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We consider higher-order derivative gauge field corrections that arise in the fundamental context
of dimensional reduction of string theory and Lovelock-inspired gravities and obtain an exact and
asymptotically flat black hole solution, in the presence of nontrivial dilaton configurations. Specifically, by
considering the gravitational theory of Euler-Heisenberg nonlinear electrodynamics coupled to a dilaton
field with specific coupling functions, we perform an extensive analysis of the characteristics of the black
hole, including its geodesics for massive particles, the energy conditions, thermodynamical and stability
analysis. The inclusion of a dilaton scalar potential in the action can also give rise to asymptotically
(anti) de Sitter spacetimes and an effective cosmological constant. Moreover, we find that the black hole
can be thermodynamically favored when compared to the Gibbons-Maeda-Garfinkle-Horowitz-Strominger
black hole for those parameters of the model that lead to a larger black hole horizon for the same mass.
Finally, it is observed that the energy conditions of the obtained black hole are indeed satisfied, further
validating the robustness of the solution within the theoretical framework, but also implying that this self-
gravitating dilaton-nonlinear-electrodynamics system constitutes another explicit example of bypassing
modern versions of the no-hair theorem without any violation of the energy conditions.
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I. INTRODUCTION

In the pursuit of a comprehensive understanding of
gravitational phenomena in the cosmos as well as gravity
itself, the theoretical examination of black holes stands as
an essential frontier. The general theory of relativity (GR),
while highly successful in describing the macroscopic
behavior of these celestial entities, becomes subject to
scrutiny under extreme conditions. This investigation
prompts the exploration of modified gravitational theories
and theories with extra dimensions. Among the theories
attempting to unify fundamental interactions, string theory
stands as the leading contender. In particular, the heterotic-
string theory stands as an essential branch within the

broader scope of string theory, distinguished by its capability
to unify gravitational interactions with other fundamental
forces. Notably, it excels in synthesizing these interactions
into a cohesive framework. A focal point of interest lies
in the derivation of an effective four-dimensional theory,
offering insights into quantum corrections that modify
Einstein’s theory of gravity. These corrections can poten-
tially incorporate terms ranging from the Gauss-Bonnet,
quadratic-curvature term [1–4] to nonlinear electromagnetic
corrections (see, e.g., [5–8] and references within).
Drawing therefore inspiration only from the aforemen-

tioned corrections introduced by string/brane theory, in this
article, we aim to elucidate the implications of departing
from the conventional electromagnetic framework and
embracing the intricacies of nonlinear electrodynamics
(NED) and scalar fields within the context of black hole
solutions. In addition to the above, it is important to
mention that four-dimensional scalar-vector-tensor theories
can be also obtained via an appropriate reduction from a
higher-dimensional Lovelock theory [9]. Under this per-
spective, scalar-tensor-vector theories can be understood as
natural extensions of the scalar-tensor theories that have
been extensively studied in the last decades [4,10–51].
Such scalar-vector-tensor theories offer a very fruitful
framework for finding novel compact-object solutions,
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eluding the constraints imposed by the “no-hair” theorems
[52–81]. This departure from traditional limitations is
attributed to the dilaton field, which, notably, introduces
no additional independent free parameter into the resulting
solution [82]. Instead, these solutions manifest a distinct
feature known as “secondary hair,” intricately determined
by the compact object’s mass, charge, and angular
momentum.
Despite the motivation coming from higher-dimensional

theories, there are also additional reasons that lead us to
explore nonlinear electrodynamics. First and foremost, in
regions with strong gravitational fields, such as those near
black holes, traditional linear theories may break down.
Nonlinear electrodynamics becomes important in these
strong field regimes, where the intensity of electromagnetic
fields can become comparable to the strength of gravita-
tional fields. Studying how nonlinearities affect the behav-
ior of electromagnetic fields in these regimes is crucial
for understanding the physics of objects like black holes,
neutron stars, and other astrophysical phenomena.
Moreover, nonlinear electrodynamics is expected to lead
to phenomena that are absent in linear theories. In the early
Universe, for example, when energy densities were
extremely high, the interplay between gravitational and
electromagnetic fields was significant. NED can be crucial
in modeling the behavior of these fields during cosmo-
logical evolution. Consequently, NED allows us to inves-
tigate how electromagnetic interactions influenced the
dynamics of the early Universe and whether nonlinear
effects played a role in the formation of cosmic structures.
Understanding these cosmological implications helps build
a more complete picture of the evolution of the Universe.
For a review on nonlinear electrodynamics and its appli-
cations, see [83] and references therein.
In this paper, we embark on a comprehensive exploration

of a gravitational theory extending the classical Euler-
Heisenberg (EH) electrodynamics coupled to a nontrivial
dilaton field. Our motivation for this study stems from the
rich theoretical landscape it promises, building upon the
established framework of self-gravitating dilaton-linear-
electrodynamics theory. This extension allows us to delve
into intriguing phenomena, notably exemplified by the
Gibbons-Maeda-Garfinkle-Horowitz-Strominger
(GMGHS) black hole [84,85], a significant exact solution
within this domain. In our investigation, we examine the
intricacies of our proposed model and unravel its associated
black hole solution in detail. One of our key insights lies in
the strategic assumption of a specific profile governing the
dilaton coupling to the Euler-Heisenberg terms. This choice
results in an exact analytic black hole solution, facilitating a
straightforward examination of its physical characteristics.
Having the solution at hand, we then commence a

rigorous analysis encompassing various facets of our
model’s implications. This includes a thorough examina-
tion of the geodesics of massive test particles within the

black hole spacetime, followed by a meticulous scrutiny
of the energy conditions. Subsequently, we delve into the
thermodynamic aspects of the black hole, computing the
relevant thermodynamic quantities, such as the temper-
ature, the entropy, and the magnetic potential (Φm), to
demonstrate the validity of the first law of thermodynamics.
Moreover, within the parameter space of solutions, we
unveil the existence of pairs consisting of two distinct black
holes characterized by different ratios Qm=M, both more
compact than the Schwarzschild solution yet sharing
identical horizon radii. Intriguingly, despite their geometric
similarity, a thermodynamic analysis reveals clear distinc-
tions, with one black hole exhibiting thermodynamic
stability while its doppelgänger proves to be thermody-
namically unstable. Additionally, we explore the radial
stability of the black hole solution under linear perturba-
tions and also its scalar quasinormal modes, shedding light
on its potential as an astrophysical entity. Furthermore, we
extend our discussions to encompass other solutions and
extensions of our model theory, including asymptotically
(anti–)de Sitter (AdS) spacetimes and more general dilaton
couplings, providing a comprehensive overview of the
theoretical landscape. In conclusion, our work offers a
thorough investigation into the gravitational theory of
nonlinear EH electrodynamics coupled to a nontrivial
dilaton field, unraveling a plethora of intriguing phenom-
ena and paving the way for further exploration and
theoretical advancements in this domain.
The structure of the current article is the following: In

Sec. II, we motivate our study by discussing a gravitational
theory of nonlinear EH electrodynamics coupled to a
nontrivial dilaton field. This generalizes the corresponding
self-gravitating dilaton-linear-electrodynamics case, known
to admit the GMGHS black hole [84,85] as an exact
solution. Subsequently, in Sec. III, we discuss our model
and its associated black hole solution. By assuming a
specific profile for the dilaton coupling to the EH terms, in
such a way that, in addition to nontrivial dilaton couplings,
one has also dilaton-independent EH terms, we demon-
strate the possibility of studying analytically the corre-
sponding black hole solution. In Sec. IV, we first discuss
the geodesics of test particles in such black hole spacetimes
and then demonstrate the satisfaction of the energy con-
ditions for appropriate sets of the parameters of the
solution. In Sec. V, we study the thermodynamics of the
black hole and show explicitly, by computing the relevant
thermodynamical quantities, that the first law of thermo-
dynamics is satisfied in a coordinate-independent way, as
should have been expected. In the parameter space of
solutions, it is possible to obtain two distinct black holes
with different ratios Qm=M that are more compact than the
Schwarzschild solution and share the same horizon radius.
However, these black holes, even though they have the
same horizon radius, from a thermodynamic point of view,
are quite distinguishable, since the solution with a greater
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value for the ratio Qm=M is thermodynamically stable,
while its doppelgänger with a lower value for the ratio
Qm=M is thermodynamically unstable. In Sec. VI, we
demonstrate the radial stability of the black hole solution
under linear perturbations and study its scalar quasinormal
models, which provide insights into its properties as a
potential astrophysical object. Other solutions of (exten-
sions of) our model theory (3.1), including asymptotically
AdS spacetimes, as well as solutions corresponding to more
general couplings expð−2γϕÞ, of the dilaton to the Maxwell
term in the action, rather than the γ ¼ 1 in closed strings,
are discussed in Sec. VII. Finally, conclusions and outlook
are given in Sec. VIII.

II. STRING-INSPIRED NONLINEAR
ELECTRODYNAMICS

One of the particular aspects of string/brane-induced
nonlinear electrodynamics effects is that the higher order
in the Maxwell tensor can be combined into an all-order
expression, the so-called Born-Infeld (BI) Lagrangian
[86–91], as a result of resummation of open string
excitations (attached to, e.g., 3-brane worlds in the
D-brane extension of string theory, in which case the world
volume of (d ¼ 3)-brane leads to the DiracBI (DBI) action
(see [92–94] and references therein). In such models, the BI
electrodynamics in four spacetime dimensions originates
from the higher- (d ¼ 10) dimensional superstring action
upon either compactification or appropriate restriction on a
3d-brane volume. It is important to note that in all such
string-inspired models the BI Lagrangian couples to the
inverse of the open string coupling gs ¼ eϕ, where ϕ is the
(dimensionless) dilaton field, so the corresponding four-
dimensional action in a curved four-dimensional back-
ground metric (in the Jordan or σ-model frame), gJμν, reads

SJ
BI ¼ −T 2

4

Z
d4xe−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Detð−gJμν þ T −1

4 F μνÞ
q

; ð2:1Þ

where F μν is the Maxwell tensor F μν ¼ ∂μAν − ∂νAμ, and

T 4 ¼ 1
2πα0 ¼ M2

s
2π is the (open) string tension, with α0 ¼ M−2

s

the Regge slope (Ms is the string mass scale, which, in
general, is different from the four-dimensional Planck
scale). One may go away from string/brane theory and
define the BI action as a starting point of an effective
modified electrodynamics field theory. In such a case the
string tension T 4 may be considered as an arbitrary
phenomenological dimensionful parameter which is not
related to the Regge slope α0. We term such a parameter the
“BI parameter.”
We next remark that, in four spacetime dimensions, the

determinant in the argument of the square root in the BI
action (2.1) can be expanded exactly to yield

