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We formulate cosmological perturbation theory around the spatially curved FLRW background in the
context of metric-affine gauge theory of gravity which includes torsion and nonmetricity. Performing
scalar-vector-tensor decomposition of the spatial perturbations, we find that the theory displays a rich
perturbation spectrum with helicities 0, 1, 2, and 3, on top of the usual scalar, vector, and tensor metric
perturbations arising from Riemannian geometry. Accordingly, the theory provides a diverse phenom-
enology, e.g. the helicity-2 modes of the torsion and/or nonmetricity tensors source helicity-2 metric tensor
perturbation at the linear level leading to the production of gravitational waves. As an immediate application,
we study linear perturbation of the nonmetricity helicity-3 modes for a general parity-preserving action of
metric-affine gravity which includes quadratic terms in curvature, torsion, and nonmetricity. We then find the
conditions to avoid possible instabilities in the helicity-3 modes of the spin-3 field.
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I. INTRODUCTION

Over the past few decades, numerous cosmological
observations have provided compelling evidence that the
universe is undergoing accelerated expansion. Additionally,
data from sources like the cosmic microwave background
(CMB) and galactic rotation curves indicate the presence of
no ordinary matter, which does not interact with light, may
exist at cosmological scales. These observations have led to
the introduction of two mysterious components in cosmol-
ogy, known as dark energy and dark matter [1-4]. The
simplest model capable of explaining these phenomena relies
on general relativity (GR) and a cosmological constant,
which together constitute the ACDM model that incorporates
both dark constituents.

Nonetheless, recent cosmological observations have raised
concerns about the viability of the standard cosmological
model, primarily due to various tensions [5-8]. For instance,
there is a growing tension, currently at a significance level of
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approximately 4.40, in the measurement of the Hubble
constant H as determined by model-dependent observations
on early-time cosmology (such as Planck) [9-11] and direct
measurements in the late universe (for example, using ladder
measurements) [12-14]. Additionally, there are other, albeit
less severe, tensions, such as the og tension—a parameter
related to the clustering of matter, which also implies
discrepancies between local and early-time observations
[15,16]. The scientific community is engaged in a lively
debate regarding whether these tensions stem from new
physics or systematic errors [17-20]. One potential approach
to addressing or mitigating these tensions is to modify the
ACDM model, and one avenue for doing so is indeed to
modify GR. Furthermore, there are other theoretical motiva-
tions for modifying GR, including the cosmological constant
problem, the issue of singularities, and the quest for a
consistent framework of quantum gravity [21-23].

There exist various strategies to formulate alternative
theories of gravity beyond GR (for comprehensive reviews,
see [24-31]). In this work, our focus is on a geometrical
extension of GR, which introduces the torsion and non-
metricity tensors as post-Riemannian degrees of freedom
(d.o.f.) into the geometrical structure of the space-time.
From a theoretical point of view, the resulting geometry can
be related to the existence of a new fundamental symmetry

© 2024 American Physical Society
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by applying the gauge principles, which leads to the
appearance of the metric-affine gauge (MAG) theory of
gravity [32]. In fact, within MAG there are several sub-
classes of theories, depending on the construction of the
geometry and the choice of the gravitational action. For
instance, one of the simplest versions is the Einstein-Cartan
theory, where both curvature and torsion are present, the
latter being nondynamical and tied to spinning sources
[33-35]. Another subset is teleparallel gravity, in which the
general curvature is absent, and gravity is solely repre-
sented by torsion and/or nonmetricity [36-38].
Numerous studies have been conducted on Friedmann-
Lemaitre-Robertson-Walker (FLRW) cosmology at the
background level within various MAG theories.
Pioneering works can be traced back to [39-41] within
the Einstein-Cartan framework, where it was discovered
that the cosmological singularity can be resolved by
introducing a nonzero spin density of matter. Following
these lines, studies involving couplings between Dirac
fields and torsion found that the cosmological singularity
can be indeed replaced by a cosmic bounce [42—46]. In
addition, further investigations were also carried out within
the general Poincaré and Weyl gauge theories of gravity,
where the torsion tensor and the Weyl vector of the
nonmetricity tensor constitute dynamical fields [47-52].
There are also several studies in MAG concerning late-
time cosmology. It has been found that particular models
with dynamical torsion can provide the same description as
ACDM, including an accelerating universe, with the torsion
field accounting for the effects of the dark sector [53,54].
These cosmological effects were originally driven by the
scalar mode O of torsion, but a further generalization in
the presence of the pseudoscalar mode 0O~ was shortly
achieved, finding that indeed the two modes decouple,
which provides a suitable fitting of the supernova data [55].
A natural extension with odd parity terms in the gravita-
tional action found that the resulting parity-violating
interactions might help to explain the imbalance between
matter and antimatter at cosmological scales [56].
Regarding inflationary models, several works have also
shown interesting features in MAG. Following the original
investigations performed on the cosmology of Einstein-
Cartan theory, different inflationary and singularity-free
solutions in the presence of torsion were soon found [57,58],
while other natural extensions were also carried out by the
introduction of scalar fields nonminimally coupled to the
geometry of the space-time [59], including generalizations
of Higgs-inflation with Holst and Nieh-Yan terms in the
presence of torsion and nonmetricity [60-63]. As for
the theories that endow these fields with dynamics by the
presence of quadratic curvature invariants in the gravitational
action, the authors of [64] found a model which can
consistently describe the inflationary universe by a dynami-
cal torsion field. In fact, linear tensor perturbations of torsion
around a FLRW background were formerly performed and

analyzed in this model, revealing the general occurrence of a
spontaneous parity-violation around such a background,
which does not take place in the standard Starobinsky
inflation.

To sum up, the literature of cosmology in MAG has
primarily focused on the role of torsion, exhibiting a large
variety of interesting features in early and late cosmology,
while nonmetricity has received relatively little attention. In
particular, the physical implications at cosmological scales
of the traceless part of the nonmetricity tensor have not
been extensively investigated. Likewise, as stated in GR
and other alternative theories of gravity, a thorough study
on the cosmological perturbations arising from the theory
turns out to be essential to carry out a more accurate
assessment on its cosmological implications. Thereby, the
main objective of this work is to develop a comprehensive
theory of the cosmological perturbations in the generic
MAG with curvature, torsion, and nonmetricity. For this
task, one must consider cosmological perturbations not
only in the metric sector, but also in the torsion and
nonmetricity sectors. In this sense, the physical role of
the perturbations differs significantly based on whether
they refer to dynamical fields, or on whether the geometry
is particularly special. In the first case, for a nondynamical
torsion tensor such as the one present in Einstein-Cartan
theory, the cosmological perturbations encode all the
dynamics purely in the metric sector. Furthermore, in the
particular case of teleparallel gravity all the geometrical
d.o.f. can be conveniently encoded in the tetrad field [65],
while this is no longer the case in general metric-affine
geometries.

Additionally, in order to conduct an exhaustive analysis
in cosmology, it is also essential to incorporate the matter
sector on top of the geometrical setup, which in the case of
MAG can be described in terms of two fundamental
quantities: the energy-momentum and hypermomentum
tensors. Indeed, the latter plays a crucial role in the theory
since it represents the source for both torsion and non-
metricity tensors. Therefore, the cosmological perturba-
tions must include the corresponding d.o.f. in the geometry
sector, associated with the metric, torsion, and nonmetricity
tensors, as well as d.o.f. encoded in the energy-momentum
and hypermomentum tensors in the matter sector.

This paper is organized as follows. In Sec. II we provide
a brief introduction to MAG and define the most relevant
mathematical quantities appearing in this framework. In
Sec. III we perform 3 + 1 decompositions of arbitrary
tensors up to rank-3, which can be systematically ascribed
to the geometrical and material tensors of MAG in order to
classify the corresponding perturbation modes by their spin
and parity. Section IV is devoted to introducing the
cosmological background, described by the FLRW metric
along with the expressions for the torsion, nonmetricity,
energy-momentum, and hypermomentum tensors satisfy-
ing homogeneous and isotropic conditions. In Sec. V we
provide scalar-vector-torsion (SVT) decomposition of all
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spatial perturbations in the geometrical and matter sectors
of MAG. As a pedagogical and relatively simple applica-
tion, in Sec. VI we study linear perturbations of the helicity-
3 modes of the traceless nonmetricity tensor for a generic
quadratic action of MAG and we find conditions to avoid
pathological instabilities. Finally, in Sec. VII we conclude
and discuss our main results. Some technical details are
presented in the Appendixes.

We work in natural units ¢ = G = 1, and we consider the
metric signature (—, +, +, +). Tildes will be used to denote
mathematical quantities that are defined from the general
affine connection, whereas their unaccented counterparts
will be only constructed from the Levi-Civita connection.

Greek letters denote four-dimensional indices p, v, - - - = 0,
1, 2, 3 while Latin letters denote the three-dimensional
spatial indices 7, j,--- =1, 2, 3.

II. METRIC-AFFINE GRAVITY WITH TORSION
AND NONMETRICITY

A. Geometrical sector

From a geometrical point of view, the standard frame-
work of GR arises as a particular case of a more general
class of metric-affine theories, where the geometry of the
space-time is described by a metric tensor, a coframe field,
and an independent linear connection [32]. We assume that
the theory enjoys the GL (4, R) invariance by which we can
fix the coframe field. Accordingly, the theory is described
by the metric tensor and the connection, the latter including
additional post-Riemannian d.o.f., which correspond to the
torsion and nonmetricity tensors

Tl/u/ = 21”[;41/]’ Qlﬂu = vlg/w' (1)
The components of the affine connection can then be split
into a Levi-Civita part and two independent pieces

f%m/ = Fl/u/ + Kll/w + Lluw (2)

where K* v 18 @ metric-compatible contortion tensor con-
taining torsion and L* v @ disformation tensor depending on
nonmetricity:

-T AU - Tuﬁy)v (3)

= 3(Q = 0, ~ 0 4)

One can further define the quantity
Ny = Ky + L, (5)
which measures the deviation from Riemannian geometry

as the distortion tensor. The resulting geometric structure is
then characterized by a metric tensor and an asymmetric

affine connection that in general does not preserve the
lengths and angles of vectors under parallel transport.
Hence, such a connection provides corrections in the
covariant derivative operator, which further involves a
generalization of its commutation relations when these
are applied on an arbitrary vector v’:

W+ T2,V 0 (6)

uv Vp

V.. V,|v* = R*

PUY

where the corresponding curvature tensor reads

Pl _ 5 T A T Pl

R, =00, —oI", +1*, 17, 1", 17,. (7)
Note that the covariant derivatives do not commute in the
presence of torsion even in Minkowski metric. From the
expression of the curvature tensor, it is possible to define
three independent traces, namely the Ricci and co-Ricci

tensors:

=1}
o1}

u — iylm (8)
R, = Rullp,v 9)

and the homothetic curvature tensor, which depends on the
trace part of nonmetricity:

Rllxl;w = v[u Qy]li' (10)

Furthermore, the trace of the Ricci and co-Ricci tensors
provides a unique independent scalar curvature

R :gﬂykpw (11)

whereas the contraction of the curvature tensor with the
Levi-Civita tensor €;,,, = €,,,,1/—9 gives rise to the so-
called Holst pseudoscalar

*R = "R, (12)

where ¢, is the antisymmetric symbol with €y;,3 = +1.

Concerning the torsion and nonmetricity tensors, in four
dimensions they carry 24 and 40 components, respectively,
which represents a large number of independent geomet-
rical d.o.f. included in the affine connection. In this sense,
an irreducible decomposition under the four-dimensional
pseudo-orthogonal group separates the different vector,
pseudovector, and tensor parts of these tensors.

Specifically, the torsion tensor can be decomposed in
terms of a vector, a pseudovector, and a traceless and
pseudotraceless tensor

1
T (8,71,-8,T,) + gglprP + . (13)

W =

w —

where
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T,=T",, (14)
S, = E”,{p,/Tlp”, (15)
2 1 »
t/l/w = Tﬁ;w - ggll[vTM] - ggxlp/wS . (16)

On the other hand, the nonmetricity tensor can also be
decomposed into a Weyl vector and a traceless tensor

Ql/w = g;wwi +Q/1yw (17)

where the Weyl vector is related to the trace of the
nonmetricity tensor

1 v
W, = 70" (18)

and the traceless tensor is in turn decomposed into a vector,
and two traceless and pseudotraceless tensors

1 1
/Qﬂ;w = gﬂ(ﬂAy) - ng/A/l + geﬂ/m(ygy)/m + 9 opw- (19)

with

3

3
n g(;wAi) . (22)

~9wWa 3

Qo = Q(/l;w)
As can be seen, the first tensor piece ,;** is antisymmetric
in the last pair of indices as the piece 7, of torsion,
whereas the second tensor piece q,,, constitutes a fully
symmetric tensor.

B. Matter sector

As for the matter sources in the framework of MAG, not
only an energy-momentum tensor of matter ®,, arises as
source of curvature, but also a hypermomentum density
tensor A, ;, which operates as source of torsion and
nonmetricity [32]. Specifically, ©,, is defined from the
variation of the matter action with respect to the metric,
whereas A, arises from the corresponding variation with
respect to the independent connection.

