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It has been shown, via specific examples and a pseudospectrum analysis, that the black hole quasinormal
spectra are unstable. The implication of such a result for gravitational-wave physics and of our understanding of
black holes is, still, unclear. The purpose of this work is twofold: (i) we show that some of the setups leading to
instabilities are unphysical and triggered by exoticmatter or extreme spacetimes; (ii) nevertheless,we also show
simple examples of compelling physical scenarios leading to spectral instabilities. Our results highlight the
importance of understanding the overtone content of time-domain waveforms, and their detectability.
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I. INTRODUCTION

In a binary black hole (BH) coalescence process, as the
two BHs merge they leave behind a “distorted” remnant,
emitting gravitational waves (GWs) and evolving towards
stationarity via a ringdown phase. During this phase, the
GW signal is simply described by a superposition of
exponentially damped sinusoids termed quasinormal
modes (QNMs). Thus, BHs relax as most systems do,
by oscillating in a set of characteristic frequencies [1–4].
In a way similar to the analysis of the hydrogen atom, the

response of (nonspinning) BH spacetimes is decomposed
in spherical harmonics Ylm, and each QNM carries, in
addition to the polar and azimuthal indices ðl; mÞ, an
overtone index n ¼ 0; 1; 2…. The intrinsic dissipative
character of BH spacetimes implies that the modes are
not stationary (energy is being radiated to large distances and
towards the horizon), and characteristic frequencies are
complex numbers. For each ðl; mÞ, the dominant mode is
the one with the lowest imaginary component of the
characteristic frequency, and assigned the n ¼ 0 label, the
fundamental mode. In vacuum general relativity (GR),
the characteristic QNM frequencies of a single mode are
enough to characterize the underlying geometry of the
remnant. BH spectroscopy is the science of extracting
information about BH spacetimes and the underlying
gravitational description from the relaxation of BHs.
Detection of these modes from a binary BH merger process
provides information about the object itself, its surrounding
environment, and even potential deviations from general
relativity [1–3].
The first detectionof a fundamentalQNMis established for

the first GW event, GW150914 [5], where the fundamental
quadrupolar ðl; m; nÞ ¼ ð2; 2; 0Þ mode is reported to be
consistent with general relativity predictions [6]. The

ringdown of the BH remnant has since been reported for a

number of other events (see in particular Tables VIII of
Ref. [7] andXI ofRef. [8]).Detection of higher overtoneswill
require louder signals and careful analysis [9–13]. Tentative
evidence for additional modes ðl; m; nÞ ¼ ð3; 3; 0Þ was
reported for event GW190521 [14–17] and in some events
ofGWTC-3 [18] but is the subject of debate, given systematic
uncertainties such as precession and eccentricity. The impact
of nonlinearities has recently been discussed [11,19–23]. In
other words, BH spectroscopy is now blossoming into a
vibrant field, and upcoming years will see precision tests of
general relativity from the relaxation of BHs [24–27].
The BH spectroscopy program anchors on linearized

calculations of the vacuumBH spectrum in GR [1–4,24,25],
and the paradigm implicitly assumes a reasonable physical
robustness against “small” changes in the system. In
colloquial terms, one does not expect a “flea” far away
from the BH to perturb significantly its spectrum.
Surprisingly, such a spectral instability has been observed
in a variety of circumstances.
Indeed, in addition to his pioneering work on the

description of ringdown dynamics [28], Vishveshwara also
explicitly pointed out that small changes in the BH
potential may lead to a destabilization of the QNM
spectra [29].1 The sensitivity of the QNMs under small