SBI ¼ −T 2
4

Z
d4x

ffiffiffiffiffiffiffiffi
−gJ

p
e−ϕ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2T 2
4

F μνF μν −
1

16T 4
4

ðF μνF̃
μνÞ2

s
ð2:2Þ

where F̃ μν ¼ 1
2
εμνρσF ρσ is the dual of the Maxwell tensor,

with εμνρσ the Levi-Civita fully antisymmetric symbol in
curved spacetime with metric gJμν. Expanding the (square
root in the) four-dimensional BI action (2.2) in inverse
powers of the BI parameter T 4 leads to effective dimen-
sion-eight (and higher) operators in the effective field
theory, which make contact with the generic Euler-
Heisenberg NED [91,95,96],

SBI ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p
e−ϕ½−T 2

4I2 − T 4
4I4ð1þOðF 2ÞÞ�;

I2 ¼
1

4T 2
4

F μνF μν;

I4 ¼ −
1

8T 4
4

F μνF νρF ρλF λμ þ 1

32T 4
4

ðF μνF μνÞ2: ð2:3Þ

Hence, ignoring for the moment the dilaton, to fourth order
in the field strength F μν one obtains (up to the dilaton
factors) a special case of the generic EH NED with
dimension-eight operators, with Lagrangian

LEH ¼ c1ðF μνF μνÞ2 þ c2F μνF νρF ρλF λμ; ð2:4Þ

where the BI Lagrangian corresponds to [95,96]

c1 ¼ −
1

32T 2
4

; c2 ¼
1

8T 2
4

: ð2:5Þ

The reader should notice that the ratio of c2=c1 ¼ −4
exactly, which is a characteristic prediction of the BI theory.
Phenomenologically, assuming a constant dilaton and

flat Minkowski spacetime, the BI parameter T 2
4 can be

constrained in collider physics, via light-by-light scattering,
for which there is clear experimental evidence these days at
LHC experiments (see [97–99]). Such light-by-light scat-
tering studies [95] can place a lower bound on the BI
parameter T 4 ≳ 100 GeV. In the case of string theory, this
would lead to a (weak) lower bound of the string mass scale
Ms ≳ 0.25 TeV. Notably, extra dimension collider (LHC)
searches place currently this bound to Ms ≳Oð10Þ TeV.
Forecasts for much larger values of the lower bounds of the
BI parameter in future colliders, in particular FCC, have
been given in [96]. Embedding the BI (or more generally
Euler-Heisenberg) theory into curved spacetime, and fully
incorporating the dilaton effects, leads to a whole new area
of tests of NED by employing the entire machinery of
modern gravitational experiments technology.
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The BI action SBI (2.1) and (2.2) in curved background
metrics can be augmented, at an effective field theory level,
by including the dynamics of the gravitational (gJμν) and
dilaton (ϕ) fields. In this respect, we recall that the D-brane
action is by construction in the so-called Jordan (or
σ-model) frame. Passing into the Einstein frame in
four dimensions, via the transformation of the metric
gJμν → gμν ¼ e−2ϕgJμν, we write for the pertinent gravita-
tional action (in geometrized units c ¼ G ¼ 1, in which we
work from now on)

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μϕ∇μϕ�

−
Z

d4x
ffiffiffiffiffiffi
−g

p
e−ϕ½T 2

4I
E
2 þ T 4

4e
−4ϕIE4 � þ…; ð2:6Þ

where the quantities IEi ; i ¼ 2; 4 are given by the corre-
sponding ones in (2.3), but the indices’ contraction is made
by the Einstein-frame metric gμν.
Departing from the case of the brane DBI action (2.1),

one may consider higher-order (in derivatives, that is in a
Regge slope α0 expression) electromagnetic terms in
effective low-energy field theories stemming only from
closed strings, e.g., the heterotic string [1]. In such theories,
unlike the DBI brane or open string case, there is no
resummation in closed form of the gauge terms.
Nonetheless, some authors have generalized the BI effec-
tive action in a curved (3þ 1)-dimensional spacetime, by
considering the following form of dilaton couplings to the
electromagnetic fields in a BI NED setting [100–102]:

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μϕ∇μϕþ LBI�;

LBI ¼ 4βBIe2γϕ
 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−4γϕ

2βBI
F 2 −

e−8γϕ

16β2BI
ðFF̃ Þ2

s !
;

ð2:7Þ

where the notation has been defined above, γ defines the
dilaton coupling, and now βBI plays the role of the
generalized BI parameter, with mass dimensionsþ2 [which
is identified with T 2

4 in the case of strings, in which case,
to match with the corresponding Oðα0Þ Maxwell terms
of the heterotic-string effective action [1], e−2ϕF 2, one
should fix γ ¼ 1].
The above considerations deal with tree level in string

loops, that is first quantized actions on world sheet with
trivial topology (2d sphere for closed string sectors, and
disk for open one). In general, string-loop effective actions
are not known in closed form. In simplified phenomeno-
logical scenarios such effective actions can be expressed
in the generic form, e.g., in the closed string sector in the
string [or σ-model frame with metric ĝμν in (3þ 1)
dimensions, after string compactification] [103],

S¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p �
1

α0
BgðΦÞR̂þ 1

α0
BΦðΦÞ½□̂Φ−4∇̂μΦ∇̂μΦ�

−
BFðΦÞ

4
F̂μνF̂

μν−Bψ ðΦÞ ¯̂ψ =̂Dψ̂þ…

�
; ð2:8Þ

where the dð…Þ symbol above a tensorial quantity implies
contraction of the world indices with the string-frame
metric ĝμν, Fμν denotes the field strength of the gauge
field, Dμ is the gauge covariant derivative, ψ are fermionic
matter fields and the… denote other matter fields as well as
(an infinity of) higher-derivative (higher order in α0) terms.
The quantities BiðΦÞ; i ¼ g;Φ; F;ψ are nonderivative
functions of the dilaton which arise from summing over
(closed) world-sheet topologies, that is these functions
involve powers of the string coupling gs ¼ expðΦÞ of the
form g−χs , where χ ¼ 2 − 2N where N denotes the number
of handles, is the genus of the world-sheet surface [sphere
has N ¼ 0, torus ðone string loopÞ ¼ 0, etc.]. Thus,

BiðΦÞ¼e−2ΦþcðiÞ0 þcðiÞ1 e2Φþ���þcðiÞ2ne
2nΦþ…; ð2:9Þ

where the constant quantities ci pertain to effects of string
loops, so that the expressions (2.9) involve a power series in
the square of the string coupling g2s ¼ expð2ΦÞ. The first
term on the right-hand side of (2.9) leads to the standard
closed string expression for the gauge field Maxwell
terms in the low-energy effective action e−2ϕF 2 for
standard dilaton kinetic term normalization in the
Einstein frame [1–3].1
Passing to the Einstein frame, via appropriate redefini-

tions of [103]: the metric ĝμν → gμν ¼ CBgðΦÞĝμν, where
C are numerical normalization constants, the dilaton

Φ → ϕ ¼ R dΦ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4
ðB0

g

Bg
Þ2 þ 2ðB0

Φ
BΦ

þ BΦ
Bg
Þ

q
, where the prime

denotes d=dΦ, and the fermionic matter fields, ψ̂ → ψ ¼
C−3=4B−3=4

g B1=2
ψ ψ̂ , leaving the gauge fields as they are,

yields the effective action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p 1

8πḠ
ðR − 2∇μϕ∇μϕÞ þ Smatter;

Smatter ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−ψ̄Dψ −

1

4
BFðΦÞFμνFμν þ…

�
;

ð2:10Þ

1We note for completion that a similar factor accompanies the
quadratic gravitational curvature [Gauss-Bonnet (GB)] terms in
the action at string-loop tree level. This is a remnant of the
corresponding situation of the ten-dimensional target-spacetime
heterotic-string effective field theory action, which in the extra
(compact) dimensional sector leads to the celebrated anomaly
cancellation by equating the extra-dimensional (non-Abelian)
gauge with the corresponding quadratic-curvature gravitational
GB terms

R
d6x

ffiffiffiffiffiffiffiffiffiffiffiffi
−Gð6Þp

e−2ΦðTrF2 −R2
GBÞ → 0 (with the Tr

being a group-index trace), which leads to the heterotic string
selecting the E8 × E8 gauge group as the unique target-space
group before compactification to (3þ 1) dimensions [2,3].
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where the reader should notice the potential existence
(depending on the specific type of string theory considered)
of constant (dilaton-independent) terms involving F2 terms

[cf. the cðFÞ0 terms on the right-hand side of (2.9)].
In case we consider more general theories involving a

combination of closed and open strings (the latter attached,
e.g., to brane universes), for which one obtains effective
actions in the Einstein frame that include both closed and
open string sectors [the latter leading to DBI terms of the
form appearing in the second integral on the right-hand
side of (2.6)], then the inclusion of string loops can
lead, following similar arguments to the closed string
case (2.10), to generalized situations, in which the
(string-loop corrected) effective action acquires the form
in the Einstein frame [104],2

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μϕ∇μϕ�

−
Z

d4x
ffiffiffiffiffiffi
−g

p
BF2ðϕÞ½T2

4I
E
2 �

−
Z

d4x
ffiffiffiffiffiffi
−g

p
T4
4BF4ðϕÞIE4 þ…; ð2:12Þ

where the functions BFiðϕÞ; i ¼ 2; 4 admit a power series
expansion in the string coupling, summing up terms of the
generic form

BFiðϕÞ¼
X
χ

g−χs cðF
iÞ

χ ; i¼1;2; gs¼ expðϕÞ; ð2:13Þ

where χ ¼ 2 − 2N − NH, with NH the number of holes
(or boundaries) (e.g., disk has genus χ ¼ 1, since N ¼ 0,
NH ¼ 1, etc.), where finite parts of dilaton tadpoles

contribute to the coefficients cðF
iÞ

χ .
In heterotic strings, which do not involve branes, the

higher-derivative EH electrodynamics terms do not appear

in a closed DBI form. In that case, a more general action
involving EH terms, after summation over string loops,
might then be considered in the Einstein frame

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μϕ∇μϕ�

−
Z

d4x
ffiffiffiffiffiffi
−g

p
BF2ðϕÞ½T 2

4I
E
2 �

−
Z

d4x
ffiffiffiffiffiffi
−g

p
T 4

4BF4ðϕÞLEH þ…; ð2:14Þ

where the ellipsis (…) includes possible string-loop gen-
erated dilaton-potential terms, whose precise form is not
known at present, as this is a highly string-model-
dependent issue, and the functions BF2ðϕÞ, BF4ðϕÞ in this
case are given by power series expansions of even powers
of the string coupling, of the form (2.9), as only closed
world-sheet surfaces are involved. The Euler-Heisenberg
Lagrangian LEH is given by (2.4), but the coefficients
ci; i ¼ 1; 2 no longer satisfy (2.5), given that the DBI action
no longer describes the electromagnetic self-interactions in
closed form. In this work we shall use the framework (2.14)
to discuss black hole solutions in a phenomenological
manner, keeping the coefficients ci of the EH Lagrangian as
arbitrary. As already mentioned, in such a framework, for
some sufficiently high string-loop order one can conjecture
that there would exist a “dilaton independent” term in the
function BF4ðϕÞ. As we shall discuss in the next section,
such a constant term plays a crucial role in our phenom-
enological analysis in this paper in yielding analytic black
hole solutions of a dilaton-EH theory that could be the low-
energy limit of an appropriate underlying string theory.
However, in our work, we shall be more general, and our
analysis will be presented independent of strings.