Following the same line as the previous subsection, the
hypermomentum density tensor can then be decomposed
into spin, dilation, and shear currents as

1
A;wi :(S)Abw]/l + Zg/w(d)A/l +(Sh>/x(;w)/17 (23)

where the trace part is given by
WA, =AY, (24)

while the antisymmetric and symmetric traceless parts are
reducible to

1 1 1 1 2 3
(S>A[/w]ﬁ = § (glu(s) AM _g/M.(SJ AD) +6€lp/w(s> A7+ ® A/w/%
(25)
(sh) (sh) ; 1 (sh) A 1 (sh) 3 -
/X(;w)/l = 9a(u /xu) - ng/ K, + g Epolu K v)
3
+<Sh)/xyw% (26)
with
92 v
A, = Ay (27)
2 A
(s) A, =€ NS (28)

3 ) 1 1 2
(S>A/4M = A[ﬂv]ﬁ - gg/l[y(s) Ay] - 6 glp;w(s)A 2, (29)

) ) 4 v 1 v
(bh)/xﬂ = § <A(Uﬂ) - Z A l/ﬂ) s (30)

i 2 3 ) 1
A= [W"Aw e <Z -5 A”vﬂﬂ ’

(31)

. 3 1 3 . 1
( h)/x/l;w = A(lﬂy) - Zg(/w\AppM) - Zg(/w( h>/xﬁ)- (32)

The aforementioned irreducible decompositions under
the four-dimensional pseudo-orthogonal group will be
useful in the following sections for constructing the
corresponding cosmological perturbations in MAG.

III. 3+1 DECOMPOSITION

In cosmology, time and space are clearly distinguished
because of the expansion of the universe. Therefore, we
inevitably decompose the space-time into the three-
dimensional spatial parts and the temporal part to
compute the cosmological perturbations. Here, we first
explain a generic way of the 3+ 1 decomposition,
especially the decomposition of the torsion and non-
metricity tensors. Note that the decomposition in this
section is generic: we do not assume any particular form
of the metric and only assume the existence of a unit
timelike vector n, satisfying
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n,nt = —1. (33)
The corresponding projection tensor is defined by

P, =g, +nn, (34)
which is, by definition, orthogonal to n,, i.e. P, n* = 0.

Using the normal vector (33) and the projection tensor
(34), we can split any four-dimensional tensor into the
parallel and orthogonal components with respect to n,,. This

is easy to see for a vector: X, = (—n"X,)n, +)?ﬂ with
X . = P,"X,. Obviously, (—n”X,) determines the temporal
component of X, which is along n,,, while X, characterizes

pure spatial components as X 4 = 0. Note that all four-
dimensional tensors like the metric and energy-momentum
tensors, and all four-dimensional irreducible pieces of the
torsion, nonmetricity and hypermomentum tensors (e.g.
T,,S,.t,, for the torsion tensor) are indeed reducible to a
further set of three-dimensional quantities. While the 3 + 1
decomposition for a vector X, to two three-dimensional
irreducible pieces (—n“X,) and }_fﬂ is very simple, the
decomposition of higher-rank tensors is not so straightfor-
ward at first glance, especially if it has a nontrivial
symmetric property like 7;,,. In this section, we directly
present the form of the 3 + 1 decomposition for generic
rank-n tensors with n <3, while a systematic way of
the decompositions is elaborated in the Appendixes. In
Appendix A, we first explain how to identify three-
dimensional irreducible pieces embedded in a four-
dimensional tensor by the use of Young tableaux. We then
derive concrete tensorial expressions of the 3 + 1 decom-
position in Appendix B.

For notational convenience, as we did above, we use an
arrow on top to denote the corresponding spatial quantities,
e.g. for an arbitrary rank-n tensor X, .., , we extract the
spatial part as

Xy =P, @ ---P, “X

Hi oty Hn o rageay (35)
which straightforwardly satisfies the following desired
conditions:

-

e =t X

"
1 J—
nf X = P

HiHa

~0. (36)

Additionally, in three dimensions, two and three antisym-
metric indices can be respectively dualized to one and zero
indices by using the three-dimensional Levi-Civita tensor

Epp = n’le,lﬂ,,p. (37)

In general, all the three-dimensional irreducible tensors
arising from the 3 + 1 decomposition are symmetric and
traceless, which means that the following expressions are

also satisfied for irreducible tensors

(38)

(39)

In short, all the tensors with an arrow on top are symmetric
and traceless spatial tensors in the following. For simplicity
in the notation, we will also put arrows on vectors and on
the three-dimensional spatial Levi-Civita tensor.

For completeness, we present the decompositions of all
generic tensors of rank 0, 1, 2, and 3. For arbitrary rank-0
and rank-1 tensors, the decomposition is trivial:

X, =X,, (40)

X, =X, —nX,,

" (41)

where X, = X, n*.

Next, for a rank-2 tensor, we can first separate it to the
trace part and the traceless symmetric and antisymmetric
parts

1
Xy = X(u) + Xju) = 2 G X + X) + Xju)o - (42)
where X =g¢*X,, and X, =X(,) —3i9.X, with
9" Xuw) = 0. The traceless symmetric part is further split
into one tensor, one vector, and one scalar’

- . 1
Xw) = X =21, X0) + (’Wv +3P

(P (9

where

S K Ry = 0P Xy = P X .

- . 1
Xﬂy =P ﬂPﬂDX(a/g) - 5 ﬂD/X‘**' (46)

For the antisymmetric part we find

'Note that one may more directly decompose the tensor; for
instance, one can consider the 3 + 1 decomposition without
splitting into the symmetric and antisymmetric parts or without
subtracting the trace piece from the symmetric part

_ . 1
X(/AI/) = X/u/ - Zn(px*u) + nyan** + §PﬂI/X***5 (43)
with X, =n*n*X,, and X, = P*X,,, which are related to
{X, X} via
1 3
X** :_ZX+X**7 X*** :ZX+X** (44)
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w(E)

= 2X x (B

|
X[ " ny + Esﬂﬂx s (47)

v

where

-

XP =P Xy, — XPF=89X,,.  (48)
The first term on the right-hand side of (47) represents the
electric temporal part and the second one the purely spatial
magnetic part, each one carrying three d.o.f. of the
antisymmetric part of the generic rank-2 tensor X,,,.
Finally, for an arbitrary rank-3 tensor, we have

X/l/,w = Xl[;w] + Xﬂ(ﬂb)' (49)

As is shown, the antisymmetric part X, corresponds to a
tensor with the torsionlike symmetry, whereas the sym-
metric part X, is analogous to nonmetricity. Hence,
without any loss of generality, the 3 4+ 1 decomposition of
arbitrary rank-3 tensors is completely determined by the
corresponding decompositions of the torsion and nonme-
tricity tensors. For this task, we shall use then the notation
used in Sec. II to denote the rank-3 tensor. Following the
prescription explained above (see Appendix B for the
details of the decomposition of rank-2 and rank-3 tensors),
the 3 + 1 decomposition of the torsion tensor is provided
by the expressions

1

T,

-, (50)

<

1

S, = 1,0, (51)

- 1 -
tup = 21 A +2 <”ﬂ”[v + EPﬂ[v> B,
1 of - 1 -
+ 581,/) —naAﬂ,, + ngn, + Epﬂ” Ba , (52)

where we recall that the quantities XW and ;l,w with an
arrow on top are spatial, symmetric, and traceless. For each
tensor appearing in the decomposition, one can write the
inverse relations as follows:

=T, T,=P,T, o=Sn" S,=P,S,
(53)

Aw = tappP*(PPyn’, B, = tagynn’ P,

A;w = l‘aﬂpPa(Ml’lié‘y)iﬂp, Bﬂ = taﬂpnanﬁeﬁﬂpu' (54)

Similarly, the nonmetricity tensor turns out to be expressed
under the 3 + 1 decomposition as

W, =W, -n0, (55)

A, =K, —n,0, (56)

]

1 .
Qup =21, Q) + 2("/4”[1/ + EPMD> V)

1 = 1 -
+ 581//’(1/} —i’laQﬁ” + <n/ﬂ’lﬂ + 2P/j”> Ya:| s (57)

- 3 -
Guwp = Cpp = 300Ky p) + 5 (Sngn, + Puw)Z,)

- (n(,unl/ + P(ﬂy)n/))é‘v (58)

-

where, once again, C,,, 1?”,,, @W, and éﬂ,, are spatial,
symmetric, and traceless tensors. Note that the inverse
relations for the vectors W, and A, have the same form as
the ones related to 7', [see (53)], whereas the same holds for
the inverse relations of €, and 7,,, [see (54)]. Then, the
remaining inverse relations are related to g,,,:

-

E=nnnq,p,. Z

= P qp,n'n?,

> 3
C;wi = P”;tP/}uPplqaﬂp - gp(l(ypwl)nﬂnpqaﬂps (59)

- 1

Ky =P PP nPq,s, — gnanﬁnpqaﬂpPW. (60)
For later convenience, we use bold characters to denote the
set of spatial scalars, vectors, and tensors:

X = {¢.0.0.0.¢}. (61)

X, ={T,,5,,B,. B, W, A, Y. D,. 2.}, (62)
X, = (A A O QK ). (63)
Xy = {Cpup}- (64)

As we have explained in footnote 1, one may directly
decompose the rank-3 tensor without splitting it into the
four-dimensional irreducible pieces. However, using the
four-dimensional irreducible pieces would be more sys-
tematic since any rank-3 tensor with an additional sym-
metric property (e.g. the torsion tensor T’lﬂy and the
traceless part of the nonmetricity tensor &,,,) is always
given by a linear combination of them. In addition, there
would be a practical advantage to consider the 3 41
decomposition of the four-dimensional irreducible pieces
in the cosmology. For instance, the tensors 7,,,, and €, do
not contain any scalar objects after performing the 3 + 1
decomposition. Therefore, they vanish in the homogeneous
and isotropic background and only contribute to the
perturbations (see next section). One can thus discard
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higher-order terms of ¢,,,, and ,,,, even before expanding
the four-dimensional tensors into the 3 + 1 objects.

As rank-2 and rank-3 tensors, it is straightforward to
apply the above 3+ 1 decomposition to the energy-
momentum ©,, and hypermomentum A, ; tensors in the
matter sector presented in Sec. II. For the energy-
momentum tensor, we find the well-known results in
cosmological perturbation theory, which we will explain
in Sec. V, while for the hypermomentum tensor, we find
similar results as (50)—(52), and (55)—(58) for the corre-
sponding four-dimensional irreducible pieces that are
defined in (24)—(26). In the context of cosmology, ©,,
and A,, can be used to describe the form of perfect
hyperfluids respecting spatial homogeneous and isotropic
conditions, as well as more general relativistic fluids with
heat flux and anisotropic stress.

It is also worth mentioning that the 3 4+ 1 decomposition
described above is generic for any metric, and then it can also
be considered in Hamiltonian formalism. Thus, our setup can
be straightforwardly implemented to perform nonlinear
Hamiltonian analysis of any theory which includes torsion
and nonmetricity, or any other rank-3 tensor.

IV. COSMOLOGICAL BACKGROUND

A. Geometrical background

Our current understanding of the evolution of the universe
is based on the cosmological principle, which assumes that,
on a sufficiently large scale, both the geometry of the space-
time and the energy-momentum tensor of matter are spatially
homogeneous and isotropic [66]. The first assumption
directly leads to the FLRW space-time, whereas a spatially
homogeneous and isotropic distribution of matter acquires
the form of a perfect fluid, which is consistently realized in
GR via the Finstein field equations in the FLRW space-time.
In the framework of MAG, the inclusion of the torsion,
nonmetricity and hypermomentum tensors at the background
level in the cosmological principle is theoretically and
observationally possible. In this sense, in this section we
assume that these tensors also satisfy the homogeneity and
isotropy, and we provide the general ansatz for the cosmo-
logical background.”

Following Weinberg [21], we can think of the cosmo-
logical principle as the statement that the constant-time
hypersurfaces are described by a maximally symmetric
space; in the polar coordinates, the metric tensor is given by

2

yijdx' @ dx/ = T k72

+ r2dQ?, (65)

In principle, field(s) can have a configuration without satisfying
the homogeneity and isotropy but without contradicting the
cosmological principle thanks to the internal symmetry of the
field(s). Examples include the solid inflation [67—-69], the two-form
gauge field [70-73], and the SU(2) gauge fields [74].

where the constant K = 0, 1 is the spatial curvature and
dQ? = d9? + sin? 9d¢? is the line element of the unit two-
sphere. More precisely, the maximally symmetric space
means that the space admits the maximum number of
Killing vectors X & six in the three dimensions, associated
with translations and rotations. In the polar coordinates, the
Killing vectors X; = {R;, X;} (i = 1, 2, 3) are given by

) coS @ sin ¢
R1 :Sln(pa,g—i-ma(p, R2: —COS(pa,g_Fma(p,
Ry = -0, (66a)
X| = ysindcos o, —|—)£cos 8 cos pay —m d,. (66b)
r rsind
X, = ysindsin o, +% cos 9 sin @0y +w d,. (66¢)
r rsind
_ X
X5 = y cos 80, —=sin 80, (66d)
r

where y = V1 — Kr2.

