlinear) instability of the Choptuik solution reported
by Choptuik et al [4] to lead to two centers of collapse. We
will see, by contrast, that for our ϵ2 ¼ 0.75 evolutions the
nonspherical perturbations appear to still be in the linear
regime, and indeed their nonsphericity is more similar to
the evolutions of Baumgarte [5] with his ϵ2 ¼ 0.5.

A. The final collapse phase

Our best supercritical evolution remains, by definition,
close to our best subcritical one until the end when one
decides to disperse and the other to collapse. However, in
its final collapse phase the best supercritical solution
becomes much more nonspherical, and this is challenging
numerically.
In flat spacetime ΞR ¼ −1=2, Rρþ ¼ 1 and 2Rρ− ¼ −1.

By contrast, in critical collapse, the divergence ρþ of the
outgoing null geodesics remains approximately spherical
and positive in the self-similar phase, but in the final
collapse becomes very small at large x. Similarly, ρ− and

TABLE I. Table showing parameters of our families of initial data. ϵ2, in the first column, is the only physical input parameter. The
second group of columns shows numerical (input) parameters, and the third group physical (observed) parameters (fitted to the
numerical data, and rounded to four significant digits for this table). These families, or the best subcritical evolutions in them, have been
used in the figures listed in the last column. For visual clarity, a * means the entry is unchanged from the previous row. Half-frequency
filtering was applied except in the first row, and the collapse criterion was C ≥ 0.99 except in the last row, where it was C ≥ 0.8.

ϵ2 Δx N̄y lmax x0 xmax p� u� A B comments

0 0.025 1=3 0=4 8.24 11. 0.2402 5.609 1.113 0.592 No filtering, Figs. 1–7, 12–13
10−4 * 9 8 * * * * * * Figs. 12–13
10−2 * 3=5=9 2=4=8 8.275 15. * 5.610 1.115 * Figs. 6–9, 12–15, 18–19, 22
0.1 * 3=5=9 2=4=8 8.7 * 0.2406 5.620 1.131 * Figs. 6–7, 12–15, 18–19
0.5 * 5=9 4=8 12.5=13.3 * 0.2452 5.657 1.230 0.737 *

0.75 0.05 9 8 24. 50. 0.2555 5.642 1.250 1.059 Figs. 10–11
* * 17 16 30. * 0.2556 * * * *
* 0.025 9 8 24.5 * 0.2535 5.651 * * *
* * 17 16 33. * * 5.652 * * C ≥ 0.8, Figs. 6–7, 10–21, 23
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ΞR remain negative and approximately spherical in the
self-similar phase, but become very large, and positive for a
range of angles intermediate between the poles and equator,
in the final collapse phase.
We also see a fundamental numerical challenge of highly

nonspherical evolutions in lsB gauge: The x-shift B in

R̄;u ¼ ΞRþ BR;x ð23Þ

tries to counteract the nonspherical part of ΞR to keep R
independent of y but has little to act on as R;x → 0, while
ΞR also becomes larger. Therefore B becomes large, and
by the Courant condition applied to the upwinded shift
terms, the time step becomes small. In spherical symmetry
this is less of a problem because R;x → 0 also indicates an
approaching MOTS, whereas in a nonspherical spacetime it
does not.
Another consequence of the asphericity of the final

collapse phase is that we do not then have sufficient
angular resolution to obtain reliable values for M. In the
continuum C̃ ¼ C and M̃ ¼ M, but in the final collapse
phase their numerical values differ strongly. There is little
hope that we can overcome this problem with more angular
resolution, as physically we expect the Su;x to become
arbitrarily nonspherical inside the black hole. As a heuristic
indicator of collapse for the purpose of bisecting to the
black hole threshold, we therefore use C̃ rather thanC, as M̃
is at least nondecreasing by construction. Of course either
M̃ or M should be considered reliable only to the extent
they agree with each other.

B. Scaling and echoing

We look for three types of evidence that the nonspherical
perturbations are in the linear regime: for sufficiently small
ϵ2, the spherical part of the critical solution should be the
same critical solution as for ϵ2 ¼ 0, and its perturbations
should decay and oscillate as predicted by linear perturba-
tion theory about the spherical critical solution. The growth
rate λ0 > 0 of the unique growing mode should be un-
changed, and hence the scaling laws, including γ, fT and fM
should be as for ϵ2 ¼ 0. Finally, the decay rates λ of the
leading perturbation modes should be independent of ϵ2 for
ϵ2 sufficiently small, with the values predicted in perturba-
tion theory in [17]. We examine evidence for all this in the
next two subsections, starting here with the scaling laws.
Figures 6 and 7 compare the fine structures of T−1=2 and

M scaling, respectively, for different ϵ2, using our highest
resolution data at each ϵ2. The same γ ¼ 0.374 power law
has been taken out for all values of ϵ2. We are treating each
value of ϵ2 as a different 1-parameter family of initial data
for the purpose of fitting A and B.
To estimate the accuracy of our scaling results for non-

spherical initial data, Figs. 8 and 10 show fT at different
resolutions for ϵ2 ¼ 10−2 and ϵ2 ¼ 0.75, respectively. At

ϵ2 ¼ 10−2 we have very good accuracy for fT. At ϵ2 ¼ 0.75
we have some discretization error in the amplitude of fT ,
but essentially none in its period.
On the other hand, Figs. 9 and 11 show significant

resolution dependence in the numerically measured fM
already at ϵ2 ¼ 10−2, and similar, but not much larger, at
ϵ2 ¼ 0.75. We believe the variation of fM with ϵ2 shown in
Fig. 7 is real but, we do not have enough numerical
resolution for quantitatively reliable results.
Our plots of fT in Fig. 6 at different values of ϵ2 can be

compared directly with Fig. 3 of [4] and Fig. 7 of [5], with
the differences that we plot −1=2 lnT þ A rather than lnT
on the vertical axis, and lnðp� − pÞ þ B rather lnðp� − pÞ

FIG. 6. Comparison of the curvature scaling functions fT for
the ϵ2 ¼ 0 (black line), ϵ2 ¼ 10−2 (blue line), ϵ2 ¼ 0.1 (cyan
line), ϵ2 ¼ 0.5 (light green line) and ϵ2 ¼ 0.75 (dark green
circles) families. Each fT is computed at the highest numerical
resolution shown in Table I. Here and in the following plots, the
horizontal range is exactly the same in Figs. 1 and 2, and the
distribution of data points is the same as indicated by circles
there, but for clarity we no longer show those individual data
points, except for ϵ2 ¼ 0.75, where our computation at the
highest resolution has gaps due to lack of computing time.