III. THEORETICAL FRAMEWORK
AND BLACK HOLE SOLUTIONS

In the geometrized unit system (c ¼ G ¼ 1), the
Einstein-frame action functional that will occupy us in
this article is a simplified version of (2.14) and reads

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p ½R − 2∇μϕ∇μϕ − e−2ϕF 2

− fðϕÞð2αF α
βF

β
γF

γ
δF

δ
α − βF 4Þ�: ð3:1Þ

Such a field theoretic gravitational action also arises as part
of a nondiagonal reduction of the Gauss-Bonnet action [9]
and admits the GMGHS black hole [84,85] as an exact
solution when fðϕÞ ¼ 0. In (3.1), R is the Ricci scalar,
F 2 ≡ F μνF μν ∼ E2 −B2 is the usual Faraday scalar, and
F 4 ≡ F μνF μνF αβF αβ, where F μν stands for the usual field
strength F μν ¼ ∂μAν − ∂νAμ, and α, β are coupling con-
stants of the theory, with dimensions ðlengthÞ2, which in

2Indeed, if only Abelian gauge fields are considered, then only
open world-sheet surfaces are taken into account, in order to
evaluate the pertinent contribution to the effective action, as
discussed explicitly in [104] where it was shown that the loop
corrected effective action acquires the form in the σ-model frame
(ignoring antisymmetric tensor fields contributions, which are of
no interest in the present discussion),

S ¼
Z

d4x
ffiffiffiffiffiffi
−ĝ

p
α0−2e−2ϕ

�
−
3

2
α0½R̂þ 4ð∇ϕÞ2� þ…

�
þ d1e−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðĝμν þ 2πα0FμνÞ

q
þ d2 þ d3 þ d4eϕ þ…;

ð2:11Þ

where di, i ¼ 1; 2;… denote finite parts of the dilaton tadpoles,
and the dots denote contributions from higher-derivative correc-
tions, as well as higher string loops [that is higher powers of
the string coupling gs ¼ expðϕÞ]. Passing onto the appropriate
Einstein frame leads to actions of the form (2.12).
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our discussion are treated phenomenologically. The scalar
field ϕ and the associated scalar function fðϕÞ are both
dimensionless.3 For the moment we do not consider a
potential for the dilaton, but only its nonlinear inter-
actions with the EH terms. The addition of a pure dilaton
potential VðϕÞ can lead to interesting alternative
solutions, including a cosmological constant, which we
discuss in Sec. VII.
The field equations emanating from (3.1) are of the

following form:

Gμν ¼ 2∂μϕ∂νϕ− gμν∂αϕ∂αϕþ 2e−2ϕ
�
F μ

αF να−
1

4
gμνF 2

�
þfðϕÞ

�
8αF μ

αF ν
βF α

ηF βη −αgμνF α
βF β

γF γ
δF δ

α

− 4βF μ
ξF νξF 2þ 1

2
gμνβF 4

�
; ð3:2Þ

4□ϕ ¼ −2e−2ϕF 2 þ dfðϕÞ
dϕ

ð2αF α
βF β

γF γ
δF δ

α − βF 4Þ;

ð3:3Þ

∂μf
ffiffiffiffiffiffi
−g

p ½4F μνð2βfðϕÞF 2−e−2ϕÞ−16αF μ
κF κ

λF νλ�g¼0:

ð3:4Þ

By taking into account the higher-order electromagnetic
invariants F 4 and F α

βF β
γF γ

δF δ
α, we are interested in

extending the GMGHS solution [84,85]. To do so, we
introduce the most general spherically symmetric metric
ansatz in the form

ds2 ¼ −BðrÞdt2 þ dr2

BðrÞ þ ½RðrÞ�2dΩ2; ð3:5Þ

where BðrÞ, RðrÞ are two unknown functions to be
determined from the field equations, while dΩ2 ¼
dθ2 þ sin2 θdφ2.4 Moreover, we consider both electric

and magnetic charges, via the following four-vector, which
is compatible with spherical symmetry,

Aμ ¼ ðVðrÞ; 0; 0; Qm cos θÞ; ð3:6Þ

where Qm stands for the magnetic charge carried by the
black hole. This ansatz for the electromagnetic field solves
by construction the φ component of the Maxwell equations
if and only if one considers that the scalar field inherits the
spacetime symmetries, namely ϕ≡ ϕðrÞ. Interestingly, one
can see that the combination

2αF α
βF β

γF γ
δF δ

α − βF 4

¼ 4ðα − βÞQ4
m

½RðrÞ�8 þ 8βQ2
m½V 0ðrÞ�2
½RðrÞ�4 þ 4ðα − βÞ½V 0ðrÞ�4

ð3:7Þ

will vanish if one does not consider both electric and
magnetic configurations in the case of α ¼ β. In the above,
prime denotes derivation with respect to r. Maxwell’s
equation is very difficult to be integrated for the dyonic
case and as a result we will consider pure magnetic fields,
that is VðrÞ ¼ 0. Consequently, both these nonlinear
electrodynamics terms will contribute if and only if
α ≠ β. We will begin our analysis for the scalar-free
scenario ϕ ¼ 0; fðϕ ¼ 0Þ ¼ 1, for which the solution reads

BðrÞ ¼ 1 −
2M
r

þQ2
m

r2
þ 2ðα − βÞQ4

m

5r6
; ð3:8Þ

and RðrÞ ¼ r. This solution resembles the Einstein-Euler-
Heisenberg black hole [105]. The interesting thing to notice
in (3.8) is that the nonlinear electromagnetic terms
F α

βF β
γF γ

δF δ
α and F 4 affect the spacetime geometry

in a similar way. It is solely the values of the coupling
constants α and β that determine whether this contribution
survives or not. Note that in the case of α ¼ β the higher-
order electromagnetic term does not contribute at all.
However, in the case where α ≠ β, we notice that depend-
ing on the signs of the parameters α and β, the nonlinear
electromagnetic terms can act either attractively or repul-
sively. Black holes with a scalar hair in the Euler-
Heisenberg theory have been discussed in [64], and it
was found that the scalar hair results in a more compact
black hole (having a smaller radius for the event horizon)
when compared to the nonhairy Einstein-Euler-Heisenberg
black hole.
Let us now assume a nontrivial profile for the coupling

function fðϕÞ. In particular, we consider

fðϕÞ¼−½3coshð2ϕÞþ2�≡−
1

2
ð3e−2ϕþ3e2ϕþ4Þ: ð3:9Þ

Notice here that the coupling function fðϕÞ contains the
dilatonic coupling e2ξϕ with ξ ¼ �1 as well as a constant

3The reader should be reminded at this stage that in the special
case of (open)string/brane-inspired BI theory at tree-level in
string loops, the function fðϕÞ ∼ e−5ϕ [cf. (2.6)], however, in
such a case the Maxwell term F 2 in (3.1) should be accompanied
by the inverse of the open string coupling, i.e., e−ϕ, instead of
e−2ϕ that appears in (3.1). On the other hand, in the heterotic-
string-inspired model (3.1) can be mapped to the model (2.7),
upon choosing γ ¼ 1, and FF̃ ¼ 0, that is concentrating on
magnetically charged black holes only [in which case, the
function fðϕÞ ∼ e−6ϕ]. However, as we have already stressed
and we shall argue below, it is crucial for an analytic treatment of
the black hole solution to have a dilaton-independent term in
fðϕÞ, which, as we have argued in the previous section, can be
induced by considering higher-order string-loop corrections in
the underlying string-theory model.

4Note that, throughout this article, φ will always denote the
azimuthal coordinate, while ϕ will always denote the scalar field.
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(dilaton-independent) term. At this point the reader is
invited, for completion, to compare such couplings with
the string-loop corrected coupling functions BF4ðϕÞ, in the
framework of string-inspired models (2.14), discussed
previously in Sec. II. In such a stringy context, the
exponential dilaton terms in the coupling function (3.9)
can be written as fðϕÞ ¼ − 3

2
ðg−2s þ g2sÞ − 2, where gs ¼

expðϕÞ is the string coupling. As discussed in Sec. II, the
g−2s is the standard tree-level dilaton-Maxwell term cou-
pling [1–3], while the g2s indicates two-string-loop correc-
tions (genus-χ ¼ 2 world-sheet surfaces). The crucial, for
our subsequent discussion, dilaton-independent term in
fðϕÞ might be the result of appropriate combinations
of higher-string-loop corrections in the Einstein-frame
effective action.
It is now straightforward to solve the field equations

of (3.1), with (3.9), in order to determine the geometry of
the spacetime and the functional expression for the scalar
field. By doing so, one obtains a simple, exact, magneti-
cally charged black hole solution, for which it holds that

BðrÞ ¼ 1−
2M
r

−
2ðα− βÞQ4

m

r3ðr− Q2
m

M Þ3
; ½RðrÞ�2 ¼ r

�
r−

Q2
m

M

�
;

ð3:10Þ

ϕðrÞ¼−
1

2
ln

�
1−

Q2
m

Mr

�
; Aμ¼ð0;0;0;QmcosθÞ: ð3:11Þ

We observe that, in this case, for α ¼ β we obtain the
Garfinkle-Horowitz-Strominger solution [85], while the
radial coordinate r∈ ðQ2

m=M;þ∞Þ in order to have
R∈ ð0;þ∞Þ. In this case, it is also intriguing to observe
that the sign of the combination α − β among the coupling
constants determines whether the higher-order electromag-
netic terms in the theory will contribute attractively or not.
To obtain a better understanding of the spacetime

geometry, one may express the line element (3.5) in terms
of the physical coordinate system with R playing the role of
the radial coordinate. By doing so, one finds that

ds2 ¼ −BðRÞdt2 þ ½WðRÞ�2dR2

BðRÞ þ R2dΩ2; ð3:12Þ

with functions BðRÞ, WðRÞ, and ϕðRÞ being given by

BðRÞ¼1−
4M2

Q2
mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4

mþ4M2R2
p −

2ðα−βÞQ4
m

R6
; ð3:13Þ

½WðRÞ�2 ¼ 4M2R2

Q4
m þ 4M2R2

; ð3:14Þ

ϕðRÞ ¼ −
1

2
ln

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4

m þ 4M2R2
p

−Q2
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Q4
m þ 4M2R2

p
þQ2

m

!
: ð3:15Þ

In the physical coordinate system ðt; R; θ;φÞ, one can
verify that the curvature invariant quantities R, RμνRμν,
and RαβγδRαβγδ possess a single spacetime singularity
residing at R ¼ 0, while the function BðRÞ satisfies the
following expansions:

BðR → þ∞Þ ¼ 1 −
2M
R

þQ2
m

R2
−

Q4
m

4MR3
þ Q8

m

64M3R5

−
2ðα − βÞQ4

m

R6
þOð1=R7Þ; ð3:16Þ

BðR→0Þ¼−
2ðα−βÞQ4

m

R6
þ
�
1−

2M2

Q2
m

�
þOðR2Þ: ð3:17Þ

From (3.16), it becomes apparent that the spacetime (3.12)
is practically indistinguishable from that of a magnetically
charged Reissner-Nordström black hole for an observer
at infinity, with the parameter M corresponding to the
Arnowitt-Deser-Misner (ADM) mass of the solution.
However, an observer much closer to the black hole (3.12)
would perceive a completely different picture. Indeed these
quantum-gravity corrections are important near the singu-
larity, since the geometry there is determined by their
behavior.
The radial null trajectories for the spacetime (3.12), lead

to the relation

dt
dR

¼ � 2MRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4

m þ 4M2R2
p 1

jBðRÞj ; ð3:18Þ

which by its turn means that the roots of the function BðRhÞ
correspond to black hole horizons. In Fig. 1, one can
observe the behavior of the metric function BðRÞ in terms
of the dimensionless quantity R=ð2MÞ. We see that the
solution (3.12) describes a black hole with a single horizon
when ðα − βÞ=M2 ¼ 1, while for ðα − βÞ=M2 ¼ −1 the
black hole horizons can range from two to none. It is
essential to note that the previous assertion holds, in
general, for ðα − βÞ=M2 being either greater or lower than
zero. Analysis of Fig. 1(a) reveals that a positive value for
the combination ðα − βÞ=M2 results in black hole solutions
featuring a single horizon. To facilitate comparison, we
have also included the Schwarzschild solution which
can be obtained by simply setting Qm ¼ 0. One can
readily observe that within our theory’s solution spectrum,
black holes can exhibit either greater compactness or
sparsity relative to the Schwarzschild solution. In astro-
physical scenarios where Qm is relatively small compared
to the mass, our solution appears more compact.
Conversely, when the fraction ðα − βÞ=M2 takes a negative
value, the solutions range from black holes with two
horizons to naked singularities. The transition from one
class of solutions to the other occurs continuously as the
magnetic charge Qm increases, as depicted in Fig. 1(b).
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Consequently, in this scenario, there always exists a specific
value for the ratio Qm=M that renders the black hole
extremal, meaning the inner and outer horizons coincide.
It is crucial to highlight here the intriguing behavior

observed in the realm of single-horizon black hole sol-
utions, for which α − β > 0. Specifically, there exists a
minimum value for the ratio Rh=ð2MÞ, which is below
unity, resulting in more compact black holes compared to
the Schwarzschild solution. Starting from Qm ¼ 0
(Schwarzschild) and increasing the magnetic charge, the
resulting black holes become progressively more compact
until reaching the point where Rh=ð2MÞ attains its mini-
mum value. Beyond this point, further increase in the ratio
Qm=M causes Rh=ð2MÞ to rise again, eventually reaching
Rh=ð2MÞ ¼ 1, albeit now with Qm ≠ 0. Subsequently, any
additional increase in the ratio Qm=M yields a solution
more sparse than the Schwarzschild counterpart. This
particular behavior is elucidated by analyzing Fig. 2, where
the relationship between the ratio of the black hole horizon
(Rh) to twice the black hole mass (2M) and the ratioQm=M
is depicted for various values of the dimensionless param-
eters ðα − βÞ=M2. Conversely, it is observed that, when
α − β < 0, the outer horizon radius of the resulting
black holes is consistently smaller than that of the corre-
sponding Schwarzschild black hole with the same mass.
Furthermore, it is important to note that, in this scenario,
the graph reaches a termination point. This occurs because,
beyond a certain threshold of the ratioQm=M (which is less
than unity), there is a significant transition in the nature
of the compact object. Specifically, the object transitions
from being an extremal black hole to a naked singularity.
Consequently, for this particular choice of parameters, there
is no horizon to be depicted. These observations are further
corroborated by the findings depicted in Fig. 1(b).
Returning now to the case α − β > 0, the discovery of

black hole solutions sharing identical horizon radii yet
varying in the ratios Qm=M unveils a realm of
“doppelgänger black holes” within the framework of
theory (3.1). While it is typical to find black holes
stemming from different theoretical paradigms with shared
horizon radii but differing physical attributes such as mass,
electric charge, or secondary scalar hair, such occurrences
are notably rare when considering black holes that arise
from the same theory. Even more remarkable is the fact that
these two doppelgänger black holes, despite having iden-
tical horizon radii, exhibit distinguishable thermodynamic
behaviors. One is thermodynamically stable while the other
is unstable. This distinctive feature is thoroughly explored
in Sec. V.

FIG. 2. The ratio Rh=ð2MÞ in terms of the ratio Qm=M for
various values of the dimensionless parameter ðα − βÞ=M2. Both
axes are logarithmic.

(a) (b)

FIG. 1. The metric function BðRÞ in terms of R=ð2MÞ for various values of the parameter Qm=M and (a) ðα − βÞ=M2 ¼ 1,
(b) ðα − βÞ=M2 ¼ −1. All parameters are dimensionless, and the horizontal axis in both figures is logarithmic.
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IV. GEODESICS AND ENERGY CONDITIONS

A. Geodesics

In this subsection, we will examine the geodesic curves
of massive particles and the effective gravitational potential
generated by the spacetime geometry given by Eqs. (3.5)
and (3.10). We choose to work with the ðt; r; θ;φÞ
coordinate system, as it facilitates a straightforward deri-
vation of the effective gravitational potential Veff through
a well-established procedure. This will help us to better
comprehend the geometry of the aforementioned black hole
solutions. To do so, we introduce the effective Lagrangian

2Leff ¼ gμν
dxμ

dτ
dxν

dτ

¼ −BðrÞṫ2 þ ṙ2

BðrÞ þ ½RðrÞ�2ðθ̇2 þ sin2θφ̇2Þ; ð4:1Þ

the Euler-Lagrange equations of which yield the geodesic
equations. In the above, τ is an affine parameter of
motion which can be identified with the proper time of
a particle, the dot denotes derivation with respect to τ, while
2Leff ¼ −1 corresponds to massive particles which follow a
timelike path. Note that massless particles will not follow
the geodesics induced by the geometry gμν, instead they will
follow the geodesics induced by an effective geometry that
accounts for photon-photon interactions, introduced by
the nonlinear electromagnetic terms in our action. Upon
inspecting the Lagrangian (4.1), it becomes evident that
there is no explicit dependence on the coordinates ðt;φÞ. As
a result, the Euler-Lagrange equations for t and φ yield two
conserved quantities: the energy E and the angular momen-
tum J of the particle under consideration, respectively.
Hence, we have

E ¼ BðrÞṫ; ð4:2Þ

J ¼ ½RðrÞ�2 sin2 θφ̇: ð4:3Þ

The equation of motion for θ reads

½RðrÞ�2θ̈ þ 2RðrÞR0ðrÞṙ θ̇−J cos θ
sin θ

¼ 0; ð4:4Þ

and by choosing θ ¼ π=2 (θ̇ ¼ 0), the particles stay fixed
at the equatorial plane. Now plugging these results back
to (4.1) we obtain the radial equation of motion

1

2
ṙ2 þ VeffðrÞ ¼

1

2
E2; ð4:5Þ

with the effective potential induced by the geometry being

VeffðrÞ ¼
BðrÞ
2

�
1þ J2

½RðrÞ�2
�
; ð4:6Þ

and the functions BðrÞ and RðrÞ given by (3.10). As we
have already mentioned in the previous section, the radial
coordinate r ranges fromQ2

m=M to plus infinity because the
physical radial coordinate R∈ ð0;þ∞Þ.
In Fig. 3, we depict the behavior of the effective potential

Veff in terms of the dimensionless parameter r=M, con-
sidering three distinct values for the fraction ðα − βÞ=M2.
Upon close examination, it becomes evident that the
scenarios where α ¼ β and ðα − βÞ=M2 ¼ 2 share a strik-
ingly similar pattern in the effective potential. In both cases,
the potential curve features one maximum and one mini-
mum value, corresponding to unstable and stable circular
orbits, respectively. On the other hand, in the case where
ðα − βÞ=M2 ¼ −2, an additional minimum emerges, exhib-
iting local behavior that closely resembles the Newtonian
potential. To understand the origin of this difference, we
have to examine the expansion of the potential Veff in the
limit r → Q2

m=M, where one can verify that

Veffðr → Q2
m=MÞ

¼ −
J2M4ðα − βÞ
Q4

mðr − Q2
m

M Þ4
þM3ðα − βÞð4J2M2 −Q4

mÞ
Q6

mðr − Q2
m

M Þ3

þO
��

r −
Q2

m

M

�−2�
: ð4:7Þ

We observe that the first term, which dominates in this
particular regime, depends explicitly on the sign of the
quantity α − β. When α − β > 0, the potential tends toward
negative infinity, whereas for α − β < 0, the potential tends
toward positive infinity. This alignment precisely mirrors
our observations in Fig. 3. Finally, from Fig. 3, it is also
clear that, for r=M > 2, the effective potential in all cases

FIG. 3. The effective potential Veff in terms of the quantity r=M
for Qm=M ¼ 0.5, J=M ¼ 5, and ðα − βÞ=M2 ¼ f−2; 0; 2g.
All parameters are dimensionless, and the horizontal axis is
logarithmic.
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exhibits the same profile, independent of the relative values of the coupling constants α and β. This can be naively
understood through the expansion of the potential at infinity, which is of the following form:

Veffðr → þ∞Þ ¼ 1

2
−
M
r
þ J2

2r2
þ
�
Q2

m

2M2
− 1

��
J2M
r3

þ J2Q2
m

r4
þ J2Q4

m

Mr4
þ J2Q6

m

M2r4

�
−
ðα − βÞQ4

m

r6
þO

�
1

r7

�
: ð4:8Þ

It is obvious that, in the asymptotic regime, the coupling
constants α and β cease to influence the potential profile, as
their first contribution comes into play only in the seventh
term of the expansion. Consequently, even at medium
distances, we anticipate that, beyond a certain point, the
coupling constants will have negligible impact on the
potential’s behavior.