1When recollecting his journey along the BH trail [30],
Vishveshwara mentions that “we have studied the sensitivity of
the QNMs to scattering potentials. Themotivation is to understand
how any perturbing influence, such as another gravitating source,
that might alter the effective potential would thereby affect the
QNMs. Interestingly, we find that the fundamental mode is, in
general, insensitive to small changes in the potential, whereas the
highermodes could alter drastically. The fundamentalmodewould
therefore carry the imprint of the BH, while higher modes might
indicate the nature of the perturbing source.”
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modifications of the potential has been somewhat redis-
covered recurrently over the past decades [2,4,19,31–39],
and it has recently been incorporated into a more formal
framework [37,40]. Unfortunately, with notable exceptions
discussed below, spectral instabilities have been discussed
in the context of ad hoc perturbations to the effective
potential, the physical significance, if any, of which is not
fully understood. The purpose of the present work is to
shed some light on these issues.
Broadly speaking, one can identify two major classes

of spectral instabilities, closely related to the “infrared”
and “ultraviolet” effects reported in Ref. [40] (but we
are aware of the dangers of any classification such as
this one).
Fundamental mode instabilities, which are associated

with the introduction of a different scale in the problem.
These include shells of matter for example, modeled as
“potential bumps” far away from the BH [4,19,41], or
abrupt cuts in the large range of the potential [31,32]. As we
argue below, the new scale means that matter is present
either asymptotically far or asymptotically close to the BH
horizon, leading in either case to low-frequency echoes.
These do indeed destabilize the spectrum, by introducing a
longer lived second family of modes.
The time-domain response is only affected after the

prompt ringdown emission, which is governed by the
vacuum QNMs.
Overtone instabilities, caused by high-momentum

fluctuations or seemingly near-horizon modifications to
the geometry [4,19,33,37–40]. These affect the larger
overtones, and potentially also affect promptly the time-
domain signal [37], but a systematic understanding is
lacking.
We will show how the existing body of work relates to

previous known results, how the spectral instability can
arise in physically interesting setups, and how some of the
scenarios considered thus far require exotic matter or
extreme spacetimes.

II. SETUP

To include in our analysis the relevant results reported in
the literature, we consider a general, spherically symmetric
spacetime,

ds2 ¼ −aðrÞdt2 þ dr2

bðrÞ þ r2dΩ2: ð1Þ

The mass function mðrÞ is defined from the metric via

bðrÞ ¼ 1 −
2mðrÞ

r
: ð2Þ

The energy density associated to the mass function is

ρðrÞ ¼ m0ðrÞ
4πr2

: ð3Þ

The dynamical equations governing massless fields
follow from the field equations and equation of state of
matter. The details of the particular equation of state of
matter are unnecessary. Indeed, all analyses in the literature
focused exclusively on scalar fields and on only one sector
of gravitational perturbations, for which the massless field
does not couple to the background matter (assuming it is
isotropic and dissipationless).
Both scalar and gravitational axial fluctuations can be

expanded in harmonics of index l, and are governed by a
master wave function Ψ ¼ Ψðt; rÞ which obeys the second
order partial differential equation,

∂
2Ψ
∂r2�

−
∂
2Ψ
∂t2

− VΨ ¼ 0; ð4Þ

where the tortoise coordinate is defined by dr=dr� ¼
ffiffiffiffiffiffi
ab

p
.

For minimally coupled scalars Φ ¼ Ψ=rYlm, one finds
that the field is governed by [2]

V ¼ a
�
lðlþ 1Þ

r2
þ ðabÞ0

2ar

�
: ð5Þ

In spherical symmetry, gravitational fluctuations can be
decomposed into two sectors (axial or odd, and polar or even).
The axial sector, for isotropic dissipationless fluids does not
couple to the matter and obeys the following [42,43]2:

V ¼ a

�
lðlþ 1Þ

r2
−
6m
r3

þm0

r2

�
: ð7Þ

III. SPECTRAL INSTABILITY OF THE
FUNDAMENTAL MODE: A NEW SCALE

A. Double-bump potentials sourcing instabilities of the
fundamental mode: Is it really a flea?

Spectral stability concerns the robustness of the QNM
spectrum against slight deviations of the underlying system
[4,29,31,37,40]. Some studies have focused on changes to
the effective potential governing wave propagation, as
[29,41,45]