FIG. 7. Comparison of the mass scaling function fM for the
same values of ϵ2 as in Fig. 6: ϵ2 ¼ 0 (black), ϵ2 ¼ 10−2 (blue),
ϵ2 ¼ 0.1 (cyan), ϵ2 ¼ 0.5 (light green) and ϵ2 ¼ 0.75 (dark
green), at the same resolutions as there.
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on the horizontal axis. In other words, [4] and [5] do not
fit our family-dependent parameters A and B, but in effect
set them to zero.
Setting that aside, our results show only a tiny effect of ϵ2

on γ, compared to [4,5,12]. In our most nonspherical evolu-
tions, ϵ2 ¼ 0.75, we only see a change of δγ ≃ −0.0016. By
comparison, [4,5] find δγ ¼ −0.007 and −0.005, respec-
tively, at their ϵ2 ¼ 0.5, which appears to be the nearest
comparator to our ϵ2 ¼ 0.75 (see also Table II).
We also see only a tiny deviation of the period of fT from

its theoretical value Δ=ð2γÞ (with Δ ¼ 3.44 and γ ¼ 0.374)
for all values ϵ2 ¼ 0…0.75. This is demonstrated most
clearly in Figs. 12 and 13, which show ψð0; τÞ (technically,
ψ0 extrapolated to x ¼ 0, which is not on the grid). Our best
fits are δ lnΔ ≃ 5 × 10−4, −8 × 10−4 and −64 × 10−4 at
ϵ2 ¼ 0.1, 0.5 and 0.75. These are not even monotonic in ϵ2
and therefore more likely due to numerical errors than a
physical change.

For more indirect evidence of Δ from the periodicity of
fine structure of the scaling laws, see also Fig. 1 for a fit of
fT at ϵ2 ¼ 0 to a sine wave of period 3.44, and Fig. 6 for a
comparison of fT with values from ϵ2 ¼ 0 up to ϵ2 ¼ 0.75.
We conclude that Δ does not change by more than 10−3

up to our ϵ2 ¼ 0.75. By comparison, [4,5] find δΔ ¼
−0.05… − 0.12 at their ϵ2 ¼ 0.5 (see also Table II).
Unfortunately, [4] and [5] do not present plots of fM.

Our own results in Fig. 6 show that fM differs significantly
from ϵ2 ¼ 0 already at ϵ2 ¼ 10−2, and has become very
much larger at ϵ2 ¼ 0.75. Recall however that our M is
only a very rough indication of the final black hole mass,
particularly so in our best resolution for ϵ2 ¼ 0.75 where
we have measured the area of a two-surface with Hawking

FIG. 9. The mass scaling function fM for ϵ2 ¼ 10−2, at the
same four resolutions as in Fig. 8. The differences in fM between
resolutions are very large, compared to fT in Fig. 8.

FIG. 10. The curvature scaling function fT for ϵ2 ¼ 0.75, at
four different resolutions: N̄y ¼ 17, Δx ¼ 0.005 (our best reso-
lution, circles), N̄y ¼ 9, Δx ¼ 0.0025, x0 ¼ 24.5 (dashed lines),
and N̄y ¼ 17, Δx ¼ 0.005, x0 ¼ 30 (dotted), and Ñy ¼ 9,
Δx ¼ 0.005, x0 ¼ 24 (dot-dashed). The red straight lines re-
present a fit by eye to the local minima and maxima of fT . They
have slope δγ ¼ −0.0016.

FIG. 8. The curvature scaling function fT for ϵ2 ¼ 10−2 (blue),
at three different angular resolutions: N̄y ¼ 3 (solid) N̄y ¼ 5

(dashed) and N̄y ¼ 9 (dotted), and lmax ¼ 2, 4, 8, respectively, all
with Δx ¼ 0.025, x0 ¼ 8.275, xmax ¼ 15. The curves are indis-
tinguishable, indicating that the errors from discretizing
in y are small.

FIG. 11. The mass scaling function fM for ϵ2 ¼ 0.75, at the
same four resolutions as in Fig. 10. The red straight lines
have slope δγ ¼ −0.0016, taken from the fit in Fig. 10. fM is
both not periodic enough and too resolution-dependent for a
meaningful fit to its average slope, but δγ ¼ −0.0016 is con-
sistent with the data.
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compactness of only 0.8. We therefore do not believe our
results for fM are accurate, in contrast to our results for fT.

C. Self-similarity and evolution of the nonsphericity

We now test the hypothesis that there is a regime of small
ϵ2 where near-critical time evolutions can be approximated

by the spherical critical solution plus small perturbations,
and attempt to find the limit of its validity.
We begin with the spherical part of the scalar field and

metric. Under the assumption that T is still dominated
by the derivatives of ψ0, we adjust u� to make T as periodic
as possible, and in particular with as many maxima and
minima taking the same values, just as in the spherical case.

TABLE II. Comparison of families of initial data near the black hole threshold, combining data from our evolutions with those of [4,5]
and [12]. Families corresponding to the same initial data have been grouped together. A dash means no data are available. A range given
for max jδψ j means that its value increases noticeably during the phase where the spherical part of the solution is approximated by the
Choptuik solution. By contrast, the ranges given for δγ and δΔ express uncertainty, see the main text for details. Footnotes: (e) relative to
exact values Δ ≃ 0.374 and Δ ≃ 3.44 in spherical symmetry; (n) relative to numerical value obtained in spherical symmetry; (i) initial
and (f) final value in the approximately Choptuik phase; (1) first, (2) second and (3) third method of determining Δ; (3,n1), for example
means, the numerical value of Δ in a nonspherical evolution obtained by the third method, relative to the numerical value determined by
the first method in spherical symmetry.