Using the 3 + 1 decomposition performed in Sec. I1I, we
can then fix the form of the FLRW background. The normal
vector of the constant-time hypersurfaces is given by

a*d, = N~'9,,  n,dx* =—Nds, (67)
where we added a bar to point out that the corresponding
quantities are evaluated at the background. The projector
tensor P, is a three-dimensional quantity, so its tensorial
structure has to be given by y,;, i.e.,

P”ydx” ® dx¥ = azyijdxi ® dx/. (68)

Here, N(t) and a(r) are functions undetermined by the
cosmological principle, called the lapse function and the
scale factor, respectively. As a result, we obtain the well-
known form of the FLRW metric

7= G,d" @ dx* = —q,ii,dx* ® dx* + P,,dx* ® dx* =
— N2dt @ dt + a?y;;dx’ @ dx/. (69)

We use the same procedure to determine the most
general form of the torsion and nonmetricity tensors under
the symmetries of the FLRW space-time. Since the only
nonzero (pseudo)tensors in the maximally symmetric space
are the metric y;; and the Levi-Civita tensor ¢;;;, we can
immediately conclude

ol
M

X, =

H Hv Hvp

=0, (70)

Wi

= X(1), (71)

at the background level. Note that the three-dimensional

Levi-Civita tensor €

wp = '€y, introduced in the previous
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section and the Levi-Civita tensor of the maximally
symmetric space ¢;;, are related by

dr* @ dx* ® dx’” = a’e;dx’ @ dx/ @ dxk.  (72)

/wp

The factor a3

arises because the projection tensor I_Jﬂb
includes the factor @ in front of y; ;- Hence, the irreducible

pieces of the torsion and nonmetricity tensors are given by

T,=-n,g, S, =-n,0 T =0, (73)
W,=-n06, A,=-ns  Q, =0,
Z]&m/ = _(ﬁlﬁﬂﬁu + ﬁ(/lp;w))_' (74)

The torsion and nonmetricity tensors then read

o = 2T, (), Pyt + 2T, ()&, i, (75)

O = 201 (D) Wy, 71, 4 205 (1)3 Py, 4 205 (1) Py,
(76)

where {T;}?_, and {Q;}? , are five arbitrary functions
such as

-1

¢=-3T,, 0=-12T,, 6= 3
—(

2
3

(01 -30,),

6=5(01+0>—-203), 01+ 0+ 03). (77)
Note also that for simplicity in the notation, we omit bars
on top for the five functions {7';, Q;}. By construction, (75)

and (76) then solve the equations
‘cXg Tﬁm/ = [/X5 Qﬂ/w =0, (78)

with Exg being the Lie derivative with respect to the Killing
vector. Thus, these expressions constitute the most general
ansatz for the torsion and nonmetricity tensors under the
symmetries of the FLRW space-time. As previously men-
tioned, it is worthwhile to stress that the tensors 7,,, and
Q,W vanish in FLRW background, since they cannot
simultaneously satisfy spatially homogeneous and isotropic
conditions.

1. Component expressions

While Egs. (75) and (76) are coordinate independent, for
practical purposes, it may be convenient to use particular
coordinates x* = (¢,x') [e.g. the ones used in (65)] and
summarize the component expressions in such a coordinate
system.

Let us first not specify the spatial coordinates x’ and keep
the abstract indices for the spatial ones. For the perfor-
mance and mathematical treatment of the cosmological

variables, it is convenient to use y;;, instead of P;; = a’y;;,
in order to raise and lower the Latin indices, e.g. implying

X' =(0,a"'X") = X, = 5, X" = (0,aX,), (79)
with X; = y; ij. Furthermore, for any spatial rank-2 tensor

we find

=0 0 VoR == .
- 0 a_in-f w = Gualup - 0 aZXij .

(80)

Here, we have added a scalar factor and omitted the arrow
in the components. The reason to include the scale factor in
the way of (79) and (80) will be clarified shortly whereas
the arrow is removed so as not to confuse the component of
X* with the rescaled quantity X': for instance, the spatial
component of X" reads X' = a~'X'. Hereafter we will use
this convention when raising and lowering Latin indices of
general tensor quantities. In particular, the component
expressions of the metric tensor are

_ _<—N2 o> _W_(—N—2 0 > 81)
glw N 0 a2y,~j ' 7= 0 (,l_zyij ’

From (75) and (76), one can straightforwardly obtain the
component expressions of the torsion and the nonmetricity
as follows:

%, =0
T°;,=0
T, — < .. .
T'y; ==N()T\(1)&',
T'je = =2a() Ty (1)
Qooo = —2N°(1) 0 (1)
Oo0i = 0
_ Qoij = —2N(1)a*(1)Q(1)y;;
Q/I;w - QiOO —0 . (82)
Qioj = —N(1)a*(1)Q5(1)y;
Oijx =0

One may notice that the lapse and the scale factor appear in
a systematic way: one lower (upper) temporal and spatial
indices yield factors N and a (N~' and a™!), respectively.
This is indeed what we wrote in (79) and (80).

When one further specifies the spatial coordinates, one
obtains all the components explicitly; in the polar coor-

dinates x* = (x°, x',x%,x3) = (¢, 7,9, ), we have
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Ty =T%0 =13 = =N(0)T, ().

Qoo = —2N*(1) 04 (1),

0303

_ N
= 5= T
O Sin 9 1~ Qo1

A 20257
Qo2 = X" Qo = =
sin

LT g - 2T
B _ 0.0 "
= —r?a*(1)N(1)Q5(1). )

Then, the affine connection is composed of the Levi-Civita part determined by the metric tensor, and a distortion tensor
containing torsion and nonmetricity, which depends on the five functions {7;}?_, and {Q;}?, (c.f. [75]):

=0 N t) =1 = =3 al(t

0 =R NOQ(). Pl = =P = 404 N0 -7, 0). (50

=1 =) =3 al(t
[Np=1"=T 30—%+N<I)Q2(t), (87)

- - = 1)\ [a(t
I35 = psin9 = 22T sin29 = alt) gQ+N@@AQ—@@—ﬂODﬂm@, (88)

N(t)) la(1)
12“132 = —12“123 = r2)(212213 = —r2)(21:“231 = —r2y? sin’ 191:“312 = r2y? sin? 1912321 = r’ya(t)T,(t) sin 9, (89)
TR R R T Py =y =cotd, [y =—sindcosd (90
11—)(—2» p=ta=tB=13n=7 23 =173 = cotd, 33 = —SIvCOS v, (90)
I, =sin? 905, = —ry?sin? 9, (91)

where dots denote differentiation with respect to the time
coordinate .

B. Matter background

Let us now introduce the matter content at the back-
ground level. First, by assuming the cosmological princi-
ple, the corresponding metric energy-momentum tensor
fulfilling the symmetries of FLRW space-times acquires the
form of a perfect fluid,

0, = (p(t) + p(1)) i1, + p(1)g,, = p(1)

uv

with p(z) and p(t) being the energy density and the pressure
of the fluid, respectively. Note that the normal vector n,
coincides with the four-velocity of the perfect fluid u,, at the
background level &, = 71, = (=N(t),0,0,0). On the other
hand, the spatially homogeneous and isotropic form of the
hypermomentum tensor reads [76]

(93)

024017

|
which in line with the background values of torsion and
nonmetricity tensors depends on five arbitrary functions
{A,;}}_,—in this case, representing the intrinsic spin, dilation
and shear currents of matter. Indeed, we can straightfor-
wardly separate these characteristics by a redefinition of the
aforementioned functions:
Ay = DA, + A,

Ay =OA; + A,

Ay, = OA, + WA,

A, = WA, + WA,

As = A, (94)
with

A, = =04, (WA; = (M4,

DA, = _%(d)ﬂm (WA, = 4604, (95)

in such a way that the intrinsic spin, dilation, and shear
currents of matter acquire the following form:

Ay = 29857, P,, +© AsEy,,, i, (96)

(97)
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Since the three main parts of the hypermomentum tensor
fulfil the same algebraic symmetries as the torsion and
nonmetricity tensors, the intrinsic spin current of matter also
receives both scalar and pseudoscalar contributions:

2 3
—30)A5m,, WA v AL =0, (99)

u

whereas the intrinsic dilation and shear currents of matter are
given by scalar parts:

WA = _(d>A4ﬁw (100)

1. Component expressions

Overall, the background configuration in the matter
sector described by the metric energy-momentum tensor
(92) and the hypermomentum tensor (93) can be expressed
in component form as

0y =0
©,, — { Oy = N*(1)p(1)
©;; = a*(1)p(1)y;;
Ago = =3 N> (1) Ay(1)
Agy; =0
Agij = =N(1)a*(1)As(1)y;
Ay — § Bigp =0 (102)
Ajyj = =N(1)a*(t) Ay (1)y;
Ayjo = =3 N(1)a*(1)A (t)y;;
Ajji = =As(1)a (1)

Having all the background quantities already displayed, the
next sections will be devoted to performing their SVT
decompositions, which directly provides all the possible
cosmological linear perturbations of MAG.

V. COSMOLOGICAL PERTURBATIONS

In this section, we perform perturbations around the
cosmological background configuration characterized by
the FLRW metric (69), background torsion (75), and

nonmetricity (76) in the geometry sector, as well as by
the background perfect fluid energy-momentum tensor (92)
and hypermomentum (93) in the matter sector.

A. Geometrical perturbations

In the geometry sector, we consider perturbations of the
metric tensor and the affine connection around their
cosmological background quantities:

9w = g;w + 59;41/7 I:%/w = l:‘,{m/ + 51:%/4117 (103)

or equivalently in terms of the torsion and nonmetricity
tensors:

9w = g;w + 69/41/7
Q/I;w = Qﬂm/ + 5Q2m/’

T, =T, +3oT",.
(104)

where quantities with a bar refer to the background and
quantities with “6” denote the corresponding perturbations.

We have performed the 3 + 1 decomposition of all
building blocks of the theory in terms of the corresponding
irreducible pieces in Sec. III. Having presented the cos-
mological background configuration in Sec. 1V, it is then
straightforward to find the 3 + 1 expressions for the
perturbations. For instance, the 3 + 1 decomposition of
the metric perturbation &g, is

8y = =27, 71,0 + 2Py + by = 20, B,,  (105)

where 71, and PW are given by (33) and (68) and the per-

turbations with an arrow on top, XM = Pt PV SXP
are purely spatial, symmetric, and traceless tensors, i.e.
B, = 0, hy, = hiu). W1y, = 0, and P*hy, = 0.

The perturbations are regarded as tensors on the back-
ground space-time so their indices are raised and lowered
by the FLRW background metric g,, given by (69). Thus,
in the 3 4+ 1 decomposition, we deal with the background

quantities

0 0

" = (N-1,0), Pﬂy_( ) 106
( ) i (106)

Using the above results in (81) and (105), we find the
following form for the full metric tensor:

CZNBI'

<—N2(1 + 2a)
g/w - N
a?[(1 + 2y)yij + hyjl

- ) . (107)
This component 3 4 1 form of the metric tensor in terms of
the Latin indices is very useful in practice. In order to do so
for the other quantities like torsion and nonmetricity,
similar to Sec. IV, e.g. (79) and (80), we introduce the
scale factors:
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éiﬂdx” = aéiidxi , (108) where the bold letters will be used to denote the set of all

the perturbation quantities of the metric, torsion, and

< y S 1 i nonmetricity tensors with the same number of indices.
8X,,d* ® dx* = a®6X,dx’ ® dw/, (109) Y

Using then similar expressions to (50)—(52) and (55)—(58)

for the perturbations 67*,, and 6Q,,,, together with the

_ - . 4 1z
6X,,,dx" @ dx* @ dx” = a*6X;;dx’ ® dx/ @ dxk, (110) background quantities (73) and (74), we obtain
|
T%; = —%(i‘ +3B,)
70, = —L e (S + 3B
Tl/,w _ ‘] 6N—)i]k< o ) . . - ’ (111)
T'o; = —NA'; =38(¢ + ¢) +5€'u(S =2 5)]
i a i i B il i =
Tjk = _6{45 [ka] — 66 [jBk] + [3€jkl-A - €jk(Q + Q)“’
and
Qoo = —N30+60+3(6+0) - (E+&)]
Qoo = —54 (A, =37, -2Z))
Qoij = _NTaz{éij =3k =3[0+ 0—3(6+0) +3(E+ Oy}
Qi — s = 1w 13 = . (112)
Qioo = —N*a(W; — 3\ +3Y, - Z;)
Qioj = NTQZ{[QU +6K;; + (3(6 + o) + 2(&+ &)rij) — 3€ijk5)k}
> > > e 5 > 5 21
Qije = a{Cij + 5 AW, = Ay + 7viA — ¢ VY = viYn) + 37020 +5€i2 0}
where quantities denoted by a bar refer to the background. - 5 5 =-S5 o
Note that for notational convenience in the calculations, we 0Xij = {hij’ Aijs Aij’ Qij» Qij’ Kij}’ (115)
do not add “0” to the spatial perturbations in the geometry R .
sector. This will not bring any confusion since (i) the spatial X,k = {Cij}- (116)

quantities with spin higher than zero do not have any
background values as shown in (70), (ii)) we have decom-
posed the spin zero quantities, that may have nonvanishing
background values (71), to the background and perturba-
tion parts as ¢, = ¢ + ¢ and so on. In summary, we have
the following set of perturbation variables in the generic
MAG:

Each element of 5)@, éf(ij, and 5)2ijk have 3, 5, and 7
independent components, respectively. The 24 d.o.f. of the
torsion perturbations are distributed as 3 +3 + 9 + 9 d.o.f.
among the above components, whereas the 40 d.o.f. of the
nonmetricity perturbations are splitas 1 +3 +6 +3 +9 +
18 d.o.f.. Thereby, under the 3 + 1 decomposition of the
space-time, these tensors are split into a large number of

5X = {a,y,9,0,0,0,}, (113)  d.o.f., which correspond to representations of the three-
dimensional orthogonal group and thus can be further
- D s o > s o o oo o classified around FLRW geometries according to their spin
6X; ={pi.T:.5:.Bi. Bi. Wi A Y. Vi Z;}, (114)  and parity, whose leading values are displayed in Table I.
TABLE I. Species in MAG.
Spin and parity 0t 0~ 1- 2+ 2 3
Metric sector g, a, g . B Eij e
Torsion sector T%,, ¢ ) S, B T, B, ,Zi/. ;tij
Nonmetricity sector O, 0,0, ¢ - Y W, ALY, Z, Qij, R él_j a,jk

024017-11



AOKI, BAHAMONDE, VALCARCEL, and GORIJI

PHYS. REV. D 110, 024017 (2024)

1. SVT decomposition

After the 3 4+ 1 decomposition, we only need to deal with
the spatial scalar and tensors with Latin indices belonging
to the spatial maximally symmetric space with metric y;;
(and with the “external” parameter ). We shall use D; to
denote the spatial Riemannian covariant derivative com-
patible with y;;.

