
Simulations of gravitational collapse in null coordinates.
I. Formulation and weak-field tests in generalized Bondi gauges

Carsten Gundlach
Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom

David Hilditch
CENTRA, Departamento de Física, Instituto Superior Técnico IST, Universidade de Lisboa UL,
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We present a code for numerical simulations of the collapse of regular initial data to a black hole in null
coordinates. We restrict to twist-free axisymmetry with scalar field matter. Our coordinates are ðu; x; θ;φÞ,
where the retarded time u labels outgoing null cones emerging from a regular central worldline, the angles
ðθ;φÞ label the null generators of each null cone, and the radial coordinate x labels points along these
generators. We focus on a class of generalized Bondi radial coordinates x with the twin properties that
x ¼ 0 is the central worldline and that the numerical domain (u ≥ 0; 0 ≤ x ≤ xmax) is a subset of the domain
of dependence of the initial data on (u ¼ 0; 0 ≤ x ≤ xmax). In critical collapse, an appropriate choice of
these coordinates can be made to zoom in on the accumulation point of scale echoes of the critical solution,
without the need for explicit mesh refinement. We introduce a novel numerical scheme that in effect
reduces the angular resolution at small radius, such that the time stepΔu for an explicit numerical scheme is
limited by the radial resolution Δx, rather than ΔxðΔθÞ2. We present convergence tests in the weak-field
regime, where we have exact solutions to the linearized scalar and gravitational-wave equations.
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I. INTRODUCTION

A. Motivation

Formulations of the Einstein equations on null surfaces
are attractive in both mathematical and numerical relativity
for several reasons.
As is generally done in the literature, we will here

consider null coordinates where the surfaces of constant
coordinate u are null hypersurfaces, and the lines of
constant ðu; θ;φÞ are their null generators [1,2]. Such
coordinates are sometimes called “Bondi-like,” not to be
confused with Bondi coordinates, where in addition the
radial coordinate x is chosen to be the area radius.
As we will review, the Einstein equations in Bondi-like

coordinates can be formulated in a way that makes them
maximally constrained, in the following sense. In affine
gauge or Bondi gauge, one solves two evolution equations,
representing two polarizations of gravitational wave (or one
in twist-free axisymmetry). On each null slice of constant u,
the metric is completely determined by solving partial
differential equations (PDEs) with derivatives only in the
slice. Moreover these can be solved by explicit integration
along the null cone generators. In double-null coordinates

there is one additional evolution equation for the area
radius R.
This is useful in numerical relativity in two ways. First,

the evolution cannot drift away from a consistent state on
each time slice through numerical error, in the sense that the
hypersurface equations are solved on each time slice, not
just the initial one, and so only free data are evolved.
Secondly, the equations can easily be discretized in a

way that is compatible with causality. This makes it
straightforward to evolve on the domain of dependence
of the initial data, or to impose boundary conditions on
timelike inner and outer boundaries, or to extend the
numerical domain to future null infinity.
A third reason for using Bondi-like coordinates in

numerical relativity is that any results obtained in them
have immediate geometric significance, in contrast to, say,
harmonic coordinates or “puncture” coordinates. For all
these reasons, null coordinates are often the method of
choice in spherical symmetry (see Sec. I B for references).
Beyond spherical symmetry, there is an obvious problem

with null coordinates: null surfaces generically form
caustics. However, we expect the expansion of outgoing
null cones to prevent caustics in spacetimes that are
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sufficiently close to being either flat or spherically sym-
metric, with the origin of the null cones near the center of
approximate spherical symmetry. In a companion paper [3]
(from now, Paper II) we will consider axisymmetric space-
times with an additional reflection symmetry through the
equatorial plane, so that there is a preferred worldline fixed
by this symmetry.
This motivates us to investigate when null coordinates

can be used to simulate nonspherical gravitational collapse,
and how best to do this. We are not, in fact, aware of any
use of null coordinates in the numerical evolution of regular
initial data to a black hole (gravitational collapse) beyond
spherical symmetry. Our ultimate motivation for this is
vacuum critical collapse, see [4] for a general review of
critical collapse and [5] for what we consider to be the state
of the art, at the time of writing, in vacuum critical collapse.
The present paper is concerned with general consider-

ations, the derivation of a number of possible radial gauges
adapted to critical collapse, spacetime diagnostics, the
presentation of our numerical methods, and weak-field
convergence tests. In Paper II we apply these methods to
axisymmetric scalar field critical collapse. In another
companion paper [6], we consider issues of hyperbolicity
and well-posedness.

B. Previous numerical work in null coordinates

A spacetime coordinate u is called null if the surfaces of
constant u are null or, in terms of the spacetime metric,
guu ¼ 0. We speak of null coordinates when one of the
coordinates is null, and of double null coordinates when
two of them (usually called u and v) are null. In our
terminology, u will always be an outgoing null coordinate,
also called retarded time. For general review papers on
the use of such (single) null coordinates in numerical
relativity see [7,8].
One natural choice of null surfaces is the set of null cones

emerging from a regular central worldline. The cones are
labeled by the retarded time u and their null generators by
ðu; θ;φÞ. The fourth coordinate, which we generically call
x, then labels points on each generator.
This formulation has been implemented in twist-free

axisymmetry, in Bondi gauge, where x is the area radius R,
compactified at future null infinity, both in vacuum [9] and
with perfect fluid matter [10]. Here, the null cones emanate
from a regular center. This brings about a severe limitation
of the time step to Δu ∼ ΔxðΔθÞ2, see also Appendix A.
Without symmetry restrictions, Bondi gauge in vacuum

has been implemented in [11], and with perfect fluid matter
in [12], both using stereographic coordinates on the
2-spheres of constant ðu; xÞ. The vacuum case has also
been implemented using angular coordinates on the
2-spheres in [13]. These papers are focused on gravitational
wave extraction, and so their null cones emanate from a
regular timelike world cylinder, on which boundary data

must be given. This also avoids the time step problem at the
origin.
A formulation where the radial coordinate x is the affine

parameter λ along the null generators has been imple-
mented in spherical symmetry in a cosmological setting
with fluid matter in [14], and in an application to spherical
scalar field critical collapse in [15], and to vacuum in
spherical symmetry with initial data on two intersecting
null cones in [16]. Affine gauge in vacuum without
symmetries was formulated in [17], but not implemented
in a code.
Affine gauge has also been used in a number of papers in

the context of asymptotically anti-de Sitter spacetimes, on
ingoing null surfaces emanating from the timelike infinity
and terminating inside a black hole apparent horizon [18].
Mentioning only the two applications most relevant for us,
in [19] this was done in 4þ 1 dimensions with two
commuting translation symmetries (and therefore math-
ematically similar to the twist-free axisymmetric case in
3þ 1 dimensions), and in 3þ 1 dimensions without
symmetries in [20,21].
As far as we know, no attempt has been made to simulate

the collapse of regular initial data to a black hole on null
cones emanating from a regular center, except in spherical
symmetry. From among the many successful applications
in spherical symmetry, we review here only the application
to the gravitational collapse of a spherically symmetric
massless scalar field. An early study of scalar field collapse
in Bondi coordinates was [22]. Essentially the same
algorithm was used in [23] for the study of power-law
tails and quasinormal modes in scalar field collapse.
Double-null coordinates were used for the study of spheri-
cal scalar field critical collapse in [24], Bondi coordinates
compactified at future null infinity in [25], and (as already
mentioned) affine coordinates in [15].
“Type II” critical collapse is characterized by an arbi-

trarily large range of spacetime scales, and hence typically
requires adaptive mesh refinement in numerical simula-
tions. In fact, the pioneering paper [26] was made possible
only by the first use of adaptive mesh refinement in
numerical relativity. However, with the benefit of hindsight,
the required mesh refinement zooms in on a single space-
time point. Once that point has been identified, a much
simpler refinement scheme is possible, such as nested
boxes in Cartesian coordinates. A fixed grid in polar-radial
coordinates centered on this point and spaced logarithmi-
cally in radius also provides the required spatial resolution,
but at the cost of a time step everywhere set by the smallest
radial grid spacing.
A fixed grid providing the required mesh refinement in

space and time for spherically symmetric critical collapse
was implemented by Garfinkle [27] using double-null
coordinates. The numerical domain is (u ≥ 0; x ≤ x0), with
x an ingoing null coordinate. Hence the numerical domain
is exactly the domain of dependence of the initial data.
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Its outer boundary is the ingoing null cone x ¼ x0, which
converges to a point. In the evolution of near-critical initial
data, an appropriate choice of x0 then puts the apex of the
numerical domain near the accumulation point of scale
echoes in near-critical solutions. Whenever half the x-grid
points have fallen into the center, the resolution is doubled
by regridding, with the time step adjusted accordingly.
The numerical grid thus “zooms in” on the (approximate)
critical solution as efficiently as possible, without the
considerable complications of standard adaptive mesh
refinement schemes.
Beyond spherical symmetry, ingoing null cones generi-

cally develop caustics, rather than refocus on a central
world line. (This is not a concern for a sufficiently short
time in a setup with initial data on two null cones u ¼ 0 and
v ¼ 0 that intersect in a spacelike two-sphere, one often
used in mathematical relavity for the study of black-hole
spacetimes, see for example [28]).
However, we can rescue the key idea of [27] if we choose

x in such a way that x ¼ 0 is the regular center while x ¼ x0
is ingoing null (possible in spherical symmetry only) or
future spacelike (ingoing faster than light). We first
implemented this in spherical symmetry [29], and found
that it provides mesh refinement for critical collapse as
efficiently as the algorithm of [27].
In hindsight this is similar to using an ingoing radial shift

with spacelike time slices to make the outer boundary
ingoing null or future spacelike. This had already been used
for spherical critical collapse on spacelike time slices in [30].

C. Plan of this paper

A fresh approach to critical collapse using null coor-
dinates looks promising for the following three reasons,
already mentioned above. First, because of their geometric
rigidity, the use of null cones give us any approximate
critical solution we find in coordinates already adapted to
discrete self-similarity. Second, we do not expect problems
with constraint violations. Finally, in a suitable discretiza-
tion the outer boundary (assumed future spacelike) can be
treated exactly like the interior points.
A natural stepping stone from spherical symmetry to

vacuum collapse is nonspherical scalar field collapse,
which can be examined with an arbitrary degree of non-
sphericity, whereas vacuum collapse is necessarily very
nonspherical. We shall present our results for scalar field
critical collapse in twist-free axisymmetry in Paper II.
The structure of the present paper is as follows. In order

to highlight the general mathematical structure of the
Einstein equations in null coordinates, in Sec. II we review
them in nþ 2 spacetime dimensions, without symmetry
assumptions.
Starting from Sec. III, we restrict to twist-free axisym-

metry in the usual 3þ 1 dimensions, and add a massless
scalar field as matter. We review standard gauge choices,
and propose several new ones for critical collapse. We also

discuss diagnostic quantities such as the Hawking mass,
and how one can hope to identify apparent and event
horizons.
Section IV describes our numerical methods, and in

particular a novel method for completely overcoming the
time step problem mentioned above, such that Δu ∼ Δx.
Section V describes convergence tests of the full non-

linear equations in a small data regime where the lineari-
zation of the equations about Minkowski is a good
approximation.
We conclude with a summary and outlook in Sec. VI.
A number of appendixes give details of (Appendix A)

the time step problem, null coordinates in (Appendix B)
Minkowski spacetime and (Appendix C) spherical sym-
metry, (Appendix D) exact solutions of the linearized
equations that we use as test beds in the small data regime,
(Appendix E) the residual gauge freedom in our coordinate
choice, and (Appendix F) regularity conditions for the
metric at the origin and on the symmetry axis.

II. NULL COORDINATES ON GENERIC
SPACETIMES OF ARBITRARY DIMENSION

A. Metric ansatz

Throughout this paper, a; b;… are abstract tensor
indices on the full spacetime (nþ 2-dimensional in this
section, and 2þ 2-dimensional in the rest of the paper), and
∇a is the covariant derivative with respect to the spacetime
metric gab. i; j; k ¼ 1…n are angular coordinate indices,
and μ; ν;… ¼ 1…nþ 2 are spacetime coordinate indices,
with n ≥ 2 in this section only, and n ¼ 2 in the remainder
of the paper.
In nþ 2 spacetime dimensions, we define null coordi-

nates ðu; x; θiÞ, with i ¼ 1…n, by demanding that the
hypersurfaces of constant u are null, in the sense that
gab∇au∇bu ¼ guu ¼ 0. The vector field

Ua ≔ −∇au ð1Þ
is obviously null, and obeys

Ua∇aUb ¼ Ua∇bUa ¼
1

2
∇bðUaUaÞ ¼ 0: ð2Þ

Hence Ua is the tangent vector to the affinely parametrized
null geodesics ruling the null surfaces of constant u. It is
easy to verify that the most general metric obeying guu ¼ 0
can be written in nþ 2 form as

ds2 ¼ −2Gdudx −Hdu2 þ γ̃klðdθ̃k þ β̂kduþ β̃kdxÞ
× ðdθ̃l þ β̂lduþ β̃ldxÞ: ð3Þ

Note there are

2þ nðnþ 1Þ
2

þ 2n ¼ ðnþ 3Þðnþ 2Þ
2

− 1 ð4Þ
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metric coefficients ðG;H; γ̃kl; β̃
k; β̂kÞ, which is the full

number of independent metric coefficients in nþ 2 space-
time dimensions, minus the one coordinate condition
guu ¼ 0. At this point we still have two independent
n-dimensional angular “shift vectors” β̃k and β̂k.
We now make the gauge transformation from ðu; x; θ̃kÞ

to ðu; x; θiÞ where θiðu; x; θ̃kÞ is given implicitly by a
solution of the system

θ̃k;xðu; x; θiÞ ¼ −β̃k½u; x; θ̃lðu; x; θjÞ� ð5Þ
of n coupled first-order ordinary differential equations
(ODEs) in x for the functions θ̃kðu; x; θiÞ. In the new
coordinates the metric then takes the form

ds2 ¼ −2Gdudx −Hdu2 þ γijðdθi þ βiduÞðdθj þ βjduÞ;
ð6Þ

where

γij ¼ γ̃klθ̃
k
;iθ̃

l
;j; ð7Þ

βi ¼ θi;kðθ̃k;u þ β̂kÞ; ð8Þ

and θi;k is the matrix inverse θ̃k;i.
With the coordinates in the order xμ ≔ ðu; x; θiÞ, the

metric tensor can be written in matrix form as

gμν ¼

0
B@

−H þ γijβ
iβj −G γjkβ

k

−G 0 0

γikβ
k 0 γij

1
CA: ð9Þ

Note that the induced metric on the surfaces of constant u,
given by the bottom right submatrix of (9), is degenerate
with signature 0þþ � � � þ, as one would expect.
The inverse metric is

gμν ¼

0
BB@

0 − 1
G 0

− 1
G

H
G2

βj

G

0 βi

G γij

1
CCA; ð10Þ

where γij is the inverse of γij. We see thatG ¼ 0would be a
coordinate singularity where the metric has no inverse.
Hence we assume that G > 0. There is no such restric-
tion on H.
We see from (10) that in our coordinates the vector field

Ua takes the simple form

U ¼ 1

G
∂x; ð11Þ

and so the outgoing null geodesics that rule each surface of
constant u (its generators) are simply the lines of constant
ðu; θiÞ. (We have already mentioned that such coordinates
are sometimes called “Bondi-like”). With G > 0, x is

strictly increasing with the affine parameter of the null
cone generators.
For the following discussions, we denote by N þ

u the
outgoing nþ 1-dimensional null hypersurfaces of constant
u, and by Lþ

u;θi the outgoing affinely parametrized null

geodesics that rule each N þ
u [lines of constant ðu; θiÞ]. We

denote by Su;x the n-dimensional spacelike surfaces of
constant u and x, by N −

u;x the ingoing null surface that
emerges from each Su;x, and by L−

u;x;θi the affinely para-
metrized null geodesics that rule it. Note that on N −

u;x and
L−
u;x;θi none of the coordinates are constant: the coordinate

values that label them are only starting values. Our
coordinates and basis vectors are sketched in Fig. 1.

B. Standard radial gauge choices

We see from (9) that gxi ¼ 0 for i ¼ 1…n, and from (10)
that guu ¼ 0, both by construction. We have used up nþ 1
of the possible nþ 2 coordinate conditions, with one
remaining to be imposed.
From an nþ 2 perspective, this final gauge condition

should not single out any spatial coordinate θi, and so
should involve only G, H and det γij. If we think of this
condition as fixing, for example, the metric coefficient H,
we have

ðnþ 3Þðnþ 2Þ
2

− ðnþ 2Þ ¼ 1þ nðnþ 1Þ
2

þ n ð12Þ

x=1

x=2

x=3

x=2

u=
0

u=
1

x=0

FIG. 1. Schematic spacetime picture showing our coordinates
and basis vectors. Shown are two null cones of constant u, four
spacelike closed 2-surfaces of constant ðu; xÞ, the central world-
line x ¼ 0, and outgoing null rays of constant ðu; y;φÞ (the
angular coordinate y ¼ − cos θ is suppressed here). Solid arrows
represent the outgoing null vector U ∝ ∂x, dashed arrows the
ingoing null vector Ξ, and dotted arrows the timelike vector ∂u
(which are timelike near the origin but may tip inward to become
spacelike further out).

GUNDLACH, HILDITCH, and BAUMGARTE PHYS. REV. D 110, 024018 (2024)

024018-4



independent metric coefficients: on the left-hand side the
number of algebraically independent metric coefficients gμν
in nþ 2 spacetime dimensions without symmetry, minus
nþ 2 coordinate conditions, and on the right-hand side the
number of components in ðG; γij; βkÞ. We are aware of
three such conditions in the literature.

1. Bondi

One may be able to assume that the surfaces Su;x are
n-spheres and that their volume increases monotonically
with x. Then Bondi coordinates are defined by the co-
ordinate condition det γij ¼ x2 det γ̄ij, where γ̄ij is the unit
round metric on Sn in the coordinates θi. x is then called the
area radius and is usually, and in this paper, denoted by r.

2. Double-null

Double-null coordinates are defined by gxx ¼ 0, which,
from (10), is equivalent to H ¼ 0. x is then a second null
coordinate, and is usually, and in this paper, denoted by v.
The N −

u;v are now surfaces of constant v. The affinely
parametrized L−

u;v;θi have the tangent vector

Va ≔ −∇av; ð13Þ
which in coordinates takes the form

V ¼ 1

G
ð∂u − βi∂iÞ: ð14Þ

As already mentioned, we are not aware of a numerical
application of double null coordinates beyond spherical
symmetry. This may be because we expect ingoing null
cones to develop caustics generically, rather than converge to
a point.

3. Affine

Finally, one sees from (11) that x is an affine parameter
along the outgoing null geodesics if and only if the
coordinate condition G;x ¼ 0 holds. x is then often called
λ: λ on each outgoing null geodesic is fixed up to an
additive constant by fixing the function Gðu; θiÞ. The most
common choice is G ¼ 1.

C. The hierarchy of Einstein equations

In order to have nontrivial spacetimes with a regular
center even in the limit of spherical symmetry, we add a
massless minimally coupled scalar field ψ that obeys the
wave equation

∇a∇aψ ¼ 0: ð15Þ

The Einstein equations with scalar field matter in any
spacetime dimension can be written, in trace-reversed
form, as

Eab ≔ Rab − 8π∇aψ∇bψ ¼ 0: ð16Þ

Rab is the spacetime Ricci tensor, and we use gravitational
units where c ¼ G ¼ 1.
We define the ingoing null vector field

Ξ ≔ ∂u −
H
2G

∂x − βi∂i: ð17Þ

Together Ξa and Ua span the normal space to each Su;x.
They are normalized so that ΞaUa ¼ −1. Ua, given in (11),
is tangent to the affinely parametrized generators of N þ

u ,
while Ξa is tangent to the generators of N −

u;x where they
emerge from Su;x.
Given only the metric components γij on a surface of

constant u, and boundary values for G, βi and βi;x on any
past boundary x ¼ xminðu; θiÞ of that surface, we can solve
the Einstein equation Exx ¼ 0 for G, Ex

i ¼ 0 for βi, and
Eij ¼ 0 for the null derivatives Ξγij, in this order, by
explicit integration in x. In the terminology of [2] these are
the “main equations.” We will call them the “hierarchy
equations.” They contain H only in the combination Ξ.
Explicit expressions in twist-free axisymmetry in 3þ 1
spacetime dimensions will be given in Sec. III below. Given
the Ξγij, one gauge condition is required to fix H and so
find the “time” derivatives γij;u. We can then advance γij in
u and repeat.
The remaining nþ 2 Einstein equations Eux ¼ 0 (the

“trivial equation” [2]), Euu ¼ 0 and Eu
i ¼ 0 (the “supple-

mentary conditions” [2]) contain higher u-derivatives than
the hierarchy equations and are redundant modulo the
nþ 2 contracted Bianchi identities. The supplementary
conditions also act as constraints on the boundary data
imposed at x ¼ xmin. We do not discuss them here because
x ¼ xmin ¼ 0 will always be a regular central world line
here and in Paper II, so no free data can be imposed there.
Finally, the trivial equation is an algebraic consequence of
imposing all other equations.
With the shorthand

B ≔
H
2G

; ð18Þ

we can write (17) as

∂u ¼ Ξþ B∂x þ βi∂i: ð19Þ

This suggests that we consider B and βi as the x and θi

components of a “shift vector” representing the difference
between the coordinate time direction ∂u and the null
vector Ξ. However, while the future-pointing unit vector na
normal to a spacelike hypersurface Σ is unique, the null
vector Ξa depends not only on the null hypersurface N þ

u ,
but also on its foliation by n-surfaces Su;x.
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III. TWIST-FREE AXISYMMETRY
IN 3 + 1 WITH A SCALAR FIELD

A. Metric ansatz and matter field

We now restrict to 3þ 1 spacetime dimensions in
spherical polar null coordinates ðu; x; θ;φÞ. We assume
axisymmetry with Killing vector K ≔ ∂φ, meaning that
gμν;φ ¼ 0 in those coordinates. In addition, we assume a
reflection symmetry φ → −φ. This is a consistent trunca-
tion, in the sense that if we impose γθφ ¼ 0 on the initial
data, and the boundary conditions βφ ¼ βφ;x ¼ 0 at x ¼ xmin
to start up the integration, the hierarchy equations give us
βφ ¼ 0 and γθφ;u ¼ 0. Geometrically, the twist vector
ϵabcdKa∇bKc vanishes, hence the name twist-free axisym-
metry. Physically, this symmetry removes one of the two
gravitational wave degrees of freedom, hence the alter-
native name polarized axisymmetry.
We identify a worldline on the symmetry axis world

sheet, calling it the central worldline, or center for short.
(There is a preferred choice for this if the spacetime has a
reflection symmetry z → −z, or θ → π − θ, but in general
the choice is arbitrary. For now we stay in the general case.)
The null cones of constant u are assumed to have a regular
vertex on the central worldline.
We parametrize the metric under these conditions as

ds2 ¼ −2Gdudx −Hdu2

þ R2
�
e2Fðdθ þ βduÞ2 þ e−2F sin2 θdφ2

�
; ð20Þ

where the metric coefficients ðG;H; R; F; βÞ depend on the
coordinates ðu; x; θÞ only. R is the area radius, in the sense
that det γij ¼ R2 sin2 θ, and so the area of Su;x is 4πR2. The
central worldline is at R ¼ 0.