Paper Family max jδψ j δγ δΔ Bif.

Choptuikþ ϵ2 ¼ 0 0ðiÞ…0.05ðfÞ 0.008ðeÞ 0ð1;eÞ…0.05ð2;eÞ No
Baumgarte ϵ2 ¼ 0 0 0ðeÞ 0.02ð3;eÞ…0.03ð1;eÞ No
Maroudaþ I — −0.004ðeÞ −0.02ð3;eÞ…0.01ð1;eÞ No
This paper ϵ2 ¼ 0 0 0ðeÞ 0ðeÞ No
Baumgarte ϵ2 ¼ 10−2 0.005 0ðeÞ −0.02ð3;n12Þ…0.03ð1;eÞ No
This paper ϵ2 ¼ 10−2 0.008 < 10−3 < 10−3 No
Maroudaþ II 0.02 −0.002ðeÞ…0.002ðnÞ −0.07ð3;eÞ…0.03ð2;eÞ No
Maroudaþ III 0.06 −0.010ðeÞ… − 0.006ðnÞ −0.12ð3;eÞ… − 0.05ð2;eÞ No
This paper ϵ2 ¼ 0.5 0.07 < 10−3 < 10−3 No
Choptuikþ ϵ2 ¼ 0.5 — −0.007ðnÞ…0.001ðeÞ −0.12ð1;n2Þ… − 0.05ð2;eÞ No
Baumgarte ϵ2 ¼ 0.5 0.08 −0.005ðeÞ −0.12ð3;n1Þ… − 0.05ð1;eÞ No
Choptuikþ ϵ2 ¼ 2=3 0.06ðiÞ…0.12ðfÞ −0.036ðnÞ… − 0.028ðeÞ −0.41ð2;n2Þ − 0.31ð1;eÞ No
This paper ϵ2 ¼ 0.75 0.09 −0.0016ðeÞ −0.023 No
Maroudaþ IV 0.1ðiÞ…0.2ðfÞ −0.045ðeÞ… − 0.041ðnÞ −0.49ð1;eÞ… − 0.35ð2;eÞ Yes
Choptuikþ ϵ2 ¼ 0.75 — −0.069ðeÞ… − 0.061ðnÞ −0.62ð1;n2Þ… − 0.41ð2;eÞ Yes
Baumgarte ϵ2 ¼ 0.75 0.11ðiÞ…0.34ðfÞ −0.068ðeÞ −0.72ð3;n1Þ… − 0.57ð1;eÞ Yes
Choptuikþ ϵ2 ¼ 5=6 — −0.102ðnÞ… − 0.094ðeÞ −2.49ð2;n2Þ… − 1.44ð1;eÞ Yes

FIG. 12. The scalar field at the center, ψ0ð0; τÞ, at our best
numerical resolution and best subcritical value of p, for each of
ϵ2 ¼ 0 (black), 10−4 (purple), 10−2 (blue), 0.1 (cyan), 0.5 (light-
green) and 0.75 (dark-green). The horizontal axis shows τ and the
vertical axis ψ at the center.

FIG. 13. The same plot as in Fig. 12, but a linear transformation
applied to τ applied to ϵ2 ¼ 0.1, 0.5 and 0.75 (but not the smaller
values), in order to align the first and third full maxima. For this, τ
is stretched by factors of 0.9995, 1.0008 and 1.0068, respectively,
as well as shifted.
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We then find that ψ0ðx; τÞ, and Cðx; τÞ, with the same fitted
value of u�, are essentially identical from ϵ2 ¼ 0 through to
ϵ2 ¼ 0.75. See again the limit on a possible change of Δ of
the critical solution documented above.
We next address the hypothesis that the deviations from

spherical symmetry are small and essentially linear.
To find the linear perturbations of a given spherical

DSS critical solution ϕ�, one can separate the linearized
equations by angular dependence l, and for each l and
dimensionless field ϕ make a mode ansatz

δϕlðξ; τÞ ¼ eλτδϕ̃lλðξ; τÞ; ð24Þ

with δϕ̃lλ defined to be periodic in τ with period Δ, and
regular at the center and at the past light cone. Here ϕ
stands for any scale-invariant quantity, such as ψ or T .
From this ansatz, the complex mode function δϕ̃lλ and
corresponding complex Lyapunov exponent

λ ≔ κ þ iω ð25Þ

are then determined as the eigenfunctions and eigen-
values of a (singular) linear boundary value problem [3].
As the background solution and its perturbations are real
(the complex mode ansatz is only for convenience), λ and
the corresponding δϕ̃lλ are either real or form complex
conjugate pairs.
From these complex modes, one can construct the

corresponding real perturbations as

δϕlðξ; τÞ ¼ Re
�
AeiαeðκþiωÞτδϕ̃lλðξ; τÞ

�
¼ Aeκτ

�
cosðωτ þ αÞReδϕ̃lλðξ; τÞ

− sinðωτ þ αÞImδϕ̃lλðξ; τÞ
�
; ð26Þ

for arbitrary positive real amplitude A and phase
0 ≤ α < 2π. (Note this is slightly incorrect in Eq. (25)
of Ref. [5]). Unless ω is a rational multiple of 2π=Δ, the
product e−κτδϕlðξ; τÞ, while not growing or decaying, is
nevertheless not periodic in τ but only quasiperiodic.
The perturbation modes of the spherical scalar field

critical solution were found numerically in [3], using
different similarity coordinates from the ones defined here.
We can therefore compare the λwith [3], but not directly the
δϕ̃lλðτ; xÞ. As expected for a critical solution, [3] finds a
single growing l ¼ 0 mode, with λ and the corresponding
mode function real. All other spherical modes, and all
nonspherical modes, are complex and decay, that is, κ < 0.
The least damped (most slowly decaying) nonspherical
mode was found to have l ¼ 2 angular dependence, with
κ ≃ −0.07=Δ and ω=ð2πÞ ≃ 0.3=Δ.
We expect that initial data which are almost spherical and

fine-tuned to the threshold of collapse, but otherwise
generic, evolve into something that can be approximated
by the spherical critical solution plus a linear perturbation,