While the tensors 5X,, 5X, j» and éiijk have a large
number of components, the symmetries of the FLRW
space-time allow us to significantly simplify the problem:
spatial objects with different helicities evolve completely
independently at the linear level of perturbations [77]. In
this regard, let us decompose perturbations into different
helicity sectors:

sX, =D;S+V\", (117)
5)2—DD1DZSD”T<> 118
i = (DD —37yD” |S + DV + (118)
- 1
X = {D( D,Dy, ~ 570 Dp(3D? +4K)}s
1 (1)
+ {D(iDj —57(D* + 2K )} Vi
+DT! )> +TT, (119)
where S, V ™ , and TT( T denote a scalar (rank-0

u
spatial tensor), a vector (rank- 1 spatial tensor), a rank-2
spatial tensor, and a rank-3 spatial tensor respectively. Here,
the superscript “(T)” means that the quantity is transverse,
while the tensors denoted by the superscript “(TT)” are
transverse-traceless and symmetric:

pv" =0, (120)

ip(TT) _ p(TT) ij _ (TT) _ p(1T)
DTy 7 =T 7y? =0, T =Ty, (121)
DTT,! = (TT)yY =0, T, =TT, (122)

Given the fact that the spatial Riemannian covariant deri-
vatives do not commute in the presence of spatial curvature,
ie. [D;, D)Xk = B Rk, XP with OIR; ) = 2Ky, as is
shown, the SVT decomposition of a spatially rank-3
symmetric and traceless tensor requires contributions
from the Riemannian Ricci tensor and the Riemannian
Ricci scalar, in order to maintain the traceless property of
such a tensor. The modes S, V ) l(]TT>, and TTI(.]TkT)
describe the helicity 0, +1, £2, and +3 modes, and
contain 1, 2, 2, and 2 d.o.f.,, respectively. The uniqueness
of the helicity decomposition, also called the SVT
decomposition being short for the scalar-vector-tensor

decomposition,3 on the maximally symmetric space is
studied in Appendix C (see [77] for the proof up to the
rank-2 tensor). In particular, the uniqueness of this decom-
position guarantees that the different helicity sectors are
decoupled at the linearized equations of motion. One can also
confirm that the different sectors are certainly decoupled at
the quadratic order action: any scalar quantities constructed
by a pair of different helicity sectors, the metric '/, the spatial
Levi-Civita tensor £/¥, and the covariant derivative D, vanish
up to the freedom of integration by parts (recall that the
maximally symmetric space only allows the metric and the
Levi-Civita tensor as the background tensors). For instance, a
scalar (D' S)V(T) =D (SVET)) - SD' VET) is apparently non-
zero but is just a boundary term thanks to the transverse
condition; thus, it does not contribute to the equations of
motion. All in all, if one is interested in the linearized
equations of motion (or, equivalently, the quadratic action)
around the FLRW space-time, one can separately discuss the
different helicity sections.*
The perturbations of each helicity mode of the metric,
torsion, and nonmetricity tensors are then given as follows:
(i) Helicity-3 modes:
89, = 6T, =0, (123)
5Q/1;w
{ 6Q000 = 6Qo0i = 6Q0i; = 6Qj00 = 6Qj0; =0,
N

50 =a*Clj.

(124)
(i) Helicity-2 modes:
09w { o = 5902T:) 0’ (125)
69;j = azhij
8T, =6T°; =0
8T, — { 8Ty, = —NAT,  (126)

6Tijk _ _%gjkl-A(TT)ll

6Q000 = 6Q00i = 6Qjo0 =0
5Q0ij __Nd&* (Q(TT) _ 3K<TT))

3 ij ij
5Qi0) = N%Z(Q, )+ 6T
L

(127)

5Qﬂ/w -

5Qijk =a’ D (i

*In the present case, we have the rank-3 tensor in addition to
the conventional scalar, vector, and (rank-2) tensor modes.

In other words, a coupling between different helicity modes
arises only when the background breaks the symmetries of the
FLRW space-time and/or when nonlinear interactions are taken
into account.
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(iii) Helicity-1 modes:

8900 = 0
San: = Nap'™»
0G — 90i aﬁ ) (128)

8T% = -4(11" +3B{")
STO;; = — & e, (SMWF  3BMk)
5T, — ‘ _ , (129)
H 5T10j — —N[]/le(kA(;F) + lgzjk(S(T)k _ iB(T)k)}
STy = =2 (45, Ty — 65 By + 3£;,,DUAMY)
6Q000 =0
NG T T
8000 = =5 (A" =1y —27]")
2 T T
500 = =Y (D0} - 3D ))
6Qi00 = —N a(WfD - %Afn +%YET) - Z,(T))
0Quw — (130)
! 5Q10] = NTaz (D(zQy)r) + 6D( ( 381/1{3} )
80 = a3{ [D<,-Dj Ly (D2 +2K) | ) + 3 (@W = A )y + vigAy
T T T T
—%ijyf' ) - 7i(jY1(¢))) +; Y(ij ;(C)) +3 37" (é‘lijD(kQ,(n)) + 81ikD(jQ,(n)>)}
(iv) Helicity-0 modes:
5900 = —ZNZ(Z
0Guy — 6go; = NaD;fp , (131)
8g; = a* {21!/717 + (DiDj - %7ijD2> h}
5T00i - - % (DlT + 3DIB)
5T0ij = _6_2€ijk(DkS + 3Dk6)
A
oT w 6Ti()j _ _N[(Dz _1 51 DZ) _ %51']‘45 + %gijk (DkS _ %DkB)} s (132)

6Ty = =& [451;DyT = 65Dy B + 3e (DD! = } 1D A — el 0]
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5000 = —N° (9 +3p- 5)
Q00 = =3¢

6Q0ij =

5Qﬂ/w -
60Qj0;
6Qijk = a3{ |:D( D Dk)

— (7 DY —7i;DpY)

Thereby, the 10 d.o.f. described by the metric perturbations
are split in terms of four scalars {a, ,y, h} (1 d.o.f. each),

T)} (2 d.o.f. each), and one
(2d.o.f.);in
Tables II and III, we list all the helicity modes appearing in

the torsion and nonmetricity perturbations and their number
of d.o.f.

two transverse vectors {ﬂl(-T), hf

. TT
symmetric and transverse-traceless tensor hf- ; )

2. Fourier space

After performing the SVT decomposition, it is con-
venient to move to the momentum space and work with
Fourier amplitudes of the perturbations. For scalars,
we have’

1 . .
Sk—=S(t, k)E(X; k) + c.c.,

. 1
S(1,%) —W/d 7 (134)

with real functions S(z, 1?) and where E are the orthogonal
eigenstates of y;;:

D’E = —K’E,

/ A3\ TE* (R K)E(F:K) = 2n)36®) (k- K),  (135)

being k the norm of the momentum. We have chosen the
normalisation so that

/ Ex 7S D) = / %[S(t,zé)]% (136)

The helicity-1, -2, and -3 modes can be similarly mapped
to the momentum space but each helicity still contains
two different modes. In MAG, it would be particularly

SFor the closed universe, the momentum is discrete and the
integral is replaced with the summation.

(D,.A -1iDy-2D,7)
N [(DiDj —%Vi/Dz)Q - 3(D"Df _%7‘7D2>K_ 3(9 ~30 +%€>y”}

50100 = —N2a<D,W IDA +1DY - Dz)

(133)

= NTaZ |:(D1DJ - %]/UDZ) Q + 6(DZDJ - %}’UDZ)K + (30' + 25)7/” - 38ijkay:|
L7(i;Dy(3D* + 4K)] C+ 3 (4D;W = DiA)yj + 7i;DpA

+375DuZ + 3e (#"'DyDy —§89D?) Q |

convenient to characterize them by using the circular
polarization bases El( ) and EY ik (A L,R) [64,78];

l] 4
they are defined by the eigenstates of the operators

D2EW = —k2E! 7D, ESY) = J,kEVY . (137)
2pA) _ _p2pA) G (4)
D’E}; = —KE}}’, "Dy E ) = AakE[",  (138)
4) _ (4) 4 _ (4)
D2EY = —EY, " ID,E iy = MakE . (139)
with 4, =—1, Azp =+1, and satisfy the orthogonal
conditions

= (27)38,, 83 (K—R).

(140)

(141)

TABLE II. Helicity decomposition of the perturbations for the
torsion tensor.
SVT Quantities d.o.f.  Total d.o.f.
4 scalars {T,B,¢,A} 1 d.of. each 4
4 pseudoscalars {S B, Q, A} 1dof each 4
3 vectors (" ,B A(T }2 d.of. each 6
3 pseudovectors { s B! (T) A T)}Z d.o.f. each 6
1

1 rank-2 tensor { AT } 2 d.o.f. each 2

1y
1 rank-2 pseudotensor { A(_TT)} 2 d.o.f. each 2

ij
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TABLE III. Helicity decomposition of the perturbations for the nonmetricity tensor.
SVT Quantities d.of. Total d.o.f.
10 scalars {0.6,6,\,Y,Z,k,Q, W, C} 1 d.o.f. each 10
2 pseudoscalars {¥,0} 1 d.o.f. each 2
7 vectors {A(.T), Y(.T), Z(T),K(T)’ Q§T), W(T), C(-T)} 2 d.o.f. each 14
2 pseudovectors {J} (T) . Q<T } 2 d.o.f. each 4
3 rank-2 tensors {KEJTT), QE, T ijTT)} 2 d.o.f. each 6
1 rank-2 pseudotensor {Q! TT)} 2 d.o.f. each 2
1 rank-3 tensor {ijTkT } 2 d.o.f. each 2
- . / 1 l - e
EaFIEG G R ES L G K )y il viD(,3) = /d3k— VO (1, k)EX (% k
[ B R B Ry 0.9 = G [ sV DEY &)
= (27)* 84000 (k = K. (142) + VO BER R 0)] + c.c (152)
We omit the superscripts “(T)” and “(TT)” for notational ™, - 1 1 S (L) o
o ny W, VR = [ Bk—= VO (1, HE" (F:K)
simplicity, but note that E;” is transverse, and {E, L E ) (27) V2
are transverse-traceless and symmetric in all the indices. — VR (1,k) (R) (% ];)] +cc (153)

Also, one should not confuse the spatial index k with the
momentum k; the difference between them is clear from the
context. Note also that thanks to the isotropy of the FLRW
space-time, the final results depend on the norm k but do not
depend on the specific direction /?/ k.

While we have not classified the quantities with respect
to the parity so far, we now take the parity into account. We
collectively write them as

S: {aaﬂ’W7hv¢7T7BvA79567§7 W7A7Y3Z7 Q7K7 C}v

(143)
S: {Q,S,B,A,y, Q}7 (144)

VO (50 4D 70 g0 41 0 A1y
zV. 0"k, (143)
v = {S(T) BT 4™ Y Q(T)} (146)

(TT (TT) (TT) (TT)

_{h Aij ’Ql_] s Nj }’ (147)
TT _ {.A TT)}’ (148)
Tlek {Cl]k } (149)

Then, the corresponding Fourier transformations are

S(t,3) = (2:[)3 / d%\i@so, DEGR) +cc., (150)
S(t.5) = (22)3 / d%%S(L DEER) +ec.,  (151)

and the transformations of the rank-2 and rank-3 tensors are
performed similarly to the vectors. The quadratic form of
the (pseudo)scalar is explained in (136) whereas that of the
(pseudo)vector is

[exavesr

3
-J &b

where a contraction of the indices is understood. Note that
we have added the minus sign in front of the right-handed
mode of the parity odd sector to systematically deal
with couplings between the parity even and odd sectors
(see [64,78]).

For illustrative purposes, let us explicitly display the
circular polarization bases in the flat FLRW universe K = 0
with the Cartesian metric y;; = §;;. The scalar harmonics
are nothing but the exponential function

OP + VR OPY,  (154)

E = e, (155)

By the use of the isotropy of the FLRW space-time, we can

choose k = (0,0, k) without loss of generality. We then
find

(156)
with

D= 1/v2,-i/v2.0),  &® = (1/v2.i/v/2.0).

(157)
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As el satisfies e} ¢! = 0, the bases of the helicity-2
and -3 modes are straightforwardly found to be

EE?) = eSA)eE.A)ei%"?, (158)
EfjAk) = eSA)eﬁA)e,((A)ei;'f. (159)

<A>, E(-f-‘), and E(f.‘k) satisfy

One can explicitly confirm that E; ij i

all the desired properties.