B. Regularization of the axis

The field equations can be regularized on the symmetry
axis by reparametrizing [9]

β≕ sin θb; F≕ sin2 θf ð21Þ

and replacing the coordinate θ by

y ≔ − cos θ; −1 ≤ y ≤ 1: ð22Þ

Intuitively, b is the z-component of the shift vector β∂θ,
and therefore regular on the symmetry axis. The metric
becomes

ds2 ¼ −2Gdudx −Hdu2

þ R2
�
e2SfS−1ðdyþ SbduÞ2 þ e−2SfSdφ2

�
; ð23Þ

where we have defined the shorthand

S ≔ 1 − y2 ¼ sin2 θ: ð24Þ

We also have

Ξ ¼ ∂u − B∂x − bS∂y: ð25Þ
Even though the metric now has a division by S, the
hierarchy equations for ðG; b;H;ΞR;Ξf;ΞψÞ are regular
on the axis in the sense that they contain neither square
roots nor divisions by y or S, see Eqs. (29)–(38) below.
We note in passing the identities

ψ ;θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
ψ ;y; ð26Þ

ψ ;θθ ¼ ð1 − y2Þψ ;yy − yψ ;y: ð27Þ

From (26) we see that the usual regularity condition for
scalars on the symmetry axis, ψ ;θ ¼ 0 at θ ¼ 0 and π,
corresponding to y ¼ −1 and y ¼ 1, does not impose
a condition on ψ ;y there. Rather, we see from (27) that
ψ ;y ¼ �ψ ;θθ there, which is unconstrained by regularity.

C. The equation hierarchy

In twist-free axisymmetry, the Einstein equations have
seven algebraically independent components Eμν. It is
convenient to define the two linear combinations

E� ≔ e−2FSEyy � e2FS−1Eφφ: ð28Þ

Geometric free data on an outgoing null cone of constant
u consist of f and ψ as functions of R and y. In double-null
gauge, we also need to specify R as a function of x and y
there, considering this as fixing a gauge freedom in the
initial data.
The two Einstein equations Exx ¼ 0 and Exy ¼ 0 do not

contain any u-derivatives. They can, respectively, be
written as

�
ln

G
R;x

�
;x
¼ SG½R; f;ψ � ð29Þ

�
R4e2Sfb;x

G

�
;x
¼ Sb½R; f;ψ ; G�: ð30Þ

The Einstein equations Eþ ¼ 0 and E− ¼ 0 and the scalar
wave equation all contain u-derivatives. They can, respec-
tively, be written as

ðRΞRÞ;x ¼ SR½R; f;ψ ; G; b�; ð31Þ

ðRΞfÞ;x ¼ Sf½R; f;ψ ; G; b� − ðΞRÞf;x; ð32Þ

ðRΞψÞ;x ¼ Sψ ½R; f;ψ ; G; b� − ðΞRÞψ ;x; ð33Þ

where Ξ is the derivative operator defined in (25), and H
only appears as part of Ξ. The right-hand sides S½f;…�
contain the derivatives f;x, f;y, f;xy and f;yy (but not f;xx),
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and the same derivatives of R, G, b and ψ , with the
exceptions of ψ ;xy and b;yy.
The remaining algebraically independent Einstein equa-

tions are Euu, Eux and Eyy, and contain u-derivatives other
than those already appearing in the hierarchy equations. In
particular, Euu (only) contains R;uu; Euu and Euy contain
R;uy, f;uy and G;uy; Euu and Eux contain G;ux; and all three

contain G;u. We do not investigate here what relevance
these have as constraints on the data at an inner boun-
dary x ¼ xmin.
The full right-hand sides of the hierarchy equations are

as follows, beginning with the principal terms on a separate
line (SG is all nonprincipal), and the scalar field stress-
energy terms at the end

SG ¼ R
R;x

�
S2f2;x þ 4πψ2

;x

�
; ð34Þ

Sb ¼ 2R2Sf;xy −
R2G;xy

G
− 2RR;xy þ f;xð−4R2S2f;y þ 8R2yðfS − 1Þ þ 4RSR;yÞ þ

R2G;xG;y

G2
þ 2RG;yR;x

G
þ 2R;xR;y − 16πR2ψ ;xψ ;y; ð35Þ

SR ¼ 1

4
R2Sb;xy þ

GSe−2fSR;yy

2R
−
1

2
GS2e−2fSf;yy þ

1

4
Se−2fSG;yy þ

R4Sb2;xe2fS

8G
þ b;x

�
−
R2y
2

−
1

2
RSR;y

�

þ RSb;yR;x − 2bRyR;x þ e−2fS
	
f;y

�
−4GSyðfS − 1Þ −GS2R;y

R

�
þ Gyð2fS − 1ÞR;y

R
þ GS3f2;y −

SG2
;y

8G

þ G;y

�
−
1

2
S2f;y þ fSy −

y
2

�
þ 1

2
G
�
2fðSð5 − 4fðS − 1ÞÞ − 4Þ − 1

�
−
GSR2

;y

2R2
þ 2πGSψ2

;y



; ð36Þ

Sf ¼
Rb;xy
4

þ e−2fSG;yy

4R
− 3bRyf;x þ

R3b2;xe2fS

8G
þ b;x

�
−
1

2
RSf;y − fRy

�
þ b;y

�
1

2
RSf;x þ

R;x

2

�

− 2bfyR;x þ e−2fS
�
−
G;yR;y

2R2
−

G2
;y

8GR
þ 2πGψ2

;y

R

�
; ð37Þ

Sψ ¼ GSe−2fSψ ;yy

2R
þ 1

2
RSb;yψ ;x −

1

2
RSb;xψ ;y − bRyψ ;x þ e−2fS

�
−
GS2f;y

R
þ Gyð2fS − 1Þ

R
þ SG;y

2R

�
ψ ;y: ð38Þ

D. Formulation in terms of γ ≔ lnðG=R;xÞ
and R-derivatives

Note that SG given in (34) has a division by R;x. If we
assume that R;x > 0 everywhere, we can reparametrize the
metric variable G by the new variable

g ≔
G
R;x

⇒ G ¼ R;xg: ð39Þ

Then all x-derivatives in the hierarchy equations can be
eliminated in favor of the derivative

D ≔
1

R;x
∂x; ð40Þ

that is, the derivative with respect to R at constant u and y.
Moreover, g is invariant under reparametrizing x, and in
particular is simply 1 in flat spacetime. Obviously, D does
not commute with ∂u and ∂y, so we have to specify the order
of mixed derivatives. As a convention, we apply D last.

If we further replace g by

γ ≔ ln g; ð41Þ

the equations simplify a little further, and γ appears
undifferentiated only in the two combinations
exp�ð2Sf − γÞ. Hence in our final numerical formulation
we treat γ as the primary variable.
The hierarchy equations now take the form

Dγ ¼ S̄γ½R; f;ψ �; ð42Þ

DðR4e2Sf−γDbÞ ¼ S̄b½R; f;ψ ; γ�; ð43Þ

DðRΞRÞ ¼ S̄R½R; f;ψ ; γ; b�; ð44Þ

DðRΞfÞ ¼ S̄f½R; f;ψ ; γ; b� − ðΞRÞDf; ð45Þ

DðRΞψÞ ¼ S̄ψ ½R; f;ψ ; γ; b� − ðΞRÞDψ ; ð46Þ
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where S̄ ¼ S=R;x. With G ¼ gR;x, third derivatives of R
appear in the Einstein equations when we write them in
terms of g or γ. In the hierarchy equations, only R;xxy and
R;xyy appear. The former, which appears only in the
equation for b, is problematic numerically, but it can be
eliminated by writing

S̄b½R; f;ψ ; γ� ¼ −DðR2DðR;yÞÞ þ S̃b½R; f;ψ ; γ�: ð47Þ

The modified source S̃b no longer contains third deriva-
tives, and we can explicitly integrate the first term on
the right.
The source terms are now

S̄γ ¼ R
�
S2DðfÞ2 þ 4πDðψÞ2�; ð48Þ

S̃b ¼ R2
�
−
�
4DðfÞðS2f;y − 2fSyþ 2yÞ − 2SDðf;yÞ þDðγ;yÞ þ 16πDðψÞψ ;y

��

þ 2Rð2SDðfÞR;y þDðR;yÞ þ γ;yÞ þ 2R;y; ð49Þ

S̄R ¼ 1

8
e2fS−γR4SDðbÞ2 − 1

4
R
�
−SðRDðb;yÞ þ 4b;yÞ þ 2DðbÞðSR;y þ RyÞ þ 8by

�þ 1

8
eγ−2fS

�
32f2Sy2

− 4DðR;yÞðS2f;y − 2fSyþ yÞ − 8R;y

R
ðS2f;y − 2fSyþ yÞ þ 8S3f2;y − 8fð4S2yf;y þ 5y2 − 1Þ

þ 2Sγ;yDðR;yÞ − SDðR;yÞ2 þ 2SDðR;yyÞ þ
4SR;yy

R
− Sγ2;y þ 2Sðγ2;y þ γ;yyÞ − 4

− 4γ;yðS2f;y − 2fSyþ yÞ þ 32Syf;y − 4S2f;yy −
4SR2

;y

R2
þ 16πSψ2

;y

�
; ð50Þ

S̄f ¼
1

8
e2fS−γR3DðbÞ2 þ 1

4

�
R
�
2Sb;yDðfÞ þ 2DðbÞð−Sf;y − 2fyÞ þDðb;yÞ

�
− 4by

�
3RDðfÞ þ 2f

�þ 2b;y
�

þ eγ−2fS

8R2

�
−4R;yγ;y þ ð2Rγ;y − 4R;yÞDðR;yÞ − RDðR;yÞ2 þ R

�
2DðR;yyÞ þ γ2;y þ 2γ;yy þ 16πψ2

;y

��
; ð51Þ

S̄ψ ¼ 1

2
ðDðψÞðRðSb;y − 2byÞÞ − RSDðbÞψ ;yÞ þ

eγ−2fS

2R
ðψ ;yð−2S2f;y þ 4fSyþ SDðR;yÞ þ Sγ;y − 2yÞ þ Sψ ;yyÞ: ð52Þ

E. Regular center

When the null surfaces are cones emanating from a
regular central world line, null geodesics leaving the central
worldline at the same time must carry the same u, and those
leaving at different times are naturally identified as setting
off in the same direction ðy;φÞ via parallel transport along
the central wordline. The only remaining gauge freedom is
to relabel x by x̃ðu; x; yÞ, and u by ũðuÞ.
Obviously, all metric coefficients must be single-valued

on the central worldline, that is, at x ¼ 0 they must be
independent of y for all u. We stress this by writing
Gðu; 0; yÞ ¼ Gðu; 0Þ, and so for all other quantities that
are single-valued at the center.
We show in Appendix B that when the center R ¼ 0 is

regular, geodesic, and has coordinate location x ¼ 0, in our
gauge we have bðu; 0Þ ¼ fðu; 0Þ ¼ 0 and

gðu; 0Þ ¼ U0ðuÞ; ð53Þ

Hðu; 0Þ ¼ U0ðuÞ2; ð54Þ

where UðuÞ is proper time along the central worldline.
Choosing u itself to be proper time, we have gðu; 0Þ ¼
Hðu; 0Þ ¼ 1. Because g and G are single-valued at the
origin, R;x at the origin must also be single-valued, and we
denote it by R;xðu; 0Þ.

F. Standard radial gauge choices

We review here the standard radial gauge choices already
outlined for arbitrary spacetime dimension above.

1. Bondi

The condition R ¼ x≕ r defines Bondi coordinates
ðu; r; y;φÞ. In particular, the definition

ΞR ≔ R;u − BR;x − bSR;y; ð55Þ

reduces in Bondi gauge, where R;u ¼ R;y ¼ 0, to

B ¼ BBondi ≔ −
ΞR
R;x

ð56Þ
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Given ψ and f as functions of ðx; yÞ on a surface of
constant u, such as u ¼ 0, and the gauge initial data
Rð0; x; yÞ ¼ x, the hierarchy equations are solved for
ðγ; b;ΞR;Ξf;ΞΨÞ by integration. We then find B from
ΞR and (56).

2. Double-null

The condition H ¼ 0 and hence B ¼ 0 defines double-
null coordinates ðu; v; y;φÞ, where x≕ v becomes the
second null coordinate. Given ψ , f and R as functions
of ðx; yÞ on a surface of constant u, the hierarchy equations
are again solved for ðγ; b;ΞR;Ξf;ΞψÞ by integration. Here
Rð0; x; yÞ can be thought of as fixing a gauge freedom.
As already mentioned, this formulation is only almost-
maximally constrained because the evolution equation for
R does not relate to a physical degree of freedom but
propagates this initial gauge choice.

3. Affine

The coordinate condition G;x ¼ 0 defines x≕ λ to be an
affine parameter along the null geodesic generators of our
time slices. In this case, the first hierarchy equation (29),
(34) becomes

R;xx þ ðS2f2;x þ 4πψ2
;xÞR ¼ 0; ð57Þ

and so does not contain G at all, but instead becomes an
ODE in x (at constant u and y) for R, given f and ψ . ΞR is
now used for finding H, rather than for evolving R. By
taking an x-derivative of the hierarchy equation (31) for ΞR
and a u-derivative of (57), and eliminating R;uxx between
them, we find an equation of the form

H;xx ¼ SH½R; b; f;ψ ;ΞR;Ξf;Ξψ �; ð58Þ

which can be integrated twice to find H.
We stress that any null gauge in which we solve the

Raychaudhuri equation (29) for G or γ, such as Bondi or
double null gauge, breaks down where R;x ¼ 0. But, as we
will see later, the divergence ρþ of the null generators of
our N þ

u is proportional to R;x, so this will generically
happen in strong gravity. The only alternative is to solve
(29) for R, for example in affine gauge. We will consider
this elsewhere.

G. Choices of radial gauge for critical collapse

We now present possible choices of radial gauge adapted
to critical collapse that generalize the ideas of [27] beyond
spherical symmetry. In these coordinates, we want x ¼ 0
to be the regular center R ¼ 0 and the outer boundary
x ¼ xmax to be future spacelike or null. We therefore evolve
on the domain of dependence of the initial data, without the
need for an explicit outer boundary condition, and the
numerical domain shrinks with time. We can then hope to

control this shrinking in such a way that resolution of the
critical solution is maintained without the need for adaptive
mesh refinement.
The domain of dependence of the data on any u ¼ u0,

0 ≤ x ≤ xmax is bounded by the ingoing null surface
N −

u0;xmax
, whose null tangent vector at Su0;xmax

is Ξ.
Hence at x ¼ xmax, x should not decrease along Ξ, or

Ξx ¼ −
H
2G

≥ 0 at x ¼ xmax; ð59Þ

and this must hold for all u. An equivalent requirement is
that the surface x ¼ xmax is null or spacelike, that is

j∇xj2 ¼ H
G2

≤ 0 at x ¼ xmax: ð60Þ

In short, H and therefore B must be nonpositive at
x ¼ xmax. This also means that numerically we can con-
sistently upwind the advection term B∂x in the time
evolution equations at the outer boundary, with the one-
sided stencil pointing into the numerical domain.
At the inner boundary x ¼ 0, the condition that R ¼ 0

remains at x ¼ 0 fixes B to be given by (56). This is
positive, and so again we can upwind consistently with the
one-sided stencil pointing into the numerical domain.
For applications to critical collapse we impose a con-

dition at some 0 < x0 ≤ xmax that makes x ¼ x0 approx-
imately null: approximately in the sense that B ¼ 0 there in
some average sense, or that B ≤ 0 with equality at one or
more values of y. If a spacetime approaches a self-similar
critical solution, and x0 is chosen appropriately, the past
light cone of the critical solution will then be at x ≃ x0. This
gauge condition should then also imply B ≤ 0 at the outer
boundary.
We now present a few possible gauges that obey these

two boundary conditions at x ¼ x0 and x ¼ 0.

1. Shifted double null gauge

Consider first the choice

B ¼ Bsdn ≔
�
1 −

x
x0

�
BBondið0Þ; ð61Þ

for some constant parameter x0 ≤ xmax. The Bondi radial
shift was defined in (56). In other words, B decreases
linearly in x from its value in Bondi gauge at the center to
zero at the some x0. Then x ¼ 0 remains at R ¼ 0, and
x ¼ x0 is an ingoing null surface.
Our convention that u is proper time along the central

worldline implies that ΞR ¼ −1=2 there, and so (56) gives

Bsdn ¼
�
1 −

x
x0

�
1

2R;xðu; 0Þ
: ð62Þ
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We shall call this gauge choice shifted double null (from
now on, sdn) gauge because it simply rescales the ingoing
null coordinate v. More precisely, if we choose x ¼ v at
u ¼ 0, then at fixed u the new coordinate x is a linear
function of v defined by v ¼ v0 at x ¼ 0 and R ¼ 0 at
x ¼ 0 [29].
Therefore, sdn gauge is a continuous version of the

repeated regridding of the double-null coordinate v in [27].
We have previously implemented it in spherical symmetry
in [29], and found that it works exactly as well as our earlier
implementation, in [31], of the original Garfinkle regrid-
ding algorithm. The resulting numerical domains are iden-
tical for x0 ¼ xmax, but we found in [29,31] that choosing
xmax > x0, which gives us a spacelike buffer zone, has
the advantage of revealing more of the critical solution
spacetime.
On a regular spacetime beyond spherical symmetry, we

expect sdn gauge to fail because ingoing null cones, and in
particular x ¼ x0, do not reconverge on the central world-
line. It is, however, extremely useful in spherical symmetry.
We will now discuss alternatives that work better beyond
spherical symmetry, but reduce to sdn gauge in spherical
symmetry.
We have also not been able to find a stable discretization

of the equations in sdn gauge beyond spherical symmetry,
even in the limit of weak fields. The instability looks like a
purely numerical problem at the origin, but we cannot
exclude formation of caustics or ill-posedness as problems
in the continuum. We have not explored this further.

2. Global shifted Bondi gauge

An alternative starting point is to demand that

Rðu; x; yÞ ¼ sðuÞx; ð63Þ

where sðuÞ is a function to be specified. This simplifies the
hierarchy equations in the same way as Bondi gauge does,
and in particular G ¼ g=sðuÞ. Substituting this into the
equation defining ΞR, we have

B ¼ BgsB ≔
s0ðuÞx − ΞR

sðuÞ : ð64Þ

We shall this class of gauges global shifted Bondi (from
now on, gsB) gauge.
To avoid potential numerical instabilities from evolving

R as a dynamical variable, we update it directly with
R;u ¼ s0ðuÞx, rather than the generic expression based on
ΞR plus shift terms, and also use (63) in simplifying other
derivatives. This gauge does not suffer from the same
numerical instabilities as sdn gauge.
To fix sðuÞ, we demand that the surface x ¼ x0 is ingoing

null or future spacelike, in the sense that Hðu; x0; yÞ ≤ 0.
This gives

s0ðuÞ ¼ 1

x0
min
y

ΞRðu; x0; yÞ: ð65Þ

As we shall see in Paper II, gsB gauge behaves very
different from sdn gauge in strong fields, already in
spherical symmetry, and does not seem to be a good choice
for critical collapse.