2Note that Chandrasekhar and Ferrari [44] and Kokkotas find
(M is total mass of star) [1]

V ¼ a

�
lðlþ 1Þ

r2
−
6M
r3

þ ρ − P

�
: ð6Þ

There are 4π factors difference between the two equations but
these are due to the different convention in the field equations.
Equation (7) uses Gμν ¼ 8πTμν, whereas Chandra uses
Gμν ¼ 2Tμν.
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Vϵ ¼ V þ ϵVbump; ð8Þ

with V the “unperturbed” potential describing propagation
in vacuum Schwarzschild BH spacetime (i.e., setting
m0 ¼ 0; m ¼ MBH in (5)–(7). The focus was then on
“bumpy” potentials Vbump, such that Vϵ admits a local
maximum besides the global maximum of V.
Notice that the system will have distinct scales when the

characteristic distance L of the bump away from the BH is
much larger than any other scale in the problem, in this case
the BH mass. In this circumstance, there is a cavity formed
by the two potential peaks which supports a mode of
frequency ∼1=L, as long as it is trapped, 1=L2 ≪ ϵVbump.
In these circumstances, the BH fundamental QNM is
destabilized [4,41,45]: for any arbitrarily small ϵVbump

there is a scale L at which an extremely low frequency
mode appears, which dominates over the BH light ring
mode [46,47] and which is never “close” to it.
We have been discussing features asymptotically far

from the BH, but similar phenomenology occurs if new
scales show up close to the horizon, under the form of
matter of simply new boundary conditions [46,47]. In all
cases, the time-domain response is smooth: the prompt
response corresponds to a vacuum BH signal, but at late
times the double-bump cavity filters out the high-frequency
component, giving rise to a sequence of “echoes” [46–48].
An open question is what physics gives rise to such a

potential. Is it really a “small” spacetime perturbation? To
establish an equivalence between a bumpy potential and the
potential (5) arising from a generic spherically symmetric
spacetime, one can take the eikonal limit l → ∞. In this
limit, potential (5) asymptotes to

V ¼ a
lðlþ 1Þ

r2
; l → ∞: ð9Þ

The requirement that V has extrema corresponds to the
requirement that 2a ¼ ra0 at some point in the exterior of
the horizon. But this requirement is equivalent to the
existence of a light ring at that location [49]. Thus, the
spacetime would have two light rings, and one cannot
consider ϵVbump to be a small perturbation by any means.
The above reasoning assumes that ðabÞ0=r decays faster

than 1=r2, which it should for regularity reasons for all
cases. The only exception concerns massive scalar fields of
mass μ, which indeed can be looked at as a special case of
all of the above. For such fields the true effective potential
is V þ aμ2; we discuss it below.

B. Massive fields: A true fundamental-mode instability

A very clear example of spectral instabilities concerns
massive fields. What we will now discuss affects both
massive tensor, vector and scalar fields, but for concrete-
ness we focus on scalars, whose dynamics are governed by
the Klein-Gordon equation,

□Φ ¼ μ2Φ: ð10Þ

The mass parameter μ is related to the physical boson mass
mB via mB ¼ μℏ, in our units.
We focus for simplicity on a Schwarzschild background.

For massless fields, μ ¼ 0, the fundamental l ¼ 0, 1 mode
is given by Mω ¼ 0.1104 − i0.1049, 0.2929 − i0.0977,
respectively.
For very small μ (the regime most interesting to us here),

two things happen. First, a new family of modes, so-called
quasibound states, appears [50–53] which in the small μ
limit is well described by [see Eq. (C12) in Ref. [54] ]