B. Matter perturbations

For the matter perturbations, we have to consider
perturbations around the background matter configuration
that is described in Sec. IV B.

The matter sector is characterized by the energy-
momentum and hypermomentum tensors. Considering
general perturbations around them

0,=0,+080,., A,=A7,,+67,, (160)
the aim is to find SVT decomposition of 60, and 5A,,,.

Let us first look at the perturbations around the energy-
momentum tensor which is quite well known in the context
of cosmological perturbation theory. In 3 4+ 1 decomposi-

tion, the components are

8800 = N*8p = pdgon

80y; = —=N(p + p)dii; + pdgo; »
80;; = pbgi; + a*(yi;6p + 7;;)

50, — (161)

where dp and dp are the perturbations in the energy density
and pressure respectively, §u; is the spatial velocity vector,
which is defined in the four-velocity of the fluid as u, =
it, + éu, with i, = n, and éu, = (éuy,6i;), and 7;; is
the spatial stress tensor. Note that in obtaining the above
result we have used duy = dggo/2N that can be deduced

from ¢"u,u, = —1.

S_l
ST

The SVT decomposition of the energy-momentum
tensor is now straightforward. The SVT decomposition
of the metric perturbations are already presented in (125),
(128), and (131) and the SVT decomposition of the spatial
velocity vector and the spatial stress tensor can be read
from (117) and (118):

Sii; = D;ou + dul", (162)

7 ! ™ )
iy = (D(,-Dj) - g}/ijD2>ﬂ' + D(iﬂj) +m; .

(163)

On the other hand, the perturbation of the hypermo-
mentum 6A,,; can introduce up to 64 d.o.f. with the SVT
decomposition behaving in the same way as the sum of
the perturbation of torsion (24 d.o.f.) and nonmetricity
(40 d.o.f.) as we described in the previous subsections. We
thus do not explicitly present them here. As we noticed
above, the matter perturbation for the energy-momentum
tensor has a clear physical interpretation as the perturbation
of the 4-velocity of the fluid and the anisotropic pressure.
However, for the hypermomentum, still, it is unclear how to
physically interpret all its perturbation d.o.f.. This could be
interesting to analyze further in the future.

VI. COSMOLOGICAL PERTURBATIONS OF THE
NONMETRICITY HELICITY-3 MODES

Based on the SVT decomposition theorem, the helicity-3
perturbation decouples from all of the modes with different
helicities at the linear order of perturbations. Moreover, we
only have two helicity-3 modes that are characterized by
c(Th

ijk
analysis for the helicity-3 modes. For this task, we consider
the most general parity-preserving gravitational action in
MAG, constructed from four-dimensional invariant quan-
tities of the curvature, torsion, and nonmetricity tensors
under the general linear group GL(4,R) up to their
quadratic order®

. Thus, it is easy to perform linear perturbation

d4x\/:§(ie + QIRZ + aZRﬁpﬂlepﬂy + a3RﬁpﬂDRPlﬂy + a4RﬁpﬂvR”Mp + aSRﬁpﬂDRM’w

+ agR;, R*P + 7R, R*" + agR,,R*" + agR,,R* + a\oR,,R" + ay R, R*
+ alZR;lew + a13RﬂDRW + al4Rlﬂm/Rpplw + alSRlxl;lew + a16Riﬂ;wR}w

+ by Ty T + by T, THY + b3 T4, T Y + 1T, Q% + T, 0%, + ¢3T,,0,

+ dl Q/I/w Qﬂﬂy + dZQ/llelMD + d3 QiﬂyQ”ﬂy =+ d4Qvﬂ/1 QUM” + dS Qlﬂle/ﬂﬂ)’

where all coefficients a;, b;, ¢;, and d; are constant.

(164)

®Note that the action (164) in general develops a ghost instability [79]. Here, however, our aim is to study linear perturbations of the
helicity-3 modes, keeping in mind that the absence of ghosts implies certain relations between the coefficients in the action.
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The helicity-3 modes are encoded in the nonmetricity
tensor Q,,,, or more specifically, in the irreducible piece
4, defined in (22). In Appendix E, we have classified the
action (164) in terms of g,,,, where the interaction of the
spin-3 field with all the other fields can be explicitly seen.
Here, before performing explicit calculations of perturba-
tions, some comments are in order. First, the derivatives of
the nonmetricity tensor appear linearly in the definition of
the curvature tensor (7) and, that is why we have considered
quadratic terms in curvature in action (164). Otherwise,
nonmetricity will not be a dynamical quantity. Second, all
terms with coefficients b; and ¢; in (164) do not contribute
to the quadratic action of perturbations for the helicity-3
modes. Third, in principle, the terms with coefficients

|

§@

© |, ~1r)2 1 (TT)
o :16_7[ dl‘d3xa3gT [(ngk) —?(D,Cijk

) 4 e
) +ET28ijkC(TT) 1D/ CTOH —m¢ (C

d; can generate mass for the helicity-3 modes in any
background.

For the sake of simplicity, we will concentrate on the
spatially flat K = 0 FLRW background and we also work
with the cosmic time N = 1. Note that, as we explain in
Appendix D, the helicity-3 modes are gauge invariant since
they do not have any background value and the trans-
formation parameters (encoded in the four-dimensional
vector & that is defined in Appendix D) involve only
helicity-0 and -1 modes. We thus do not need to fix any
gauge for them. Substituting SVT decomposition of all
quantities, it is cumbersome but straightforward to show
that the quadratic action of perturbations for the helicity-3
modes takes the following form:

TT)\2
)

1 &3k O | A
_ dt 360 | 1@z - ()ZC(A)Z’ 165
16%2%/ ay @91 || a1 (165)
where a dot denotes derivative with respect to the cosmic time ¢ and we have defined the frequency as
(A2 — K k 2
[weal” =5 = 42aTo— + me. . (166)
and also the constant kinetic coefficient and the time-dependent effective mass as
(©)
1 H
Q(TC)E—f(2a2+2a3+a5+a6+a7), m o= —1r, (167)
with
©) _ 1 1 . »
HT = Z — dl - d2 +§ [2&1 - 7(a2 + a3)]H + (2&1 — 6a2 - a3)H
1
+ (7(12 - 3(11)T1H + E [2(14Q1 + (36!1 - 7(12)(2Q2 - Qz) + (14(2Q2 + Q3)]H
+ (Bay +das — )Ty + [y +2(a3 — )| T} — T3
—ayT Q1 + (4o — 201 —da3 — ay)T1 0y + [ + 2(a3 — )| T1 Q3
1 . . .
+5 [((11 - 3(12 - 4(13)(2Q2 - Q3) + C¥4Q3} + ((Xl + 2(13 + ay — 2(12>Q%
1
+§ (a1 =3y — 4oz — ay) Q) + (o — a1 — 83 — ) 01] 03 + 2,01 0s. (168)
In the above, H = @/a denotes the Hubble parameter, whereas we have introduced the following constants:
3as ag 3ay
ay =3a; +3a; + a; +a4+7+7+7+08+a9+a10+011 +ap +as, (169)
1
ay = ﬁ (14612 + 10613 + 2Cl4 + 7Cl5 + 56l6 + 7Cl7 + ag + dg + ajo + apy + apn + Cl13), (170)
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1
a3 = —ﬁ(4a3 —2ay +2ag — ag — ag — a;g — ay — a;p — a3),

1
0’4:—5(6184'09—010—“11)’ as =

The action (164) determines the gravitational sector for
the spin-3 field. In general, there can be spin-3 fields in the
matter sector. Taking into account this point, variation of
the quadratic action (165) gives the following equations for
the linear perturbations of the helicity-3 modes:

A) 4 3HEW 4 [wgi]ZC(A) — J@4), (173)
where J() describe the Fourier amplitudes of the trans-
verse-traceless source provided by the matter sector. More

precisely, at the level of equation of motion, J*) are
encoded in the helicity-3 modes of the intrinsic hyper-

3
momentum, such that J4) « (0 x(TT)(A),
Having the quadratic action (165) in hand, we can look for
the stability conditions. Avoiding ghost instability implies
G >0, (174)
which, as is clear from (167), sets constraints on some

coefficients a; in the action. To avoid gradient and tachyonic

instabilities, one may assume [a)(c ,)(] > 0, while this con-

dition is too strong as we will discuss it in detail in the
following.

The parity-violating term, that is linear in k, is present
in the quadratic action (165) as far as torsion has a
nonvanishing background T, # 0. Indeed, it originates
from the covariant interaction g,,m,qf’“ﬂS""V"qu’1 since
§% « T, # 0 (see Appendix E). While our original gravi-
tational action (164) is parity-preserving, the background
evolution of the universe breaks the time reflection sym-
metry and then S° « T, # 0 spontaneously breaks the
parity invariance of the perturbations: the left-handed

Ar = —1 and right-handed Az = +1 modes of ijk obey
different equations of motion, as can be seen from (173). In
this sense, it is important to stress that the coupling constant
of the parity-violating term is the same as the coefficient of

1
S =gp | AR = 6d\ Ry R —

1
3 (2a19 +2ay; + a;p + ay3),

(171)

ag = 4(ayo + ap). (172)

|

the kinetic term. Hence, the parity invariance of the
helicity-3 modes, if it is dynamical, is inevitably broken
in a cosmological background with 7', # 0 in the quadratic
MAG. A similar observation can be found in the helicity-
2 sector in Poincaré gauge theory [64]. Moreover, the
parity-violating term can only develop instability for one of
the modes (the right-handed A3 = +1 for T, > 0 and the
left-handed A = —1 for T, < 0) for low momenta that

satisfy [a)(c +J2 < 0. In fact, this type of infrared instability is

very interesting in cosmology as it provides particle
production (see e.g. [80] and [81]).

For the mass term, due to the Hubble friction, we do not
need to assume m¢. . > 0; even if the helicity-3 modes
develop instabilities, the growth rate can be slow enough
as long as the size is comparable to the Hubble rate

( |H(TC)| ~ H?), similarly to the Jeans’s instability [82]. It is
also important to elaborate more on the different contribu-
tions to the effective mass of the spin-3 modes mg
presented in (168). The first three terms in the right-hand
side of (168), 1/4 — d, — d,, are present at any background
while the other terms vanish in the absence of background
curvature H = 0, and background torsion and nonmetricity
T; = Q; = 0. Therefore, if 1/4 —d, — d, = 0, the spin-3
field ¢,, 1is massless when H=T;=0;=0 (the
Minkowski vacuum) while it acquires nonvanishing mass
if H #0,0rT; # 0or Q; # 0. Asis well known, the massless
spin-3 field presents the issue that it cannot have a consistent
interaction preserving the gauge symmetry. The nonvanish-
ing mass around nontrivial backgrounds might be indeed a
sign of such an inconsistency.

Let us now analyze a particular MAG model, recently
explored in [83], which interestingly displays the broadest
family of static and spherically symmetric black hole
solutions with spin, dilation, and shear charges in MAG.
This model is characterized by a gravitational action with
dynamical torsion, Weyl vector, and traceless nonmetricity
tensor’

9, Ry R+ 24, (R, + Ry (RI 4 R

+18d RW ] RO — 3\ R ;) R + 64\ R 3, R +2(22) — f1)RY,, R 1
+ 8f1 (Ap)u - 2}1 (R(/w) - ]Ae(/w))(jé(ﬂy) - I’é(/#’)) - 3(] - 2&2)T[/1;4U]T[ﬂﬂy]]d4x\/ =9, (175)
"In [83], the signature (+ — ——) was used, so that the action in our signature (— 4+ +-) shows an opposite sign in R and also in

T yaZzin
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which indeed contains contributions from the spin-3 field. In particular, Eq. (175) can be directly obtained from the general
quadratic action of MAG, up to boundary terms, by setting the following combination of the Lagrangian coefficients:

- d d, - d d d d —f
a; =0, a2=f1—§17 a3:§1+f11 614:?11 615:“7:—§11 aﬁzzla ag = ayp = 14 3 (176)
di+f dy+f —d . F
g = dy; = — 14 l, ap = 12 ]7 apy = ]2 ) 014261—3]7 ajs = a;s =0, (177)
1—3
bl = - 2a2 , b2 = —Elz, b3 =C] = Cy) = —C3 = 1, (178)
1 1
dlz_d4:_1’ d2:—d5:§, d3:0 (179)

Thus, for this model, the functions (167) and (168) become

g<TC) =7 mt e = H+2H> + 4T3, (180)

The condition to avoid ghost instability (174) implies

fi <o. (181)
This result is consistent with the ghost-free condition for
the vector modes of the traceless nonmetricity tensor of
the model [83]. The tachyonic instability can also be
avoided if H + 2H? > 0, since m% ., is always positive
in this case. In the other case H + 2H? < 0, m%. ., < 0 may
happen which, as we explained above, is not necessarily a
pathology of the helicity-3 perturbations.

Before concluding this section, we stress that a massive
spin-3 field should have seven dynamical d.o.f., while
the present analysis only guarantees the stability of the
two polarization modes thereof (the helicity +3 modes).
One should make sure that other helicity sectors are
stable as well. We also note that 1/4 —d; —d, = 0 for
the action (175). As we have explained above, theories with
1/4 —d, — d, =0 can be problematic in the Minkowski
limit due to the no-go theorems of massless higher-spin
fields. Nonetheless, one might also regard (175) as an
effective theory around a nontrivial background if the other
five polarization modes of the spin-3 (and other dynamical
modes) are all well behaved there. In this sense, it is
important to systematically analyze the perturbations of all
sectors, which we leave for future study.