3. Local shifted Bondi gauge

Yet another starting point is the observation that the
instability we observe in our implementation of sdn gauge
seems to be connected to the y-dependence of R, while the
choice (63) is too restricted. Hence we can attempt the more
general gauge

Rðu; x; yÞ ¼ R̄ðu; xÞ; ð66Þ

by setting

B ¼ BlsB ≔
R̄;u − ΞR

R̄;x
; ð67Þ

where R̄;uðu; xÞ and hence R̄ðu; xÞ is yet to be specified. We
call this local shifted Bondi (from now on, lsB) gauge. We
require

R̄ðu; 0Þ ¼ 0 ð68Þ

to keep the origin regular at x ¼ 0 and

R̄;uðu; xmaxÞ ≤ min
y

ΞRðu; xmax; yÞ ð69Þ

to make B ≤ 0 at the outer boundary.
We restrict the possible choices of R̄;u by demanding that

in spherical symmetry we revert to sdn gauge. An obvious
possibility is to start from the Bondi shift (56) with its
spherical part subtracted (“nonspherical Bondi”, from now
on nsB),

BnsB ≔ −
ΞR − ðΞRÞl¼0

R̄;x
; ð70Þ

where the suffix l ¼ 0 denotes the spherical part, and add
the (purely spherical) sdn shift:

B ¼ BlsB1 ≔ BnsB þ Bsdn: ð71Þ

In this gauge x0 is a null surface “on average.”
We can add a further term that makes the shift non-

positive everywhere at x0, giving

BlsB2 ≔ BlsB1 þ
x
x0

ðminy ΞRÞ − ðΞRÞl¼0

R;x
ðx0Þ: ð72Þ
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In this gauge,B;u is discontinuous at such values of uwhere
the location in y of miny ΞRðu; x0; yÞ changes discontin-
uously. In either lsB1 or lsB2, there is no guarantee that
H < 0 at the outer boundary to make it future spacelike.
Another possibility is to subtract, at every ðu; xÞ, the

global maximum over y of the Bondi radial shift instead of
its spherical part (“non-negative Bondi”)

BnnB ≔ −
ΞR −minyðΞRÞ

R̄;x
; ð73Þ

and again add the sdn shift,

BlsB4 ≔ BnnB þ Bsdn: ð74Þ

This version has the property that every surface of constant
x ≥ x0, and so the outer boundary in particular, is null or
future spacelike. It has the disadvantage that B;x and B;u are
discontinuous at all values of ðu; xÞ where the location in y
of miny ΞRðu; x; yÞ changes discontinuously.
We can also make a transition from lsb gauge, with the

spherical part given by sdn, near the center, to full sdn at the
outer boundary, so that the outer boundary is null every-
where. In other words, we consider

BlsBtosdn ≔ Bsdn þ
	
1 − K01

�
x − λx0
x0 − λx0

�


×

	�
ΞR
R;x

�
l¼0

−
ΞR
R;x



; ð75Þ

where K01ðxÞ is a sufficiently smooth switching function
withK01ðx ≤ 0Þ ¼ 0 andK01ðx ≥ 1Þ ¼ 1, and 0 < λ ≤ 1 is
a parameter. We then have pure lsb gauge for 0 ≤ x ≤ λx0,
and a transition to pure sdn over the interval λx0 ≤ x ≤ x0.
For K01 on the transition range 0 ≤ x ≤ 1 we have settled
on the 9th order polynomial defined by the first four
derivatives vanishing at x ¼ 0 and x ¼ 1, and the symmetry
condition K01ð1=2Þ ¼ 1=2.

H. Spacetime diagnostics

1. Affine parameter

In this section we look at a number of ways of extracting
geometric information from our simulations. After fixing
the central worldline, a completely geometric coordinate
system is given by ðu; λ; y;φÞ, where u labels the null cones
emanating from the central worldline, and ðy;φÞ label the
generators of these null cones. u is fixed to be the proper
time along the central worldline. The same ðy;φÞ at
different u are identified by parallel transport of the vector
∂u along the central worldline. λ is the affine parameter
along the generators, with origin λ ¼ 0 at R ¼ 0 and
normalization λ ≃ R near the origin.

The tangent vector to the affinely parametrized gener-
ators of our null cones is U given by (11). We have
dx=dλ ≔ Ua∇ax ¼ G−1 and λ ¼ 0 on the central worldline
R ¼ x ¼ 0. Integration then gives us

λðu; x; yÞ ¼
Z

x

0

Gðu; x0; yÞdx0 ¼
Z

R

0

gðu; x0; yÞdR0: ð76Þ

for the affine parameter. Recall that in our convention g ¼ 1
at the origin, so we have the required normalization.

2. Redshift

Let τ be the proper time measured by a timelike observer
at coordinate location ðu; x; y;φÞ and with 4-velocity ua

(normalized to uaua ¼ −1). The redshift of photons emit-
ted from the central world line at ðu; 0Þ, measured by this
observer, is

Z ≔
dτ
du

¼ 1

ua∇au
ð77Þ

where we have used our convention that dτ=du ¼ 1 along
the central world line.
One natural choice of a family of timelike observers puts

them at constant R, y and φ. The ansatz

ua ¼ Z−1
�
ð∂uÞa −

R;u

R;x
ð∂xÞa

�
ð78Þ

for the corresponding ua gives ua∇aR¼ ua∇ay¼
ua∇aφ¼ 0 and ua∇au¼ Z−1 as required. From uaua ¼ −1
we then find that Z is given by

Z ¼ �
−2gðΞRþ SbR;yÞ − R2e2SfSb2

�1
2: ð79Þ

3. Hawking mass and Hawking compactness

Following [32], let S be a smooth closed spacelike
2-surface. Let la and na be a pair of future-pointing null
vectors normal to S, normalized such that lana ¼ −1. Let
na be outgoing and la be ingoing. This is unique up to
multiplying na by a positive function eΛ on S and
multiplying la by e−Λ. The projection operator onto the
tangent space of S is

πab ≔ gab þ lanb þ nalb; ð80Þ

and is unique. We then define the null congruence
expansions

ρþ ≔
1

2
πab∇anb; ρ− ≔

1

2
πab∇alb; ð81Þ

It is easy to see that

πab∇aðeΛnbÞ ¼ eΛð∇ana þ nbla∇albÞ ¼ eΛ∇ana; ð82Þ
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where the first equality holds when na is null and the
second when la is an affinely parametrized geodesic. A
similar result then holds for e−Λla. Without loss of general-
ity we now define na and la to be continued off S as affinely
parametrized geodesics. Then the product

ρþρ− ¼ 1

4
ð∇alaÞð∇bnbÞ ð83Þ

is independent of the normalization eΛ, and therefore
uniquely determined by the spacetime geometry and S.
From ρþρ−, the Hawking massM of S is now defined by

MðSÞ ≔ 1

2

ffiffiffiffiffiffiffiffiffiffi
AðSÞ
4π

r
CðSÞ; ð84Þ

CðSÞ ≔ 1þ 1

2π

Z
S
ρþρ−dS; ð85Þ

where A ≔
R
S dS is the area of S. We have defined the

“Hawking compactness” C as an intermediate quantity that
is of interest in its own right. In particular, a marginally
outer-trapped surface, defined by ρþ ¼ 0 and ρ− < 0 at
each point, has Hawking compactness C ¼ 1, and an outer-
trapped surface, defined by ρþ < 0 and ρ− < 0 at each
point, has Hawking compactness C > 1, but the converses
are not true.
We now restrict attention to spacelike 2-surfaces S0 that

lie within a single coordinate null cone. We define such
surfaces by

u − u0 ¼ 0; x − x0ðyÞ ¼ 0: ð86Þ

A basis of tangent vectors to S0 is given by

tðyÞ ≔ ∂y þ x00∂x; tðφÞ ≔ ∂φ: ð87Þ

The outgoing and ingoing null vectors orthogonal to S0,
normalized so that nala ¼ −1 and la∇au ¼ 1, are

n ¼ U; ð88Þ

l ¼ Ξþ e−2SfSgR;x

R2

�
x00∂y þ

x020
2
∂x

�
: ð89Þ

na ¼ Ua holds because the outgoing null surface that
emanates from S0 is simply the part of N þ

u that lies to
the future of S0. If and only if x0ðyÞ is constant, we also
have la ¼ Ξa.
The corresponding null geodesic expansions are

Rρþ ¼ 1

g
; ð90Þ

2Rρ− ¼ K0 þ K1x00 þ K2x020 þ K3x000: ð91Þ

The Ki are evaluated at ðu0; x0ðyÞ; yÞ, but do not contain
derivatives of x0ðyÞ. Here we only give

K0 ¼ 2ΞR − RðSbÞ;y ð92Þ

for later reference.
The induced metric on S0 is

hij ¼ xμ;ix
ν
;jhμν ¼ xμ;ix

ν
;jgμν ¼ gij; ð93Þ

where xi ≔ ðy;φÞ are the coordinates on S0. Its determi-
nant is therefore simply R4, independent of x0ðyÞ, so the
volume element on S0 is

dS ¼ R2dydφ: ð94Þ

We therefore have

ffiffiffiffiffiffiffiffiffiffiffiffi
AðS0Þ
4π

r
¼

�
1

2

Z
1

−1
R2dy

�
1=2

ð95Þ

and

CðS0Þ ¼ 1þ 1

2

Z
1

−1
2ρþρ−R2dy: ð96Þ

Note that the integral 1
2

R
1
−1…dy is equal to the l ¼ 0

component of its integrand, and that 2R2ρþρ− ¼ −1 for
light cones in flat spacetime.
After an integration by parts to eliminate the x000 term, C

becomes

CðS0Þ ¼ 1þ 1

2

Z
1

−1
Lðx0; x00Þdy; ð97Þ

where

L ¼ L0 þ L1x00 þ L2x020 ; ð98Þ

L0 ≔
K0

g
¼ 2ΞR − RðSbÞ;y

g
; ð99Þ

L1 ≔
S
�
e−2SfR;xðRgÞ;y − R3b;x

�
gR2

; ð100Þ

L2 ≔
e−2SfSg;xR;x

gR
: ð101Þ

If we now further restrict to surfaces Su;x of constant u
and x, (91) simplifies to

2Rρ− ¼ K0; ð102Þ

and (97) simplifies to
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Cðu; xÞ ≔ CðSu;xÞ ¼ 1þ 1

2

Z
1

−1
L0dy: ð103Þ

Beyond spherical symmetry,MðSu;xÞ need not be mono-
tonic in x or non-negative. However, in the lsB class of
gauges, one can show that it is nondecreasing with x, and
non-negative. To prove this, note that for R ¼ Rðu; xÞ, the
integral for A is trivial, giving

ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p ¼ R. We can pull
this factor of R into the integral for Cðu; xÞ to obtain

Mðu; xÞ ≔ MðSu;xÞ ¼
1

4

Z
1

−1
Rð1þ 2ρþρ−R2Þdy: ð104Þ

To evaluate M;xðSu;xÞ, one can pull ∂x into the integral and
use integration by parts in y to express it as

Mðu; xÞ;x ¼
R;x

4

Z
1

−1


e−2SfS
4g2

�
g;y − R2e2SfDb

�
2

− 2R4ρþρ−
�
S2ðDfÞ2 þ 4πðDψÞ2�

þ 4πe−2SfSψ2
;y

�
dy: ð105Þ

Hence a sufficient condition for DM ≔ M;x=R;x to be non-
negative is that ρþρ− < 0. (This result is a special case of
Eardley’s observation [33] that the Hawking mass increases
on a foliation of an outgoing null surface by luminosity
distance, as long as ρþρ− < 0 and the matter obeys the
dominant energy condition.) From DM ≥ 0 and M ¼ 0
along the central worldline we then obtain M ≥ 0.
In lsB gauge, where

Mðu; xÞ ¼ Rðu; xÞ
2

Cðu; xÞ ð106Þ

we can therefore either computeM from (106) withC given
by (97), or by integrating (105) as

M̃ðu; x; Þ ≔
Z

x

0

M;xðu; x0Þdx0; ð107Þ

with

C̃ðu; xÞ ≔ 2M̃ðu; xÞ
Rðu; xÞ ð108Þ

then defined from M̃. In the continuum, C ¼ C̃ and
M ¼ M̃, but their discretizations are very different, to
the extent that their agreement is a highly nontrivial test
of the accuracy of our discretization.

4. No MOTS on coordinate light cones u = const

A marginally outer-trapped surface (MOTS) in
4-dimensional spacetime is a smooth closed 2-dimensional
spacelike surface in the spacetime, such that the generators

of its outgoing null cone have zero divergence. We now ask
if a MOTS S0 can exist that lies in a single null time slice,
defined by ρþ ¼ 0 on the surface u ¼ u0, x ¼ x0ðyÞ.
A first problem with this is that in any gauge where R is

specified as free data and evolved, including sdn, gsB and
lsB gauge, the Raychaudhuri equation will necessarily
involve division by R;x. To see this, write it as

�
ln

G
R;x

�
;x
¼ R

R;x
S̃G; S̃G ≔ S2f2;x þ 4πψ2

;x; ð109Þ

where S̃G is now regular even when R;x ¼ 0. It is now easy
to check that if we write this as a first-order ODE in x forG,
g ≔ G=R;x or ρþ ¼ R;x=ðRGÞ, or as a second-order ODE in
x for the affine parameter λ with λ;x ¼ G, these ODEs
involve a division by R;x, and so become singular where the
null expansion ρþ changes sign. Where R;x > 0, we can
absorb it into D ≔ d=dR (as we have done), but D is not
defined where R;x ¼ 0. This division by R;x is purely a
gauge problem: in any gauge where we specify G a priori
and solve the Raychaudhuri equation for R, for example in
affine gauge, R;x and therefore ρþ can change sign without
a problem.
A second, purely geometrical, problem is that when we

trace the future-outgoing null rays that emerge from the
MOTS backward in time we generically do not expect them
to converge to a point, but rather to form caustics, except in
spherical symmetry. In particular this means that this
backward null surface cannot in general be a coordinate
null cone with regular vertex.
We now ask if one can find a nonmarginally outer-

trapped surface (OTS) on u ¼ u0, one where ρþ ≤ 0
everywhere. The geometric nongenericity argument then
does not apply, so we expect to be able to find OTS (but not
MOTS) in affine gauge.
But in twist-free vacuum axisymmetry even this is not

possible because of a third, again purely geometrical,
problem: the shear along the symmetry axis is zero, (as
we see from S ¼ 0 there), so in vacuum the Raychaudhuri
equation on the symmetry axis on the symmetry axis
reduces to g;x ¼ 0 or R;xx ¼ 0, and so ρþ ¼ 1=ðgRÞ ¼
R;x=G cannot become zero or change sign. There may of
course be OTS and MOTS in such a spacetime, but they
cannot be embedded in an outgoing null cone with regular
vertex.

5. Surfaces of maximal Hawking compactness

In spite of the obstacles set out in the last subsection, in
spherical symmetry we and other authors have happily
identified MOTS, and used their Hawking mass as an
estimate of the initial black hole mass while working in
double-null, Bondi or sdn gauge. How did this work?
Quite naively, we were led by what one does in spherical

symmetry on Cauchy surfaces, for example in polar-radial
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coordinates ðt; rÞ (see Appendix C): these coordinates
become singular on a MOTS, but one simply identifies
the first appearance of a local maximum in r of Cðt; rÞ with
C ≥ 0.99, say, as an approximate MOTS, and estimates
M ≃ r=2 at its location.
Similarly, in null coordinates we called a surface Su;x an

approximate MOTS when it was a local maximum in x of
Cðu; xÞ with C ≥ 0.99, say [29,31]. Unlike ρþðu; xÞ, which
is often a decreasing function of x (while remaining strictly
positive), Cðu; xÞ typically does have one or more local
maxima in x. This singled out a specific Su;x as our MOTS
candidate. The same approach was also taken by the
authors of [25,27].
How then can we generalize this procedure in spherical

symmetry to the nonspherical case? The obvious difference
is that we no longer have a preferred foliation of our
coordinate null cones into 2-surfaces.
Ideally, we would look for surfaces x ¼ x0ðyÞ in u ¼ u0

that maximize C½u0; x0ðyÞ� given by (97). The resulting
Euler-Lagrange equation is a quasilinear second-order
ODE for x0ðyÞ. The boundary term usually obtained in
deriving the Euler-Lagrange equation vanishes, and so the
variation is unconstrained, consistent with our earlier
observation following Eq. (27) that a regular scalar need
not have vanishing y-derivative on the symmetry axis.
In Paper II, we shall for simplicity limit ourselves to

finding the local maxima in x of Cðu; xÞ given by (97) for
the compactness of the coordinate 2-spheres Su;x, as we did
in spherical symmetry. It turns out that with a smaller
threshold value, say C ≥ 0.8, our heuristic criterion con-
sistently distinguishes collapsing and dispersing solutions.
Recall, however, our earlier observation following Eq. (85)
that beyond spherical symmetry C > 1 is necessary but not
sufficient for a spacelike 2-surface to be outer-trapped.

6. Event horizons and coordinate null cones

We now show that if a spacetime admits an event
horizon, this has at least one generator in common with
each of at least two coordinate null cones.
The intersection H ∩ Σ of an event horizon H with a

Cauchy surface Σ with topology R3 (which excludes
external black holes with two spatial infinities) at suffi-
ciently late time is a 2-sphere (or consists of disconnected
2-spheres). Hence on H ∩ Σ the coordinate u attains a
global minimum and global maximum. If the intersection is
at least C2 in our coordinate system, they are also local
extrema. At any such local extremum u�, H ∩ Σ and
fu ¼ u�g ∩ Σ have the same (2-dimensional, spacelike)
tangent space V. It follows that the unique future outgoing
null geodesic through that point and normal to V is a
generator of both H and u ¼ u�.
Independently, in axisymmetry there will be (at least)

two local extrema u� of u on H ∩ Σ located at the poles
y ¼ �1. If the spacetime has an additional y → −y
symmetry (reflection through the equatorial plane), and

H ∩ Σ (or one of its components) straddles the equatorial
plane, there is a third local extremum on the equator y ¼ 0,
while the other two are related by the reflection symmetry.
It seems unlikely that we can identify any horizon

generators, even if they are also coordinate null cone
generators.

IV. NUMERICAL METHODS

A. Legendre pseudospectral method in y

1. Choice of basis functions, and synthesis matrices

In the physical scenarios we are interested in, it is natural
to maintain constant angular resolution, and to expect the
solution to be smooth. We therefore use a pseudospectral
method in the angle θ, or y. In this subsection, we write N
for Ny, the number of grid points in y.
We represent ψ as

ψ ¼
XN−1

l¼0

ψ lðu; xÞPlðyÞ; ð110Þ

where Pl is the Legendre polynomial of order l, propor-
tional to the spherical harmonic Yl0. We represent any other
quantity that transforms as a scalar under coordinate
changes on the 2-spheres Su;x, including the metric
components R, G and H, in the same way.
By contrast, b and f are not scalars but components of a

vector and symmetric 2-tensor on S2, respectively. We
show in Appendix D that if we represent them as

b ¼
XN
l¼1

blðu; xÞP0
lðyÞ; ð111Þ

f ¼
XNþ1

l¼2

flðu; xÞP00
l ðyÞ; ð112Þ

then in the linearization of the Einstein and wave equations
about spherical symmetry the different l decouple. We
choose this spectral representation for b, f and the scalars
also in the nonlinear case.
In any pseudospectral method, one goes backward and

forward between a finite number of coefficients in Fourier
space and an equal number of carefully chosen collocation
points in real space, carrying out differentiation in Fourier
space and nonlinear algebraic operations in real space.
Here we transform between collocation points yi and

spherical harmonic components l by full matrix multipli-
cation. This is clearly inefficient for large N, in contrast to
the fast Fourier transform available for a Fourier series or
Chebyshev polynomials.
We call the matrices that take variables from Fourier

space (with index l) to real space (with index i) synthesis
matrices. For all variables that transform as a scalar under
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coordinate changes on the coordinate 2-spheres, we use the

synthesis matrix Sð0Þil ≔ PlðyiÞ, where yi are the collocation
points (to be determined below) and l is the spectral index.
In other words, each column of Sð0Þ represents one Pl. For b

we use Sð1Þil ≔ P0
lðyiÞ, and for f we use Sð2Þil ≔ P00

l ðyiÞ.
Note this means that with i ¼ 1;…N, we can represent
l ¼ 0;…N − 1 for scalars, l ¼ 1;…N for b and l ¼
2;…N þ 1 for f.

2. Differentiation in y and choice of collocation points

Rather than transforming back to Fourier space in order
to differentiate in y, we differentiate directly in real space.
Either method requires full-matrix multiplication. Making
differentiation exact for certain functions of y then fixes the
collocation points.
We implement first y-derivatives through the Legendre-

Gauss-Lobatto differentiation matrix [34]

Dij ¼

8>>>>><
>>>>>:

PN−1ðyiÞ
ðyi−yjÞPN−1ðyjÞ ; i ≠ j;

− NðN−1Þ
4

; i ¼ j ¼ 1;
NðN−1Þ

4
; i ¼ j ¼ N;

0; otherwise;

ð113Þ

where the grid points y2;…; yN−1 are the zeros of P0
N−1ðyÞ

in increasing order, y1 ¼ −1 and yN ¼ 1. For second
derivatives, we use the matrix square of D. This discreti-
zation is known to be exact for polynomials up to order
2N − 3. We choose Legendre-Gauss-Lobatto because we
want the north and south poles y ¼ �1 to be on the grid. In
order to also have the equator on the grid, we then chooseN
to be odd, typically 2K þ 1.