Mω ¼ Mμ −
ðMμÞ2

2ðlþ nþ 1Þ2 − iMωI: ð11Þ

For l ¼ 1 for example, MωI ¼ ðMμÞ10=12. This is a true
spectral instability: for any arbitrarily small μ the funda-
mental mode is changed by a large amount. For an
arbitrarily small mass μ there are new modes of arbitrarily
small frequency. In other words, we argue that among all
“bumpy potentials” the only physically relevant concerns
endowing a small mass to interaction carriers.
The second interesting property is that the massless

family (the usual QNM spectrum when μ ¼ 0) is altered
[51,52,55]. As an example, the fundamental n ¼ 0 mode
changes as

ωl
μ − ωl

0

μ2
¼ 0.225þ i0.823; l ¼ 0; ð12Þ

¼ 0.447þ i0.268; l ¼ 1: ð13Þ

For small μ the larger the overtone the smaller the deviation
from the μ ¼ 0 mode.
As discussed at length elsewhere, the most immediate

effect of such a destabilization is drastic changes to the late-
time behavior [4,41,46,47]. The impact on prompt ring-
down is poorly studied, but it is not our focus here.

C. A holistic view on spectral instability
of the fundamental mode: Soft changes and

couplings to matter

The massive scalar case just discussed is a proxy for
more general setups: whenever the effective potential
governing propagation is changed, the spectrum changes.
If the changes are “soft” (induced by a parametrically small
quantity) but there are different scales in the problem, then
as a rule new families of modes set in, and large scales
control low frequency modes. For very small perturbations
with scale separation, the vacuum family continues to exist,
with slight induced corrections. In addition to the massive
scalar field discussed above, these features have been
observed for simple two-barrier toy models [4] or for
asymptotically de Sitter spacetimes [56].
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Figure 1 summarizes what happens when a soft change
in the potential is introduced. We take the effective
potential for axial gravitational modes and modify it
by adding a Pöschl-Teller secondary bump [45]. The
three lowest modes of the pure vacuum potential have
frequencies [2]

rhω=2 ¼ 0.3737 − i0.08896; n ¼ 0;

¼ 0.3467 − i0.2739; n ¼ 1;

¼ 0.3010 − i0.4783; n ¼ 2;

shown as black squares in the figure. It is clear that a small
bump introduces new modes in the problem, some of
them of lower frequency, a clear sign of instability of the
spectrum. Nevertheless the fundamental mode of the
vacuum family is only slightly disturbed. This can be
understood from a perturbation theory point of view. The
introduction of a small disturbing potential affects the
modes as [4,57]

δω ∼ ϵhψ jVbumpjψi ∼ ϵe2LωI ; ð14Þ

with L the scale at which the bump is located, and ωI the
imaginary component of the frequency of the mode in
question. Thus, to be in the perturbative regime, one has to
require that ϵ ≪ e−2LωI . But if L ¼ 10rh, e−2LωI ¼ 0.17,
4 × 10−3, 7 × 10−5 for n ¼ 0, 1, 2. This explains why
overtones are exponentially sensitive to any change in the
potential. We have explicitly verified this exponential
sensitivity for the double barrier potential in Ref. [4].

On the other hand, if there are “hard” changes, for
instance, an abrupt change of boundary conditions, then as
a rule the prompt ringdown, vacuum BH mode is still
dominant in the time response, but it does not feature in the
spectrum [46,47,58].
From the discussion of Sec. III A, one might be tempted

to incorrectly conclude that instability of the fundamental
mode occurs only in highly contrived, nonphysical sit-
uations. Asymptotically de Sitter spacetimes are a clear
example where the instability is triggered, by the intro-
duction of a new scale. The small cosmological Λ constant
of our Universe adds a new family of low-frequency ω ∝ffiffiffiffi
Λ

p
modes to the BH spectrum [56,59].

Most importantly, the majority of physically relevant
setups are not included in a simple, decoupled second-order
partial differential equation of the form (4). Indeed, a wide
class of problems couples gravitational degrees of freedom
to matter modes [60]. Since matter moves at subliminal
speeds, their characteristic frequencies are also lower.
The universal coupling of gravity to matter then
produces a spectral instability, no matter how low the
matter density [60]. Because of the difference of scales
associated to the instability of the fundamental mode, we
expect that the prompt ringdown remains essentially
unaffected for this class of perturbations.