VII. CONCLUSIONS

In this work, we laid the foundations to obtain and
analyze the cosmological perturbations in the framework of
MAG, which includes torsion and nonmetricity on top of
the curvature tensor. Indeed, cosmological perturbation
theory in Riemannian geometry plays a fundamental role
in the description of the inhomogeneities and anisotropies
of the universe, such as the structure formation at large

|

scales, the primordial fluctuations in the CMB, and the
propagation of gravitational waves at cosmological dis-
tances, but its formulation in MAG has remained largely
unaddressed in the literature.

Specifically, the geometrical perturbations in MAG are
associated with the metric, torsion, and nonmetricity ten-
sors, whereas the matter perturbations are encoded in the
energy-momentum and hypermomentum tensors. Thus, we
performed 3 4 1 and SVT decompositions of these tensors
around spatially curved FLRW background and presented
all the possible spatial perturbations arising in MAG. As
shown in Tables II and III, the theory displays a rich
perturbation spectrum for the torsion and nonmetricity
tensors, which includes a large number of d.o.f. with helicity
states 0, 1, 2, and 3, on top of the well-known metric
perturbations of Riemannian geometry. Therefore, MAG
provides a diverse phenomenology at cosmological scales.
For instance, the additional helicity-2 modes can source the
helicity-2 modes of metric perturbations at the linear level of
perturbations and lead to a significant production of gravi-
tational waves [84,85]. Moreover, the extra d.o.f. with
different helicities may provide a geometrical source for
dark matter. In particular, recently, a lot of attention has been
paid to higher spin dark matter models [86—103].

It is worth mentioning that in order to fully determine the
number of physical d.o.f. in MAG, one would need to apply
Hamiltonian analysis since perturbations around FLRW
backgrounds might not exhibit all the possible d.o.f.
appearing in a particular theory. Several studies regarding
the Hamiltonian analysis of theories with torsion and
nonmetricity have already been considered in the literature
[104-108].

As an immediate application of our setup, we studied
linear perturbation of the nonmetricity helicity-3 modes
around the spatially flat FLRW background for a general
parity-preserving MAG action that is quadratic in curva-
ture, torsion, and nonmetricity. As guaranteed by the SVT
decomposition theorem, these modes decouple from the
rest of the modes at the linear level of perturbations, which
makes their perturbation analysis relatively simple. We thus
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found the general stability conditions of the helicity-3
modes and applied them to a particular MAG model with
dynamical torsion, Weyl vector, and traceless nonmetricity
tensor, recently studied in the literature in the context of
black hole physics [83]. We showed that the stability
conditions can be satisfied around the spatially flat
FLRW background. However, we found that the spin-3
field is massless in Minkowski background, while it
acquires a nonvanishing mass in FLRW background when
curvature and/or torsion have a nonvanishing background.
This result shows that five modes of the spin-3 field may
become strongly coupled around the Minkowski back-
ground. It is then interesting to look for possible solutions
to this issue. One simple possibility is to add an explicit
quadratic term of the field in the gravitational action to have
a well-behaved Minkowski limit. We remit the research
following these lines for future works.
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APPENDIX A: IRREDUCIBLE DECOMPOSITION

In this appendix, we present how to systematically find
all the irreducible pieces of general tensors of up to rank 3
in the 3 + 1 decomposition. A scalar is already irreducible,
so we shall start with a four-dimensional vector X¥. The
vector is irreducible with respect to the four-dimensional
pseudo-orthogonal group. On the other hand, applying
the 3 + 1 decomposition, the four-dimensional vector is
decomposed into a scalar and vector with respect to the
three-dimensional orthogonal group, which are, loosely
speaking, temporal and spatial components of X*, respec-
tively. For later convenience, we write this decomposition
by using Young tableaux as follows:

(-[e [

We use the Young diagrams (boxes without characters)
and the Young tableaux (boxes filled with either O or
Latin characters) to denote four-dimensional and three-

(A1)

dimensional tensors, respectively. The boxes filled by 0
correspond to temporal components (precisely speaking,
components multiplied by n,,) while the i, j, k, - - - boxes are
spatial components (components multiplied by P#,). The
number and shape of boxes filled with Latin characters
determine the rank and symmetry of the spatial tensors. For
instance, in (A1), the first term on the right-hand side has
no Latin character, so it corresponds to the scalar part,
whereas the second term represents the spatial vector.

We then consider a generic rank-2 tensor which is
described by a tensor product

el )

As is well known, this tensor can be decomposed into
symmetric and antisymmetric parts. However, it should be
noted that indices can be contracted. Hence, the irreducible
decomposition of the rank-2 tensor is

D@D:Dj@-@H,

where the gray boxes are understood as contracted indices
and the white boxes are traceless; that is, the first, second,
and third terms on the right-hand side respectively describe
a symmetric-traceless tensor, a scalar, and an antisymmetric
tensor in four dimensions. The symmetric and antisym-
metric parts are further decomposed into

(A2)

(A3)

L | J=[ofo]e[ifofeli]]

mpoge

0]
The boxes filled with Latin characters should be top-left
aligned in order that Young subtableaux with Latin char-
acters describe the rank and symmetry of spatial tensors.
According to this rule, one may avoid double-counting of
spatial pieces: for instance, the tableau does not appear
in (A4). Note that 0 does not appear twice (or more than
twice) in different rows within the same column because the
indices are antisymmetrized. We now use the speciality of

three dimensions: two antisymmetric indices can be reduced
to one index by taking the Hodge dual,

Here we added a hat to record that the indices are dualized. In
summary, we find

; (A4)

(AS)

(A6)
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(e[~ [T0)s 0] G150 Millef =)

(A7)
showing that 16 components of rank-2 tensor are decom-
posed into two scalars (2 x 1), three vectors (3 x 3), and one

tensor (1 x 5) of three dimensions.
We proceed to consider a rank-3 tensor

[ Jel Jol ]

All the essential ingredients have been already explained
above. We first perform the irreducible decompositions
with respect to the four-dimensional orthogonal group:

(o0~ (Oe0) e
- (CT- ) =)= [-C1].

nonmetricity-type
torsion-type

(A9)

(A8)

and

(T=mm) [ J-[T e e .

(A10)

H@D— @_ ‘@

[ e

(Al1)

.|

where the Young diagram of the shape (1,1,1) can be
dualized to the shape (1) in four dimensions. Here, the
white boxes, which are supposed to be filled with either O
or Latin characters in the 3 + 1 decomposition, are top-left
aligned. The 3 4+ 1 decomposition of vectors (the terms
with only one white box) has been already presented. The
3 + 1 decompositions of other blocks are

[ [ [ J=[ofoJo]e[i[o]e[i[i[o]ali[i]*]
(A12)

\:io\ ij| z'0| z’j\

T e I
0 ] = 2 .
:Z) ‘@0]|®|z|0|@‘z‘],
(A13)
QD (A14)

=[0]e[i]

One may notice that there are two different ways of

|. In this way,

embedding rank-2 spatial tensors in

the generic four-dimensional rank-3 tensor is decomposed
into three-dimensional symmetric traceless tensors.
Let us count the number of independent components. 64
independent components of a rank-3 tensor are first
decomposed into 24 torsion-type components and 40
nonmetricity-type components. They are further decom-
posed into four-dimensional irreducible pieces as follows
(see e.g. [109]):

l:l:l:‘ : 16 components, (A15)
E- : 4 components, (A16)
‘ : 16 components, (A17)
;. : 4 components (A18)
and
@ = D : 4 components, (A19)
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: 16 components , (A20)

(A21)

: 4 components .

Note that our Young diagrams are traceless. The nontrivial
partsare| | | ]and . As shown in (A12) and (A13),

they are decomposeq into a scalar, vector, rank-2
tensor, and rank-3 tensor for [ | [ | and two vectors

and two rank-2 tensors for

‘, respectively. Hence,

we find

\:l:l:‘:16:1+3+5+7,

(A22)

‘:16:2><3+2><5, (A23)

which indeed agree with each other.

APPENDIX B: 3+1 DECOMPOSITION
OF RANK-2 AND RANK-3 TENSORS

In this section, we will demonstrate the form of the
splitting from a rank-2 tensor to rank-3 tensor following
the 3 + 1 decomposition with a unit timelike vector n,
satisfying n,n* = —1 and a projector as (34) satisfying
P, n" = 0. Then, our tensors will be constructed from all
the possible linear combinations of their three-dimensional
irreducible pieces and expressed in terms of n, and P,,,.

Following the Young diagram displayed in Eq. (A4), a
symmetric-traceless rank-2 tensor X, is decomposed into
a symmetric traceless tensor, a vector, and a scalar.
Thereby, the most general linear combination constructed
from all these quantities can be written as

Xw) = cinyny, + 2Py + c3X () — 2¢4X,un,),  (Bl)
but note that constants ¢3 and ¢, can be normalized as

¢c3 = ¢4 = 1, whereas c¢; and ¢, contribute to the trace
unless —c; 4+ 3¢, = 0. Hence, we find

1 - .
Xiw) = <n,4ny + §Pﬂv>x** + X ) = 2X, ). (B2)

with

X =cp =n'n"X,,. (B3)
In addition, by taking into account the Young diagram (AS5)
and the dualization of two antisymmetric indices to one
index, the antisymmetric rank-2 tensor X, turns out to be

determined by a vector and a pseudovector

— _oy® )
X[;u/] = _2X[;4 ny +58WX( ) s

(B4)
where the respective constants in the linear combination
have also been normalized to match our conventions (48).

For an arbitrary rank-3 tensor X,wp, the fact that, in
terms of algebraic symmetries, the antisymmetric part
X,y corresponds to a torsionlike tensor and the sym-
metric part X,,) to a nonmetricitylike tensor, means
that without any loss of generality its 3 + 1 decompo-
sition is completely determined by the corresponding
decompositions of the torsion and nonmetricity tensors.
A straightforward analysis is then to perform the 3 + 1
decomposition of all their four-dimensional irreducible
pieces, which trivially reduces to the problem of finding
the decompositions of the rank-3 tensor modes 7,,,, Q,,,,
and q,,,, since the respective decompositions of the other
rank-1 vectors are well known.

Following these lines, let us now obtain the 3 + 1
decomposition of the tensor 7,,, expressed in Eq. (52).

First, we notice from the Young diagram (A13) that such a

tensor is decomposed into a traceless tensor A,,, a vector

1
B, a traceless pseudotensor A,,, and a pseudovector B,,.
Thereby, by taking into account the skew symmetry

1
Hup
tuup) Of this tensor, the most general linear combination
constructed from these four quantities can be written then in
terms of n, and P, as

-

Lup = C1Np Ay, + conyny By + ¢3P B,

Hvp

+ 81//){}(/}(6'4”(1-’4/)’;4 +cs n,un/iBa + C6P/4/JB(1)

+ C78/4[/)aﬁ~’1u]/3na + ngﬂ[/)aﬂpl/]ﬂé(l‘ (BS)
However, by virtue of the identities

ey Vg Ap, = zeﬂ[ﬂaﬂAv]ﬂna’ (B6)

Bp,By = se, DB, (2 P B7

8/4[/) VpRa — Egu/) a( n,ng— ;4/)')’ ( )

the term related to the constant cg is linearly dependent on
the terms related to c¢5 and ¢4, whereas the same holds for
the terms given by the constants ¢; and c4. Therefore,
without any loss of generality, we can directly set
¢7 = cg = 0. Next, in order for the tensor mode 7, to
be totally traceless and pseudotraceless, we must demand
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1 1
C3 = <~ Cp, Ce =

3 Cs, (BS)

which automatically satisfies the condition 7(,4, = 0, since

apu

1 3 ¢
315’/111[”8”)]/1‘5715 - Blé'lwp/l = niA [ﬂgl/p]lf =0. (Bg)
Then, by replacing the relations (B8) into Eq. (BS5), and
choosing ¢; = ¢, =2, ¢4 = —c5 = —1/2 for normaliza-
tion purposes, we find that such a tensor can be finally
written as follows:

- 1 -
tup = 21 Ay +2 <”ﬂ”[v + Epﬂ[b> B,

1 - 1 -
+ zewaﬁ {—naAﬁ,, + <nﬂnﬂ + EPﬁ”) Ba} . (B10)

Similarly, the fact that €2, presents the same algebraic
symmetries as 7,,, leads to an analogous result:
]

1 -
Qup =2n, Q) + 2 (”ﬂ”[v + ipﬂ[v> V)
1 f - 1 >
+§8U/) _naQ/}M + nﬂnﬂ +§P/}/4 Ya . (Bll)

Finally, let us consider the Young diagram (A12), which
represents the fully symmetric and traceless tensor g,,,. In
this case, the building blocks of the 3 + 1 decomposition

are C s l_c'lw, Zp, and &. Thus, the most general linearly
independent combination formed by these building blocks

can be written in terms of n, and P,, as

-

Gup = Cup + C1n(Kyp) + (Cangn, + 3P )2y

+ (canny, + csP,)nyé. (B12)
where the following relations must be satisfied in order to
fulfil the traceless condition:

1
C3 =~ Cp,

; (B13)

Cs = Cy4.