and that the perturbation can be represented as sum of
modes each with its own complex amplitude Aeiα deter-
mined by the initial data.
During the intermediate range of τ where the solution is

approximated by the critical solution plus small perturba-
tions, we expect the least damped l ¼ 2 perturbation to
dominate the l ¼ 2 component of the solution. The single-
mode formula (26) should then approximately describe the
l ¼ 2 component of near-critical evolutions in this regime.
Moreover, its amplitude should be proportional to ϵ2, as the
l ¼ 2 component of the initial data is proportional to ϵ2 to
leading order.
In our initial data, the nonspherical part of ψ is, to

leading order in ϵ2, purely l ¼ 2, and so, going to quadratic
order, we expect the initial data for the l ¼ 4 spherical
harmonic component ψ4 to be proportional to ϵ22. During
the time evolution ψ4 is sourced by terms that are linear in
f4 or quadratic in f2 and ψ2. f4 is initially zero and then
sourced by terms linear in ψ4 and quadratic in f2 and ψ2.
Perturbatively in ϵ2, we therefore expect all l ¼ 2 compo-
nents to be proportional to ϵ2eκτ, all l ¼ 4 components to be
proportional to ϵ22e

2κτ, and so on for higher l.
To demonstrate the expected scaling with both τ and ϵ2,

in Fig. 14 we plot the maximum and minimum of
ϵ−12 e−κτψ2ðx; τÞ over x in the range 0 ≤ x ≤ 1 against τ,
for different ϵ2, with our best subcritical p at our best
numerical resolution. The same is done in Fig. 15 for f2.
We find that ϵ−12 e−κτψ2 is essentially the same at ϵ2 ¼ 10−4,
10−2 and 0.1, and so is ϵ−12 e−κτf2. At ϵ2 ¼ 0.5 and 0.75,
they are a bit larger (by a factor of ∼1.5 at ϵ2 ¼ 0.75), but
still agree qualitatively feature by feature. In other words,
ψ2 and f2 are almost linear up to ϵ2 ¼ 0.1, and still
approximately linear up to 0.75.
In these plots, we have fitted κ ¼ −0.03 by eye. Compare

this with the value of κ ≃ −0.07=Δ ≃ −0.02 determined
in [3] from a numerical construction of the eigenvalues of
the operator evolving a linear perturbation from τ to τ þ Δ.
Neither is very accurate, but we believe that our fitted value

FIG. 14. minx and maxx of ϵ−12 e−κτψ2ðx; τÞ, plotted against τ,
for ϵ2 ¼ 10−4 (purple), ϵ2 ¼ 10−2 (blue), ϵ2 ¼ 0.1 (cyan),
ϵ2 ¼ 0.5 (light green) and ϵ2 ¼ 0.75 (dark green).
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is compatible with the theoretically expected one, but not
with zero. In other words, we find that ψ2 and f2 decay as
expected from the linear perturbation mode analysis, up
to ϵ2 ¼ 0.75.
Having established these scalings, we give the full

surface plots for ψ2ðx; τÞ and also f2ðx; τÞ, for ϵ2 ¼ 0.75
in Figs. 16 and 17.

The l ¼ 4 modes of ψ and f in the best subcritical
evolutions also seem to be quasiperiodic in τ and roughly
independent of ϵ2 when rescaled with ϵ−22 e−2κτ. This is
demonstrated in Figs. 18–21.

FIG. 17. Surface plot of the scaled metric component
ϵ−12 e−κτf2ðx; τÞ, otherwise as in Fig. 16.

FIG. 18. minx and maxx of ϵ−22 e−2κτψ4ðx; τÞ, plotted against τ,
otherwise as in Fig. 14.

FIG. 15. minx and maxx of ϵ−12 e−κτf2ðx; τÞ, plotted against τ,
otherwise as in Fig. 14.

FIG. 19. minx and maxx of ϵ−22 e−2κτf4ðx; τÞ, plotted against τ,
otherwise as in Fig. 14. Where the minimum is exactly zero,
f4 ≥ 0, with equality only at the origin.

FIG. 16. Surface plot of the scaled nonspherical scalar field
component ϵ−12 e−κτψ2ðx; τÞ, in the sub15 evolution of the ϵ2 ¼
0.75 family. Otherwise as described in Fig. 3. Note that the dark
green curves in Fig. 14 are the projection of this surface plot in the
ξ direction.

FIG. 20. Surface plot of the scaled nonspherical scalar field
component ϵ−22 e−2κτψ4ðx; τÞ against the similarity coordinates ξ
and τ, in the sub15 evolution of the ϵ2 ¼ 0.75 family.
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The mode frequency ω could in principle be obtained by
a (discrete) Fourier transform of our data in τ. We have not
attempted this as the region where the background spherical
solution is clearly DSS and the different perturbation
amplitudes agree (after rescaling) is only 1≲ τ ≲ 9, giving
us only about two periods of the background solution. The
discrete set of angular frequencies present in the Fourier
transform with respect to τ of (26) is

ωN ≔ ωþ N
2π

Δ
; N ∈Z; ð27Þ

where the citedω is the value forN ¼ 0, that is, the smallest
positive frequency in the spectrum. Because of the sym-
metry ψðx; τ þ Δ=2Þ ¼ −ψðx; τÞ, N takes odd values for
the scalar field and even values for the metric. The spectrum
obviously depends on the value of the parameter α in (26),
but for a random α, [3] found that the peak of the spectrum
was at N ¼ 5. The corresponding period in τ is

PN ≔
2π

jωN j
¼ Δ

jN þ ωΔ
2π j

≃
3.44

jN þ 0.3j : ð28Þ

If we count the peaks in Fig. 14, we find about 12 in the
range 0 ≤ τ ≤ 12, giving us a “pseudoperiod” of about 1,
similar to P3 ≃ 1.0. If we count the peaks in Fig. 15, with
find about 8 in the same range, giving us a pseudoperiod of
about 2=3, similar to P5 ≃ 0.65.
The numerical measurement of both κ and ω would be

improved in proportion to increasing the range of τ over
which our fine-tuned numerical solutions approximate the
critical solution. Going any further in this would require
quadruple precision, not only so that p can be represented
to more significant figures, but more importantly so that
round-off error during the numerical solution is suppressed
better.
We note in passing that ψ2=x2, f2=x2 and f4=x4,

which should be regular at x ¼ 0 in the continuum, are
also numerically regular at x ¼ 0, but ψ4=x4 is not. (It is

generally hard to enforce fl ∼ rl in any freely evolved
variable, without explicitly taking out the factor rl.)