IV. SPECTRAL INSTABILITY OF OVERTONES

We now focus on the second class of spectral instabil-
ities, affecting BH overtones. As we show below, some of
the setups used to argue for this type of instability are
unphysical. Nevertheless, we show that the mechanism
itself was known for some time, and can arise in physically
relevant situations. With a few notable exceptions [37], the
impact of such an instability in time-domain signals is
largely unexplored, and understanding its detectability in
more realistic scenarios requires further work.

A. Charged BHs: A true instability

The existence of a spectral instability should be
no surprise, since it was indirectly known in a rather
straightforward setup for at least two decades in BH
physics [2,34–36,61]. Consider the asymptotic spectrum
of nonspinning, neutral BHs, in the large overtone limit,
and for any massless field

Mω ∼
log 3 − ið2nþ 1Þπ

8π
þOðn−1=2Þ; Q ¼ 0; ð15Þ

a behavior which attracted considerable attention in relation
to possible BH area quantization [2]. Frequencies are
equally spaced in their imaginary component, whereas
real part asymptotes to a constant log 3=ð8πMÞ.
On the other hand, an analysis of the asymptotic

behavior of BHs charged with an arbitrary charge Q yields

FIG. 1. Axial QNMs (angular mode l ¼ 2) for potential with a
Pöschl-Teller secondary bump [45] located at L ¼ 10rh. Black
squares show the first three modes of a pure vacuum Schwarzs-
child spacetime. Triangles and circles are results when a Pöschl-
Teller bump of height ϵ ¼ 10−2; 10−3 is introduced. New modes
appear, some of low frequency. Higher overtones are exponen-
tially sensitive in overtone number n and scale L; see the
main text.
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the condition

eω=T þ 2þ 3eQ
4ω=ðTr4þÞ ¼ 0; Q ≠ 0; ð16Þ

rþ ≡M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
; T ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p

2πr2þ
: ð17Þ

In the limit that Q → 0, one finds then

Mω ∼
log 5 − ið2nþ 1Þπ

8π
þOðn−1=2Þ; Q → 0: ð18Þ

As a consequence for any arbitrarily small charge Q the
BH spectrum differs by OðQ0Þ from the spectrum of a
Schwarzschild BH.3 This is a clear example of a spectral
instability in the large overtone regime.

B. High-momentum fluctuations

Recently, another class of fluctuations leading to large-
overtone spectral instability has been studied, and concerns
a modification to the BH (of mass MBH) potential in the
form [40]

Vϵ ¼ V þ a
r2
δV; ð19Þ

with jδVj ∼ ϵ a small perturbation.
Comparing Eqs. (7) and (19), it is straightforward to

establish a relation between the mass aspect mðrÞ and the
potential modification δVðrÞ via

6mðrÞ
r

−m0ðrÞ ¼ 6MBH

r
− δVðrÞ: ð20Þ

A careful study of the asymptotic limit limr→∞mðrÞ reveals
that the condition

lim
r→∞

δVðrÞ ¼ 0 ð21Þ

is necessary for a regular mass function.
The suggested models capturing high-momentum fluc-

tuations employ δV ¼ ϵ cos ð2πkrh=rÞ [40], with k∈N.
This choice, however, does not satisfy the regularity
condition (21). However, the perturbing potential,