3. Analysis matrices

An analysis matrix takes grid functions from physical to

Fourier space. One might compute the analysis matrix Að0Þ
li

using the formulas for Legendre-Gauss-Lobatto quadrature
and the fact that

R
PmPndy ¼ ð2nþ 1Þδmn=2. However,

with Að0Þ defined this way, the product Að0ÞSð0Þ differs from
the expected unit matrix in that its bottom right element
is 2þ 1=ðN − 1Þ. This is due to the fact that Legendre-
Gauss-Lobatto quadrature is exact for polynomials in y up
to order 2N − 3, whereas this bottom right element requires
integration of PN−1PN−1, which is a polynomial of
order 2N − 2.

Therefore we use as our analysis matrix Að0Þ
li the matrix

inverse of Sð0Þil , which differs from the naive analysis matrix
only in its last row. (Having to make this choice could have
been avoided by using Gauss-Legendre quadrature, which
is exact for polynomials up to order 2N − 1.) We similarly

define Að1Þ
li and Að2Þ

li as the matrix inverses of Sð1Þil and Sð2Þil .

4. Discrete versions of continuum identities
and consistent truncation

We define the N × N matrices

ΔðsÞ ≔ ð1 − Y2ÞD2 − 2ðsþ 1ÞYD; ð114Þ

where Y denotes the diagonal matrix

Y ≔ diagfyigNi¼1; ð115Þ

and we have defined the diagonal matrices

ΛðsÞ ≔ diagfλðsÞl gN−1þs
l¼s ; ð116Þ

where

λðsÞl ≔ −ðlþ sþ 1Þðl − sÞ; l ≥ s; ð117Þ

are the eigenvalues of the Laplace operator on S2 for the
“spins” s ¼ 0, 1, 2.
Our synthesis and differentiation matrices obey discrete

equivalents of the continuum identities (D15), (D33) and
(D38) between Legendre polynomials given in Appendix D,
which in this notation can be written concisely as

ΔðsÞSðsÞ ¼ SðsÞΛðsÞ; ð118Þ

for s ¼ 0, 1, 2. We also have

DSð0Þ ¼ Sð1ÞIþ; ð119Þ

DSð1Þ ¼ Sð2ÞIþ; ð120Þ

⇒ D2Sð0Þ ¼ Sð2ÞI2þ; ð121Þ

relating the different spins. Here Iþ denotes the matrix with
ones in the super-diagonal. We also define I− as the matrix
with ones in the sub-diagonal, and I0 as the matrix with
ones in the diagonal, except for a zero in the bottom right
element. These obey IþI− ¼ I0. In particular, Eq. (120) is a
discrete version of the identity (D29), which we need for the
linearized hierarchy equation for f, Eq. (D26), to be
discretized exactly in y.
With the definition

=Δð1Þ ≔ ð1 − Y2ÞD − 4Y ⇒ =Δð1ÞD ¼ Δð1Þ; ð122Þ
we can derive the identity

=Δð1ÞSð2ÞI0 ¼ Sð1ÞΛð1ÞI−: ð123Þ
Except for the presence of the factor I0 on the left, (123) is
the discrete version of the identity (D30), which is needed
for the linearized hierarchy equation for b, Eq. (D25).
Without the right factor of I0, the left-hand side of (123)
would have nonzero entries for l ¼ N − 1 and N − 3 in its
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last column. With N grid points we can represent fNþ1 but
not bNþ1, so one can think of this as an aliasing error arising
from the spectral truncation. To avoid this error, which
would lead to an instability, we need to suppress the
unpartnered fNþ1.
In the linearized field equations on a general spherically

symmetric background, or in a gauge other than Bondi
gauge, fl and bl couple not only to each other but also to
ψ l, Gl, Rl and Hl. Therefore we must suppress fNþ1, fN
and bN , as all three have no scalar partners.

5. Half-range spectral method

Most papers on axisymmetric gravitational collapse
assume an additional reflection symmetry, z → −z in
cylindrical coordinates, or y → −y in our spherical coor-
dinates. In such situations, we can save computing time by
only representing the even l in Fourier space, or the values
−1 ≤ y ≤ 0 in real space. Let N̄ ≔ ðN þ 1Þ=2 denote the
number of grid points on the half-range equivalent toN grid
points on the full range. We define reduced analysis and
synthesis matrices as

Āð0;2Þ ≔ QþAð0;2ÞVTþ; ð124Þ

S̄ð0;2Þ ≔ XSð0;2ÞQTþ; ð125Þ

Āð1Þ ≔ Q−Að1ÞVT
−; ð126Þ

S̄ð1Þ ≔ XSð1ÞQT
−; ð127Þ

where we have defined (with N̄ ¼ 3 ⇔ N ¼ 5 serving as a
prototype)

Qþ ≔

0
B@

1 0

0 1 0

0 1

1
CA; ð128Þ

Q− ≔

0
B@

0 1 0

0 1 0

0

1
CA; ð129Þ

X ≔

0
B@

1

1

1 0 0

1
CA; ð130Þ

Vþ ≔

0
B@

1 1

1 1

1

1
CA; ð131Þ

V− ≔

0
B@

1 −1
1 −1

0

1
CA: ð132Þ

Note that S̄ with N ¼ 5 or N̄ ¼ 3 is a 3 × 3 matrix, etc.
These obey

Āð0;2ÞS̄ð0;2Þ ¼ I; ð133Þ

Āð1ÞS̄ð1Þ ¼ I0: ð134Þ

To understand this, consider again the case N̄ ¼ 3: we can

represent Pl for l ¼ 0, 2, 4, and Pð2Þ
l for l ¼ 2, 4, 6, but Pð1Þ

l

only for l ¼ 2, 4.Q− has row rank N̄ − 1, and therefore Sð1Þ

and Að1Þ have rank N̄ − 1.
We also define separate derivative matrices acting on

even and odd functions,

D� ≔ XDVT
�; ð135Þ

D2
� ≔ D∓D�: ð136Þ

We have then the same identities as already discussed,

again with the proviso that Pð2Þ
2N̄ ¼ Pð2Þ

Nþ1 can be represented
but must be suppressed for consistency.

6. Tests at finite numerical precision

We numerically calculate the synthesis, analysis and
differentiation matrices for selected values of N in Mathe-
matica. The collocation points (zeros of the Legendre
polynomials) need to be determined numerically, and we
do this with precision 10−50. The matrix calculations are
then carried out with the same precision. We then save the
resulting expressions for the collocation points yi and the
synthesis, analysis and differentiation matrices result into
ascii files in slightly more than double precision, and read
this into the F90 code at runtime.
As as test of the numerical error of the pseudospectral

method, we have explicitly evaluated the following matri-
ces, which all vanish in the continuum, numerically in the
F90 code (in double precision).

T0 ≔ Að0ÞSð0Þ − I; ð137Þ

T1 ≔ Að1ÞSð1Þ −

I

I0
; ð138Þ

T2 ≔ Að2ÞSð2Þ − I; ð139Þ

T3 ≔ Δð0Þ
þ Sð0Þ − Sð0ÞΛð0Þ; ð140Þ

T4 ≔ Δð1Þ
− Sð1Þ − Sð1ÞΛð1Þ; ð141Þ

T5 ≔ Δð2Þ
þ Sð2Þ − Sð2ÞΛð2Þ; ð142Þ

T6 ≔ DþSð0Þ − Sð1ÞIþ; ð143Þ
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T7 ≔ D−Sð1Þ − Sð2Þ

Iþ
I0

; ð144Þ

T8 ≔ D2þSð0Þ − Sð2Þ

I2þ
Iþ

; ð145Þ

T9 ≔ =Δð1Þ
þ Sð2Þ


Iþ
I0

− Sð1ÞΛð1Þ: ð146Þ

The matrices A, S, Δ and Λ are understood as either half-
range or full-range. Where there is a case distinction,
the upper case applies to the full-range setup and the lower
case to the half-range setup. In the full-range case
Dþ ¼ D− ≔ D, and similarly for Δ and =Δ.
To avoid duplication of code, in the numerical code we

use the half-range notation throughout, and simply set both
Dþ and D− to D in the full-range case, and similarly D2þ
and D2

− to D2. By contrast, the combinations Δ and =Δ do
not explicitly appear in the nonlinear equations and so are
not stored as matrices, but are used here as shorthand for
their definitions.
We also check that each row ofD orDþ adds up to zero,

as the differencing of a constant grid function should give
zero. However, no such test applies to D−, which acts only
on odd functions of y. Hence we define another test

T10 ≔ Dþ1; ð147Þ

where 1 is the column vector with 1 in every row.
At N ¼ 3 or N̄ ¼ 2, the error in all tests is zero or at

machine precision. At all higher resolutions, the largest
error occurs in T5. All errors at the two equivalent
resolutions N and N̄ ¼ ðN þ 1Þ=2 are approximately the
same, as we would expect. At N ¼ 5, N̄ ¼ 3, this error is
≃10−13. At each doubling of resolution, it increases by a
factor of ∼100, up to 4 × 10−5 at N ¼ 65, N̄ ¼ 33, and
8 × 10−3 at N ¼ 129, N̄ ¼ 65.
We believe that the observed error in these tests is

essentially round-off error in double precision computa-
tions in the F90 code, and that it increases so rapidly with
N because the synthesis and analysis matrices become
increasingly ill-conditioned with both resolution N and
spin s.
We note that while the error in T0 at N ¼ 65, evaluated

within Mathematica, is 10−49 as expected, in T1 and T2

it is already 10−23. We can avoid this by noting that P0
l

is a linear combination with integer coefficients of Pl−1,
Pl−3 and so on. Hence we can write Sð1Þ ¼ Sð0ÞTð01Þ and
Sð2Þ ¼ Sð0ÞTð02Þ, where Tð01Þ and Tð02Þ are lower diagonal
matrices with integer coefficients, and so can be inverted
exactly. T1 and T2 then have a much smaller internal error
of 10−44. The maximum difference between Að1Þ or Að2Þ

obtained in the two ways is still only 10−24 at N ¼ 65,

so they are identical when reduced to double precision in
Fortran code. However, for N ¼ 129, Mathematica cannot
find Að1Þ and Að2Þ by direct matrix inversion, but we can still
find them from Að0Þ and the inverses of Tð01Þ and Tð02Þ.

7. High-frequency filtering

As in any pseudospectral code, nonlinear terms spuri-
ously excite high-l modes through aliasing, and without
care this eventually leads to numerical instabilities, even if
the linearized code is stable. For high-frequency filtering of
a grid function in real space, we therefore multiply by
F ≔ SF̂A, where F̂ is a diagonal matrix where only the
entries corresponding to l ≤ lmax diagonal entries are one,
and those for l > lmax are zero. (A smooth transition from
one to zero would also be possible, but we have not
tried this).
When the Einstein equations are linearized around any

spherically symmetric solution, ψ l, fl, bl, Rl and γl
couple only for the same l. This suggests that for con-
sistency we truncate at the same lmax for all variables, rather
than the same degree of polynomial in y, using the
appropriate analysis and synthesis matrices. Define F̂ðkÞ
to be the diagonal matrix with 1 in its first 0 ≤ k ≤ N
entries, and 0 in the remaining ones. We then filter the
scalars with F̄ð0Þ ≔ Sð0ÞF̂ðlmax þ 1ÞAð0Þ, the variable bwith
F̄ð1Þ ≔ Sð1ÞF̂ðlmaxÞAð1Þ, and the variable f with F̄ð2Þ ≔
Sð2ÞF̂ðlmax − 1ÞAð2Þ. These matrices have therefore differ-
ent rank.

B. Finite differencing in x of the hierarchy equations

In this subsection, we write N for Nx. As we have seen,
the hierarchy equations take the form

ϕint;x ¼ Sðy;ϕ;ϕ;x;ϕ;y;ϕ;xy;ϕ;yyÞ ð148Þ

in terms of the intermediate quantities

ϕint ≔
�
γ; R4e2Sf−γDb; b; RΞR;RΞf; RΞψ

�
; ð149Þ

and the basic variables (metric coefficients and matter field)

ϕ ≔ ðγ; R; b; f;ψÞ: ð150Þ

These equations can be solved by integration as

ϕintðu; x; yÞ ¼ ϕintðu; 0; yÞ þ
Z

x

0

Sðu; x0; yÞdx0; ð151Þ

for the intermediate quantities, and hence the constrained
variables

ϕcons ≔ ðγ; b;ΞR;Ξf;ΞψÞ; ð152Þ

in this order. The evolved variables
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ϕevol ≔ ðf; R;ψÞ ð153Þ

are specified freely at u ¼ 0 and evolved in u using their
Ξ-derivatives.
In double-null gauge no influence propagates from larger

to smaller x. In a general gauge, this happens only through
the shift term B∂x. This suggests to us that the hierarchy
equations should be solved by an integration scheme in x
that does not evaluate the integrand to the right of the point
where the integral is being approximated. Then for H ≤ 0,
strictly no information flows to larger x. In the following,
we present a simple second-order accurate scheme that has
these properties.
We use a grid equally spaced in x, xi ¼ iΔx, with x0 ¼ 0

and xN ¼ xmax, so Δx ¼ xmax=N. In the code, array storage
for fields at the mid-point xiþ1=2 is labeled by the array
index i, that is by the grid point to its left. We do not store
field values at the first grid point x0 ¼ 0 and first mid-point
x1=2 ¼ Δx=2. Therefore arrays representing grid points
have array index ranging from 1 to N, and arrays repre-
senting mid-points from 1 to N − 1, corresponding to
i ¼ 3=2 to N − 1=2. With this convention in mind, we
define the shorthand

Δiϕ ≔ ϕiþ1 − ϕi; ð154Þ

ϕ̄i ≔
ϕiþ1 þ ϕi

2
: ð155Þ

Here we write only the index i corresponding to the
coordinate x, but not the index j corresponding to the
coordinate y.
For sufficiently smooth functions ϕ we then have

ðϕ;xÞiþ1=2 ¼
Δiϕ

Δx
þOðΔx2Þ; ð156Þ

ϕiþ1=2 ¼ ϕ̄i þOðΔx2Þ: ð157Þ

We then discretize the integrations (151) with the midpoint
rule, that is

ϕint;iþ1 ¼ ϕint;i þ Siþ1
2
Δx; ð158Þ

using the discretizations (156), (157), the discretizations of
ϕ;y and ϕ;yy using D and D2, and the discretization of ϕ;xy

and ϕ;xyy resulting from combining (156) with D. The
resulting ϕint;iþ1 is second-order accurate but depends only
on ϕiþ1 and ϕi, thus respecting causality. By contrast, the
trapezoid rule would require left derivatives at the right-
hand gridpoint to respect causality.
In the formulation where we use D defined in (40) rather

than ∂x, we differentiate

ðDϕÞiþ1=2 ≃
ðϕ;xÞiþ1=2

ðR;xÞiþ1=2
¼ Δiϕ

ΔiR
ð159Þ

and integrate

ϕint;iþ1 ¼ ϕint;i þ S̄iþ1
2
ΔiR: ð160Þ

C. Shift terms

For the evolved variables (153), the definition of Ξ gives

ϕevol;u ¼ Ξϕevol þ Bϕevol;x þ Sbϕevol;y ð161Þ

The analogy of B with the x-component of a shift vector
suggests that, in contrast to the x-derivatives in the right-
hand side of (148), ϕevol;x in (161) should be upwinded:
as right derivatives ϕþ

;x for B > 0, and left derivatives ϕ−
;x

for B < 0. In particular, no numerical boundary condition is
then required at an outer boundary x ¼ xmax as long as
B ≤ 0 there, or at the inner boundary where B ¼
BBondi > 0. We do not upwind the shift term in the y
direction, as we take all y-derivatives spectrally.
The upwind x-derivatives are evaluated with the second-

order accurate three-point formulas on grid points, namely

ðϕ;xÞþi ≔
2ϕiþ1 − 3

2
ϕi − 1

2
ϕiþ2

Δx
; ð162Þ

ðϕ;xÞ−i ≔ −
2ϕi−1 − 3

2
ϕi − 1

2
ϕi−2

Δx
: ð163Þ

Where R;xðu; 0Þ is needed, we use R0;j ¼ 0 in (162) to
evaluate the right derivative as

ðR;xÞþ0;j ¼
2R1;j − 1

2
R2;j

Δx
; ð164Þ

and then average over y to obtain R;xðu; 0Þ.

D. The time step problem, and a resolution

An important, if somewhat vaguely defined, necessary
condition for numerical stability of any explicit time-
evolution scheme is the Courant-Friedrichs-Lewy (from
now, CFL) condition. This says that the outermost char-
acteristic cone, in our case the light cone, is contained in the
spacetime numerical stencil. We consider this as a heuristic
guide to a stability limit on the time step, without carrying
out an actual discrete stability analysis. Unusually, in
spherical symmetry, in double-null coordinates ðu; vÞ, this
causality condition does not impose any restriction on the
time step Δu. However, and not surprisingly, we found in
[31] that even then a limit Δu ∼ Δx is required for stability.
Beyond spherical symmetry, however, the combination of
spherical polar coordinates and null coordinates imposes a
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severe restriction, and we need to address this problem in
order to make our code efficient.
Explicit methods for hyperbolic problems using space-

like time slices and Cartesian coordinates typically have a
time step condition Δt ∼ Δx, where Δx is the grid spacing
of the Cartesian spatial coordinates. By contrast, polar
spatial coordinates on spacelike slices give rise to a time
step condition ofΔt ∼ ΔrΔθ, which comes from evaluating
the CFL condition in the tangential direction, Δt ∼ rΔθ,
near the center, that is at r ∼ Δr. In Appendix A, we show
that in polar coordinates on null cones, the stability
criterion is an even worse Δu ∼ ΔrΔθ2.
This is a problem not only when we use finite differ-

encing in the angle θ. When we split the linearized wave
equation into spherical harmonics as in (110) and finite-
difference in r for given l, we find empirically that the time
step limit for evolving ψ lðu; rÞ is Δu ∼ l−2Δr. There is no
differentiation in y to give rise to a CFL condition in the
tangential direction, but instead the wave equation decom-
posed into spherical harmonics now contains an lðlþ 1Þ=r2
potential. It turns out that this requires the same restriction
on the time stesp as if we had used finite differencing in θ,
with Δθ ∼ 1=lmax.
In the context of the wave equation on Minkowski

spacetime, the lðlþ 1Þ=r2 barrier can be transformed into
a 2ðlþ 1Þ=r barrier for a first-order reduction of the wave
equation, and this was made stable for Δt ∼ Δr by the
introduction of a suitable summation by parts (SBP)
differencing scheme in r [35]. We could not see how to
do this in null coordinates, even for the flat-space scalar
wave equation.
However, the spectral method in y that we use suggests a

possible remedy to the time step restrictions in polar
coordinates, both on null slices and on the usual spacelike
slices: we simply filter out all spatial frequencies above l ∼ i,
where l is the spherical harmonic index, and i the grid index
in the radial coordinate x. In other words, at radius x only
spherical harmonics up to l ∼ x=ðΔxÞ are represented. We
discuss how this is done in the code in the next subsection.
An intuitive understanding of why this boundary con-

dition removes the extra restrictions on the time step due to
spherical polar coordinates and null coordinates is that,
with Δθ ∼ 1=lmax ∼ 1=i ∼ Δx=x near the center, we now
have an effective angular resolution such that xΔθ ≃ Δx, so
that the effective “grid cells” have roughly equal sides,
giving us the stability benefit of a Cartesian grid.
Outside the central region, for i≳ lmax, the angular

resolution is constant, giving us the physical benefits of
a spherical grid, namely efficient resolution of ingoing and
outgoing waves of finite l and an outer boundary with
spherical topology.
A similar filtering approach to overcoming the stricter

CFL limit in spherical polar coordinates has been presented
on spacelike time slices in [36]. Here the filtering uses fast
Fourier transforms in θ and φ.

These adjustments allow us to run the axisymmetric code
with the time step

Δu ¼ min
i;j

minðC1Δu1; C2Δu2Þ; ð165Þ

where we have defined the local time step criteria

Δu1ðu; x; yÞ ≔ Δx
����R;x

ΞR

����; ð166Þ

Δu2ðu; x; yÞ ≔ ΔxjBj−1: ð167Þ

The parameters C1 and C2 are independent of Δx and Δy
(or lmax), and are of order one. As B is the shift in the
x-direction, Δu ≤ Δu2 is the standard limit on the time step
for any explicit finite differencing of an advection equation.
In double-null gauge, B ¼ 0, and so this criterion is empty,
but empirically the limit Δu ≤ Δu1 on the time step is
required even then. The quantity jR;x=ΞRj can be under-
stood in two ways: as jR;xj=jR;uj in double-null gauge,
implying that R always changes less per time step than per
grid point, or as the value taken by B in Bondi gauge.
Empirically, we find that this term guarantees stability in
double null and Bondi gauges and their variants. Because
of our gradual suppression of high angular frequencies near
the center this holds independently of lmax.