D. Comparison with the evolutions of Choptuik et al.,
Baumgarte, and Marouda et al.

In order to compare the nonsphericity of our evolutions
with those of [5] (and by implication also of [4] for the
same initial data), we note that Baumgarte has measured the
difference in ψ on outgoing null geodesics at y ¼ �1 and
y ¼ 0 (poles and equator). Fig. 11 of [5] shows this δψ for
ϵ2 ¼ 10−2 during the approximately self-similar phase,
plotted against the similarity variables τ ¼ − lnðu� − uÞ
and ξλ ≔ λ=ðu� − uÞ, where λ is the affine parameter,
normalized to λ ¼ 0 and dλ=dR ¼ 1 at the origin, and
u� is fitted as described above. This measure is gauge-
invariant.
We note that for infinitesimal deviations from spherical

symmmetry, and assuming the deviation only has an l ¼ 2
component,

δψðu; xÞ ≔ ψðu; x;�1Þ − ψðu; x; 0Þ ð29Þ

¼ ½P2ð�1Þ − P2ð0Þ�ψ2ðu; xÞ ð30Þ

¼ 3

2
ψ2ðu; xÞ; ð31Þ

where ψ2 denotes the l ¼ 2 component of ψ . λ along
outgoing null geodesics is given by

λðu; x; yÞ ¼
Z

x

0

Gðu; x0; yÞdx0 ð32Þ

The equivalent of Fig. 11 of [5] created from our data for
ϵ2 ¼ 10−2 is Fig. 22. Note that in this plot we have not
applied the factor of e−κτ. (This makes little difference, as κ
is so small.) At small ϵ2 our solutions are a little more
nonspherical than those of [5], but recall that we set initial
data on different slices.
Figure 23 shows δψ , approximated as ð3=2Þψ2 for our

ϵ2 ¼ 0.75. For comparison, Figs. 24 and 25 show plots of
δψ created from the simulations of [5] for ϵ2 ¼ 0.5 and
0.75, respectively. This suggests that, during the approx-
imately self-similar phase, our ϵ2 ¼ 0.75 family is about as
nonspherical as ϵ2 ¼ 0.5 of [5]. In both families δψ does
not grow noticeably. By contrast, Fig. 25 shows clear
growth of δψ with τ for ϵ2 ¼ 0.75 and an end to the
perturbative regime around τ ¼ 6.
Table II compares the black hole threshold in selected

families taken from [4,5,12] and the present paper. Families
that should be directly comparable are grouped together.
For comparison have translated δψ=ϵ2 and ψ2 into δψ (by
multiplying by ϵ2 and 3=2, respectively). The values for
max jδψ j from the null code and that of [5] are read off from
plots shown in the present paper. The values for ϵ2 ¼ 0 and

FIG. 21. Surface plot of the scaled metric component
ϵ−22 e−2κτf4ðx; τÞ, otherwise as in Fig. 20.
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ϵ2 ¼ 2=3 of [4] are read off from Figs. 6 and 7 of that paper,
respectively. In the spherically symmetric case we include
max jδψ j as an estimate of the numerical error generated by
evolving a spherically symmetric solution in cylindrical
coordinates. Finally, the values for families II, III and IVof
[12] are read off from plots communicated by the authors.
A range given for max jδψ jmeans that its value increases

noticeably from the beginning to the end of the phase where
the spherical part of the solution is approximated by the
Choptuik solution. A single value implies that the ampli-
tude does not grow noticeably. (This is estimated by eye, as
the perturbations are only quasiperiodic.)
By contrast, the ranges given for δγ and δΔ express un-

certainty: in the four papers, up to three different methods
have been used to estimate Δ (but only one for γ).
Independently, one can use either the numerical values
of γ and Δ obtained in spherical symmetry in each paper, or
their known exact values as reference values. We cite here
the largest and smallest of these (up to six) possible
differences, in order to indicate a plausible interval for
δγ and δΔ for each family. We do not include the fitting
errors given in [4,12], as these appear to be smaller than the
systematic errors suggested by the intervals just mentioned.
We have attempted to order the families across papers,

taking as our first ordering criterion the bifurcation (yes or
no) of the critical solution, as our second criterion max jδψ j
(where we have data), and otherwise δγ and δΔ.
The fact that we are able to order the families of initial

data consistently (within the estimated plausible ranges) is
one of the main physics results of this paper. It supports the
hypothesis that all near-critical evolutions go through a
phase where the solution can be approximated by the
Choptuik solution plus the growing spherical mode and the
least damped l ¼ 2 mode. Large nonsphericity seems to

FIG. 23. As in Fig. 22, but for ϵ2 ¼ 0.75.

FIG. 24. Contour plot of δψ=ϵ2 against τ and xλ from the best
subcritical ϵ2 ¼ 0.5 evolution of Baumgarte [5]. This is the
ϵ2 ¼ 0.5 equivalent of Fig. 11 of [5]. ðτ; xλÞ are called ðT0; λÞ
in this plot. We have chosen a contour plot rather than a surface
plot as this is clearer, given the coarse resolution of the
available data.

FIG. 25. As in Fig. 24, but now for ϵ2 ¼ 0.75. Note the sharp
timelike feature in the range 6 ≤ T0 ≤ 8 that signals the end of
approximate DSS (and, we expect, the formation of two centers
of collapse).