δVðrÞ ¼ ϵ sin

�
2πk

rh
r

�
; ð22Þ

satisfies the regularity condition (21) and is as well
motivated as the original. We verified that Eq. (22)

yields the same qualitative behavior for the QNM insta-
bility [37].
With this choice, Eq. (20) is straightforwardly solved,

with integration constant fixed to ensure mðrÞ’s regularity
as r → ∞. The corresponding energy density (3) reads

r2hρ¼−
9r3ϵ

8π6k5r3h
þϵðπ2k2r2h−3r2Þ2

4π5k4r2r2h
sin

�
2πk

rh
r

�

þ3ϵð2π4k4r4h−6π2k2r2r2hþ3r4Þ
8π6k5rr3h

cos

�
2πk

rh
r

�
: ð23Þ

The density decays like Oðr−5Þ at large distances and is
finite at r ¼ rh. Figure 2 shows the mass function and
associated energy density (inset) related to a potential
modification in the form (22) with ϵ ¼ 10−5 and k ¼ 10.
Even though the mass function mðrÞ is well defined in the
outer domain r∈ ½rh;∞Þ, the energy density oscillates
around the vacuum and assumes negative values. Therefore,
these modifications are not realistic at a classic level either.

C. The continued-fraction parametrization

1. The spacetime and some of its properties

Finally, we discuss one other instance of reported
high-overtone instability. This concerns a generic para-
metrization of an axisymmetric spacetime, which in the
nonrotating limit reduces to parametrizing the metric
functions (1) via [62,63]

a ¼
�
1 −

rh
r

�
A; b ¼ ð1 − rh

r ÞA
B2

: ð24Þ

The functions A and B are expressed in terms of a compact
radial coordinate centered at the horizon x ¼ 1 − rh=r, as

FIG. 2. Physical quantities associated to the potential δV ¼
ϵ sinð2πkrh=rÞ which leads to spectral instabilities. Mass mðrÞ
and density ρðrÞ profiles are well defined in the BH exterior
region r∈ ½rh;∞Þ. But ρðrÞ assumes negative values, which
prevents models with a single wave number k from being realistic
at a classic level. Here, ϵ ¼ 10−5, k ¼ 10.

3Hence also the mantra that the theory of the limit need not be
the limit of the theory. A common, if trivial, example concerns the
function nϵ=ð1þ nϵÞ. At ϵ ¼ 0 this yields zero at any n, even
though the large n limit is unity.
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A ¼ 1 − ϵð1 − xÞ þ ða0 − ϵÞð1 − xÞ2 þ Ãð1 − xÞ3 ð25Þ

B ¼ 1þ b0ð1 − xÞ þ B̃ð1 − xÞ2: ð26Þ

The functions ÃðxÞ and B̃ðxÞ are expressed via continued
fractions

Ã ¼ a1
1þ a2x

1þ a3x
1þ���

; B̃ ¼ b1
1þ b2x

1þ b3x
1þ���

: ð27Þ

These definitions ensure that the BH horizon is located at
r ¼ rh. The Hawking temperature reads

T ¼ ð1þ a0 þ a1 − 2ϵÞ
4πrhð1þ b0 þ b1Þ

: ð28Þ

The matter content is anisotropic, with a stress tensor of
the form diagð−ρ; pr; pt; ptÞ. At the horizon,

8πr2hρ ¼ −8πr2hpr ¼ 1 −
1þ a0 þ a1 − 2ϵ

ð1þ b0 þ b1Þ2
: ð29Þ

The tangential pressure pt looks slightly more cumbersome
and we refrain from writing it here.

2. Spectral properties

We focus on three specific models, two of those explored
in Ref. [39], summarized in Table I. In particular, model
BH0 corresponds to the Schwarzschild spacetime, whereas
BH2 is spectrally unstable as we discuss shortly. We list the
Hawking temperature (28) of each of these spacetimes.
We first reproduce the scalar QNMs reported in the

original work [39]. Figure 3 summarizes our results for
quadrupolar l ¼ 2 modes. We employ the hyperboloidal
framework, with Chebyshev spectral methods to calculate
the QNMs [40,64], and ensure that the numerical resolution
provides enough accuracy. We reproduce scalar QNMs
exactly for all models BH0, BH1, BH2, confirming the
correct implementation of the hyperboloidal framework.4

We have extended the analysis to axial gravitational
fluctuations, in Fig. 3. Overtone instabilities are present in
models BH2 and BH3, clearly seen in Fig. 3. An inspection
of (29) shows that 8πr2hρ goes from −10−4 for BH1 to −0.5
to model BH2, hardly a small number, and negative. Thus,
models BH1 and BH2 should be considered unphysical.