E. Treatment of the central region

1. High-frequency filtering after each time step

In order to allow for a time step Δu ∼ Δx in the way just
discussed, in the initial data and after each full time step
we apply a filter to the evolved variables R, f and ψ as
discussed in Sec. IVA 7, but with a local lmax. This sets

ϕevol;l ¼ 0 for l > lmax;localðiÞ ð168Þ

where

lmax;localðiÞ ≔ min
�
maxð2; 2i − 2Þ; lmax;global

�
; ð169Þ

which equals 2, 2, 4, 6,… for i ¼ 1; 2; 3; 4… This filtering
means that at i ¼ 1, 2, only l ¼ 0, 1, 2 are present. At i ¼ 3,
l ¼ 0, 1, 2, 3, 4 are present, at i ¼ 4, l ¼ 0…6, and so on.
lmax;global is even to treat the full and half-range discretiza-
tion equally. We use the relevant analysis and synthesis
matrices for the scalars, b and f, respectively.
The filter always removes at least the top two l-modes of

f on the full-range grid, or the top mode on the half-range
grid, as these do not have a counterpart in γ, H, R, ψ and b.
This means that lmax;global ≤ Ny − 1 on the full y-range and
2ðN̄y − 1Þ on the half-range. (We always chooseNy and N̄y

to be odd.)
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2. Expansion of the field equations about the origin

The filtering near the origin that gets round the bad CFL
condition de facto imposes unphysical numerical boundary
conditions, for example ψ lðu; xlÞ ¼ 0, at some xl ∼ lΔx.
This is compatible with second (or higher) order numerical
accuracy in Δx for large l, but not for the smallest l. For
example, in a regular continuum solution ψ lðu; xÞ ∼ xl near
the center, so imposing ψ lðu; xlÞ ¼ 0 imposes an error of
OðΔxlÞ. If we want the code to be second-order accurate,
this is acceptable for l ≥ 2, but for l ¼ 0 and l ¼ 1 we need
to impose a more accurate, nonzero, boundary condition.
In the code, we impose boundary conditions at an inner

boundary (including an unphysical one) as integration
constants when we solve the hierarchy equations by
integration in x, for example the constant cl in
ðRΞψÞlðu; xÞ ¼ cl þ

R
x
xl
…dx0. We now obtain the values

of those integration constants that correspond to a regular
center (to a given order of accuracy) by expanding the full
hierarchy equations in powers of x.
We shall see that for second-order accuracy we need

nonzero integration constants only for the spherical har-
monic components b1;2, ðΞRÞ0;1;2, ðΞfÞ2 and ðΞψÞ0;1;2
(where the suffix denotes the value of l). The general
argument above applies also to γ0;1;2 but their integration
constants turn out to be zero.
We assume that in a regular axisymmetric solution of the

Einstein-scalar equations, the scalar field ψðu; x; yÞ admits
a convergent expansion around the origin x ¼ 0 of the form

ψ ¼
X∞
l¼0

X∞
k¼l

ψ lðkÞðuÞxkPlðyÞ ð170Þ

¼
X∞
k¼0

Xk
l¼0

…; ð171Þ

where the re-ordering obviously requires convergence. The
first suffix in ψ lðkÞ denotes the spherical harmonic and the
second one the power of x. Appendix F shows that this
[together with analyticity of the ψ lðkÞðuÞ] corresponds to
analyticity in suitable Cartesian coordinates ðt; ξ; η; zÞ.
Expanding any hierarchy equation F ¼ 0 as (171), and

truncating this expansion as

F ≃
Xkmax

k¼0

Xk
l¼0

FlðkÞðuÞxkPlðyÞ ð172Þ

the result is a polynomial of finite order kmax in both x and
y. This observation guarantees that when, order by order in
x, we set the coefficients of all nonvanishing powers of y to
zero separately to obtain a system of algebraic equations for
the ψ lðkÞ, the expansion remains exact in y.

A priori, we expand γ and R in the same way as ψ .
However, we impose γðu; 0Þ ¼ γ0ð0Þ ¼ 0 in order to make u
proper time at the origin, and so

γ ¼
X∞
k¼1

Xk
l¼0

γlðkÞðuÞxkPlðyÞ: ð173Þ

We additionally impose Rðu; 0Þ ¼ R0ð0Þ ¼ 0 to locate the
origin R ¼ 0 at x ¼ 0 and R1ð1Þ ¼ 0 to make R;x single-
valued at the origin. Moreover, we show in Appendix F that
regularity requires RlðlÞ ¼ 0 for all l, so that

R ¼
X∞
k¼1

Xk−1
l¼0

RlðkÞðuÞxkPlðyÞ: ð174Þ

Generalizing from the behavior of analytic solutions to the
Einstein equations linearized about Minkowski spacetime
(see Appendix D 5), and consistent with the regularity
requirements in Appendix F we expand

f ¼
X∞
k¼2

Xk
l¼2

flðkÞðuÞxkP00
l ðyÞ; ð175Þ

b ¼
X∞
k¼0

Xkþ1

l¼1

blðkÞðuÞxkP0
lðyÞ: ð176Þ

Here b1ð0ÞðuÞ is free, corresponding to a gauge choice, see
Appendix E. Finally, from Ξ ¼ ∂u − B∂xþ… we expect
that the expansions of Ξ-derivatives start at one power of x
lower, that is

ΞR ¼
X∞
k¼0

Xkþ1

l¼0

ðΞRÞlðkÞðuÞxkPlðyÞ; ð177Þ

Ξf ¼
X∞
k¼1

Xkþ1

l¼2

ðΞfÞlðkÞðuÞxkP00
l ðyÞ; ð178Þ

Ξψ ¼
X∞
k¼0

Xkþ1

l¼0

ðΞψÞlðkÞðuÞxkPlðyÞ: ð179Þ

As a test of consistency, we have explicitly expanded all
fields to Oðx5Þ. This allows us to consistently expand the
hierarchy equation for γ to Oðx2Þ, for b to Oðx5Þ and for
ΞR, Ξf and Ξψ to Oðx3Þ, and the resulting coefficient
equations can be solved for ðγ; b;ΞR;Ξf;ΞψÞ to Oðx3Þ.
In the code, we only need the expansions to OðxÞ, as the

error of Oðx2Þ corresponds to OðΔxÞ2 for the innermost
few grid points. The nonvanishing terms then involve only
spherical harmonics up to l ¼ 2, and are
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γ ¼ Oðx2Þ; ð180Þ

b ¼
h
b1ð0Þ þ

�
−4πR−1

0ð1Þψ0ð1Þψ1ð1Þ − R−2
0ð1ÞR1ð3Þ

þ 2R−3
0ð1ÞR0ð2ÞR1ð2Þ

�
x
i
P0
1ðyÞ

þ
	
−4R−1

0ð1Þ

�
f2ð2Þ þ

π

3
ψ2
1ð1Þ

�
− R−2

0ð1ÞR2ð3Þ

þ 2

3
R−3
0ð1ÞR

2
1ð2Þ



xP0

2ðyÞ þOðx2Þ; ð181Þ

ΞR ¼ −
1

2
P0ðyÞ þ

�
−R0ð1Þb1ð0Þ − R−1

0ð1ÞR1ð2Þ
�
xP1ðyÞ

þOðx2Þ; ð182Þ

Ξf ¼ −R−1
0ð1Þf2ð2ÞxP

00
2ðyÞ þOðx2Þ; ð183Þ

Ξψ ¼
	
1

2
R−1
0ð1Þψ0ð1Þ þ

1

2

�
R−1
0ð1Þψ0ð2Þ þ R−2

0ð1Þ
�
R1ð2Þψ1ð1Þ

− R0ð2Þψ0ð1Þ
��

x



P0ðyÞ −

1

2
R−1
0ð1Þψ1ð1ÞP1ðyÞ

− R−1
0ð1Þψ2ð2ÞxP2ðyÞ þOðx2Þ: ð184Þ

Note that P0ðyÞ ¼ 1, P1ðyÞ ¼ y, P2ðyÞ ¼ ð3y2 − 1Þ=2,
P0
1ðyÞ ¼ 1, P0

2ðyÞ ¼ 3y, P00
2ðyÞ ¼ 3 but we have not sub-

stituted these values for clarity of exposition.
Assuming both b10 ¼ 0 (the origin is geodesic) and

R;y ¼ 0 (lsB gauge), as we do here and in Paper II, these
equations simplify to

γ ¼ Oðx2Þ; ð185Þ

b ¼ −4πR−1
0ð1Þψ0ð1Þψ1ð1ÞxP0

1ðyÞ

− 4R−1
0ð1Þ

�
f2ð2Þ þ

π

3
ψ2
1ð1Þ

�
xP0

2ðyÞ þOðx2Þ; ð186Þ

ΞR ¼ −
1

2
P0ðyÞ þOðx2Þ; ð187Þ

Ξf ¼ −R−1
0ð1Þf2ð2ÞxP

00
2ðyÞ þOðx2Þ; ð188Þ

Ξψ ¼
	
1

2
R−1
0ð1Þψ0ð1Þ þ

1

2
ðR−1

0ð1Þψ0ð2Þ

− R−2
0ð1ÞR0ð2Þψ0ð1ÞÞx



P0ðyÞ −

1

2
R−1
0ð1Þψ1ð1ÞP1ðyÞ

− R−1
0ð1Þψ2ð2ÞxP2ðyÞ þOðx2Þ: ð189Þ

This means that we need to fit only the following
coefficients from the evolved variables R, f and ψ :
R0ð1Þ, R0ð2Þ, f2ð2Þ, ψ0ð0Þ, ψ0ð1Þ, ψ0ð2Þ, ψ1ð1Þ and ψ2ð2Þ. ψ0ð0Þ
must be fitted for consistency but is not used.

We have implemented both a least-squares fit of, say, ψ l

to axl þ bxlþ1 (direct fit), and a least-squares fit of ψ l=xl to
aþ bx (linear fit), and similarly for fl and Rl. The direct fit
weights grid points by xl relative to the linear fit. In each
case we fit to the first nfit points. We obtain R0ð1Þ as the
value of the left difference at x ¼ 0, as this term will have
to cancel the equivalent transport term, and we then fit to
R − R0ð1ÞðuÞx with the general method. We choose to also
fit R0ð3Þ, f2ð3Þ, ψ1ð2Þ and ψ2ð3Þ, which are not used, in order
to fit two powers of x to each function. The exception is that
we fit three powers to ψ0, which then requires nfit ≥ 3.
If we restrict to linear perturbations about Minkowski

spacetime in Bondi gauge, with R ¼ R0ð1ÞðuÞx exactly in
the background solution, we are dropping all other RlðkÞ
and all products of expansion coefficients. In an early
version of the code, we did that, and also truncated the
expansions at different orders from the above, resulting in
the following expansion:

γ0;1;2 ¼ Oðx2Þ; ð190Þ

b1 ¼ Oðx2Þ; ð191Þ

R4b2;x
G

¼ −4R2
0ð1Þ

�
f2ð2Þx4 þ

6

5
f2ð3Þx5

�
; ð192Þ

b2 ¼ −4R−1
0ð1Þ

�
f2ð2Þxþ

3

5
f2ð3Þx2

�
; ð193Þ

ðRΞRÞ0 ¼ −
1

2
R; ð194Þ

ðRΞfÞ2 ¼ −f2ð2Þx2 −
3

10
f2ð3Þx3; ð195Þ

ðRΞψÞ0 ¼
1

2
ψ0ð1Þx; ð196Þ

ðRΞψÞ1 ¼ −
1

2
ψ1ð1Þx; ð197Þ

ðRΞψÞ2 ¼ −ψ2ð2Þx2; ð198Þ

with all other components initialized to zero. The almost-
linear simulations presented here were carried out with this
expansion, but we have checked since that the fully
nonlinear expansion makes only a very small difference
to the error we have measured in convergence tests. In
particular, the magnitude and qualitative behavior of the
error is unchanged.

3. Integration of the hierarchy equations

We initialize the integrals for all hierarchy equations up
to i ¼ iexpand ≥ 1, and integrate from there. We truncate the
integrand to lmax;localðiÞ when integrating from xi−1 to xi.
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We then use ΞR to find the x-shift B. This allows us to
calculate the upwinded x-derivatives of the evolved vari-
ables R, f and ψ , as these depend on the local sign of B.
In the integrals for RΞf and RΞψ we truncate not the

integrand but the whole integral to l ≤ lmax;localðiÞ. We
also set

ðRΞψÞl ¼ −ðRBψ ;xÞupwind;l; l > lmax;localðiÞ: ð199Þ

With (161), this gives ðRψ ;uÞl ¼ 0 for l > lmax;localðiÞ. As R
does not depend on y in lsB and gsB gauges, this then also
sets ðψ ;uÞl ¼ 0, consistent with the boundary condition
ψ l ¼ 0 that we impose on l > lmax;localðiÞ. We treat RΞf
similarly.

F. Time evolution

We set initial data for f and ψ on u ¼ 0, 0 ≤ x ≤ xmax. In
gauges other than affine gauge we must also initialize R,
and in these gauges we think of this initialization as pure
gauge. We choose

Rð0; x; yÞ ¼ x=2; ð200Þ

in analogy with R ¼ ðvþ uÞ=2 in the standard double null
coordinates on Minkowski spacetime.
After solving all hierarchy equations, and applying the

shift terms in Ξ, the resulting “time” derivatives ϕevol;u are
discretized using the second-order Runge-Kutta method,
with all hierarchy equations and gauge conditions evaluated
at each Runge-Kutta sub-step, so that our time update can
be characterized as the “method of lines.”
In double-null or sdn gauges, Rðu; x; yÞ is genuinely

evolved, but in Bondi gauge R ¼ x, and only f and ψ are
evolved. In gsB gauge we have Rðu; x; yÞ ¼ sðuÞx.
Numerically, we evolve only sðuÞ (as an auxiliary variable).
In lsB gauge we have Rðu; x; yÞ ¼ R̄ðu; xÞ. Numerically,
we evolve Rðu; x; yÞ but filter out the l > 0 components
that are created by numerical error after each full time step.

V. TESTS IN THE ALMOST-LINEAR REGIME

We test convergence of the full nonlinear code in a
regime of small deviations from Minkowski spacetime
(with ψ ¼ 0). We evolve in several of the nonlinear gauge
choices we have discussed above. Specifically, we compare
sdn gauge (62), gsB gauge (64) with sðuÞ given by (65),
lsB2 gauge (72), and lsBtosdn gauge (75), each using the
ðG; xÞ formulation and the ðγ; RÞ formulation, the latter
with and without the integration by parts (47). All tests use
direct fits near the origin with nfit ¼ 2 and nexpand ¼ 1 and
the expansion (190)–(198).

A. Linearized solutions as test beds

In the small-data regime we can use exact solutions of
the linearized field equations as test beds. Small data here

means in practice that the difference between the solutions
of the linearized and nonlinear field equations can be
neglected in comparison with the numerical error in the
nonlinear evolution.
For clarity, in this subsection we denote the exact

solutions of the linearized equations by δψ, δf, δb, δR.
These will then be good approximations to nonlinear but
small ψ , f and b, and a small nonspherical part of R.
In the linearized equations, δψ on the one hand, and δf,

δb and δR on the other, evolve independently, while
different spherical harmonic components l also decouple
from each other.
We write the Minkowski background f ¼ b ¼ ψ ¼ 0 in

a gauge which agrees with all of our gauge choices. The
spherical background metric coefficientsG, R andH in this
gauge are given by Eqs. (B15)–(B16) in Appendix B.
The quantities δb and δR for the same physical solution

disagree in different gauges. By contrast δψ is linearly
gauge-invariant, and δf is linearly gauge-invariant within
the class of lsB and gsB gauges; see also Appendix D 3.
This means that the linearized solution in Bondi gauge also
gives us δψ in any other gauge, and δf in any lsB or gsB
gauge. In these gauges, δR ¼ 0 (in the linearized equa-
tions). By contrast, in sdn gauge δR develops dynamically
even if it is set to zero in the initial data.

B. Convergence test method

To look for second-order self-convergence of a variable
ϕ with respect to Δx, we assume that the Richardson
expansion

ϕΔxðxÞ ¼ ϕ0ðxÞ þ ϕ2ðxÞΔx2 þOðΔx3Þ ð201Þ

holds, where we have suppressed the other arguments of ϕ.
ϕ0ðxÞ is the solution in the continuum limit in x, and ϕ2ðxÞ
is the second-order error, assumed to be leading.
We now distinguish two cases. If ϕðu; x; yÞ obeys a

hypersurface equation (PDE in x and y only), then u is just
a parameter for the purposes of the convergence test. At
fixed finite resolution in ywe can then think of the PDE as a
(large) system of ODEs in x.
If, on the other hand, ϕ obeys an evolution equation

(PDE in u, x and y), then at fixed finite resolution in y we
can consider it as a (large) system of PDEs in u and x. Our
time step criterion (165) scales Δu in proportion to Δx. If
the discretization in u is also at least second-order accurate,
then we expect that the discretization errors in both u and x
are proportional to Δx2, so we are testing convergence in u
and x together.
In halving Δx exactly, Δu is halved approximately,

but not exactly, by the application of the time step condi-
tion (165). To compensate for this, we align the output
times at both resolutions exactly by adjusting the last time
step coming up to the scheduled output time.
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From pairs of numerical evolutions, we calculate the
self-convergence error estimate

Eϕ;Δx ≔
ϕΔx − ϕΔx=2

Δx2 − ðΔx=2Þ2Δx
2
ref ð202Þ

¼ 3

4

�
Δxref
Δx

�
2

½ϕΔx − ϕΔx=2� ð203Þ

≃Δx2refϕ2: ð204Þ

Any pair of resolutions could be used to estimate the error,
but for simplicity we use Δx and Δx=2, as the coarse grid
is then aligned with the fine grid, so we can evaluate the
difference on the coarse grid without interpolation. If we
know the continuum solution ϕ0, we can also compute the
alternative error estimate

Eϕ;Δx ≔
�
Δxref
Δx

�
2

½ϕΔx − ϕ0� ð205Þ

≃Δx2refϕ2: ð206Þ

Note that Eϕ;Δx depends on the reference resolution
Δxref , the fixed resolutionΔy (or lmax), and ðu; x; yÞ, but for
brevity we do not write these arguments. If Eϕ;Δx calculated
for two or more pairs of resolutions is similar at all Δx
below some threshold, we have pointwise second-order
convergence in Δx, and Eϕ;Δx itself is approximately equal,
pointwise, to the discretization error in x, or in u and x, at
the reference resolution Δxref and the fixed resolution Δy.
The error at any other (smaller) Δx can be estimated by
scaling with ðΔx=ΔxrefÞ2.
In this paper we do not yet carry out systematic

convergence testing in y, as we expect different spherical
harmonics to decouple in almost-linear evolutions. Hence
the error in ϕlðu; xÞ becomes negligible once lmax > l, and
otherwise ϕlðu; xÞ cannot be represented at all. However,
for completeness, looking ahead to Paper II, we discuss
testing convergence in y already here.
On a smooth nonlinear solution, a spectral method

should converge exponentially, but we shall see in Paper
II that our code converges only to second order in Δy.
Hence, to look for second-order convergence with respect
to Δy ∝ 1=lmax ∝ 1=Ny, we assume that the Richardson
expansion

ϕlmax
ðyÞ ¼ ϕ0ðyÞ þ ϕ2ðyÞl−2max þOðl−3maxÞ ð207Þ

holds, where we have again suppressed the other arguments
of ϕ and are keeping the resolution in them fixed. We can
then consider the PDE as a large system of ODEs in y.
ϕ0ðyÞ is the solution in the continuum limit in y (but at
fixed finite resolution in x and u), and ϕ2ðyÞ is the second-
order error, assumed to be leading. From pairs of numerical

evolutions, we then calculate the quantity

Eϕ;lmax 1
ðx; yÞ ≔ ϕlmax 1

− ϕlmax 2

l−2max 1 − l−2max 2
l−2maxref ð208Þ

≃ l−2maxrefϕ2: ð209Þ

We can compare ϕlðu; xÞ at different lmax, and so do not
need to align y-grids at different resolutions.
For code checks, it is often useful to plot single Fourier

components Eϕl;Δxðx; uÞ of the error against x, and animate
these plots with time u. In Figs. 2–4, for data dominated
by a single spherical harmonic, we show such single-l
errors against x, at a representative moment of time u. In
Fig. 5, for data containing all spherical harmonics, we
instead take the root-mean-square (from now, rms) norm
of Eϕ;Δxðx; u; yÞ over 0 ≤ x ≤ xmax and −1 ≤ y ≤ 1, and
plot this against u. We also evaluate the maximum norm
of Eϕl;Δxðx; uÞ over x, and the maximum norm of
Eϕ;Δxðx; u; yÞ over x and y, but we do not present plots here.

FIG. 2. D’Alembert test in lsB gauge: A snapshot of the scaled
errors Eψ2;ΔxðxÞ for the quadrupole component ψ2 of the scalar
field ψ , at five resolutions from Nx ¼ 256 to Nx ¼ 4096. We
show a moment of time u ¼ 0.48 where the wave passes through
the center. In the upper plot we truncate the numerical domain
0 ≤ x ≤ 3 to 0 ≤ x ≤ 1.4, as nothing interesting happens at
larger x. The lower plot, restricted to 0 ≤ x ≤ 0.1, focuses on
the center, and we show grid points for the two coarsest grids.
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C. Single-l tests

1. Generalized d’Alembert exact solutions

We have tested two kinds of exact solutions. The first are
the generalized d’Alembert solutions for a single spherical
harmonic derived in Appendix D and given in (D23) for the
scalar field δψ l, and in (D48)–(D49) for the coupled metric
perturbations ðδbl; δflÞ, both in terms of an arbitrary
function χ of one variable. These were derived, and used
as test beds, previously in [9].
We choose the free function χ to be a Gaussian with

center at 0.8 and width 0.2. As the amplitude for χ we
choose 10−11−l, which results in a maximum value ∼10−11
for ψ and f in the initial data. The numerical domain is
0 ≤ x ≤ 3 with x0 ¼ 2 and 0 ≤ u ≤ 1.9. We set Ny ¼ 5,
and Nx ¼ 64…8192, increasing by factors of two. For
these tests, and in contrast to critical collapse applications,
the fact that the grid shrinks to a point is irrelevant, and
this is why we stop at u ¼ 1.9, when the grid has shrunk
to 0.05 of its original size, and the waves have essentially
left the grid.
At high resolution, our numerical evaluation of the

d’Alembert exact solution at the innermost grid points
suffers from large round-off error, resulting from the

division by powers of r up to rlþ1. To get round this, at
small r we implement a truncated power-series expansion
of the d’Alembert solution.
In initial data in lsB and gsB gauge, R is set to the

spherical background value given in Eq. (B14), that is
R0ð0; xÞ ¼ x=2. In sdn gauge, we add to this a Gaussian
δR, so that we do not have to wait for δR to develop
dynamically.
To start with a summary of the numerical results that

follow, sdn and lsBtosdn gauge are unstable, our flavor of
gsb is unstable in the ðG; xÞ formulation but stable in the
ðγ; RÞ formulation (with and without integration by parts),
and the lsB2 flavor of lsB gauge is stable in all three
formulations. We then find pointwise second-order con-
vergence (both self-convergence and convergence against
the exact solution) for all l-components of all variables.