B. Energy conditions

We will now turn our attention to the energy conditions
associated with the stress-energy tensor of our theory. In the
physical coordinate system ðt; R; θ;φÞ the stress-energy
tensor is described by an anisotropic fluid which in a
covariant form can be written as

Tμν ¼ ðρE þ pθÞuμuν þ ðpR − pθÞnμnν þ pθgμν: ð4:9Þ

In the above, ρE is the energy density of the fluid
measured by a comoving observer with the fluid, pR is its
radial pressure, pθ is its tangential pressure, while uμ and nμ

are its timelike four-velocity and a spacelike unit vector
orthogonal to uμ and also to both angular directions. The
four-vectors uμ and nμ satisfy the following relations:

uμ ¼ uðRÞδμ0; uμuνgμν ¼ −1; ð4:10Þ

nμ ¼ nðRÞδμ1; nμnνgμν ¼ 1: ð4:11Þ

Given Eqs. (3.2), (3.9), (3.12)–(3.15), and (4.9)–(4.11), one
can readily compute that

ρE ¼ −Tt
t ¼

BðRÞ
½WðRÞ�2

�
dϕ
dR

�
2

þQ2
m

R4
e−2ϕ

þ 2ðα − βÞQ4
m

R8
fðϕÞ; ð4:12Þ

pR ¼ TR
R ¼ BðRÞ

½WðRÞ�2
�
dϕ
dR

�
2

−
Q2

m

R4
e−2ϕ

−
2ðα − βÞQ4

m

R8
fðϕÞ; ð4:13Þ

pθ ¼ Tθ
θ ¼ Tφ

φ ¼ −
BðRÞ

½WðRÞ�2
�
dϕ
dR

�
2

þQ2
m

R4
e−2ϕ

þ 6ðα − βÞQ4
m

R8
fðϕÞ: ð4:14Þ

For the anisotropic fluid of (4.9), the energy conditions
take the following expression:

(i) Null energy conditions (NECs): ρE þ pR ≥ 0 and
ρE þ pθ ≥ 0.

(ii) Weak energy conditions: NEC and ρE ≥ 0.
(iii) Strongenergy conditions:NECandρEþpRþ2pθ≥0.

In Figs. 4(a) and 4(b), we illustrate the graphs of the
quantities ρE, ρE þ pR, ρE þ pθ, and ρE þ pR þ 2pθ each
plotted against the dimensionless parameter R=M. The free
parameters of our model and solution have been chosen to
be Qm=M ¼ 0.5, while the combination ðα − βÞ=M2 takes
values of 1 and −1, respectively. It is evident from Fig. 4
that all the aforementioned quantities maintain positive
values within the causal region of spacetime and as a result,
all energy conditions are satisfied.
These results imply, therefore, the existence of a dilaton

hair in the black hole’s exterior, while the energy conditions
are satisfied, thereby leading to a bypass of the pertinent
(modern version of the) no-hair theorems [106,107] in the
spirit of [108]. The situation can be understood as a
consequence of the fact that the stress-energy tensor of
our theory (3.1), with (3.9), is such that the tangential
component of the pressure (pθ ¼ Tθ

θ) dominates over its
radial one (pR ¼ TR

R) [in the ðt; R; θ;ϕÞ coordinate sys-
tem], outside the horizon. That is, the following quantity is
positive in the exterior region of the black hole,

G − J ¼ Tθ
θ − TR

R > 0; ð4:15Þ

where G ¼ ρE þ Tθ
θ and J ≡ ρE þ TR

R. Note that the
condition (4.15) follows from NEC. As discussed in detail
in [108], the quantity 2G=R is the “effective gradient
pressure force,” and its positivity (i.e., that of G, since
R > 0) explains in a physical way the existence of scalar
hair in the black hole’s exterior, without any violation of the
energy conditions. The validity of the condition (4.15) can
also be explicitly checked in our model from Eqs. (4.13)
and (4.14). Thus, the exact black hole solution of the
self-gravitating scalar-EH (nonlinear) electrodynamics
examined in this paper constitutes another explicit example
of the general considerations of [108] for bypassing the
no-hair theorem without any violation of the energy
conditions.

V. THERMODYNAMIC ANALYSIS

In this section, we will discuss the thermodynamics
of both the GMGHS and our black hole solution by
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considering their Euclidean actions. We will consider the
grand canonical ensemble and enclose the black hole
spacetime in a cavity with a large radius rc. In the grand
canonical ensemble, the black hole is allowed to exchange
energy/mass and charge with its environment, so these
two quantities are allowed to flow in and out through the
boundary, keeping the temperature and the magnetostatic
potential of the boundary fixed. This effectively means that
TðrhÞ ¼ TðrcÞ andΦmðrhÞ ¼ ΦmðrcÞ and the system black
hole cavity is in thermodynamic equilibrium. Note that T is
the black hole temperature and Φm is the magnetostatic
potential. The quantum partition function for the system is
then given by

Z¼
Z

d½gðLÞμν ;ψ �eiSðgðLÞμν ;ψÞ ¼
Z

d½gðEÞμν ;ψ �e−IEðgðEÞμν ;ψÞ; ð5:1Þ

where S is the Lorentzian action, IE is the Euclidean
action, and ψ denotes all other possible fields included
besides the metric tensor. The two actions are related via

IE ¼ −iS [109]. The quantity gðLÞμν is the Lorentzian metric
with signature ð−þþþÞ, which corresponds to a R3;1

spacetime, while gðEÞμν is the Euclidean metric with signature
ðþ þ þþÞ, which is obtained from the Lorentzian one by
performing a Wick rotation [110] of the time coordinate
(τ ¼ it). In the standard Matsubara formalism of finite-
temperature systems, the Euclidean metric corresponds to a
space R3 × S1βτ , where the radius βτ of the S

1 is the inverse
temperature T−1 in units of the Boltzmann factor kB ¼ 1.
Hence, the second integral in (5.1) is evaluated over all
possible field configurations that have an imaginary time τ
with period βτ. From the partition function, using standard

thermodynamic relations one can obtain the free energy G
of the system as

G ¼ −
1

βτ
lnZ: ð5:2Þ

By using the saddle point approximation (Laplace’s
method) we will consider that the classical action contrib-
utes the most and as a result we may drop the integral in the
partition function Z. Then the Euclidean action IE can be
related to the free energy evaluated on shell through the
following relation:

IE ¼ Gβτ: ð5:3Þ

Having the expression of the free energy for the black hole
solution, we will compare it with the free energy of the
grand canonical ensemble in order to extract the mass
(internal energy), the entropy, and the magnetostatic
potential of the black hole. For more information in the
discussion that follows, we refer the reader to the original
work of Gibbons and Hawking [111].

A. GMGHS black hole

We start our analysis with the thermodynamics of the
GMGHS solution. The Euclidean action, including the
appropriate boundary terms, is given by

IE ¼ −
1

16π

Z
Σ
d4x

ffiffiffi
g

p ðR − 2∇αϕ∇αϕ − e−2ϕF 2Þ

−
1

8π

Z
∂Σ
ðK − K0Þd3x

ffiffiffi
h

p
: ð5:4Þ

(a) (b)

FIG. 4. The energy conditions for Qm=M ¼ 0.5 with (a) a positive and (b) a negative value assigned to the dimensionless quantity
ðα − βÞ=M2. The vertical lines correspond to the horizon of the black hole determined by these parameters.
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In the Euclidean signature, the GMGHS black hole is
described by the following metric:

ds2 ¼ BðrÞdτ2 þ dr2

BðrÞ þ ½RðrÞ�2dΩ2; ð5:5Þ

where BðrÞ ¼ 1–2M=r, while RðrÞ has the same form as in
Eq. (3.10). In this coordinate system, the Euclidean time
coordinate is periodic and takes values in the range
0 ≤ τ ≤ βτ. For the derivation of the thermodynamic
quantities, we assume that we have enclosed the black
hole in a large cavity with radius rc. Therefore, the radial
coordinate takes values in rh ≤ r < rc. Finally, the two
angular coordinates take their usual values. The boundary
termK represents the trace of the extrinsic curvature, which
in our case reads

K ¼ ∇αnα ¼
2R0ðrÞ ffiffiffiffiffiffiffiffiffi

BðrÞp
RðrÞ þ B0ðrÞ

2
ffiffiffiffiffiffiffiffiffi
BðrÞp ; ð5:6Þ

where nα ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=BðrÞp

δrα is a normalized spacelike vector
field. The K term in the above hypersurface integral
represents the Gibbons-Hawking-York boundary term,
ensuring a well-defined variational principle. The second
boundary term K0 serves as a subtraction term to render
the action finite for flat space (in the absence of the black
hole). For flat space, K0 equals 2=r, obtained by setting
BðrÞ ¼ 1 and RðrÞ ¼ r in the above relation. Utilizing
these relations, one can readily compute the Euclidean
action (5.4) to be

IE ¼ βτM
2

−
βτQ2

m

4M
: ð5:7Þ

In the above, we have used that the horizon radius is
given by rh ¼ 2M. In the grand canonical ensemble, the
Euclidean action is identified with the free energy of
the thermodynamic system as IE ¼ βτG, thus, we can
rewrite (5.7) as

IE ¼ βτM − βτΦmQm − S; ð5:8Þ
where S is the entropy and Φm is the magnetostatic
potential, Φm ¼ Qm=rh. For the derivation of the above
equation, we have used the fact that βτ ¼ 8πM≡ 1=T with
T being the temperature of the black hole. By combining
now Eqs. (5.7) and (5.8) we can evaluate the black hole
entropy S, which is given by the following relation:

S ¼ 2πM

�
2M −

Q2
m

M

�
¼ π½RðrhÞ�2 ¼

A
4
; ð5:9Þ

where A denotes the horizon area. It is evident that, in this
case, the entropy function has the well-known form of the
Bekenstein-Hawking entropy. For validation, the same
result may also be obtained using Wald’s formula or even
using the Arnowitt-Deser-Misner formalism [112]. For a

comprehensive analysis of the ADM formalism, readers are
directed to [113]. Additionally, for its explicit application in
black hole solutions, we refer the interested reader to [114].
In the subsequent subsection, we will utilize the ADM
formalism for the thermodynamic analysis of our black
hole solution.
The inclusion of the Gibbons-Hawking-York boundary

term ensures that the Euclidean action attains an extremum
within the class of fields considered here, δIE ¼ 0. As a
result, it is evident that the first law of thermodynamics in
the grand canonical ensemble (keeping the temperature and
the magnetic potential fixed) takes the form

δM ¼ TδSþΦmδQm; ð5:10Þ

derived from (5.8), and holds by construction. The first law
is also evident by taking the variation of the entropy with
respect to the primary black hole charges. The temperature
of this black hole is the same as that of the Schwarzschild
black hole, as pointed out in [115], since the Euclidean
continuation does not care about the angular part.
Consequently, the heat capacity C for constant charge will
also be negative, C ¼ −1=ð8πT2Þ; hence, these types of
black holes cannot reach thermal equilibrium.