3. A realistic model

As might be anticipated from the discussion on charged
BHs, there are physically relevant situations for which the
spectrum is unstable. To search for these we consider the
following, somewhat stringent, assumptions:

a0 ¼ a1 ¼ ϵ; a2 ¼ −2; b0 ¼ b1 ¼ 0: ð30Þ

These conditions ensure that there is no modification to the
BH temperature, 4πrhT ¼ 1, that the density, tangential
and radial pressure vanish at the horizon, that the geometry
agrees with observational constraints on Post-Newtonian
parameters, and that limr→∞mðrÞ ¼ MADM.
With this setup, the small parameter ϵ provides only an

overall rescale on the amplitudes of ρ, pr, and pt. We
complement conditions above with a4 ¼ 0, reducing the
parameter space to the quantities ðϵ; a3Þ. For this model,
which we dub BH3 in Table I and Fig. 3, the density
distribution reads

8πr2hρ ¼ ϵ

�
1 −

rh
r

�
2
�
rh
r

�
4 2ða23 þ a3 − 2Þrrh þ ða3 − 1Þ2r2 − 3ða3 − 2Þa3r2h

ðrð1 − a3Þ þ ða3 − 2ÞrhÞ2
: ð31Þ

To ensure ρðrÞ ≥ 0 for r > rh, we take a3 ≥ 1.

TABLE I. Parametrized BH spacetimes studied in this work.
All other parameters (such as b0, b1, a4) are set to zero, while
ϵ ¼ a0. The vacuum Schwarzschild spacetime corresponds to
model BH0. Models BH1 and BH2 follow Ref. [39], with BH2
spectrally unstable. BH3 assumes conditions (30) to make it
physically interesting, but is still spectrally unstable.

Model 4πrh T a0 a1 a2 a3

BH0 1 0 0
BH1 1.0001 0 10−4 −103 1001
BH2 1.5 0 0.5 102 0
BH3 1 10−4 10−4 −2 103

4Note, however, that we find a new overtone, n ¼ 2, absent in Ref. [39]. The real part of this overtone is very close to the previous
one: Reðrhω1Þ ¼ 0.890084, and Reðrhω2Þ ¼ 0.895286. Our method computes the QNM as the eigenvalues of the numerically
discretized hyperboloidal operator, and therefore, it calculates all overtones at once. Alternative methods, such as Leaver’s continued
fraction [65], are based on a root search algorithm, for which an initial seed relatively close to a given overtone n is required. Since the
overtones n ¼ 1 and n ¼ 2 are rather close to each other, it is not unexpected that the root search may converge to n ¼ 1 and miss
the new n ¼ 2, unless a fine-tuned initial seed is specified. We have verified that the new QNM satisfies Leaver’s criteria defining a
QNM [65].
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In particular, the density profile has a peak 8πr2hρjpeak ¼
16ϵ=243 exactly at the photon sphere r ¼ 3rh=2 when
a3 ¼ 1. As a3 → ∞, the peak moves slightly towards the
horizon up until r ¼ ð ffiffiffiffiffi

97
p

− 5Þrh=4 ≈ 1.21rh, where it
takes the value 8πr2hρ ¼ ð512ð17 − ffiffiffiffiffi

97
p ÞϵÞ=ð ffiffiffiffiffi

97
p

− 5Þ6 ¼
2.82 × 10−1ϵ. Besides, we also observe that the corre-
sponding potential for axial perturbations does not develop
any further peak, and that its relative difference with
respective to the Regge-Wheeler potential has a maximum
of order ∼10−1ϵ around r ∼ 2rh.
Summarizing, BH3 seems to have all ingredients of a