2. Results in sdn gauge

In sdn gauge, for l ¼ 3 d’Alembert data and l ¼ 3
d’Alembert plus Gaussian-in-R data, we have only gone
to 1024 grid points to see that in all three formulations the
error (against the exact solution) has a constant in x,
oscillating in u, part that does not decrease with resolution.

FIG. 3. D’Alembert test: As in Fig. 2, but now for the scaled
error Ef2;ΔxðxÞ. Again the lower plot is a detail of the upper one
near the center, restricted here to 0 ≤ x ≤ 0.2, and with grid
points for the two lowest resolutions.

FIG. 4. D’Alembert test: As in Fig. 2, but now for the scaled
error Eb2;ΔxðxÞ. Again the lower plot is a detail of the upper one
near the center, but now restricted to 0 ≤ x ≤ 0.02, on a log-log
scale, and showing grid points at all resolutions.
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In other words, in sdn gauge there is an instability at the
origin.

3. Results in lsB tosdn gauge

In lsBtosdn gauge, f is unstable at the center and not
converging from the start for l ¼ 2, 3. (ψ still converges,
presumably because it sees essentially flat spacetime).
It is sufficient to go to 1024 grid points to see this. We
have only tried the ðγ; RÞ formulation with integration
by parts.
A mild instability at the center is still present when the

blending is between 0.3x0 and x0, with pure lsB gauge for
x ≤ 0.3x0. This could be because we are then not projecting
R down to l ¼ 0 even at those x. We also see something like
a linear gauge shock at x ∼ 1.45, in the middle of the
blending zone.

4. Results in gsB gauge

In the ðG; xÞ formulation, l ¼ 2 is unstable in our flavor
of gsb gauge, with again an oscillating instability at the
center giving rise to an error constant in x that increases

with better resolution. We needed to go to 4096 points to
see this. In the ðγ; RÞ formulation with and without
integration by parts, it is stable and perfectly second order
convergent to 8192 points.
By contrast, l ¼ 3 in gsb gauge is stable up to 8192

points already in the ðG; xÞ formulation.

5. Results in lsB2 gauge

We have tested lsB2 gauge in the ðG; xÞ formulation only
for l ¼ 3 and only up to 1024 gridpoints. The error at 1024
grid points is visually identical with that in the ðγ; RÞ
formulation with integration by parts. We have tested lsB2
gauge in the ðγ; RÞ formulation with integration by parts in
more detail. All error plots in the following are in this gauge
and formulation.
In particular, we have tested the d’Alembert solution for

l ¼ 0, 1 (ψ only), l ¼ 2, 3, 4 (ψ , f and b) and l ¼ 5 (f and
b only, not suppressing this highest frequency for once).
We find second-order pointwise convergence of ψ0, ψ1 and,
for l ≥ 2, of ψ l, fl and bf, from Nx ¼ 64 to Nx ¼ 8092

radial grid points.

FIG. 5. (Single) plane-wave tests: the rms (over x and y) norm of the error in ψ , f and b (scaled by 10−11 to give an indication of
relative error), against u. ψ is in the left column, f in the middle column, and b in the right column. Angular resolution is indicated by
line color: Ny ¼ 17 black, Ny ¼ 33 blue, Ny ¼ 65 purple and Ny ¼ 129 red. Radial resolution is indicated by line type: Nx ¼ 64 solid,
Nx ¼ 128 dashed, Nx ¼ 256 dotted, Nx ¼ 512 dot-dashed, and Nx ¼ 1024 dot-dot-dashed. The middle plot in each column enlarges
the lower part of the upper plot, and for clarity omitsNy ¼ 17. The lower plot additionally omitsNx ¼ 64, and is scaled with ðNx=128Þ2,
to test for (local-in-u) second-order convergence with Nx. The horizontal range is always 0 ≤ u ≤ 1.5, but the vertical range (rms error)
has been chosen differently in each of the nine plots.
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For l ¼ 2, the above statement needs to be qualified. The
error in ψ2 is not smooth near the origin, but has a blip at
the second grid point (rather than a specific value of x).
This is demonstrated in Fig. 2. However, we get pointwise
second-order convergence at fixed x for all resolu-
tions Δx < x=2.
Figure 3 shows the scaled error in f2. Here, it is not clear

if we have reached convergence even at Nx ¼ 4096, and it
appears again that the error is not smooth at the origin,
although in a different manner to that in ψ2.
Figure 4 shows the scaled error in b2. Near the origin, the

scaled error is Eb2;ΔxðxÞ ∼ ðΔxÞ2=x. At the innermost grid
point this evaluates to ∼Δx. Hence b2 converges pointwise
to second order at all points, including near the origin, but
converges only to first order in the maximum norm, which
at high resolution is dominated by that innermost grid
point. In other norms, such as the root-mean-square norms,
the convergence would be at an intermediate order.
For l > 2, we suspect that the error is still technically

unsmooth near the origin, but this is hard to see as the
errors, like the variables themselves, are suppressed at the
origin by powers of xl for f, ψ and the other scalars, and
xl−1 for b. Hence the second-order pointwise convergence
looks fine. It is possible that our methods can be improved
to make the error better behaved at the origin, but we leave
this to future work.
We note finally that, where we have the exact solution,

the self-convergence estimate of the error is pointwise
approximately equal to the true error (difference from the
exact solution).
To test convergence at l > 5, we change from the

d’Alembert solution (which becomes increasingly compli-
cated) to simple Gaussian data for a single l. As we need
larger Ny to represent larger l, we go to the half-range, with
N̄y ¼ 17. We now set initial data directly for fl and ψ l,
namely a Gaussian again with center at x ¼ 0.8, width 0.2,
and amplitude 10−11. The numerical domain is again 0 ≤
x ≤ 3 with x0 ¼ 2 and 0 ≤ u ≤ 1.9, with N̄y ¼ 17, and
Nx ¼ 64…8192, increasing by factors of two. At l ¼ 2, we
find the same as with the d’Alembert l ¼ 2 data. At l ¼ 4,
8, 16, 32 we find apparent perfect second-order pointwise
convergence (as for the l ¼ 4 d’Alembert data).

D. Plane-wave tests

1. Plane-wave exact solutions

We show in Appendix D 6 that any solution of the scalar
wave equation gives rise to a solution of the linearized
Einstein equations, without the need for a spherical harmo-
nic decomposition. In particular, the scalar wave equation
admits plane-wave exact solutions, and in Appendix D 6 b
we give these in Eq. (D61) for δψ and in (D62)–(D63)
for the related ðδbl; δflÞ. Of course, these are just the
translation into our coordinates of the linear limit of the

well-known plane-symmetric gravitational waves. This is
our second exact solution test bed.
A scalar field plane wave moving in the negative

z-direction on flat spacetime takes the form

ψ ¼ χðtþ zÞ ¼ χðuþ rþ zÞ ¼ χðuþ rð1þ yÞÞ: ð210Þ

Its contours at constant z are parabolas in the ðρ; zÞ plane
(where ρ2 ≔ r2 þ z2), as one expects of the intersection of
a null plane with a null cone. When this intersection reaches
the vertex of the cone it closes up and disappears.
We choose χ to be a Gaussian with center 1.0 and width

0.1, and with amplitude 10−11 for ψ, which means that the
maximum of ψ is exactly 10−11, and amplitude 10−13 for f,
which means that the maximum of f is approximately
4 × 10−11. The numerical domain is again 0 ≤ x ≤ 3 with
x0 ¼ 2, now with 0 ≤ u ≤ 1.5. This means that the plane
wave crosses the origin and then disappears out of the
numerical domain during the evolution.
The (single) plane wave solutions contain both even and

odd spherical harmonics. In order to test plane waves with
our half-range formulation, we add a copy of the samewave
moving in the opposite direction to make ψ and f even
functions of y (at constant u and x), and b an odd function.

2. Results in lsB2 gauge

We evolve with all combinations of Ny ¼ 17, 33, 65,
129, N̄y ¼ 9, 17, 33, 65 (for the double plane wave only),
and Nx ¼ 64…1024.
This double plane wave solution contains only even

spherical harmonics, and so can be run on the full or half
range in y. We have verified that the errors in the double
plane wave test are identical in the equivalent resolution
pairs. We remove the top two frequencies in f and top
frequency in b in the exact solution before the comparison
with the numerical solution, as the numerical solution is
similarly truncated.
Beginning with the single plane wave, we evaluate the

maximum and rms norms of the error against u. The norms
are taken over all grid values of x and y, with y ¼ � −1
weighted half in the rms norm in order to make it the same
on the full and half-grid. The rms error in ψ , f and b for the
single plane wave at the different resolutions is shown
in Fig. 5.
The figure consists of nine plots laid out in a square. The

three columns from left to right show the variables ψ , f and
b. Focus initially on the middle column, showing f. Each
plot shows four differences of angular resolution and five
differences of radial resolution. Different radial resolutions
are distinguished by line type, and different angular
resolution by line color.
In the top plots, the rms error is not scaled. We see

that the error decreases quickly with angular resolution Ny,
but is almost independent of radial resolution Nx. This

GUNDLACH, HILDITCH, and BAUMGARTE PHYS. REV. D 110, 024018 (2024)

024018-26



indicates that for Ny ¼ 17, 33 and Nx ¼ 64…1024, the
total error budget is dominated by angular discretiza-
tion error.
The middle plots zoom in on the smallest errors, which

arise from the highest angular resolutions. They demon-
strate that at Ny ¼ 65, 129 the error does decrease with
increasing radial resolution Nx. In the lowest plot these
errors are scaled with ðNx=128Þ2. The scaled curves with
Ny ¼ 129 (omitting Nx ¼ 64) lie on top of each other,
indicating second-order convergence with Nx. This indi-
cates that at Ny ¼ 129, for Nx ¼ 128…1024 the error
budget is dominated by the radial discretization error.
Comparing now the three variables ψ , f and b, we note

that as b is computed from f at each time step, it shows a
numerical error already in the initial data, whereas ψ and f
are evolved from analytic initial data, and so their error is
zero at u ¼ 0. For Ny ¼ 129 only, the initial error in b is
negligible, and the subsequent error in b is similar to the
error in f or ψ.
We see perfect second-order convergence with Nx in ψ

(but not f and b) already at Ny ¼ 65. Moreover, the errors
in ψ with Ny ¼ 65 and 129 (purple and red curves) are
indistinguishable in our plots. We conclude that a plane
scalar wave requires less angular resolution than a plane
gravitational wave of the same shape χ (where χ is a
solution of the scalar wave equation). This may be because
the exact solution for f and b involves derivatives of χ.
A closer look at the middle and bottom plots shows a

transition from an error dominated by y-discretization at
early times and small Ny and by x-discretization at late
times and large Ny. Plotting single-l components of the
error against u and x further shows that the early discre-
tization error in y arises mostly at x≳ 1.5 and the late error
discretization error in x mostly at x≲ 1.5.
The rms errors in the double plane wave test are very

similar as functions of u, but larger by roughly
ffiffiffi
2

p
, as there

are now two identical waves of error instead of one in the
same numerical domain. We therefore do not present
plots here.

E. Tests of the computation of the Hawking mass

As a different indication of numerical error, we have
implemented the expression for M given by (84) with
(103), a centered finite differencing of this to compute the
resulting M;x, and, independently, the direct expression
(105) for M;x. The two expressions for M;x are affected
in different ways by finite differencing error in x and
spectral error in y, and so their agreement in the continuum
limit is a nontrivial test of the correctness of (84) with
(103), (105), the hierarchy equations, and their discretiza-
tions. The cleanest test is one where the solution is close to
Minkowski, so that the hierarchy equations are approx-
imately linear in ψ , b and f, and the expressions for γ and
M are approximately quadratic.

We have tested single-l Gaussian initial data in f or ψ,
and have varied the amplitude, Nx, Ny, and the numerical
method. We have not evolved these data.
We first take a Gaussian in f only with center at x ¼ 1,

width 0.25, xmax ¼ 5, l ¼ 2, and amplitude 10−4. Then
M ∼ 9 × 10−8 at the outer boundary, and M;x has a maxi-
mum of ∼2.5 × 10−7. Our baseline resolution isNx ¼ 1000
and Ny ¼ 5. At this baseline, the difference between the
two versions of M;x, an estimate of the error in either, has
maximum ∼1.1 × 10−10, a relative error of ∼4 × 10−4.
Decreasing the amplitude by a factor of 10 reduces M

and the error in M;x by a factor of 100, as expected. If we
decrease the amplitude much more, the error is dominated
by noise. This would be expected as round-off-error in the
cancellation between 1 and 2R2ρþρ− in C.
The error with Ny ¼ 5, 9, 17, 33, 65, 129 is the same,

and so for N̄y ¼ 3, 5, 9, 17, 33, 65 on the half-range.
Doubling Nx from the baseline reduces the error by a factor
of 4. Hence the error in M in almost-linear evolutions is
dominated by finite differencing in x, while spectral error in
y is negligible.
Initial data in which only ψ is nonvanishing test other

parts of the two expressions for M;x. Note that b ≠ 0 when
hierarchy equations are solved for these data even with
f ¼ 0. We use a Gaussian with the same center and width
as for f above. An amplitude of 10−4 gives M ∼
5.5 × 10−8. M;x has a maximum of ∼1.5 × 10−7, and the
error at baseline has a maximum of ∼4.5 × 10−11, a relative
error of ∼3 × 10−4. All other comments for pure f data just
above also apply here.

VI. CONCLUSIONS

We have begun an investigation of the use of null
coordinates in numerical relativity, applied to gravitational
collapse. In this first paper we have both made progress and
identified new difficulties.

A. Progress

On the purely mathematical side, we have shown that the
ingoing null derivative Ξ normal to the surfaces of constant
ðu; xÞ plays a role similar to the Lie derivative Ln normal to
spacelike time slices. Specifically, and oversimplifying a
bit, the Einstein equations give us the geometric time
derivative LnLngij on the usual spacelike time slices, but
Ξgij on null slices. Writing the hypersurface equations in
terms of Ξ removes any explicit appearance of the radial
shift B, just as writing the 3þ 1 equations in terms of Ln
removes any explicit appearance of the lapse and shift.
On the numerical side, we have removed a practical

obstacle to using null cones with a regular center, already
identified in [9], namely that the time stepΔu ∼ ΔxðΔθÞ2 is
unreasonably small at high angular resolution. We have
been able to replace this by Δu ∼ Δx, similar to Cartesian
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coordinates, by reducing the angular resolution at small
radius.
For applications to critical collapse in spherical polar

coordinates, we have found an equivalent of the method
of repeated radial regridding of [27] that works beyond
spherical symmetry. Essentially this is done by adding to a
standard gauge choice, such as Bondi gauge, an ingoing
radial shift that shrinks the grid continuously, with the outer
boundary becoming future spacelike [30].
In the present paper, we have demonstrated convergence

of these numerical methods in the evolution of weak data,
and in Paper II we successfully apply them axisymmmetric
scalar field critical collapse.

B. Problems

As we have discussed, one cannot find marginally outer-
trapped surfaces embedded in null cones with a regular
center, and in vacuum axisymmetry not even any (non-
marginally) outer-trapped surfaces. We propose using closed
2-surfaces of large Hawking compactness (Hawking mass/
area) as an alternative diagnostic of black hole formation. In
Paper II, this allows us to find the threshold of black-hole
formation by bisection, and demonstrate critical scaling of
the black hole mass.
It becomes clear in Paper II that in sufficiently non-

spherical spacetimes the divergence of the congruence of
the generators of our null cones becomes negative in some
directions even when no black hole is formed. Bondi
coordinates and double-null coordinates, and the general-
ized Bondi coordinatees of Paper II, break down when this
happens.

C. Outlook

Two key questions remain open. The first is whether
outgoing null cones emanating from a regular center remain
regular in strong gravity further away from spherical sym-
metry, and in particular in electromagnetic or vacuum
critical collapse. This is a purely geometric question,
independent of gauge or numerical methods. Note also that
the potential problem is nonsphericity, rather than black hole
formation. One reason to be optimistic is that in [5] we have
constructed outgoing null cones emanating from a regular
vertex in postprocessing of 3þ 1 near-critical vacuum
evolutions, as a way of comparing evolutions in different
coordinate systems, without finding caustics.
A second question is how much useful information about

any newly formed black hole we can find, given that
outgoing null coordinates cannot penetrate into the horizon,
or at least not very deeply, and that we cannot find MOTS
on a single coordinate null cone.
As already discussed, going further will probably require

a change to a generalized affine parameter gauge. We leave
this to future work.
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APPENDIX A: THE TIME STEP PROBLEM
IN NULL COORDINATES

We show here that the time step for explicit finite
differencing schemes is even more severely limited in
the combination of polar spatial coordinates with a regular
center and a null “time” coordinate u than for polar
coordinates and the usual (spacelike) time coordinate t.
For simplicity we restrict to axisymmetry in 3þ 1 dimen-
sions. We focus on the causal geometry, rather than giving a
rigorous argument. Our presentation closely follows [9].
Consider at first the Minkowski metric in standard

spherical polar coordinates,

ds2 ¼ −dt2 þ dr2 þ r2ðdθ2 þ sin2 θdφ2Þ: ðA1Þ

In an abuse of notation, we now let dxμ stand for the small
finite coordinate distance from the grid point that is being
updated to any one of the other grid points from which the
update is calculated. These will be integer multiples of
the grid spacings Δxμ. For an explicit numerical method,
the update is found from only a few neighboring grid points
to the past. The set of these points is called the “stencil” of
the point being updated. Causality requires that the numeri-
cal stencil be wider than the physical light cone, or, in our
notation, ds2 > 0 for the outermost grid points in the stencil.
Empirically, this is also a necessary criterion for the stability
of any explicit finite difference scheme, often referred to as
the Courant-Friedrichs-Lewy (CFL) condition.
For simplicity we assume that the stencil involves,

besides the point being updated, only grid points on the
previous time level. We parametrize such a stencil by
dt ¼ −Δt, dr ¼ sΔr, dθ ¼ qΔθ, with Δt;Δr;Δθ > 0 by
definition, and s; q ¼ −1, 0, 1 as a simple example of a
3 × 3 point stencil in r and θ. We assume axisymmetry, so
nothing depends on φ. We also have r ¼ pΔr, where, for
example, p ¼ 1; 2; 3;… on a centered equally spaced grid.
What matters here is only that s and q are of order unity and
so is the smallest possible value of p, which occurs next to
the center.
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The CFL condition ds2 > 0 translates into

Δt < Δr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ p2q2Δθ2

q
: ðA2Þ

The choice s ¼ 0, q ¼ �1 of points in the stencil, with the
choice p ¼ 1 to locate the stencil next to the center, gives

Δt≲ ΔrΔθ; ðA3Þ

where we have replaced < by ≲ to allow for more general
stencils and for other Oð1Þ factors in the argument. As is
well-known, this is worse than the time step restriction
Δt≲minðΔxiÞ in Cartesian coordinates by the factor
Δθ ≪ 1. Put differently, the right-hand side of (A3) is
quadratic in small quantities. Halving the grid spacing in all
spatial directions halves Δt in Cartesian coordinates, but
reduces it to a quarter in polar coordinates.
Consider now the Minkowski metric in the null coor-

dinate form

ds2 ¼ −2Gdudx −Hdu2 þ R2ðdθ2 þ sin2 θdφ2Þ: ðA4Þ

We let du ¼ −Δu, dx ¼ −sΔx, dθ ¼ qΔθ, and R ¼ pΔx.
At the center R ¼ 0, any radial gauge must approach Bondi
gauge to keep it at x ¼ 0, and setting H ¼ 1 and R ¼ x
there without loss of generality, we also have G ¼ 1. The
CFL condition(A2) is now

Δu≲ Δx
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ p2q2ðΔθÞ2
q

− s
�
: ðA5Þ

With s ¼ 1, p ¼ 1, q ¼ �1, and assuming Δθ ≪ 1, the
equivalent of (A3) is now

Δu≲ 1

2
ΔxðΔθÞ2; ðA6Þ

worse by a second factor of Δθ ≪ 1 than for polar
coordinates on spacelike time slices. Except in spherical
symmetry, this is a problem of any explicit numerical time
evolution scheme on null cones with a regular vertex.
At large R, the sharpest CFL condition arises from

stencil points with q ¼ 0 (and p then drops out). We now
consider arbitrary G and H. The CFL condition becomes

Δu < −
2sG
H

Δx: ðA7Þ

Recall that G > 0. Choosing s ¼ �1 with sign opposite to
that of H we obtain

Δu <
Δx
B

; ðA8Þ

where B ≔ H=ð2GÞ as defined previously. This is just
the CFL condition for the x-advection term in ∂u ¼
Ξþ B∂x þ Sb∂y.