B. Black hole with nonlinear electrodynamics

Wewill now focus on our black hole solution, emanating
from the action (3.1) and characterized by the line element
(3.12)–(3.14). The scalar and the gauge fields are of the
form ϕ ¼ ϕðRÞ—with R being the physical radial coor-
dinate—andAμ ¼ ð0; 0; 0; AðθÞÞ, respectively. In this case,
to determine the thermodynamic quantities associated with
the resulting black hole solution, we will make use of the
Euclidean signature and also utilize the ADM formalism
[112,113]. Hence, we consider the line element of the form

ds2 ¼ ½NðRÞ�2BðRÞdτ2 þ ½WðRÞ�2dR2

BðRÞ þ R2dΩ2; ð5:11Þ

where the Euclidean time takes values in the range
0 ≤ τ ≤ βτ, while the radial coordinate R∈ ½Rh;þ∞Þ. To
obtain the temperature, that is the period of the Matsubara
frequency τ, in our case, we follow the calculation of [37].
To this end, we first ignore the angular part of the line
element and perform a series expansion near the horizon.
Thus, we are left with a two-dimensional line element
which is compared with the line element of two-
dimensional space expressed in polar coordinates
dS ¼ dR̂2 þ R̂2dΘ2. By doing so, we obtain

dR̂2 ¼ WðRhÞ2
B0ðRhÞðR − RhÞ

dR2; ð5:12Þ

B0ðRhÞðR − RhÞdτ2N2ðRhÞ ¼ R̂2dΘ2: ð5:13Þ
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The coordinate Θ is periodic with a period 2π which
implies that τ is also a periodic coordinate with a period βτ
given by

βτ ¼
1

T
¼ 4πWðRÞ

NðRÞB0ðRÞ
				
Rh

; ð5:14Þ

where T is the temperature of the black hole. For com-
pleteness, we also remark at this point that we have also
checked that, as expected, the temperature will take on the
same values at the event horizon regardless of the coor-
dinate system we are using (r or R).
The Euclidean action is related to the Lorentzian action

via IE ¼ −iS and we will consider the following varia-
tional problem, which basically consists of the theory (3.1)
alongside a boundary term denoted by BE, which we will
consider in order to have a well-defined variational prin-
ciple δIE ¼ 0. Thus, we have

IE ¼ 2πβτ
16π

Z
π

0

dθ
Z

∞

Rh

dR½−NR2W sin θLðR; θÞ� þ BE:

ð5:15Þ

Here L denotes the Lagrangian of the theory which is a
function of R, θ coordinates. After canceling total deriv-
atives, the Euclidean action reads

IE ¼ βτ

Z
π

0

dθ
Z

∞

Rh

dRL̂ðQi; ∂μQiÞ þ BE; ð5:16Þ

withQi¼fNðRÞ;WðRÞ;BðRÞ;ϕðRÞ;AðθÞg and L̂ðQi;∂μQiÞ
given by

L̂ðQi; ∂μQiÞ ¼ N sin θ
4W2R6

�
WR7B0

þW3

�
2fðϕÞðα − βÞ ð∂θAÞ

4

sin4θ

þ e−2ϕR4
ð∂θAÞ2
sin2θ

− R6

�
þ BR6ðWR2ϕ02 − 2RW0 þWÞ

�
: ð5:17Þ

Following the ADM formalism, we have to vary the above
Euclidean action with respect to each one of the dynamical
fields Qi to obtain the field equations. By doing so, we
obtain none other than the well-known Euler-Lagrange
equations, namely,

∂L̂
∂Qi − ∂μ

�
∂L̂

∂ð∂μQiÞ
�

¼ 0: ð5:18Þ

Let us now apply the above equation for the dynamical
field Q1 ¼ NðRÞ. Upon substituting the expression of L̂

from (5.17) into (5.18), we find that the second term
vanishes identically, while ∂L̂=∂N ¼ L̂=N. As a result, the
equation for NðRÞ indicates that L̂ ¼ 0, which in turn
implies IE ¼ BE. This outcome is anticipated in the ADM
formalism, where the metric construction (5.11) is specifi-
cally tailored to yield this result. Additionally, by solving
the field equations (5.18) for all dynamical fields Qi, one
can determine the unknown functions and verify that the
resulting solution is the one obtained in Sec. III with
line element (3.12)–(3.14), alongside a constant N which
without loss of generality we may set equal to 1. It is
important to mention at this point that, during the derivation
of the Euler-Lagrange equations, certain boundary terms
were omitted. These terms are of the following form:

βτ

�
R
2W

δBþ 2BR2ϕ0

W
δϕ −

BR
W2

δW

�				∞
Rh

; ð5:19Þ

and

βτ

Z
∞

Rh

dR

�
We−2ϕð∂θAÞ
2R2 sinθ

þ2ðα−βÞWfðϕÞð∂θAÞ3
R6sin3θ

�
δA

				θ¼π

θ¼0

:

ð5:20Þ

The variation of the boundary term δBE will account for the
neglected boundary terms, ensuring the attainment of a
well-defined variational principle δIE ¼ 0. Utilizing the
fact that the variation of A yields δA ¼ ðδQmÞ cos θ, and
substituting the expressions for the functions in (5.20), one
can integrate and derive the following expression:

βτ
Qmf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2R2

h þQ4
m

p
½R4

h − 4ðα − βÞQ2
m� − R4

hQ
2
mg

2MR6
h

δQm:

ð5:21Þ

Now, the variation of the dynamical fields at infinity yield

δB ¼ −
2δM
R

þO
�

1

R2

�
; ð5:22Þ

δϕ ¼ Qm

MR
δQm −

Q2
m

2M2R
δM þO

�
1

R3

�
; ð5:23Þ

δW ¼ Q4
m

4M3R2
δM −

Q3
m

2M2R2
δQm þO

�
1

R3

�
; ð5:24Þ

while at the horizon we have that

δBjRh
¼ −B0ðRhÞδRh; ð5:25Þ

δϕjRh
¼ δϕðRhÞ − ϕ0ðRhÞδðRhÞ; ð5:26Þ

δWjRh
¼ δWðRhÞ −W0ðRhÞδðRhÞ: ð5:27Þ
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Note that the parameters α, β are fixed by the theory and
thus not allowed to vary, while M and Qm are pure
integration constants allowed in the variation.
As previously mentioned, to ensure a well-defined

variational procedure, it is desirable to have δIE ¼ 0.
For clarity and convenience, we will partition the
variation of the boundary term δBE into two components:
one at infinity and another at the event horizon,
expressed as

δBE ¼ δBEð∞Þ þ δBEðRhÞ: ð5:28Þ

Evaluating now (5.19) at infinity and considering the
variation of the boundary term at infinity we find that a
zeroth-order contribution survives, which according to the
variations of the fields leads to

βτ
2
RðδB − 2δWÞ þ δBEð∞Þ ¼ 0 ⇒ ð5:29Þ

δBEð∞Þ ¼ βτδM: ð5:30Þ
On the other hand, Eq. (5.19) at the horizon, alongside the
variation of the boundary term at the horizon and (5.21)
results in

2πRhδRh þ βτ
Qmf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2R2

h þQ4
m

p
½R4

h − 4ðα − βÞQ2
m� − R4

hQ
2
mg

2MR6
h

δQm þ δBEðRhÞ ¼ 0; ð5:31Þ

which might be written equivalently as

δA
4

þ βτΦmδQm þ δBEðRhÞ ¼ 0; ð5:32Þ

where we have used the fact that the area of the black hole is
given by A ¼ 4πR2

h and we have defined the magnetic
potential as

Φm ¼ Qmf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2R2

h þQ4
m

p
½R4

h − 4ðα − βÞQ2
m� − R4

hQ
2
mg

2MR6
h

:

ð5:33Þ

Considering now that we are dealing with the grand
canonical ensemble, we keep the temperature and the
magnetic potential of the system fixed and as a result
we can drop the variations to obtain

BEð∞Þ ¼ βτM; ð5:34Þ

BEðRhÞ ¼ −
A
4
− βτΦmQm: ð5:35Þ

Therefore, the value of the Euclidean action is given by

IE ¼ βτM −
A
4
− βτΦmQm; ð5:36Þ

and since the Euclidean action is related to the free energy G
of the system via IE ¼ βτG ¼ βτM − S − βτΦmQm we
can identify, by comparison, the conserved black hole mass
and the entropy of the black hole as

M ¼ M; ð5:37Þ

S ¼ A=4: ð5:38Þ

Finally, the first law of thermodynamics (5.10) holds by
construction as in the GMGHS black hole.
With the confirmation that the black hole thermody-

namic quantities in our case adhere to the standard
relations, we can now proceed to analyze the black hole’s
temperature. In Fig. 5, we depict the black hole temper-
ature as a function of the dimensionless quantity
Rh=ð2MÞ. Notice that the temperature is scaled by the
temperature of the Schwarzschild black hole to form a
dimensionless quantity, ensuring its independence from
the chosen unit system. In Figs. 5(a) and 5(b), we explore
the effects of the higher-order electromagnetic contribu-
tions on black hole temperature, considering fixed (yet
distinct) values for the coupling constants α and β,
along with varying magnetic charge (Qm) values, but
maintaining the same value for the black hole mass. Both
Figs. 5(a) and 5(b) were generated using the following
procedure: For each value ðα − βÞ=M2 and the ratio
Qm=M, we numerically evaluate the value of the ratio
Rh=ð2MÞ using Eq. (3.13). Subsequently, employing
Eq. (5.14), we calculate the temperature of the black
hole for each parameter pair. Finally, for each ðα − βÞ=M2

we plot the points from the list fRh=ð2MÞ; TðRhÞ=Tschg.
Note that we use the same mass parameter M for the
temperature calculation of the Schwarzschild black
hole Tsch. In both figures, we have also incorporated a
distinctive dot symbolizing a constant value for the
quantity TðRhÞ=Tsch, irrespective of the ratio Rh=ð2MÞ.
Apparently, this is not coincidental, as it mirrors the
characteristics of the Schwarzschild black hole,
where the horizon radius precisely equals 2M and its
temperature is determined by the established formula
T ¼ 1=ð8πMÞ.
Focusing now on the thermodynamical characteristics

of our solution, we observe that, regardless of the value
ðα − βÞ=M2, for Qm ¼ 0, our solution reduces to the
Schwarzschild black hole and therefore all graphs in
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Fig. 5 have as a starting point the Schwarzschild point.
However, when we depart from this limit, we notice that for
α − β > 0, as illustrated in Fig. 5(a), the temperature of
the resulting black holes consistently surpasses that of
the Schwarzschild black hole, whereas for α − β < 0
[Fig. 5(b)], the opposite effect occurs. Furthermore, this
temperature increase, in the α − β > 0 scenario, is inde-
pendent of whether the black hole under examination
possesses a smaller or larger horizon radius compared to
the corresponding Schwarzschild black hole. As previously
observed in Fig. 2 and discussed in Sec. III, it becomes
evident in Fig. 5(a) that there are consistently pairs of black
hole solutions, more compact than the Schwarzschild
solution, that share the same horizon radius Rh but with
different ratiosQm=M. However, now we see that, although
these solutions possess the same horizon radius, their
temperatures differ significantly. This can be understood
through the relation (5.14) where it is evident that the
formula determining the temperature of a black hole
depends on the first derivative of the function BðRÞ.
This means that for black hole solutions that have the
same horizon radius Rh for different ratios Qm=M, their
temperatures are not necessarily the same since BðRhÞ
could differ.
Moreover, we can deduce the thermodynamic stability