“reasonable” spacetime. Nevertheless, Fig. 3 shows clearly
that it also turns the BH spectrum unstable, even when it
should be only a minor modification away from a vacuum,
Schwarzschild BH. Notice that the spacetime was
constructed to be reasonable and forced to obey a number
of unnecessary restrictions (coefficients after a4 are set to
zero, etc.). Thus, we believe that spectral instabilities of high
overtones are a generic effect, and the arguments underlying
the asymptotic analysis support this claim [2,34–36].
To study the role played by the parameters a3 and ϵ in the

instability, we define the critical mode nc as the overtone
for which the relativity difference to its Schwarzschild
counterpart is larger than the small parameter ϵ.
Specifically, the critical mode nc is defined via the relation
δωn > ϵ for n > nc, with

δωn ¼
jωBH3

n − ωBH0
n j

jωBH0
n j : ð32Þ

This definition captures the notion of QNM instability, and
the model BH3 allows us to assess the two main important
features underlying the phenomena of QNM instability.
While ϵ controls the overall scale of how intense the
perturbation is, a3 impacts the opening of the QNM
branches. Thus, the bigger either values, the lower the

value nc for the critical mode. For instance, when ϵ ¼ 10−4,
we observe nc ¼ 6 for a3 ∼ 10, nc ¼ 5 for a3 ∼ 25, nc ¼ 4
for 50≲ a3 ≲ 250, and nc ¼ 3 for a3 > 500. Increasing ϵ
allows one to obtain lower values of nc, but their depend-
ence on a3 remains unaltered.

V. DISCUSSION

The purpose of this work is to shed light on spectral
instabilities in BH spacetimes. One first important point is
that some scenarios used to study this issue are not realistic.
Matter is either extreme, or the spacetime is extreme and
not a fluctuation away from the intended background.
More importantly, we argue that instabilities come in two

broad classes [40] and both can be triggered with reasonable
physics. Fundamental-mode instabilities, of direct interest to
current detectors, involve a new scale in the problem. For
many compelling scenarios these destabilize the spectra.We
argued that these affect the signal only at very late times
when the signal is already weak. However, a perturbation
theory approach indicates that the changes in the frequency
of the modes behave as δω ∼ e2LωI , showing therefore an
exponential dependence on the overtone number n and on
the new length scale L. This argument indicates an urgent
need to understand mode content in time-domain wave-
forms. The above concerns “soft changes,” but near-horizon
structure or hard conditions somewhere in the spacetime is
known to result in echoes of significant amplitudes.
The second class of fluctuations has no obvious new

physical scale associated with it, and changes the asymp-
totic overtone structure of the spectrum. As we remarked, a
result well known for years (surprisingly not mentioned in
this context in the literature) concerns slightly charged
BHs. But there are other examples. The analysis and
conclusions of Refs. [2,34–36] suggests that the asymptotic
structure of the spectrum relates to the behavior of the
potential close to the singularity, a remarkable statement

FIG. 3. Left panel: scalar QNMs for the BH models with parameters given in Table I. Overtone instability is triggered in models BH2
and BH3, in particular with the appearance of a new n ¼ 2 overtone for BH2 not reported in Ref. [39]. Right panel: axial QNMs for the
BH models with parameters given in Table I. As in the scalar sector, overtone instability is triggered for the models BH2 and BH3.
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bearing in mind that these are cloaked by horizons. In
addition, mathematical arguments [66] suggest that spiked
perturbations are more efficient in triggering BH QNM
instabilities than smooth ones. The impact of the large
overtone structure on our understanding of BH spectros-
copy is unknown. In other words, some theories might
leave the first few modes unaffected, possibly producing a
ringdown signal identical to that of GR at late times. We do
not have a precise understanding of the impact of the large
overtone structure on time domain waveforms, but first
attempts indicate the overtone instability is measurable in
ideal highly accurate setups [37]. Thus, ours and all the
recent results in the literature make this an important issue.
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