APPENDIX B: MINKOWSKI SPACETIME

In Minkowski spacetime, we can choose coordinates
where f ¼ b ¼ 0 and the remaining metric coefficients R,
G and H depend only on u and x. We denote them by R0,
G0 and H0. With these assumptions, there are only two
nontrivial hierarchy equations, namely

�
ln

G0

R0;x

�
;x
¼ 0; ðB1Þ

ðR0Ξ0R0Þ;x ¼ −
1

2
G0: ðB2Þ

Clearly, these can be integrated in terms of two arbitrary
functions of u.
To clarify what these two functions are in a regular

spacetime, we note that in the standard double null
coordinates ðU;VÞ, the Minkowski metric is

ds20 ¼ −dUdV þ
�
V −U

2

�
2

dΩ2: ðB3Þ

We now change to the most general null coordinates u and
x adapted to the spherical symmetry, defined by

U ¼ UðuÞ; ðB4Þ

V ¼ 2R0ðu; xÞ þ UðuÞ; ðB5Þ

and obtain the metric

ds2 ¼ −2G0dudx −H0du2 þ R2
0dΩ2; ðB6Þ

where

G0 ¼ U0R0;x; ðB7Þ

H0 ¼ U0ðU0 þ 2R0;uÞ; ðB8Þ

and hence

Ξ0R0 ¼ −
1

2
U0: ðB9Þ

Therefore the general solution of (B1), (B2) with a regular
center is (B7) and (B9): note this has only one free function
UðuÞ. (B7) can be written as

g0 ¼ U0ðuÞ: ðB10Þ

In Bondi coordinates, where R;u ¼ 0, we have

H0;Bondi ¼ U0ðuÞ2: ðB11Þ

If we choose x ¼ 0 to be a geodesic and the coordinate
basis vectors to be parallely transported along it, the metric
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at x ¼ 0 is given by the Minkowski metric (B6) at x ¼ 0 for
all times.
In flat spacetime, shifted double null coordinates, shifted

global Bondi coordinates and a natural choice of local
shifted Bondi coordinates are all identical. To find the
metric in these coordinates, we start again from the metric
(B3) and make the specific coordinate transformation

U ¼ u − x0; ðB12Þ

V ¼ ðu − x0Þ
�
1 −

x
x0

�
; ðB13Þ

where x0 > 0 is a parameter, to obtain (B6) with

R0 ¼
1

2

�
1 −

u
x0

�
x; ðB14Þ

G0 ¼
1

2

�
1 −

u
x0

�
; ðB15Þ

H0 ¼ 1 −
x
x0

: ðB16Þ

It follows that

g0 ¼ 1; ðB17Þ

B0 ≔
H0

2G0

¼ x0 − x
x0 − u

; ðB18Þ

Ξ0R0 ¼ −
1

2
: ðB19Þ

We call this the shifted Minkowski (from now on, sM)
background gauge.

APPENDIX C: SPHERICAL SYMMETRY

We restrict to spherical symmetry, but bring in a
spherical scalar field as matter, by setting f ¼ b ¼ 0 and
making R, G, H and ψ functions of u and x only. The
metric is

ds2 ¼ −2Gdudx −Hdu2 þ R2dΩ2: ðC1Þ

The hierarchy equations become

D ln g ¼ 4πRðDψÞ2 ðC2Þ

DðRΞRÞ ¼ −
g
2
; ðC3Þ

DðRΞψÞ ¼ −ðΞRÞDψ ; ðC4Þ

where

Ξ ¼ ∂u −
H
g
D: ðC5Þ

In spherical symmetry, diagnosing collapse and estimat-
ing the horizon mass is straightforward. The Hawking
compactness C and mass M are given by

M ¼ R
2
C; C ¼ 1þ 2ΞR

g
; ðC6Þ

and, with j∇Rj2 ¼ −2ΞR=g, the Hawking mass in spherical
symmetry is equal to the well-known Misner-Sharp mass

M ¼ R
2
ð1 − j∇Rj2Þ: ðC7Þ

(Unlike the Hawking mass in general, the Misner-Sharp
mass in spherical symmetry derives from a conserved
stress-energy current [37].) The mass aspect (105) is

M;x ¼ −4πR2R;x
ΞR
g

ðDψÞ2; ðC8Þ

and the redshift defined in (77) is

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2gΞR

p
; ðC9Þ

We see that, as long as ΞR remains finite, g → ∞ gives both
Z → ∞ andC → 1, so this is the obvious criterion for black
hole formation, both from the compactness reaching one
and the red shift from the center to infinity diverging.
Assuming that the time step is limited by the Bondi shift

(56), as in Eq. (165), we have

Δu
Δx

≲
����R;x

ΞR

���� ¼ G
jgjjΞRj : ðC10Þ

At finite G and ΞR, this goes to zero again as g → ∞, or
equivalently R;x → 0.
A commonly used non-null coordinate system in spheri-

cal symmetry is the polar-radial one, defined by

ds2 ¼ −α2dt2 þ a2dR2 þ R2dΩ2; ðC11Þ
where R is now a coordinate. It is instructive to relate this to
our null coordinates.
Expressing ðt; RÞ in terms of ðu; xÞ, and comparing

coefficients of (C11) and (C1), we can write the resulting
three equations as

t;x ¼
a
α
R;x; ðC12Þ

g ¼ −a2
�
R;u −

α

a
t;u

�
; ðC13Þ

H ¼ g

�
R;u þ

α

a
t;u

�
; ðC14Þ
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and from this we can derive

ΞR ¼ −
g
2a2

¼ 1

2

�
R;u −

α

a
t;u

�
; ðC15Þ

C ¼ 1 −
1

a2
¼ 1 − j∇R2j; ðC16Þ

Z ¼ g
a
¼ αt;u − aR;u: ðC17Þ

From (C12) and (C17) we find

Zdu ¼ αdt − adR; ðC18Þ

and so the redshift of the center with respect to other
observers at constant R is

Z ¼ α
dt
du

����
R
¼ dt0

du

����
R
; ðC19Þ

where t0 is proper time along worldlines of constant R. In a
static spacetime only, we can set t;u ¼ 1 without loss of
generality and R;u ¼ 0, and we obtain Z ¼ α.

APPENDIX D: AXISYMMETRIC LINEAR
PERTURBATIONS OF MINKOWSKI SPACETIME

1. Linearized field equations in any radial gauge

As a test of our formulation and numerical methods
beyond spherical symmetry, we linearize about flat space-
time. We denote the background values of all fields by a
subscript 0, and so ψ0 ¼ 0. We adapt the background
coordinates to spherical symmetry by making G0, H0 and
R0 functions of u and x only. Although G0 ¼ R0;x holds in
the background, for clarity we write either G0 or R0;x in the
linearized equations, as they appear in the linearization
process.
The linearized hierarchy equations are

�
δG
G0

−
δR;x

R0;x

�
;x
¼ 0 ðD1Þ

for δG, then

�
R4
0δb;x
G0

�
;x
¼ R2

0ð2Sδf;xy − 8yδf;xÞ −
R2
0

G0

δG;xy

− 2R0δR;xy þ 2R0;xδR;y

þ
�
R2
0G0;x

G2
0

þ 2
R0R0;x

G0

�
δG;y; ðD2Þ

ðR0Ξ0δfÞ;x ¼
R0

4x
δb;xy þ

R0;x

2
δb;y − ðΞ0R0Þδf;x

þ 1

4R0

δG;yy ðD3Þ

for δb and δf,

ðR0Ξ0δRþ ðΞ0R0ÞδR − R0R0;xδBÞ;x ¼ δSR ðD4Þ
for either δR or δH (we have not written out δSR as it is
long), and

ðR0Ξ0δψÞ;x ¼
G0S
2R0

δψ ;yy −
G0y
R0

δψ ;y − ðΞ0R0Þδψ ;x ðD5Þ

for δψ. We see that δψ decouples from the metric equations
in any radial gauge, and is independent of the choice of
linearized radial gauge.
With the background solution G0 ¼ R0;x, and the boun-

dary condition δG ¼ δR;x at the origin, which follows from
linearizing the gauge condition G ¼ R;x that u is proper
time at the origin, the solution of (D1) is

δG ¼ δR;x ðD6Þ
everywhere. This is far as we can go without choosing a
(linearized) radial gauge.

2. Linearized field equations in linearized Bondi gauge

The perturbation equations take their simplest form in
Bondi gauge. This is defined by R ¼ x≕ r in the full
equations, and hence by R0 ¼ x, G0 ¼ H0 ¼ 1 in the
background, and δR ¼ δG ¼ 0 for the perturbations.
However, the choices of background gauge and linear

perturbation gauge are in principle independent. In par-
ticular, we can choose to use sM gauge in the background,
but linearized Bondi gauge δR ¼ δG ¼ 0 for the perturba-
tions. Under a change of background gauge, for example
from Bondi to sM, the linear perturbations δb, δf and δψ
change only their argument, as if they were scalars.
In linearized Bondi gauge, defined by δR ¼ δG ¼ 0, δf

and δb obey the coupled equations
�
R4
0b;x
G0

�
;x
¼ R2

0ð2Sδf;xy − 8yδf;xÞ; ðD7Þ

ðR0Ξ0δfÞ;x ¼
R0

4
δb;xy þ

R0;x

2
δb;y − ðΞ0R0Þδf;x: ðD8Þ

These are just the first lines of (D2), (D3) above. The
linearized wave equation (D5) does not simplify further.
Using G0 ¼ R0;x, as well as δG ¼ δR ¼ 0, the linearized
hierarchy equation (D4) becomes

�
−
R0

2
δH

�
;x
¼ R2

0

4

�
Sδb;xy − 2yδb;x

�

þ R0;x

	
ð6S − 4Þδf − 2yR0δb

þ S
2

�
2R0δb;y þ 8yδf;y − Sδf;yy

�

: ðD9Þ
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Given a solution ðδf; δbÞ of (D7), (D8), (D9) can be solved
for δH by integration, but as δH does not couple back into
the equations for δb and δf, we can ignore it.
The perturbation equations in linearized Bondi gauge

(D8), (D7) are given in Bondi background coordinates as
Eqs. (D25), (D26) below.

3. Other linearized radial gauges

Consider now the equations linearized about Minkowski
in any linear gauge obtained by linearizing a nonlinear
gauge. The different spherical harmonics l still evolve
independently.
If R;y ¼ 0 in the nonlinear gauge, such as in gsB and lsB

gauge, the l ≠ 0 components of δR are absent, and hence,
from (D6), also the l ≠ 0 components of δG. (D3), (D2)
then still reduce to (D8), (D7), and exact solutions derived
in linear Bondi gauge are still relevant, after changing only
their argument.
By contrast, in any gauge where R;y ≠ 0, such as sdn

gauge, δR and δG couple back to δf and δb. However, δf
transforms as a scalar under changes of radial gauge, even
nonlinearly, and because f is already a perturbation the
change due to the change of argument is quadratically
small. By contrast, δb changes already to linear order. δR
does transform as a scalar, but R;x ≠ 0 in the background
solution, so the change of argument changes δR to linear
order. In summary, we can still use the exact solution for δf
as a test bed, but not δb.

4. Solution of the scalar wave equation
in Bondi gauge

We now find explicit solutions of the scalar wave
equation for δψ, and of the coupled equations for δf
and δb in linear Bondi gauge, using separation of variables.
We use Bondi gauge R ¼ x in the background, and to
indicate this we write r for x. At the end we translate the
results back into sM background gauge. We begin in this
subsection with the wave equation.
The linear wave equation on flat spacetime in Bondi

coordinates is

− 2δψ ;ur þ δψ ;rr þ
2

r
ðδψ ;r − δψ ;uÞ

þ 1

r2
½ð1 − y2Þδψ ;y�;y ¼ 0: ðD10Þ

Replacing the retarded time coordinate u with the
Minkowski time coordinate

t ≔ uþ r; ðD11Þ

and writing

δψðu; r; yÞ≕ δϕðt; r; yÞ ¼ δϕðuþ r; r; yÞ; ðD12Þ

this takes the more familiar form

−δϕ;tt þ δϕ;rr þ
2

r
δϕ;r þ

1

r2
½ð1 − y2Þδϕ;y�;y ¼ 0: ðD13Þ

We initially work in coordinates ðt; r; yÞ and switch back to
ðu; r; yÞ later.

a. Separating off the y-dependence.

Spherical symmetry of the background allows us to
separate the angle y with the ansatz

δϕðt; r; yÞ≕
X∞
l¼0

δϕlðt; rÞPlðyÞ; ðD14Þ

where PlðyÞ is the Legendre polynomial of order l, obeying

L2Pl ≔ ð1 − y2ÞP00
l − 2yP0

l ¼ −lðlþ 1ÞPl: ðD15Þ

We then have the one-dimensional wave equation

−δϕl;tt þ δϕl;rr þ
2

r
δϕl;r −

lðlþ 1Þ
r2

δϕl ¼ 0; ðD16Þ

for the l-th partial wave, or equivalently

−2δψ l;ur þ δψ l;rr þ
2

r
ðδψ l;r − δψ l;uÞ −

lðlþ 1Þ
r2

δψ l ¼ 0;

ðD17Þ

where

δψðu; r; yÞ≕
X∞
l¼0

δψ lðu; rÞPlðyÞ; ðD18Þ

b. General solution of lth partial wave equation

We can find the general solution of (D16) that is regular
at r ¼ 0 in terms of a single free function χl of one variable,
in the form of a generalized d’Alembert solution [38], as

δϕlðt; rÞ ¼
Xl

p¼0

Ap
l r

−p−1
h
χðl−pÞl ðt − rÞ

− ð−1Þl−pχðl−pÞl ðtþ rÞ
i
; ðD19Þ

where

Ap
l ≔

ðlþ pÞ!
2pp!ðl − pÞ! ; ðD20Þ

and χðnÞ denotes the nth derivative of χ.
Expanding χðt� rÞ into its Taylor series about r ¼ 0, we

obtain the double sum
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δϕlðt; rÞ ¼ 2
Xl

p¼0

X∞
q¼0

l−pþq odd

ð−1ÞqAp
l

q!
rq−p−1χðl−pþqÞ

l ðtÞ: ðD21Þ

Noting that l − pþ q ≥ 0 and odd in all terms, we para-
metrize q as q ¼ 2kþ 1 − lþ p. We then have

δϕlðt; rÞ ¼ 2
X∞
k¼0

0
@ Xl

p¼max
ð0;l−2k−1Þ

ð−1Þl−pAp
l

ð2kþ 1 − lþ pÞ!

1
Ar2k−lχðkÞl ðtÞ:

ðD22Þ

The inner sum (in round brackets) vanishes for k < l, and
so the outer sum starts up only at k ¼ l. Hence, the expres-
sion (D19) admits a formal expansion in even (odd) powers
of r at constant t, for l even (odd), starting at rl. In
particular, δψ lðt;−rÞ ¼ ð−1Þlδψ lðt; rÞ, and δψ l ∼ rl at the
origin.
Switching back from ðt; r; yÞ to ðu; r; yÞ, we trivially

find (D18) with

δψ lðt; rÞ ¼
Xl

p¼0

Ap
l r

−p−1
h
χðl−pÞl ðuÞ

− ð−1Þl−pχðl−pÞl ðuþ 2rÞ
i
; ðD23Þ

Similarly, by setting t ¼ uþ r, in (D22), we trivially obtain

δψ lðt; rÞ ¼ 2
X∞
k¼0

0
@ Xl

p¼max
ð0;l−2k−1Þ

ð−1Þl−pAp
l

ð2kþ 1 − lþ pÞ!

1
A

× r2k−lχðkÞl ðuþ rÞ: ðD24Þ

5. Relating the perturbed Einstein equations
in Bondi gauge to the scalar wave equation,

in spherical harmonics

In the vacuum Einstein equations in Bondi gauge,
linearized about flat spacetime, the coupled equations for
δb and δf (D8), (D7) become

r2δb;rr þ 4rδb;r − 2ð1 − y2Þδf;ry þ 8yδf;r ¼ 0;

ðD25Þ

rð4δf;ur − 2δf;rrÞ þ 4ðδf;u − δf;rÞ − rδb;ry − 2δb;y ¼ 0;

ðD26Þ

where we have used x ¼ R0≕ r and Ξ0R0 ¼ −1=2. These
equations are equivalent to Eqs. (6), (7) of [9]. In that paper
solutions of these coupled equations were related to solu-
tions of the scalar wave equation. Here we give a self-
contained derivation of that relation.

a. Separating off the y-dependence

Spherical symmetry of the background means we can
make the separation of variables ansatz

δb ¼ δblðu; rÞPð1Þ
l ðyÞ; ðD27Þ

δf ¼ δflðu; rÞPð2Þ
l ðyÞ; ðD28Þ

with the Pð1;2Þ
l ðyÞ to be found below. We obtain the four

separated equations

Pð1Þ
l

0 ¼ Pð2Þ
l ; ðD29Þ

ð1 − y2ÞPð2Þ
l

0 − 4yPð2Þ
l ¼ λPð1Þ

l ; ðD30Þ

ðr4δbl;rÞ;r ¼ 2λr2δfl;r; ðD31Þ

2rðrδfl;uÞ;r − ðr2δfl;rÞ;r ¼
1

2
ðr2δblÞ;r; ðD32Þ

where, without loss of generality, we have fixed a sepa-
ration constant in (D29) to one. Clearly (D29) and (D30)
together give

ð1 − y2ÞPð1Þ
l

00 − 4yPð1Þ
l

0 ¼ λPð1Þ
l : ðD33Þ

b. Tensor spherical harmonics

We would like to relate the unfamiliar spherical har-

monic-like functions Pð1Þ
l and Pð2Þ

l to the scalar spherical
harmonics Pl. To motivate this, we note, following [39],
that a geometrically natural ansatz for a perturbation δgij
of the round unit metric g0ij on S2 with covariant deri-

vative ∇i is

δgij ¼ g1Ylmg0ij þ g2∇i∇jYlm ðD34Þ

where we have gone beyond axisymmetry but have
restricted to polar perturbations, and where Ylm is a scalar
spherical harmonic. Similarly, the perturbation of any
vector on S2 such as the shift must take the form

δβi ¼ g3g
ij
0∇jYlm: ðD35Þ

Here g1;2;3 are functions of u and r. In axisymmetry, the
spherical harmonic Ylm reduces to the Legendre polyno-
mial Yl0 ¼ Pl. Comparing (D34), (D35) with our metric
ansatz (23) and separation of variables ansatz (D27), (D28)
suggests

Pð1Þ
l ¼ P0

l; Pð2Þ
l ¼ P00

l ; ðD36Þ
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consistent with (D29). Substituting (D36) into (D33), and
using (D15) and its y-derivative, we find that (D33) is
indeed obeyed with the separation constant given by

λ ¼ −lðlþ 1Þ þ 2 ¼ −ðlþ 2Þðl − 1Þ: ðD37Þ

We note in passing that Pð2Þ
l obeys the ODE

ð1 − y2ÞPð2Þ
l

00 − 6Pð2Þ
l

0 ¼ λ̃Pð2Þ
l ; ðD38Þ

where

λ̃ ≔ −lðlþ 1Þ þ 6 ¼ −ðlþ 3Þðl − 2Þ: ðD39Þ

We are now left with the two coupled PDEs (D31), (D32)
for δbl and δfl, with λ given by (D37).

c. Potential ansatz

We can solve (D31) identically by introducing the
potential Ψl, in terms of which

δblðu; rÞ ¼ 2λ

Z
r

rlðuÞ

Ψlðu; r̄Þ
r̄4

dr̄; ðD40Þ

δflðu; rÞ ¼
Z

r

rlðuÞ

Ψl;rðu; r̄Þ
r̄2

dr̄: ðD41Þ

rlðuÞ is arbitrary, but will later be set to zero. Substituting
this into (D32), dividing by r and differentiating with
respect to r in order to eliminate the integrals, we obtain the
third-order PDE E3 ¼ 0, where

E3 ≔ −2r3Ψl;urr þ r3Ψl;rrr − r2Ψl;rr þ λðrΨl;r −ΨÞ:
ðD42Þ

We can write

E3 ¼ r2
�
E2

r

�
;r
; ðD43Þ

where we have defined

E2 ≔−2r2Ψl;ur þ r2Ψl;rr þ 2rΨl;u − 2rΨl;r þ λΨl: ðD44Þ

Hence the general solution of E3 ¼ 0 is

E2 ¼ Cr; ðD45Þ

where C is an arbitrary constant, and the general solution of
this is in turn

Ψð3Þ
l ðu; rÞ ¼ Ψð2Þ

l ðu; rÞ þ Cr
lðlþ 1Þ ; ðD46Þ

where Ψð2Þ
l is the general solution of the second-order ODE

E2 ¼ 0. With the substitution

Ψl ≕ r2δψ l; ðD47Þ

E2 ¼ 0 for Ψl becomes the scalar wave equation (D17)
for δψ l.
Substituting (D47) into (D40), (D41), we have