FIG. 22. Surface plot of ð3=2Þ=ϵ2ψ2 ≃ δψ=ϵ2 for ϵ2 ¼ 10−2

against similarity coordinates τ and ξλ. This should be compared
to Fig. 11 of [5]. The color map has been chosen purely for visual
agreement with that figure. The range of ξλ is the same as there,
but our range of τ is larger, [0, 14] rather than [0, 8], as we can
fine-tune more closely to the black hole threshold.
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change the values of Δ and γ, as well as the decay rate κ
of the l ¼ 2 mode, such that for nonsphericities of
max jδψ j≳ 0.1 it actually grows. (Compare this with
max jψ�j ≃ 0.6 for the critical solution.)
The exception from this consistent picture are the values

of δγ and δΔ obtained in this paper. Up to our ϵ2 ¼ 0.5
family, these are zero within our estimated numerical
errors. For our ϵ2 ¼ 0.75 family, we have a signifant but
small change of δΔ ∼ 10−3 (but not of δγ), but this is still an
order of magnitude smaller than δΔ observed in the other
three papers at what we take to be comparable nonspher-
icity. For lack of a better explanation we suspect that this is
due to some systematic numerical error, more likely in the
null code than the other three codes.

E. Numerical problems at larger nonsphericity

We have already mentioned that to complete the bisec-
tion in p for ϵ2 ¼ 0.75 at our highest resolution N̄y ¼ 17,
Δx ¼ 0.025, we had to lower our heuristic diagnostic of
collapse to C ≥ 0.8.
We have tried to bisect at ϵ2 ¼ 0.79, with N̄y ¼ 17,

Δx ¼ 0.05, and again using C ≥ 0.8 as the collapse diag-
nostic, starting again with the initial bracket 0.2 <
p� < 0.3. Already at the third bisection step, the code
stops because B becomes very large at the boundary, and so
the time step becomes very small. On closer inspection, B
becomes very irregular at late times at the outermost few
points, and very much larger at the outermost grid point
than anywhere else. This cannot be a boundary instability
in the usual sense because the outer boundary is treated
exactly like an ordinary grid point. Hence the instability
must be one that grows much faster at larger x, and so most
rapidly at the outer boundary.
We believe what is at fault here is a combination of two

problems we have already mentioned. One is that in our
gauge, we evaluate miny ΞRðu; x; yÞ, and this means that the
B;x becomes discontinuous. This lack of smoothness then
propagates to the other variables. A separate problem is that
R;x becomes small as outgoing light cones are trying to
recollapse, while lsB gauge (or any gauge which solves the
Raychaudhuri equation along null generators for G rather
than for R) requires R;x > 0. We believe this would still give
rise to very large values of B even if we found a better gauge
within the lsB family that avoided the unsmoothness.

V. CONCLUSIONS

This work was born out of an attempt to generalize the
method of Garfinkle [13] for simulating critical collapse
without the need for adaptive mesh refinement beyond
spherical symmetry. We have demonstrated that this is
possible, in the example of axisymmetric scalar field critical
collapse.
We have attempted to duplicate previous physics results

as well. Recall that the collapse simulations of Baumgarte

(in spherical polar coordinates) [5] seemed to have recon-
ciled the linear perturbation results of Martín-García and
Gundlach [3] with the collapse simulations of Choptuik
et al. [4] (in cylindrical coordinates): small deviations from
spherical symmetry decay when one fine-tunes to the
threshold of collapse, while large perturbations grow and
lead to the formation of two centers of collapse. This
conclusion is also supported by the more recent evolutions
of [12] and (less quantitatively) of [11].
Specifically, [5] and [4] find that nonsphericities decay

for values of their nonsphericity parameter ϵ2 ≤ 0.5, and [4]
still find this at ϵ2 ¼ 2=3. Both [5] and [4] find a bifurcation
for ϵ2 ¼ 0.75, and [4] also at ϵ2 ¼ 5=6. (We note that [12]
also observe bifurcation in their most nonspherical data for
the complex scalar field). [4,5] and [12] also found that Δ
and γ (measured before any bifurcation occurs) decrease
with increasing ϵ2, see Table I for representative numerical
values.
By contrast, we have found that even in the evolution of

our ϵ2 ¼ 0.75 family of data perturbation theory is a good
model for the nonsphericity. In particular, the echoing
period and critical exponent remain at Δ ≃ 3.44 and
γ ≃ 0.374, their values in spherical symmetry, and the
l ¼ 2 nonspherical components of all fields decay at
roughly the rate predicted for linear perturbations in [3].
We also find that the amplitude of the l ¼ 2 field compo-
nents is almost linear in ϵ2 for values between 10−4 and
0.75, enhanced only by a factor ∼1.5 at ϵ2 ¼ 0.75.
Similarly, the l ¼ 4 nonsphericity scales with ðϵ2Þ2, as one
would expect from perturbation theory to quadratic order,
given that l ¼ 4 is absent in the initial data to linear order
in ϵ2, and that [3] predicts l ¼ 4 to decay much more
rapidly than l ¼ 2.
However, we cannot evolve the same family of initial

data as [5] and [4], because we set data on an outgoing null
cone. We have compared a gauge-invariant measure of the
nonsphericity of the scalar field, in the phase where a near-
critical evolution is approximately self-similar, with the
same measure for the evolutions of [5], and find that this
comparable between our ϵ2 ¼ 0.5 and ϵ2 ¼ 0.75 of [5] (and
by implication of [4]). If we compare our ϵ2 ¼ 0.5 with
ϵ2 ¼ 0.75 of [4,5], a mild tension remains, as these authors
claim that Δ ≃ 3.44 is reduced by ∼0.08 and γ ≃ 0.374 by
∼0.007, whereas we see much smaller reductions. This
could potentially still be explained by numerical error.
In order to accurately measure the critical exponent γ, we

have fitted not only the power laws with exponent γ, but
also the small periodic fine-structure superimposed on
them. This has only been done in spherical symmetry
before. Our fine-structure of the curvature scaling laws (on
the subcritical side) agrees well with published results in
spherical symmetry, but our fine structure of the mass
scaling law does not. The reason may be that our collapse
criterion is not the first appearance of a trapped surface
(in a given time slicing) but the first appearance of a
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coordinate 2-surface Su;x with Hawking compactness
above a threshold value, and we evaluate the Hawking
mass of that surface.
We believe this is the first simulation of gravitational

collapse beyond spherical symmetry in null coordinates.
(The paper [22] investigates axisymmetric supernova core
collapse, but not black hole formation.) We have applied
our methods to the challenging problem of axisymmetric
scalar field critical collapse, and at moderate nonsphericity
have been able to fine-tune our initial data to the black-hole
threshold to machine precision, without the need for mesh
refinement.
We have not yet been able to simulate critical collapse for

large enough nonsphericity to fully duplicate the results
of [4,5,12]: at large nonsphericity, our evolutions stop
before we can classify them as either forming a black hole
or dispersing. The proximate cause for this is that the
divergence of the null generators of our coordinate light
cones is trying to become negative at some points on our
last null cone, but the generalized Bondi coordinates we use
break down if this happens. Therefore, the next step will be
to change to a generalized affine radial coordinate. This will
then allow us to investigate if our null cones themselves
remain regular in critical collapse, or form caustics.
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APPENDIX A: FAMILY-DEPENDENT
PARAMETERS IN THE FINE STRUCTURE