of these black holes by examining how the temperature
changes with a change in the mass. In Fig. 5(a) it is evident
that there are two distinct branches of black hole solutions.
In the first branch we have black hole solutions that get
colder as the mass is decreasing, while in the second branch
we have black holes that are getting hotter as the mass is
getting smaller. This implies that the heat capacity C≡
dM=dT for the first branch is positive since both dM; dT
are negative and the black holes are thermally stable, while

the second branch, for which the temperature rises with
the decrease of mass, exhibits negative heat capacity and
are thermally unstable. Notice also the fact that the
Schwarzchild black hole lies in the second (unstable)
branch which is a well-known result. Furthermore, the
parameter space of these black holes exhibits a point where
dT ¼ 0 indicating the divergence of the heat capacity and,
as a result, a phase transition from hot to cold black holes.
In Fig. 5(b), we can see that as the black holes lose mass
they get colder which implies that they are thermally stable
since they possess positive heat capacity. These results are
in agreement with the studies in [116], where the black
holes are viewed as defects in the thermodynamical
spacetime [117].
In the next section, we proceed to study the stability of

the black holes from a linear-perturbation point of view,
which, in general, is distinct from the thermodynamic
stability. Indeed, as we shall demonstrate explicitly below,
such a linearized stability analysis does not necessarily
imply thermodynamical stability, in the sense that the
thermodynamically unstable branches found above exhibit
stability under linear perturbations.

VI. LINEAR PERTURBATIONS

A. Radial stability

In this section, we investigate the stability of our solution
under radial perturbations. For simplicity, we focus on
linear and radial perturbations. Therefore, we use the
following ansatz:

ds2 ¼ −PðR; tÞdt2 þQðR; tÞdR2 þ R2dΩ2;

A ¼ a0ðR; tÞdtþQm cos θdφ; ϕ ¼ ϕðR; tÞ; ð6:1Þ

(a) (b)

FIG. 5. The black hole temperature for (a) attractive and (b) repulsive higher-order electromagnetic contributions, with varying values
of the magnetic charge (Qm), while keeping the mass (M) the same. The axes in both figures are logarithmic.
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where

PðR; tÞ ¼ BðRÞ½1 − ϵe−iωth1ðRÞ�;

QðR; tÞ ¼ 1

HðRÞ þ ϵe−iωth2ðRÞ; ð6:2Þ

ϕðR; tÞ ¼ ϕðRÞ þ ϵe−iωtϕ1ðRÞ;
a0ðR; tÞ ¼ ϵe−iωta0ðRÞ: ð6:3Þ

For the stability analysis, it is more convenient to work
within the physical coordinate system; hence, in the
above equations BðRÞ, ϕðRÞ, and HðRÞ ¼ BðRÞ=W2ðRÞ
are given in Eqs. (3.13)–(3.15) and correspond to the
background/unperturbed spacetime. Note that the radial
perturbations are associated with the L ¼ 0 perturbation5

in the even sector of the gravitational perturbations.
Therefore, in the electromagnetic part, only the elec-
tric-type perturbations contribute, as the magnetic type

corresponds to the odd sector [121,122]. The dimension-
less constant ϵ determines the order of the perturbation.
Finally, ω specifies the decomposition of the modes with
fixed energy.
A direct calculation reveals that both the spacetime and

the matter field perturbations are determined from the
function ϕ1. Consequently, the investigation of the system
is simplified to a single equation for the perturbation of the
scalar field. This specific equation can be expressed in the
conventional Schrödinger form,

d2Ψðr�Þ
dr�2

þ ½ω2 − VðRÞ�Ψðr�Þ ¼ 0; ð6:4Þ

where we have defined a new perturbation function as
Ψ≡ Rϕ1 and the tortoise coordinate is dr� ≡ dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

BðRÞHðRÞ
p .

The potential of the Schrödinger equation has the
following form:

VðRÞ ¼ HB0 þ 2BRϕ0½ϕ0ðRðH0 þHRϕ02Þ þ 4HÞ þ 3HRϕ00� þ BH0

2R
þ Bðα − βÞQ4

mðRḟϕ0 þ f̈Þ
R8

þ Bγe−2ϕQ2
mð2 − Rϕ0Þ
R4

:

ð6:5Þ

Considering our emphasis on the stability of black hole
solutions, there is no need to solve Eq. (6.4). The time
evolution factor, exp ð−iωtÞ, simplifies the task, requiring
us only to ascertain whether the frequency ω is purely
imaginary or not. In the scenario where the frequency ω is

purely imaginary, the mode undergoes exponential growth
due to the presence of the term exp ð−iωtÞ making the
solution unstable. Therefore, a negative eigenvalue,
ω2 < 0, that signifies an unstable mode, corresponds to
a bound state in the Schrödinger equation (6.4). A general
result in quantum physics is that for a potential that
vanishes in both asymptotic regions, has a barrier form,
and is positive definite. Therefore, Eq. (6.4) does not
exhibit bound states. In Fig. 6, we depict the potential

(a) (b)

FIG. 6. The graph of the effective potential V in terms of r� for various values of the parameter Qm=M and (a) ðα − βÞ=M2 ¼ 1,
(b) ðα − βÞ=M2 ¼ −1.

5L is the “angular momentum” index in the spherical harmonics
function YML

L ðθ;φÞ. For more information about the decomposi-
tion of the perturbations in spherical harmonics, see [118–121].
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of the Schrödinger equation for two families of solutions.
The first one corresponds to ðα − βÞ=M2 ¼ 1, while the
second one corresponds to ðα − βÞ=M2 ¼ −1. By carefully
examining the parametric space of the solutions, we deduce
that the potential always takes a form similar to the
potentials in Fig. 6. Therefore, we conclude that our
solutions are stable under radial perturbations.
Although radial stability is a strong indication regarding

the stability of a particular solution, a more careful and
general perturbation analysis has to be performed to extract
a stronger result, which, however, lies beyond the scope of
this work. Moreover, as shown in the previous Sec. V, linear
stability does not necessarily imply thermodynamical
stability for the black hole, in the sense that the latter,
although linearly stable, nonetheless possesses thermody-
namically unstable branches.

B. Scalar quasinormal modes

Quasinormal modes (QNMs) play a crucial role in
the study of black holes and other astrophysical objects
[123–125]. These modes represent the characteristic vibra-
tions or oscillations of a black hole after a perturbation,
such as a gravitational wave or a scattering event. QNMs
are characterized by complex frequencies, i.e., eigenval-
ues of the Schrödinger equation, consisting of a real part
and an imaginary part. The real part corresponds to the
oscillation frequency, while the imaginary part reflects
the damping or decay of the mode. The study of QNMs
provides valuable insights into the nature and properties
of black holes, offering a unique window into their
internal dynamics.
For simplicity, we will consider the propagation of a test

scalar field Φ in the background of our black hole and
extract its QNMs. We begin our analysis from the following
action functional for the scalar field:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½∇μΦ∇μΦþm2Φ2�; ð6:6Þ

wherem is the mass of the test scalar field. The variation of
the above action with respect to the scalar field yields the
Klein-Gordon equation in the black hole background

ð□ −m2ÞΦ ¼ 0: ð6:7Þ

Note that the test scalar fieldΦ, as a perturbation field, does
not backreact on the spacetime metric and is a function of
all spacetime coordinates Φ ¼ Φðt; R; θ;φÞ. For clarity, we
choose to work in the physical coordinate system.
Therefore, the background metric is given by Eq. (3.12).
We can apply the separation of variables as follows:

Φðt; R; θ;φÞ ¼ e−iωtYML
L ðθ;φÞΨðRÞ

R
; ð6:8Þ

where YML
L ðθ;φÞ represents the spherical harmonics func-

tion. By using the tortoise coordinate dr� ¼ dRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðRÞHðRÞ

p ,

one can rewrite the perturbation equation in a Schrödinger
form as

d2Ψðr�Þ
dr�2

þ ½ω2 − VðRÞ�Ψðr�Þ ¼ 0; ð6:9Þ

where VðRÞ is the effective potential of the Schrödinger
equation and is given by

V ¼ HB0 þ BH0

2R
þ B
R2

LðLþ 1Þ þm2B: ð6:10Þ

The background metric functions B and H ¼ B=W2 are
given in Eqs. (3.13) and (3.14).
In the pursuit of calculating the QNMs, the Wentzel-

Kramers-Brillouin (WKB) approximation stands as a
valuable method. Particularly useful in the context of
wavelike phenomena, the WKB approximation provides
an efficient and semiclassical approach to estimating the
complex frequencies associated with QNMs. By treating
the Schrödinger-like equation governing the perturbations
as a semiclassical wave equation, the WKB method allows
for the determination of QNM frequencies without the need
for an exact solution. The WKB method was initially
developed for quantum mechanical problems; however,
Schutz and Will were the first to apply this method to
the problem of scattering around black holes [126]. Later,
Iyer and Will extended this approach to the third WKB
order beyond the eikonal approximation [127], and
Konoplya further advanced it to the sixth order [125,128].
Interestingly, the sixth order yields a relative error of
approximately 2 orders of magnitude lower than that of
the third WKB order [125,128]. However, for simplicity, in
this work, we will employ the first-order WKB approxi-
mation, in which the QNM frequencies are obtained from
the solution of the following equation:

nþ 1

2
¼ −i

�
ω2 − Vðr�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2V 00ðr�Þp �

r�¼r�max

; n∈Z≥: ð6:11Þ

The expression in the right-hand part of the above equation
is evaluated at the maximum of the potential r�max while n is
the overtone number of the QNMs.
In Tables I and II, we present the dimensionless QNM

frequencies, denoted by ðMωÞ, for two distinct scenarios:
when m ¼ 0 and m=M ¼ 0.4, respectively. Notably, as Qm
approaches 0, our solution converges to the Schwarzschild
black hole, irrespective of the ðα − βÞ=M2 parameter. This
convergence is evident in the first row of both tables, where
Qm=M ¼ 0.01, as the QNM values remain constant across
varying ðα − βÞ=M2. Furthermore, as ðα − βÞ=M2 tends
toward 0, our solution adopts the characteristics of the
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GMGHS black hole. Consequently, the QNMs in the first
row of both tables, specifically when ðα − βÞ=M2 ¼ 0.01,
align with those of the GMGHS black hole. The subsequent
rows in the tables provide additional insights into the
characteristics of our solution. For instance, in the second
and third rows, where Qm=M ¼ 0.3 and 0.6, respectively,
we observe a systematic variation in the QNM values with
changes in both Qm=M and ðα − βÞ=M2. This behavior
highlights the sensitivity of the QNM frequencies to the
parameters characterizing the black hole solution.
Furthermore, by comparing these results to the
Schwarzschild and GMGHS cases, we discern how our
solution deviates from these benchmark scenarios.
Additionally, the tables reveal intriguing patterns in the
imaginary parts of the QNMs. For varying Qm=M and
ðα − βÞ=M2, the imaginary parts exhibit nontrivial changes,
reflecting the impact of the black hole’s charge and the
parameter ðα − βÞ=M2 on the damping behavior of the
perturbations.