In that case, by normalizing the values of the constants as
¢y = —c, = =3, ¢y = —1, we obtain

B, .3 R
Qup = Cup = 30Ky + 3 (Sngn, + Pu)Z,)
- (Il(ﬂl’lv + P(m/>l’lp>f, (B14)

which concludes the derivation of the 3 + 1 decomposition
of arbitrary rank-2 and rank-3 tensors.

APPENDIX C: UNIQUENESS OF THE SVT
DECOMPOSITION

In this appendix, we will show that the SVT decom-
position performed in Sec. VA 1 for rank-1, rank-2, and
rank-3 tensors is uniquely determined. For this task, we will
follow the same reasoning as the one considered in
[77,110,111] for rank-1 and rank-2 tensors, thus extending
these results to the case of rank-3 tensors. First, it is useful
to recall the following equations:

IR ju = 2Ky v s ®R;=2Ky;;, OR=6K, (Cl)

with K being the constant spatial curvature of the FLRW
space-time. Then, one can find the following commutator
rules for an arbitrary vector U; and an arbitrary tensor U;;:

DiD2Ui _ D2DiUl_ — Di((3)RijUj) = ZKDiUi, (C2)
D'D2U;; - D?D'U;; = DI(PR/'U; + OR! *Uy)
+ (3)RikﬂDkUil
. 1 .
= 4K (DU — = D;U). (C3)

2 J

For the vector decomposition (117), let us apply D;
which gives us
D;6X! = D*S + D, V(i = DS, (C4)
Thus, one can use the inverse of the operator D? to
determine S and then V(U7 is uniquely determined by
(117). Thereby, if the inverse operators exist, Eq. (117)
determines S and V(™! uniquely in terms of 5X".

Similarly, for the rank-2 tensor (118), let us first apply
the operator D;, yielding

S 2 '
DsX" = TD/(D? +3K)S + (D? +2K)VW/, (C5)

where we have used (C2). Next, by applying the operator

D(;D;, —17;;D'D; to the rank-2 tensor, we get

1 S 2
(D<,-D ) =37 jD2> 5X" = gD2(D2 +3K)S,  (C6)

where we have used (C3). Then, if the inverses of
D?,D? + 2K, and D? + 3K exist, Eq. (118) determines
S. V(i and T(™# uniquely in terms of §X”.

Finally, let us consider the rank-3 tensor given by
Eq. (119). By applying the operator D;, we find
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D,sx* =

W =

3 : 1. 8
+3 (DkD-’D2 -3 y/*D* + 8KD*D/ — 3 Ky-’sz) S,

while applying two covariant derivatives provides

.4 4
(D? + 6K)T(TDJk 1 EDk(D2 +7K)VMI ¢ EDJ(D2 + 7K)VDk

> 4 2
D,D;6X"* = s (D* + 9KD? + 14K*)V(DF 1 ng (D* + 11KD? + 24K?)S

4 2
-1 (D? + 7K)(D? + 2K)V(Dk ng(D2 + 3K)(D? + 8K)S,

where D* = D>D?. Furthermore, we can also compute the following operator from three covariant derivatives:

1 o 2
D,D;D; — §7if<D’<D2 + D'D;D,; + D?*Dy) SXUk = gDz(D4 + 11KD? + 24K?)S

Then, if the inverses of the operators

D?, D? + 2K, D? + 3K,

exist, the SVT decomposition (119) of the rank-3 tensor is
also uniquely determined.

APPENDIX D: GAUGE TRANSFORMATION AND
GAUGE INVARIANCE

In this appendix, we briefly review the gauge trans-
formation and introduce some common gauges that are
used in the context of cosmological perturbation theory.
Although this is a quite well-known subject, we present it
for the benefit of the readers and completeness of the paper.

The MAG theory is invariant under the four-dimensional
space-time diffeomorphisms. On the other hand, all of
the perturbations are defined in a component form and,
therefore, they change if we perform a coordinate trans-
formation. For example, one may change the space-time
coordinate in the background metric (69) and generate
some fake perturbations. There are two ways to overcome
this difficulty and deal with the real perturbations: (i) work-
ing with gauge-invariant perturbations, (i) fixing the
gauge. In order to understand these approaches in more
detail, let us consider a general coordinate transformation
|

. :< —N*(1 + 2a)

Na(D;p+p")  @[(1+29)y;; + (DD; = Ly, D)k + Dk + al ) ) '

(C7)
(C8)
2 2132 2
=5D*(D +3K)(D? + 8K)S. (C9)
D? + 6K, D? + 7K, D? + 8K, (C10)
X — Xt (D1)

Note that the symbol ¢ in this appendix always refers
to the vector & defined above. Under the above trans-
formation, perturbations of a space-time tensor 7; =

{s,v,. ., fyus- - -} change as

8T, — 6T, + £:T; (D2)
where perturbations are shown by a 6, background values
are labeled by a bar, and £: denotes the Lie derivative along
&', Performing SVT decomposition of &, following the
method presented in Sec. VA 1, we find

& = (& Dig 4 ¢, (D3)
where D;éMi = 0,

Let us apply (D2) to the metric perturbations.
Substituting (125), (128), and (131) in (107), we find
the following form for the metric in terms of the hel-
icity modes:

Na(D;f + ") i)

i

)

Working with conformal time 7 with N = a and substituting 7; = {g,, } in (D2) and using (D3), it is straightforward to
show that the different helicities of the metric perturbations change as follows:
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(1) Helicity-2 modes:

A
(i1) Helicity-1 modes:
g - - "
(iii) Helicity-0 modes:
a—a+HE+ (), p-op-E+¢E,

where a prime denotes derivative with respect to the
conformal time 7 and H = d’/a is the conformal Hubble
parameter.

1. Helicity-2 tensor modes

As it can be clearly seen from (D5), the helicity-2 tensor
TT)
interested in linear perturbations of the helicity-2 modes in
MAG, we can safely consider the following metric:

modes h are gauge invariant. Thus, as far as we are

—-N? 0 DS
9w = 0 az(]/ij + hE;FT)) . ( )

2. Helicity-1 vector modes
On the other hand, the helicity-1 vector modes are not
gauge invariant as shown in (D6). We can then either work
with a gauge-invariant variable or fix the gauge. From (D6),
it is clear that the combination

Y+ (7Y )2, (D9)

is gauge invariant. So, for the linear perturbations, one can
work with metric (D4) keeping both ﬂl(.T) and hl(.T) while
ignoring helicity-2 and helicity-0 modes. At the end, it can
be shown that working with (D9), there are only two real
d.o.f. for the system. Alternatively, we can fix the gauge by
choosing & such that A" =0 or A" =0 (while the
former does not completely fix the gauge). For the latter
choice, we find

(1)
Nap; ) . (D10)

—N?2
o
! Na/}ﬁ-T) azy,-j

The above metric can be used for the linear perturbation
analysis of the helicity-1 modes in MAG.

Note that working with either gauge-invariant
variable (D9) or a gauge-fixed metric for the helicity-1
modes, e.g. (D10), there are only two real helicity-1 d.o.f.
in the metric sector. Thus, in any case we deal with two real

AL (D5)

(Do)

1
w—>w+H§°+gD2§, h— h+2¢&. (D7)

vector d.o.f. which is the direct consequence of the freedom
in choosing §§T>.

3. Helicity-0 scalar modes

The helicity-0 scalar modes are also not gauge-invariant
as shown in (D7). Again, one can either fix the gauge or
work with gauge-invariant variables. In practice, it is easier
to fix the gauge and work with the real d.o.f. and we follow
this approach here. We have freedom in choosing & and &.
Thus, we can work in the following gauges without any

ambiguities:
(1) Longitudinal (Newtonian) gauge: f =0 and h =0
—N%(1 + 2a) 0
G = < 5 ) (D11)
0 a*[(1+ 2y

As it can be seen the metric takes a diagonal form in
this case.
(i1) Spatially uniform gauge: w =0 and h =0

—N?(1+2a) NaD;
g,w_( ( ) , ’ﬁ>. (D12)
NaD;p ayij
Note that, in this gauge, the spatial sector of metric
remains the same as the background spatial metric.

One can safely work with either (D11) and (D12) as far
as linear perturbations of the helicity-0 modes are con-
cerned in MAG. In both cases, we deal with two real d.o.f.
in the metric sector which is the direct consequence of the
freedom in choosing £° and &.

It is also worth mentioning that fixing the gauge in the
metric sector, one can safely deal with all other perturba-
tions with different helicities in both geometry (torsion and
nonmetricity) and matter sectors at any level of perturba-
tions. However, one may be interested in different gauges
such that fixing the gauge in the torsion and/or nonmetricity
sector. Although cumbersome, this is very straightforward:
one needs to find how the helicity modes of torsion and
nonmetricity change under a general coordinate trans-
formation (D1) by applying the formula (D2). The same
also holds if one is interested in fixing the gauge in the
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matter sector: one needs to look how helicity modes of the
energy-momentum and hypemomentum tensors change
under (D1). For example, the so-called comoving gauge
fixes the gauge such that the four-velocity of the comoving
observer in the energy-momentum tensor remains similar to
its background value all the time. There might be some
interesting gauges with clear physical meaning in the
torsion and nonmetricity or hypemomentum sectors as
well. However, this is beyond the scope of this paper and
we leave it for future works.

|

APPENDIX E: INTERACTION
OF SPIN-3 FIELD g, ,,

In Sec. VI, we have worked out the resulting action for
the helicity-3 modes arising from the general quadratic
action (164) of MAG. As can be seen from (22) and (58),
the helicity-3 modes are encoded in the irreducible part g,
of the traceless nonmetricity tensor. In this appendix, we
thus classify the Lagrangian in the action (164) based on
the kinetics and the interactions of g,,, as follows:

L= Egi—R) +£(gq—11) 4 Eé‘]‘“’) +£éq—A) 4 Eé‘I—T) 4 L(gq—s) 4 ﬁéq—RTSWA)
+£éq—t) _'_Eéq—ﬂ) +£éq—RTStWA) +£éq—RTSWAQ) +£éq—TStWAQ)’ (El)

where

- 1
16ﬂ'£éq k) = 6 (—a] + 302 + 40(3 — 0y — a5)qap,q“’”R + ((12 + 6(13 +ay + a5)qalﬂqa/anhﬂ

+ 2a4Rapv‘rqapT + ((14 + aS)qa‘MqlJ‘MRap’ (EZ)

_ 1 1 1
16”[’5; 2 = <_Z + d2 + d1> qlﬂaqﬂ’m + g (a2 + 6a3)Qawquq/lﬂpqlﬂa + Z (—204 + 2aS + a6)v/)qlml}v/1qllm

1 1
+ & ((11 - 3(12 - 4(13 +ay+ aS)‘]/)ﬂ/quq/{yaqﬁﬂa + g (—(12 - 66!3 — 04— QS)Q(Iqulqu/wan)y
1 1
+ E (—(12 + a3)(vaq}44p - va/l/m)qu/wa - E a4q}44pqwaqu%o71 (E3)

_ 1
16n£éq ) = a4Q(1pTQ/)AﬂLITﬂﬂ W+ — (al - 2(12 + 2a3)q/)rﬂquWaWa - 2a4Qa/)TWaWp wr

4

1 1
+ (5 a —4az — 204 + 205 + a6> 90"y WOWP + 7 (—ay + 3, + 4053) 019"V W

+ (_a2 - 6a3)QaﬂCIﬂ’dvp we + a4Wava‘rqapT + 2a4vp WavTQapT - 4a4qapTWavTWﬂ
+ (—a + a3 4 2a4 — 205 — a6)q,”* WV 14, (E4)

N1 1
167L8 ™ = 7172 = 320 + @)]q," g, g, N+ o (<3 + 1day + 42a; + 12a1),”  AdA”

64
9

Y

OO | =

L ey = 90 = 2(605 + )] gV A + (

1
(@ — 8ay — 4ay + 4as + 2a6) 4,4, AN + 0 (49, + 4203 — 9ay + 7205 + 360t6) G, A" N AT

3 9
1% + 7% + 0‘4) QadqlJﬂv/}Aa

2

1 1
+ T3 (120, = 1203 — 1oy + 24as + 12a6) A*A’V .q,," + (—a2 +o3+-ay —2a5 — 0{6> VPNV q,,"

1 1
+ Z (—9(12 - ]2&3 — 0y — 1205 - 606)qapTAaVTA/) + Z (302 - 303 — 4&4 + 6&5 + 3a6)thﬂTAav/1qprlv (ES)

_ 16 2 4 4 16
167[‘65(;(] 7 = _a4qaprTanTT - g a4qaptqpyiqﬂ/iTa + § a4TanvTQapT - g a4vaaquapT ~a a4q(1p‘rTavTTp

27

_|_

Wi O

9

2
+5 (@ — 8az — day + das + 206) 4, 4, T*T? + 3 (ar — a3 =204 + 205 + )9, T*V ,q,,,"

1 1
(02 + 6“3)‘1aWQpn/vaa + 6 (al - 2“2 + 2“3)‘1pwqﬂwTaTa + 5 (al - 36(2 - 4a3)‘1prbqﬁwvaT”v (E6)
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_ 1 1
167[[3}(; S = 144a1qpﬂ,q vSSY+— 144 (as + ag + a7 +4a, + 1003)q," 4, S*S” — %a4S SPV G gp"
1 1