OF THE SCALING LAWS

In this Appendix, we show that the parameters A and B
in Eqs. (15) and (16) are family-dependent, and indepen-
dent of each other.
Focus first on the late-time evolution of the exactly

critical member of a given 1-parameter family of initial
data. If we fix a (family-independent) small length scale L,
then we can, for example, measure the phase of the scalar
field ϕ at the center when the Ricci scalar at the center takes
exactly the value L−2. This is equivalent to our A.
On the other hand, to derive the scaling laws we use the

fact that in near-critical evolutions the amplitude of the
growing perturbation is, to leading order, proportional to
ðp − p�Þeλ0τ. The constant of proportionality must again be
family-dependent, already for the trivial reason that p can
have any dimension. Its logarithm is our B.

Note that for perfectly critical initial data the growing
perturbation of the critical solution is by construction
absent, while the scaling laws rely on the amplitude of
the growing mode. Hence the family-dependent constants
A and B are independent of each other.

APPENDIX B: CONVERGENCE TESTS
IN THE STRONG SUBCRITICAL REGIME

For convergence testing we choose our ϵ2 ¼ 0.75 initial
data with the two amplitudes that we have also used as an
initial bracket of the black hole threshold, namely p ¼ 0.2
(subcritical) and p ¼ 0.3 (supercritical). We use the grid
parameters xmax ¼ 50 and x0 ¼ 33 throughout, which we
also used in our near-critical evolutions.
For p ¼ 0.2 gravity is strong but not close to collapse,

with a maximum Hawking compactness of C̄ ≃ 0.08 in the
initial data, and reaching C̄ ≃ 0.2 during the evolution

FIG. 26. Upper plot: L2 norm of the discretization error in x of
the spherical scalar field component ψ0ðu; xÞ, shown against u,
for Δx ¼ f0.1; 0.05; 0.25g (purple, green, blue), scaled to the
baseline resolution Δx ¼ 0.05 by assuming that the error scales
as Δx2. The angular resolution is fixed at N̄y ¼ 17, lmax ¼ 16.
The lower group of three curves is for the p ¼ 0.2 evolutions,
and the upper group for the p ¼ 0.3 evolutions. Lower plot: log10
of the L2 norm of the discretization error in y for N̄y ¼
f9; 13; 17; 25; 33; 49g (purple, green, blue, orange, yellow, red)
scaled to the baseline resolution N̄y ¼ 17, lmax ¼ 16 assuming that
the error scales as l−2max. The radial resolution is fixed atΔx ¼ 0.05.
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(compared to C̄ ≃ 0.6 in the critical solution and C̄ ¼ 1 on a
black-hole horizon). We run to u ¼ 6, when the solution
has largely dispersed, with C̄ < 0.01, but the numerical
domain has contracted from Rmax ¼ 25 at the initial time
only to Rmax ≃ 14, thus avoiding very small time steps.
The evolutions with p ¼ 0.3 start from C̄ ≃ 0.18 and

reach our heuristic collapse criterion C̄ ¼ 0.8 at u ≃ 3.9, at
which point we stop the evolution.
Both p ¼ 0.2 and p ¼ 0.3 are far enough from

p� ≃ 0.25 that it remains meaningful to compare numerical
solutions with different resolutions at the same coordinate
time u and amplitude p, as jp� − pj ≃ 0.05 is then much
larger than the variation of p� with different numerical
parameters. By contrast, in the critical regime we would
need to compare different resolutions at the same (small)
p=p� − 1, with p� resolution-dependent, and plot them
against the similarity-adapted coordinates ðτ; ξÞ, which also
depend sensitively on numerical parameters through the
fitted value of u�.
We output all fields as l-components (rather than against

y) to make comparisons at different N̄y and lmax simpler.
We have tested for self-convergence to second order in Δx
and in lmax, see Paper I for details of how the errors
presented here are defined.

We have evolved at two intersecting families of reso-
lutions: at Δx ¼ f0.1; 0.05; 0.025; 0.0125g with fixed
angular resolution N̄y ¼ 17, lmax ¼ 16; and at N̄y ¼
f9; 13; 17; 25; 33; 49; 65g, lmax ¼ N̄y − 1, with fixed radial
resolution Δx ¼ 0.05. Their intersection is our baseline
solution, chosen because the discretization errors in x and y
are roughly similar. Note that our adaptive timestep Δu is
approximately proportional to Δx and approximately in-
dependent of angular resolution.
We find a large and nonconverging error at small u and x,

in all ψ l with l > 2. We believe this is due to the fact that
our initial data (11)–(12) is not actually single-valued at the
origin. The nonconvergent error disappears quickly, and we
believe this is because the boundary conditions at the center
force the solution to become single-valued.
At all other ðu; xÞ we find the expected second-order

convergence in Δx. For a spectral method acting on a
smooth solution, we would expect approximately expo-
nential convergence, but in fact the discretization error in y
decreases with resolution only as l−2max. Second-order con-
vergence in the L2 norm with Δx and 1=lmax is demon-
strated for ψ0 in Fig. 26, for ψ4 in Fig. 27, and for C̄ in
Fig. 28. The convergence is actually pointwise. The global
maximal errors maxu jjExjjL2 and maxu jjEyjjL2 for the
dispersing are shown in Table IV. Given second-order
convergence, we can accurately estimate the error at all

FIG. 27. As in Fig. 26, but now for ψ4. The large spike at u ¼ 0
(not fully shown, and not convergent) is a signal of the irregularity
of our initial conditions. All ψ l with l > 2 have this problem. FIG. 28. As in Fig. 26, but now for C̄.
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higher resolutions by scaling these numbers by factors
ðΔx=0.05Þ2 and ðlmax=16Þ−2, respectively.
The computation of the diagnostic C̄ in the collapsing

solution seems to be particularly challenging. Here we see
clear second-order convergence, even at early times, only
for N̄y ≥ 25, see the lower plot in Fig. 28.