VII. OTHER SOLUTIONS

A. Asymptotically AdS/dS spacetimes

Let us now, briefly discuss asymptotically AdS/dS
spacetimes. Following [129], introducing a scalar potential
VðϕÞ in the action and considering

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ðR − 2∇μϕ∇μϕ − e−2ϕF 2

þ fðϕÞð−2αF α
βF β

γF γ
δF δ

α þ βF 4Þ −VðϕÞÞ; ð7:1Þ

with a VðϕÞ of the form

VðϕÞ ¼ 1

3
Λe−2ϕ þ 1

3
Λe2ϕ þ 4Λ

3
¼ 2

3
Λðcoshð2ϕÞ þ 2Þ;

ð7:2Þ

we can obtain BðrÞ as

BðrÞ ¼ 1 −
2M
r

−
2ðα − βÞQ4

m

r3ðr − Q2
m

M Þ3
−
1

3
Λr
�
r −

Q2
m

M

�
; ð7:3Þ

while ϕðrÞ; RðrÞ will remain the same. Note here that the
potentialsVðϕÞ and fðϕÞ are almost identical, and they are
both Liouville-type potentials [70].6

B. Solutions for general γ

Assuming that the coupling term between the dilaton and
the Maxwell term is of the form e−2γϕ we can obtain the
same geometry with the γ ¼ 1 case with the coupling
function fðϕÞ now being given by

fðϕÞ ¼ −3 coshð2ϕÞ − 2 −
e2ϕððe−2ϕÞγ−1 − 1ÞQ6

m

2M4ðe2ϕ − 1Þ4ðα − βÞ : ð7:4Þ

In this case, the charge-to-mass ratio is fixed by the theory.
As a result, such black holes are described by a constrained
phase space of free parameters, since this situation reduces
the number of primary black hole hairs from two to one. A
more physical result would be to let the form of the dilaton
field to be affected by the change of the coupling function
with the Maxwell term, however, we were not able to derive
exact results in this case, so one has to employ numerical
techniques. Such endeavors may be undertaken in sub-
sequent works.

VIII. CONCLUSIONS

In the quest to comprehend gravitational phenomena and
the nature of gravity itself, the theoretical exploration of
black holes stands as a pivotal frontier. The predictions of

TABLE I. The dimensionless L ¼ 1, n ¼ 0 quasinormal modes (Mω) for m ¼ 0.

ðα − βÞ=M2 ¼ 0.01 ðα − βÞ=M2 ¼ −1 ðα − βÞ=M2 ¼ 1

Qm=M ¼ 0.01 0.329438 − 0.096255i 0.329438 − 0.096255i 0.329438 − 0.096255i
Qm=M ¼ 0.3 0.333767 − 0.096712i 0.333767 − 0.096728i 0.333767 − 0.096696i
Qm=M ¼ 0.6 0.348235 − 0.098171i 0.348226 − 0.098595i 0.348243 − 0.097727i

TABLE II. The L ¼ 1, n ¼ 0 dimensionless quasinormal modes (Mω) for m=M ¼ 0.4.

ðα − βÞ=M2 ¼ 0.01 ðα − βÞ=M2 ¼ −1 ðα − βÞ=M2 ¼ 1

Qm=M ¼ 0.01 0.401632 − 0.050195i 0.401632 − 0.050195i 0.401632 − 0.050195i
Qm=M ¼ 0.3 0.404334 − 0.052296i 0.404335 − 0.052294i 0.404332 − 0.052298i
Qm=M ¼ 0.6 0.413700 − 0.058602i 0.413733 − 0.058522i 0.413667 − 0.058679i

6Nonetheless, we should notice that the presence of a positive
cosmological constant term in the gravitational effective actions
is problematic within the context of string/brane-inspired
quantum-gravity theories, due to the so-called swampland con-
jecture [130–132]. This issue is open at present, and its study
goes beyond the purpose of the current article.
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GR are in good agreement with current observations related
to black holes. This is attributed to the large mass of the
observed objects and therefore their large horizon radius
and small horizon curvature. Additionally, a plethora of
cosmological observations indicates instances where GR
exhibits limitations, with the most notable challenges being
the dark energy problem and GR’s inability to account for
the inflationary epoch in our Universe. Therefore, the
validity of general relativity is expected to come under
scrutiny in extreme conditions. General relativity is com-
monly acknowledged as an effective theory applicable only
within the realm of low energies. Consequently, such
observations motivate us to explore modified gravitational
theories, especially in extreme conditions where GR’s
validity may be compromised. Among these theoretical
frameworks, modifications originating from string theory,
particularly the heterotic-string theory, emerge as leading
contenders. Notably, string theory offers insights into high-
order corrections, ranging from the Gauss-Bonnet term to
nonlinear electromagnetic effects, and provides a rich
avenue for exploring the behavior of black holes under
diverse conditions.
One intriguing aspect of string/brane-induced nonlinear

electrodynamics is the emergence of the Born-Infeld
Lagrangian, which encapsulates higher-order corrections
to Maxwell’s theory. This Lagrangian arises from the
resummation of open string excitations, particularly in
the context of D-brane worlds in string theory. The
coupling of the BI Lagrangian to the dilaton field in curved
spacetime leads to an effective four-dimensional action,
offering a novel perspective on electromagnetic interactions
in the presence of gravity. Furthermore, considerations of
higher-order electromagnetic terms, originating from
closed string sectors, broaden the theoretical landscape.
The inclusion of string loops leads to generalized effective
actions, incorporating both closed and open string contri-
butions, and potentially revealing novel phenomena beyond
conventional electromagnetic frameworks. Departing from
traditional electromagnetic theories, the exploration of
nonlinear electrodynamics within the context of black hole
solutions offers a rich avenue for understanding strong field
regimes and cosmological implications. Nonlinear effects
become crucial in regions with intense gravitational fields,
such as those near black holes, shedding light on phenom-
ena absent in linear theories. Moreover, nonlinear electro-
dynamics holds relevance for early Universe cosmology,
where the interplay between gravitational and electromag-
netic fields played a significant role.
In this work, we considered a string-inspired theory that

involves a scalar field ϕ coupled to the electromagnetic
field via a nonlinear function fðϕÞ. The action encom-
passes higher-order electromagnetic invariants, contribut-
ing to the field equations and leading to novel black hole
solutions. Furthermore, we investigated the impact of a
nontrivial coupling function fðϕÞ, considering a specific

functional form motivated by string-inspired models. The
resulting exact, magnetically charged black hole solution
revealed significant departures from the classical general
relativity predictions, with the scalar field and the electro-
magnetic field configurations exhibiting nontrivial behav-
ior. We explored the implications of different coupling
constants α and β on the spacetime geometry and electro-
magnetic field configurations. The solutions obtained
exhibit intriguing features, including dependence on the
sign of α − β which determines whether the higher-order
electromagnetic terms contribute attractively or repulsively
to the spacetime geometry. Additionally, we examined the
horizon structure of the black hole solutions, observing
transitions from single to multiple horizons and even to
naked singularities as the parameters varied. Notably,
the compactness of the black holes relative to the
Schwarzschild solution depended on the magnetic
charge-to-mass ratio. Our findings suggest a rich interplay
between the scalar field, electromagnetic field, and space-
time geometry, highlighting the potential implications of
such theories in astrophysical contexts and the search for
potential signatures of string theory in black hole physics,
at least those signatures that can be manifested through
effective string-inspired field theory models. It goes with-
out saying, however, that the present work does not deal
with a detailed experimental sensitivity analysis of such
objects, which still remains to be done.
The examination of geodesics and energy conditions

delves into the intricate dynamics of particles moving
within the spacetime geometry described by the black hole
solutions under investigation. By analyzing the geodesic
equations we unveil the behavior of massive particles in the
vicinity of these black holes, elucidating the role of the
effective gravitational potential. Notably, the effective
potential exhibits distinct features depending on the relative
values of the coupling constants, offering insights into the
stability and nature of orbits around the black holes.
Additionally, the examination of energy conditions asso-
ciated with the effective stress-energy tensor reveals in-
triguing properties of the spacetime, indicating the
existence of a dilaton hair in the black hole’s exterior
while satisfying all energy conditions. This observation
challenges the traditional no-hair theorems, underscoring
the nuanced interplay between gravitational theories, non-
linear electrodynamics, and scalar fields in modified
theories. Our thermodynamic analysis provided valuable
insights into the properties of black holes in both the
GMGHS solution and our black hole solution with
nonlinear electrodynamics. Our analysis allows for the
extraction of important thermodynamic quantities such as
mass, entropy, magnetostatic potential, and the extraction
of the first law of thermodynamics. Notably, the entropy
of both black hole is consistent with the Bekenstein-
Hawking entropy formula. By examining the behavior of
the temperature, we concluded that when the nonlinear
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electrodynamics terms act attractively, there exist two
distinct branches of black holes, one that is getting colder
as the mass is decreasing and therefore is thermally stable,
and another one that is getting hotter as the mass is
decreasing which is thermally unstable. On the other hand,
when the nonlinear electrodynamics terms have a repulsive
effect, the black holes are getting colder as the mass is
decreasing and as a result are thermally stable.
Finally, our analysis of linear perturbations and scalar

QNMs provides valuable insights into the stability and
dynamic behavior of black hole solutions with nonlinear
electrodynamics. Through a rigorous investigation of radial
stability, we demonstrated that our black hole solutions
remain stable under linear and radial perturbations. This
finding underscores the robustness of our black hole
solutions against radial perturbations, supporting their
viability as physically meaningful configurations within
the framework of nonlinear electrodynamics. Furthermore,
our examination of scalar QNMs yielded intriguing results
regarding the characteristic vibrations and oscillations
of the black hole spacetime. Moreover, the analysis of
scalar QNMs revealed the intricate interplay between the
black hole parameters, such as charge and ðα − βÞ=M2,
and the frequency and damping behavior of perturbations.

By systematically varying these parameters, we observed
distinct patterns in the QNM frequencies, indicating the
sensitivity of the black hole’s dynamic properties to its
intrinsic characteristics. Notably, our results exhibited
convergence to the Schwarzschild black hole in the limit
of vanishing charge and alignment with the GMGHS black
hole in specific parameter regimes. These observations
highlight the rich phenomenology associated with black
holes in our string-inspired theory.
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