δblðu; rÞ ¼ 2λ

Z
r

rlðuÞ

δψ lðu; r̄Þ
r̄2

dr̄; ðD48Þ

δflðu; rÞ ¼ δψ lðu; rÞ − δψ lðu; rlðuÞÞ

þ 2

Z
r

rlðuÞ

δψ lðu; r̄Þ
r̄

dr̄: ðD49Þ

Note that, in addition to an arbitrary solution δψ l of the
scalar wave equation, the gravitational wave ðδfl; δblÞ is
parametrized also by the constant C and the function rlðuÞ.
The particular integral parametrized by the constant C is
both nondynamical and gives rise to δb and δf that are
singular at r ¼ 0. We therefore set C ¼ 0, and so obtain
E2 ¼ 0 as the master equation governing (axisymmetric,
polar) linear gravitational waves. We believe that rlðuÞ
parametrizes some kind of gauge freedom, but have not
tried to show this. We now set it to zero.
Using the fact that δψ l ∼ rl at constant t, we see from

(D48), (D49) that near the center, each spherical harmonic
component of the linear gravitational wave has the spatial
dependence δb ∼ P0

lr
l−1 and δf ∼ P00

l r
l, for l ≥ 2. In par-

ticular, near the origin r ¼ 0 we therefore have δb ∼ ry and
δf ∼ r2 for generic regular solutions with nonvanishing
l ¼ 2 components.
Substituting the general regular solution (D23) for

δψ lðu; rÞ with a sufficiently simple function χlðuÞ into
(D48), (D49), and with rlðuÞ ¼ 0, we can carry out the
integrations and so obtain δblðu; rÞ and δflðu; rÞ in closed
form. In particular, this works when χlðuÞ is a Gaussian,
and gives us a class of exact solutions for testing our code.
The general solution of (D25), (D26) is obtained by

summing

δfðu; r; yÞ ¼
X∞
l¼2

δflðu; rÞP00
l ðyÞ; ðD50Þ

δbðu; r; yÞ ¼
X∞
l¼2

δblðu; rÞP0
lðyÞ: ðD51Þ

If we now substitute (D48) and (D49), and then (D24), we
see that at constant u, δfl admits a formal expansion in even
(odd) powers of rwhen l is even (odd), starting at rl. This is
just as for δψ l. Similarly, δbl admits a formal expansion in
odd (even) powers of rwhen l is even (odd), starting at rl−1.
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Obviously, the scalar field δψ governing the linearized
gravitational waves is completely independent from the
matter scalar field δψ . We have used the same notation
merely to stress that they obey identical wave equations.

d. The cases l = 0 and l = 1

Our separation of variables ansatz gives b0 ¼ f0 ¼
f1 ¼ 0 because P0

0 ¼ P00
0 ¼ P00

1 ¼ 0. In addition the poten-
tial ansatz (D48) gives δb1 ¼ 0 because λ ¼ 0. However, as
P1 ¼ y and P0

1 ¼ 1, there can be nonvanishing perturba-
tions δb1, δH1, even though there is no f1.
We therefore look at the case l ¼ 1 of the linearized

equations in Bondi gauge without making the potential
ansatz (D48), (D49). With δb ¼ δb1ðu; rÞ and δf ¼ 0,
(D25) reduces to

ðr4δb1;rÞ;r ¼ 0; ðD52Þ

while (D26) is obeyed trivially. The solution of (D52) that
is finite at the center is constant in r. The resulting regular
perturbation of H is given by (D9). Putting both together,
we have

δb1ðu; rÞ ¼ δb1ðuÞ; δH1 ¼ 2rδb1ðuÞ: ðD53Þ

We show in Appendix E that this represents a linear gauge
transformation, which physically corresponds to an accel-
eration −δb1ðuÞ of the origin of our coordinate system
along the symmetry axis.

e. Transformation to shifted Minkowski
background gauge

Having found δbðu; r; yÞ, δfðu; r; yÞ and δψðu; r; yÞ in
Bondi background gauge, we transform them to shifted
Minkowski background gauge, with the coordinate change
from ðu; r; yÞ to ðu; x; yÞ given by

r ¼ x
2

�
1 −

u
x0

�
; ðD54Þ

compare (B14). Under this coordinate transformation, only
δH changes nontrivially. The metric coefficients δb, δf and
R and the scalar field δψ change only as if they were scalar
fields, and δG remains zero. We are only interested in δb,
δf and δψ , and we only need to transform their argument r
to x using (D54).

f. Consistent boundary conditions for the linearized
Einstein equations decomposed

into spherical harmonics

We now return to the case of a nontrivial rlðuÞ > 0. From
(D48) and (D49) we read off that

δblðu; rlðuÞÞ ¼ 0; ðD55Þ

δflðu; rlðuÞÞ ¼ 0; ðD56Þ

δbl;rðu; rlðuÞÞ ¼
2λ

rlðuÞ2
δψ lðu; rlðuÞÞ; ðD57Þ

δfl;rðu; rlðuÞÞ ¼ δψ l;rðu; rlðuÞÞ þ
2

rlðuÞ
δψ lðu; rlðuÞÞ:

ðD58Þ

The first three equations gives us a class of startup
conditions for integrating the linearized hierarchy equations
for δbl and δfl that have a consistent continuum limit, in
terms of a boundary condition at r ¼ rlðuÞ for δbl;r, which
is equivalent to a boundary condition on the underlying
scalar wave δψ l.
The simplest choice is to set δbl;r ¼ 0 at r ¼ rlðuÞ. As

this corresponds to the homogeneous Dirichlet boundary
condition δψ l ¼ 0 at r ¼ rlðuÞ on the underlying scalar
field, this boundary condition gives rise to a well-posed
PDE problem for the spherical harmonic component
ψ lðu; rÞ. We have therefore shown that, for the equations
linearized about flat spacetime in linear Bondi gauge, it is
consistent to impose the three boundary conditions δfl ¼
δbl ¼ δbl;r ¼ 0 at r ¼ rlðuÞ.
This is of course what we do, as a numerical trick, for the

full nonlinear Einstein equations, with rl ∼ lΔx. What we
have shown here is that this has a continuum limit for the
Einstein equations linearized about Minkowski and split
into spherical harmonics.

6. Solution without spherical harmonic
decomposition

a. Relation between solutions
for δψ and for ðδf ; δbÞ

We can remove the spherical harmonic decomposition,
and obtain expressions for δbðu; r; yÞ and δfðu; r; yÞ in
terms of a solution δψðu; r; yÞ of the scalar wave equation.
Combining (D18), (D49) and (D50), we obtain the unsepa-
rated expression

δfðu; r; yÞ ¼ δψ ;yyðu; r; yÞ − δψ ;yyðu; 0; yÞ

þ 2

Z
r

0

δψ ;yyðu; r̄; yÞ
r̄

dr̄ ðD59Þ

for δf in terms of δψ . Substituting (D51) into (D25) and
integrating twice, we obtain the expression
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δbðu; r; yÞ ¼
Z

r

0

1

r̄4

Z
r̄

0

r̃2
�
2ð1 − y2Þδf;ryðu; r̃; yÞ

− 8yδf;rðu; r̃; yÞ
�
dr̃ ðD60Þ

for δb in terms of δf.

b. Plane-wave solutions

The scalar wave equation admits the plane-wave solution
δψ ¼ χðt� zÞ, that is

δψðu; r; yÞ ¼ χðu�Þ; u� ≔ uþ rð1� yÞ; ðD61Þ

for arbitrary functions χ. Substituting this into (D59), we
can carry out the integration explicitly to obtain the plane
wave solution

δfðu; r; yÞ ¼ r2χ00ðu�Þ þ 2
rχ0ðu�Þ
1� y

− 2
χðu�Þ − χðuÞ
ð1� yÞ2 ;

ðD62Þ

and substituting this into (D60), we can again carry out the
integrations in closed form to obtain

δbðu; r; yÞ ¼ �2

	
rð1 ∓ yÞχ00ðu�Þ

−
1� 3y
1� y

ðχ0ðu�Þ − χ0ðuÞÞ


: ðD63Þ

Note that ψðu; r;−yÞ ¼ ψðu; r; yÞ, fðu; r;−yÞ ¼ fðu; r; yÞ
and bðu; r;−yÞ ¼ −bðu; r; yÞ.
To see that these expressions are regular as y → ∓1,

we define the auxiliary variable ϵ ≔ rð1� yÞ. We can then
write

δψðu; r; yÞ ¼ χðuþ ϵÞ; ðD64Þ

δfðu; r; yÞ ¼ r2χ00ðuþ ϵÞ þ 2r2
d
dϵ

�
χðuþ ϵÞ − χðuÞ

ϵ

�
;

δbðu; r; yÞ ¼ �2r

	
ð1 ∓ yÞχ00ðuþ ϵÞ

− ð1� 3yÞ
�
χðuþ ϵÞ − χðuÞ

ϵ

�

; ðD65Þ

where we can now see that the fraction in large round
brackets is regular as ϵ → 0 if χðuÞ is regular.

APPENDIX E: RESIDUAL GAUGE FREEDOM

A redefinition of the coordinates ðu; x; yÞ leaves the form
(6) of the metric invariant if gxx ¼ gxy ¼ 0 in the new, as in
the old, coordinates. A nonlinear gauge transformation that
does this and that can be written explicitly in terms of free
functions is

u ¼ uðũÞ; ðE1Þ

y ¼ yðũ; ỹÞ; ðE2Þ

x ¼ xðũ; x̃; ỹÞ: ðE3Þ

This means we separately relabel the outgoing null cones
N þ

u , the outgoing null rays Lþ
u;y;φ on each outgoing cone,

and the coordinate x along each outgoing ray. However, we
cannot express the most general gauge freedom, which also
moves the central worldline, in explicit form.
Instead, we look for the most general infinitesimal gauge

transformation that leaves the form of the metric invariant.
We make the ansatz δxμ ≕ ξμ, and hence

δgμν ¼ 2∇ðμξνÞ; ðE4Þ

where

ξμ ≔ ðξu; ξx; ξy; 0Þ; ðE5Þ

are functions of ðu; x; yÞ. The general solution of δgxx ¼
δgxy ¼ 0 is

ξu ¼ Aðu; yÞ; ðE6Þ

ξx ¼ ξxðu; x; yÞ; ðE7Þ

ξy ¼ Bðu; yÞ þ A;yðu; yÞS
Z

x

0

G
e2SfR2

dx0: ðE8Þ

For A ¼ AðuÞ this reduces to the infinitesimal version
of (E1)–(E3).
For simplicity, we now restrict the background metric to

flat spacetime in Bondi gauge, with R ¼ x,G ¼ H ¼ 1 and
b ¼ f ¼ 0. (E8) then simplifies to

ξy ¼ Bðu; yÞ − SA;yðu; yÞ
x

: ðE9Þ

The resulting metric perturbation is

δG ¼ A;u þ ξx;x; ðE10Þ

δH ¼ 2ðA;u þ ξx;uÞ; ðE11Þ

δR ¼ ξx þ xB;y

2
−
SA;yy − 2yA;y

2
; ðE12Þ

δf ¼ −
A;yy

2x
þ B;y þ 2yB

2S
; ðE13Þ

δb ¼ −
A;y

x2
þ B;u

S
−
xA;uy þ ξx;y

x2
: ðE14Þ
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For analysis, we relate the coordinates ðu; x; yÞ to the
cylindrical Minkowski coordinates defined by

t ≔ uþ x; z ≔ −yx; ρ ≔
ffiffiffi
S

p
x; ðE15Þ

with φ completing both coordinate systems. The inverse
transformation is

u ¼ t −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

q
; ðE16Þ

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

q
; ðE17Þ

y ¼ −
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ z2
p ; ðE18Þ

and hence the coordinate basis vectors transform as

∂t ¼ ∂u; ðE19Þ

∂z ¼ y∂u − y∂x −
S
x
∂y; ðE20Þ

∂ρ ¼ −
ffiffiffi
S

p
∂u þ

ffiffiffi
S

p
∂x −

y
ffiffiffi
S

p

x
∂y; ðE21Þ

with ∂φ in both coordinate systems.
From (E6)–(E7) and (E19)–(E21), the residual gauge

transformations expressed in this basis are

ξ ¼ ðAþ ξxÞ∂t þ
� ffiffiffi

S
p

ðξx þ yA;yÞ −
xyBffiffiffi
S

p
�
∂ρ

þ �
SA;y − xB − yξx

�
∂z: ðE22Þ

ξ is a regular vector field if and only if the coefficients of
∂t; ∂z; ∂ρ are regular functions of ðt; z; ρÞ. In particular, they
must be finite and single-valued at the origin x ¼ 0 and on
the axis S ¼ 0.
We now focus on gauge transformations that map the

tz-plane to itself, as these include all that move the central
worldline along the symmetry axis. Setting the component
ξρ to zero is equivalent to

ξx ¼ xyB
S

− yA;y; ðE23Þ

and substituting this back into (E22), we have

ξ ¼
�
A − yA;y þ

xyB
S

�
∂t þ

�
A;y −

xB
S

�
∂z: ðE24Þ

The resulting metric perturbations are regular at the origin
and on the axis if and only if

A ¼ TðuÞ þ ZðuÞy; B ¼ −SZ0ðuÞ; ðE25Þ

where T and Z are arbitrary functions. The corresponding
regular gauge vector field is

ξ ¼ ½TðuÞ − zZ0ðuÞ�∂t þ ½ZðuÞ þ xZ0ðuÞ�∂z; ðE26Þ

which explains why we have named the free coefficients T
and Z. The corresponding pure gauge metric perturba-
tions are

δH ¼ 2ðT 0ðuÞ þ zZ00ðuÞÞ; ðE27Þ

δG ¼ T 0ðuÞ; ðE28Þ

δb ¼ −Z00ðuÞ; ðE29Þ

with δR ¼ δf ¼ 0. This family includes the three Killing
vector fields ∂t, ∂z and z∂t þ t∂z of Minkowski spacetime.
Restricting to TðuÞ ¼ 0 leaves us with

ξ ¼ Z0ðuÞz∂t þ ½ZðuÞ þ xZ0ðuÞ�∂z: ðE30Þ

This is equal to ZðuÞ∂z at the origin, and so is the gauge
transformation that moves the origin along the symmetry
axis. The resulting metric perturbation is

δH ¼ −2Z00ðuÞxy; δb ¼ −Z00ðuÞ; ðE31Þ

with the other metric coefficients unchanged. Hence an
infinitesimal noninertial motion of the origin along the
symmetry axis gives exactly the l ¼ 1 regular metric pertur-
bation (D53) that we already derived from the linearized
Einstein equations.
From elementary flatness at the origin, the same state-

ment must be true for an arbitrary regular, twistfree axisym-
metric spacetime. Hence we have shown that bðu; 0Þ ¼ 0 is
precisely the gauge condition that forces the origin of our
coordinate system to move on a geodesic along the z-axis.
We are imposing this as a boundary condition on (30)
or (43). Conversely, by imposing an arbitrary value of
bðu; 0Þ, we could accelerate the origin during the evolution.

APPENDIX F: REGULARITY OF THE METRIC
AT THE ORIGIN

Following common practice, Rinne [40] defines a scalar
field as regular if it is analytic in Cartesian coordinates
ðt; ξ; η; zÞ (which in turn we assume to give rise to a chart
without coordinate singularities). Transforming to the
cylindrical coordinates ðt; ρ;φ; zÞ defined by

ξ ≔ ρ cosφ; η ≔ ρ sinφ; ðF1Þ

with t and z unchanged, Rinne shows that a scalar field is
regular and axisymmetric if and only if it is an analytic
function of ðt; ρ2; zÞ, that is, analytic in ðt; ρ; zÞ, with only
even powers of ρ.
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Rinne then shows that an axisymmetric metric is regular,
in the sense that its components in the Cartesian coordinate
basis are analytic functions of the Cartesian coordinates,
if and only if in the cylindrical coordinate basis it takes
the form

0
BBBB@

A B ρD ρ2F

B C ρE ρ2G

ρD ρE Hþ ρ2J ρ3K

ρ2F ρ2G ρ3K ρ2ðH − ρ2J Þ

1
CCCCA; ðF2Þ

with the coordinates in order ðt; z; ρ;φÞ, and the “Rinne
coefficients” A, B, C, D, E, F , G, K, H, J regular, that is
analytic functions of ðt; z; ρ2Þ. Clearly, the metric is twist-
free if and only if F ¼ G ¼ K ¼ 0, and we now restrict to
this case.
In the following, we define a scalar field and metric as

“Rinne-regular” if they obey these definitions. We shall
now ask what a Rinne-regular metric and scalar field look
like, first in spherical polar coordinates retaining the regular
time slicing t, and secondly replacing t by a retarded time u.
In the first step, we change from the cylindrical coor-

dinates ðt; ρ; z;φÞ to the spherical coordinates ðt; x; y;φÞ
defined by

ρ ≔ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − y2

q
; z ≔ −xy; ðF3Þ

or equivalently

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

q
; y ¼ −z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ z2

q
; ðF4Þ

with t and φ unchanged. Note that x and y are our radial and
angular coordinates, not the Cartesian coordinates ðξ; η; zÞ
defined above.
With ρ2 ¼ x2 − z2, a function is axisymmetric and

regular if and only if it is an analytic function of
ðt; x2 − z2; zÞ, but this is the case if and only if it is an
analytic function of ðt; x2; zÞ or, expressed entirely in
spherical coordinates, of ðt; x2;−xyÞ. In particular, this
means it is even in x at constant z, not constant y: this will
be important below.
By transforming to the coordinate basis with respect to

ðt; x; y;φÞ, and reparametrizing the Rinne coefficients as

B ¼ zD − X1; ðF5Þ

E ¼ 2zJ − X2 − zX3; ðF6Þ

C ¼ Hþ ð2z2 − ρ2ÞJ − 2zX2 þ ðρ2 − z2ÞX3; ðF7Þ

we can show that the Rinne-regular twist-free axisym-
metric metric is spherically symmetric if and only if X 1¼
X2¼X3¼0.

Moreover, because the coefficients of the redefinitions
(F5)–(F7) themselves are Rinne-regular functions, and
because we cannot absorb them into redefinitions of X1;2;3

without making those singular, the reparametrized twist-free
axisymmetric is Rinne-regular if and only if the “modified
Rinne coefficients” A, D, H, J , X1;2;3 are Rinne-regular.
In the second step, we change from the spherical co-

ordinates ðt; x; y;φÞ to the retarded coordinates ðu; x; y;φÞ,
where the retarded time u is defined as

uðt; x; yÞ ≔ t − hðt; x; yÞ: ðF8Þ
Without loss of generality, we set hðt; 0; yÞ ¼ 0, and we
split h into its odd and even in x (at constant z) parts as

hðt; x; yÞ ≔ xhoðt; x2;−xyÞ þ x2heðt; x2;−xyÞ: ðF9Þ
For u to be a nontrivial retarded time, we assume that
ho ≠ 0. Hence h is not Rinne-regular even if ho and he are.
The simplest choice would be u ¼ t − x, the standard
retarded null coordinate on Minkowski spacetime. In this
case, we can invert the definition of u to give t ¼ uþ x,
and so a Rinne-regular axisymmetric function would be an
analytic function of ðuþ x; x2;−xyÞ.
We now impose that the lines of constant ðu; y;φÞ are

null, which is equivalent to gxx ¼ gxy ¼ 0. These are linear
equations relating the modified Rinne coefficients, but their
coefficients are neither even nor odd in x (at constant z), so
they have Rinne-regular solutions only if we impose their
even and odd parts separately, giving us four equations.
Hence we see that beyond spherical symmetry we need the
two generic Rinne-regular functions he and ho in order to
be left with five regular functions to match to our metric
coefficients ðG;H; R; f; bÞ.
Which four of A, D, H, J , X1;2;3, he and ho should we

solve for? In spherical symmetry the simple height function
h ¼ x is already sufficiently general. This suggests that we
should always solve for four of the seven modified Rinne
coefficients, rather than the height function, and that this
solution should be regular also in the special case h ¼ x.
These requirements force us to solve for D, H, X1 and X 2.
We can now express our five metric coefficients in terms

of the five remaining arbitrary regular functions A, J , X 3,
he and ho. To avoid square roots and logarithms in the
solution, we solve not for R and f but for R4 and e4Sf. The
resulting expressions are not immediately helpful, as they
are explicit functions of ðt; x; yÞ, not ðu; x; yÞ, and we do
not have an explicit expression for tðu; x; yÞ.
However, we can expand ðG;H; R; f; bÞ in powers of x

at constant ðu; yÞ by using the derivative operator

∂

∂x

����
u;y

¼ ∂

∂x

����
t;y

−
u;xðt; x; yÞ
u;tðt; x; yÞ

∂

∂t

����
x;y

ðF10Þ

to find the coefficients of the Taylor series. We are then
in effect inverting the height function order by order.
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The Taylor coefficients are given in terms of A, J , X3, he
and ho and their partial derivatives with respect to ðt; x2; zÞ,
evaluated at x ¼ z ¼ 0, which are finite and independent of
each other.
We do not give the series expressions here, but it is clear

from their construction that G, H, R=x, f=x2 and b are

analytic functions of ðx2;−xyÞ, at constant u, with the
coefficients of the Taylor series given explicitly in terms of
the coefficients of the Taylor series in ðx2;−xyÞ, at constant
t ¼ u, of A, J , X3, he. This confirms the ansatz that we
found to be consistent for expanding the field equations in
powers of x at constant u in Sec. IV E 2.
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