APPENDIX C: CONVERGENCE TESTS
WITH INITIAL DATA THAT ARE REGULAR

AT THE ORIGIN

To check the effect of our nonanalytic original choice of
initial data (where ψ is not single-valued at the origin) on
convergence, we have created a second family of initial
data that are analytic.
We computed the exact solution ϕð2kÞðt; r; yÞ of the flat

spacetime scalar wave equation with Cauchy data

ϕð2kÞð0; r; yÞ ¼ e−r
2ð−ryÞ2k; ðC1Þ

ϕð2kÞ;tð0; r; yÞ ¼ 0; ðC2Þ

for k ¼ 0; 1;…5. (Recall that y ≔ − cos θ. We have set the
width of the Gaussian to d ¼ 1 to fix an overall scale).
These can be found as linear combinations of the gener-
alized d’Alembert solutions ϕlðt; rÞPlðyÞ constructed in
Paper I, for even l up to 2k, each with an ansatz for the free
function χlðrÞ of that is expð−r2Þ times an odd polynomial
in r of order lþ 1.
We then use the ϕð2kÞðt; r; yÞ as building blocks to

construct the solution with initial data

ϕ̄ð0; r; yÞ ¼ pe−r
2
X5
k¼0

ðϵ2r2y2Þk
k!

ðC3Þ

¼ pe−r
2ð1−ϵ2y2Þ þOðϵ6r12y12Þ; ðC4Þ

ϕ;tð0; r; yÞ ¼ 0: ðC5Þ

We then read off the desired null data at u ¼ 0 from the full
solution as

ψð0; r; yÞ ¼ ϕ̄ðr; r; yÞ: ðC6Þ
We were able to compute up to k ¼ 6 in Mathematica,

and the error in the Taylor series is then below machine
precision. However, in contrast to the k ≤ 5 terms, the
k ¼ 6 term would need to be approximated near r ¼ 0 to
avoid large roundoff error when evaluating the exact

TABLE III. Successful initial bracketings of the collapse
threshold with the analytic initial data (C6). In each case,
p ¼ 0.2 disperses and p ¼ 0.3 collapses. xmax needs to be this
large only for the collapsing solutions. xmax is twice as large as for
the nonanalytic data (10) for ϵ2 ¼ 0.5, and three times as large
for ϵ2 ¼ 0.75. x0 has not yet been fine-tuned for bisection to the
black hole threshold. We have used C̄ ≥ 0.8 as the collapse
threshold and C̄ ≤ 0.05 as the dispersion threshold.

ϵ2 Δx N̄y lmax x0 xmax

0.5 0.025 9=17 8=16 29 30
0.6 0.025 9=17 8=16 39 40
0.7 0.05 17 16 99 100
0.75 0.05 17 16 149 150

TABLE IV. Table of the maximum in u of the L2 norm in x and
y of the discretization errors in x and y, in the three variables ψ0,
ψ0 and C̄, in the p ¼ 0.2 (dispersing) solution, at the baseline
resolution Δx ¼ 0.0.5, N̄y ¼ 17, lmax ¼ 16. Top: nonanalytic
data. Bottom: analytic data.

Nonanalytic ψ0 ψ4 C̄

maxu jjExjjL2 1.3 × 10−3 8 × 10−5 3.5 × 10−3

maxu jjEyjjL2 1.7 × 10−4 3 × 10−5 3 × 10−4

Analytic ψ0 ψ4 C̄

maxujjExjjL2 2 × 10−3 5 × 10−4 7 × 10−3

maxujjEyjjL2 1.2 × 10−2 4 × 10−3 2 × 10−2

FIG. 29. Error in ψ0 as in Fig. 26, but now for the analytic
initial data (C6) with ϵ2 ¼ 0.75, and with errors in y now scaled
by exp½−κðlmax − 16Þ� with κ ≃ 0.280 for lmax ¼ 8, 12, 16 and
κ ≃ 0.085 for lmax ¼ 24, 32, 48.
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expression numerically in the code, so we settle for the
above truncation at k ¼ 5.
Table III shows successful initial brackets of the black

hole threshold with the analytic data. We have not bisected
the analytic data to the black hole threshold.
For convergence testing, we have evolved ϵ2 ¼ 0.75,

p ¼ 0.2 and p ¼ 0.3, at the same two intersecting families
of resolution as for our nonanalytic data. We again see
second-order convergence in Δx. Power-law convergence
in lmax is no longer a good fit. A better fit is exponential
convergence in lmax with a break in the exponent, namely
exp½−κðlmax − 16Þ� with κ ≃ 0.280 for lmax ¼ 8, 12, 16 and
κ ≃ 0.085 for lmax ¼ 24, 32, 48.
Numerical values for the errors at the baseline resolution

are shown in Table IV, and L2 norms over x of the errors in
ψ0, ψ4 and C̄ are shown in Figs. 29, 30, and 31. For
completeness, we show the unscaled errors in y, for the
variable C̄, and for both the analytic and nonanalytic
ϵ2 ¼ 0.75, p ¼ 0.2 data in Fig. 32.

FIG. 30. As in Fig. 29, but now for ψ4.

FIG. 31. As in Fig. 29, but now for C̄.

FIG. 32. Direct comparison of the unscaled discretization
errors in y for the nonanalytic (dashed lines) and analytic
(solid lines) ϵ2 ¼ 0.75, p ¼ 0.2 data. As before N̄y ¼
f9; 13; 17; 25; 33; 49g are shown in purple, green, blue, orange,
yellow, red, and we estimate the error by subtracting the N̄y ¼ 65

evolutions.
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