+ % (aS - a7)QaprsavTSp + 6 (a2 - aS)gau/luq/)wSavﬂqpriv (E7)

8 8

167LE 7RIS — = 3 0aape (R = TPW)T + At (T WO W = RPW) 2 €4 WV + TOVW)

4 1 1

- ga“Tavafqap 54 ( as +az — 2a4)QaprSaSﬂTT + g (_al + 2a2 - 2a3)ququTaWa

- % (ar — 8az —day +4as +2a6)q," 4,0 T*W’ + 31_6 (as — a7 +204)qqp: S*"S*W*

+ é (3ay = 6ay + 605 +204)q 0, g TNy + % (2a; =205 — ay +4as 4 2a6)T* APV g,
4413+ 60~ 20305 +@0)]g, g WA+ (@ + 63+ 304)d R A"

+ (% a, —4daz —2a, +2as5 + a6> 94" Qe TN — % (0 — 8az — 4y +4as +206) 9, q e WO N
+ 144 (=Tas —4ag — a7 + 20, — 1605 — 604 ) 44, S*SP AT + g (Say +2a5 + ay + 8as 4 4ag) 4, T*TP A7

1
+ 6 (5(12 + 2(13 + ay + 86(5 + 4a6)(3W“ - 4Ttl)qapTWpAT + (2(12 - 2(13 —Qy + 46{5 + 2a6)qapTW“V7A/’

5 3 3
+ (Eaz + az — Za4 + 46(5 + 2a6> qa/,TTaApAT - § (10&2 + 4a3 - 3“4 + 16@5 + 8a6)q(l/,TW"’A/’AT

1 2
+ (—az + a3 + 504 - 205 - a()) WaAvaqapT — g (az + 603 + 3a4)qapTAOtVTTp
2
+ (o +6a3 +3a4) Gy A*VWP — 3 (2ay =203 — g +4as +206) Gy T*VEN, (E8)
16”[’;(] (aS +ag—ajpg— all)[4v ta/)bv/}q p— la/)u( 2t}vﬂv/1qaﬁ + 7 pvv/lCIa/} ) + 4Qaﬁ tayﬂv/ltﬂ /1]

| —

1
5 (a9 — @) (Goaut™ 1, 1 + 21 4o 5N i1 P ) + 3 (as — az)t% (Gt /(1) + 1 ,5)

1
+ Gopi(-2V, 1P PV )] + 1 (2as —2a;7 + ag + ag — ajg — A1) quy, 11,41 5,

1 1 1
) (ag — a10)qpt 1, 1 §a4qap”qfﬂiqup/ﬂ”m +21 (—a; +3ay +4a3 — ay — as) GG 1) 1
1 1
) (@ = @3)q " qupstay" 17" + 2 (—ay — 63—y — @5)q,, Gupita P 177
1 1 1
T (—an + 3y + day — ay = a5) GGV e + 3 (ar = a3)q P qupat™ 15" + 5 (—ay = a5) 42" qupat™ 1,

5 1
+ (_aZ + a3)Q(w q‘rﬁ/ltaprt “ +3 ﬂZOQa QVﬂAtaﬂrtUpr + <0!2 + 5(13 +oy+as— Zﬂzo) qaﬁlqw,ltapttypﬂ

1
+ (—(12 + 8(13 +ay+ aﬁ)qaviQTﬂ/ltath”pﬁ + Rﬁz] qmlq,jﬂila‘mlbpﬁ

—_ N =

+ 16 (32, + 80a3 + 24ay + 8as — dag + By )QapﬂCI‘rwltathD/M + (o = aS)qpy/}[apTvaqwﬂ
+ (_a4 - ai)anﬂQﬂ/ﬂvptapT + (aZ - a3)‘1pyﬁtaﬂrv‘rqowﬂ + (_a2 + aS)anﬁtapTVTprﬂ
1
+2(az +6a5 + a4+ 5) 4y GV 17 + (=200 +203) 4, 17V e, + <—a4 tas+ 5%) 9a 1"V 4

(E9)
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+ 118 [—4ay + ag — 2(a7 + 60, — 603 — 8ay + 6as + 306) | Gy, O T

+ % [—4ay + ag —2(a; — Taz — Say + as + ag) %™ @yt T

+ s (12a19 — 6a,, — 4ay — ag — 6a7 + 8ay + 20a3 + 4ay — 2as5 — 3a6) ¥ Q) @ et , 0T

+ 18 (6ayg = 3ay, +4ay —2a6 + 4oy — daz — day — 205 — a6) ¥ "G 51" 0T

+ 1_18 (=6ayg +3ay, + 8ay — ag + 6a; — 4a, — 2403 — 8ay + 206) Q[ 51" T
118 (=6ajg —3a; + 3ag + 6a; — 4a, + 18a3 — 2ay — 2a5)xQ ™ q ;17 T*

1

+1g [~ — 2(a7 + 20y — 205 — 8ay + 25 + 46)| Qs pe = Gapol® ) ¥QL* T

1
+ Z (—46110 - 26112 + 4a4 — dg + 2a7 - 14(13 - 20{4 - 40{5)*Qpﬂ/qﬂw;ta.[6Wa

1
+t1 [—4ay + ag + 2(—a; + 6ay + 8az + 2ay + 4as + ag) ¥ L™ g6, W
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1
+5 [—66110 - 3612 + 2(2(,12 - 9&3 + oy = 2a5)]*gpwqpvatraﬂwa

._
NS

1 1 4 1
+ (5 a, — Ea6 + 607 + ) — a3 — §C¥4 + a5 + §a6> *Q’””qamtw"W“

1
+ g [4ay — ag +2(a; = Tay — Say + as + a6) ¥ Q% qgpetr, "W
1
+ E (—12(110 + 6(112 + 4614 + 616 + 6617 —_ 8(12 - 20(13 - 4(14 + 2(15 + 3a6)*§2a/”qwﬂt”p"W“

1
+ E (—66110 + 3012 - 404 + 2a6 - 4&2 + 4&3 + 4&4 + 2&5 + a6)*Qpaquo.[Dﬂ”Wa

1

+ E (661]0 - 361]2 — 8614 + ag — 6617 + 402 + 2403 + 86(4 - 2a6)*Qpa‘rqu6[l/T6W0!
1

+ E (6a10 + 3(112 - 3(16 - 6(17 + 4(12 - 18&3 + 2054 + 2a5)*Qp7”qut"mWa

1
+ E [a6 + 2((17 + 2(12 - 2&3 - 8&4 + 2aS + aé)]("]auntgpr - Qapotaw)*gpwwa

1
+ E (2861]0 — 261]2 — 12614 —|— Cl6 — 1007 —|— 42&3 —|— 6&4 —|— 405 — 406)*Ql)ryqpyglafﬁl\a

1
+ 8 [12a4 — Sag + 2(ay — 300, — 2605 — 8ay — 12a5 — 306) ¥ Q™ 1, A*

1
+ R (66110 + 15(112 - 366!2 + 78@3 + 34(14 - 12(15 - 126(6)*Qpﬂ/q/w0.t7ao-/\a
1
+ & [—12614 =+ 5a6 - 2(617 + 3002 — 44(13 — 186{4 —+ 1805 —+ 906)}*917‘”/6]0””[7/)01\(1

1
t51 (=12a4 + Sa¢ — 2a; + 7003 + 2604 — 605 — 606) %™ q 45t " A

1
+ E (20&10 - 10&12 - 4614 - 306 — 10(17 + 8(12 + 20(13 + 4(14 - 66{5 - 5a6)*Qaqu‘watbp0'Aa

1
+ 13 (30a19 — 15a1, + 12a4 — 6ag — 120, + 1205 + 28ay — 42as5 — 21ag) ¥ "Gy et )0 A

1
+ 18 (=30ayy + 15ay, + 24a4 + 3ae + 30a; — 36a, — 48az + 16ay — 24as — 606) ¥ ;7 q 51" 7 A

1
+ & (—6010 - 15(112 + 15”6 + 30(17 - 36(12 + 78053 + 34(14 - 426(5 — 18(16)*prq/w0t6a7/\a

1
+ 8 [—9ag — 2(9a; + 20, — 44as — 220y + 6as + 3a6) Q™ Gyt e A

1
+ 8 (9ag + 18a7 + 4a, — 88as — 44ay + 1205 + 60) ¥ Q™ G517 1, A*

1
+ (—4614 + ae — 2a7)*Qaprqw”vaty/)o- + g (a2 - a3)(v/}*gyaa + V(I*QU/JU)unatapT

+—(4ay — ag + 2a; — day — 2405 — 4ay — 4as) ¥ Q77 q,,,V 10,0
2

+ (_306 - 6a7 + 2612 - 2a3)QavatapTvr*Qypa + g ((12 - a3>(typav1qm/0 + ﬂ/advr(’b)l/a)*gapf

+ 5 [—4ay + ag + 2(—a; + ay + 6a3 + ay + as)|$QV7 G5 V. 1 )0

1
+ (2a10 —dp — 4“4)Qamtapfvu*gpyg + 6 (4a10 - 2alZ - 2aS - a6)qamtaprvv*gupg

+
W= Q= W= Q| —= Q| — Q|+~

1
(—(12 + a3>*QathDPGVDQaTn + 6 (—4(14 - aS)*QapTLI(zmvvtﬂya
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+

_|_
— W= N =

1
(a2 - a3)*gaprtp1/o‘v6qaw +3

3 (_a2 + a3)*QathypO-VGQaw

—

2 12

|-

* 12

+
—~

[_a6 - 2(617 — + a3)](v6*gp1y - VU*QDPT)Q(zDUtapT

+ +
— W= OV = OV =

+ 6 {_4614 + de + 2(—617 + 45} + 6“3 + a4 + aS)](QTyo'v”tya/) - CIauav”tDﬂT)*QapTv

having defined x€2,;,, = %sﬂ”wﬂ 4o and the following combinations:

B = (ay+ay —ap—api—2a3+3a, —ag + 2ay),

ﬂz = (26110 + 26111 - 3(112 - 3(113 + 802 - 4(13 + 2(14 + 4615 —_ 2616 + 4618 + 409),

Ps =2p1 — P,
Ps = (4a, +2a5 + 2as + ag + a7),
PBs = (4ay — 2a3 — 3a, + 2as5 — ag — 4aq),
Ps = (2ar — 8ay —3ay + as — 4ag — Tay),
B7 = 2a, + das + a4 + as + 2a¢ + 3a7),
Bs = (4ay + ay + 2as + a),
P9 = (2a, +2a5 + as + ag + a7),
Pro = (a + a3 —2(ag + ayg)),
P = (2aig +2ay; — ajp —ap),

P = (a0 + ay —ap — a3 + ag + ag),
Bz = (2a3 + 2a3 — 3ay + as + ag — 2ay),
Pia = (2a; — 4a3 + as — 2a¢ — 2ay),
Pis = aio +2(—ay + ag + ay),

Bis = 2ao +2ay, + ap + a3 — 4ag — 4ay),

P17 = (=2a, + a4 — as + az),
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apt c 1 apt v G
(2a19 + aip + as)*Q¥7 q s Vo 1" )7 + 6 (2a19 — aip + 4oy — 205 — @) qur 17V 4,
1
+55 (—86!4 + 2615 + a6)*Qathyprvaqay0 += (—26!5 - a6)*Qathapyv¢)'QTyg
1
[Bay — 3(2as + a)|¥Q%71,,*V ;q,,7 + — (8ay — 205 — a6) ¥ Q¥ 1",V ,q.,°

1
4“4 + aS)*QapTQawvatvpg + g (a2 - a3)(V0*Qapu + va*gpaD)QTuatapT

1
((12 + 6(13 + Ay + aS)(vatapy + vatpau)*QaPTQ'wa + 6 (4(14 - 2(15 - a6)*Qap7tprDVJQava

(E13)

(E14)
(E15)
(E16)
(E17)
(E18)
(E19)
(E20)
(E21)
(E22)
(E23)
(E24)
(E25)
(E26)
(E27)
(E28)
(E29)
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Prg = —2ay9 + ay +2(ag + ay), (E31)

Pro = (2a; + 2a4 + as + 2a;), (E32)

Poo = —as — ag — a7 + 2, — 203 + 2a4 + 2as, (E33)

Py = dayg — 4ay, — 4ag — 16a, — 96a; — 24a, — 16as + ag, (E34)

P = —2ay —2a5 — as — ag — az, (E35)

Pz = —2a3 — ag — as, (E36)

Pos = —2a;9 — 2a;, — 3a;, — 3a;3 — dag — 4ay, (E37)

Pos = 2ayy + 2a,; + 6az — 3ay + 3ag — 2ag — 2ay, (E38)

Pas = 6(2a3 — as + ag), (E39)

Por = 12(4ayg — S5ay; + ajp + ay + 8ay + 10az — ay + 4as + S5ag + 4a; — 2ag — 2ay), (E40)
Pog = 12(5a,9 — 4ay; — a;p — a3 — 8a, + 8az — 8ay — das + 4ag — 4a; + 2ag + 2ay), (E41)
Prg = 96 — Pry — 4Pas + 1626 + fa7 — Pos. Pao = =32 + 6023 + Pos + Pos. (E42)

Note that the other tensor modes €, and 7,,, of torsion and nonmetricity are vanishing at the background level, i.e. in
FLRW cosmology, which means that all the terms appearing in the second line of Eq. (E1) do not contribute to the spin-3
field perturbations around the FLRW background up to second order in the gravitational action.
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