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Using the exact solution that describes multicentered rotating black holes, recently found by Teo and
Wan, we investigate the innermost stable circular orbit (ISCO) for massive particles and the circular orbit
for massless particles moving around a spinning black hole binary. We assume equal masses M1 ¼
M2 ¼ m and equal spin angular momenta jJ1j ¼ jJ2j for both black holes. Firstly, we examine the case
where two black holes are spinning in the same direction (J1 ¼ J2). We clarify that for particles rotating in
the same direction as (opposite directions to) black holes’ spin, the greater the spin angular momenta of the
black holes, the more the radii of the ISCO for massive particles, and the circular orbit for massless particles
decreases (increases). We show that distinct ISCO transitions occur for particles rotating in the same
direction as the black holes in three ranges of spin angular momenta: 0 < J1=m2 ¼ J2=m2 < 0.395…,
0.395… < J1=m2 ¼ J2=m2 < 0.483…, and 0.483… < J1=m2 ¼ J2=m2 < 0.5. Conversely, particles
rotating in the opposite direction to the black holes exhibit a consistent transition pattern for the case
0 < J1=m2 ¼ J2=m2 < 0.5. Secondly, we study the situation where binary black holes are spinning
in opposite directions (J1 ¼ −J2). We clarify that for large (small) separations between black holes, the
ISCO appears near the black hole that is spinning in the same (opposite) direction as particles’ rotation.
Additionally, we show that different ISCO transitions occur in the three angular momentum ranges:
0 < J1=m2 ¼ −J2=m2 < 0.160…, 0.160… < J1=m2 ¼ −J2=m2 < 0.467…, and 0.467… < J1=m2 ¼
−J2=m2 < 0.5.
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I. INTRODUCTION

The dynamics of freely moving test particles in curved
spacetimes, known as the geodesic structure, provide
crucial insights into the gravitational field and geometry.
In stationary spacetimes, there exist stationary orbits of
particles, which follow geodesics along timelike Killing
fields. Additionally, if the spacetime is also axisymmetric,
these stationary orbits can take the form of circular orbits.
Such fundamental orbits, associated with spacetime sym-
metries, are invaluable for understanding various observ-
able phenomena (such as stellar motion and black hole
shadows) around black holes. In the Schwarzschild black
hole spacetime, there are both stable and unstable circular
orbits for particles [1,2]. Let r denote the circumference
radius and M the mass of the black hole. We know that
stable circular orbits exist in the range r ≥ 6GM=c2, and
unstable circular orbits exist in the range 3GM=c2 <
r < 6GM=c2, where G is the gravitational constant, and
c is the speed of light. At the boundary r ¼ 6GM=c2, there
exists the innermost stable circular orbit (ISCO), and at

r ¼ 3GM=c2, there exists the unstable photon circular
orbit, which marks the last circular orbit. These phenomena
are fundamental in the study of physical phenomena
near a black hole. In particular, the ISCO is significant
because it represents the closest stable circular orbit that a
particle can have before inevitably falling into the black
hole or the compact object due to gravitational attraction.
Understanding the ISCO is crucial for studying accretion
processes, orbital dynamics, and gravitational wave emis-
sion from compact object binaries. It provides insights into
the behavior of matter and radiation in extreme gravita-
tional environments near black holes and neutron stars.
For rotating black holes, such as the Kerr black hole, the
ISCO location depends on the spin parameter of the black
hole. Rotating black holes have a smaller ISCO radius
compared to nonrotating ones, and the ISCO location
moves closer to the event horizon as the spin of the black
hole increases [3,4]. Furthermore, such studies on circular
orbits have been extended to charged nonrotating and
rotating black holes as well [5–7]. Recently, the related
topics were discussed on nonsingular black holes [8–22].
Exact solutions describing a black hole binary are of

significant interest in astrophysics and theoretical physics
because they provide insights into the behavior of black
hole binary systems, such as those observed in gravitational
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wave astronomy. However, finding such solutions is a
difficult problem due to a lack of symmetry and the time
dependence of dynamics. Nevertheless, a class of static and
stationary solutions describing a black hole binary has been
known. Initially, Israel and Khan [23] discovered an exact
solution that describes static multi-Schwarzschild black
holes arranged along a rotational axis. However, the static
equilibrium of these black holes necessitates the presence
of conical singularities connecting them to counterbalance
their gravitational attraction. Furthermore, as a generaliza-
tion of the double Schwarzschild black hole solution to a
rotational case, Kramer and Neugebauer [24] constructed
the double Kerr solution, which describes the spacetime
geometry around two rotating black holes. Although the
gravitational fields of the two rotating black holes interact,
leading to complex spacetime geometries, this solution also
suffers from conical singularities between the two black
holes. Therefore, since vacuum exact solutions of a black
hole binary are singular, it is more challenging to predict
the motion of particles and light around a black hole binary,
hindering the goal of future observations of their shadows.
However, there have been attempts [25–27] to understand
the characteristics of a black hole binary by using the
Majumdar-Papapetrou solution [28,29], which is a static
exact solution describing multiblack holes to the Einstein-
Maxwell equations. For this solution, multiple black holes
achieve static equilibrium by balancing the gravitational
and electrostatic forces between two charged black holes,
making the calculations straightforward.
Previous studies [25–27] have analyzed the orbits of

particles around the black holes, using the Majumdar-
Papapetrou solution. In particular, in Ref. [27], Nakashi and
Igata investigated the sequence of stable circular orbits for
massive/massless particle moving around the Majumdar-
Papapetrou dihole spacetime with equal masses by reduc-
ing the particle motion to a two-dimensional potential
problem. In terms of qualitative differences of their
sequences, they classified the separation between black
holes into five ranges and found four critical values as the
boundaries. When the separation is sufficiently large, the
sequence of stable circular orbits has two branches, where
one of two is on the symmetric plane of two black holes,
whereas the other is on an arclike curve connecting two
black holes. In a certain separation range, the sequence on
the symmetric plane separates into two parts, where one
includes infinity, and the other does not. Moreover for a
smaller separation, the latter vanishes to become one. They
also clarified the dependence of the radii of marginally
stable circular orbits and the ISCOs on the separation
parameter and found there is a discontinuous transition of
the ISCO’s radius and additionally, the separation range at
which the radius of the ISCO can be smaller than that of the
stable circular photon orbit.
However, it is generally believed that each horizon

of a realistic black hole binary is spinning. Israel and

Wilson [30], along with Perjes [31], generalized the
Majumdar-Papapetrou solution to a rotating solution in
Einstein-Maxwell equation. However, it was later revealed
that this solution represents a combination of naked
singularities rather than black holes. It seems that achieving
an equilibrium superposition of rotating black holes is not
feasible within the framework of Einstein-Maxwell theory.
Recently, Teo and Wan [32] succeeded in constructing a
new regular exact solution that describes multicentered
spinning black holes in five-dimensional Kaluza-Klein
theory. This solution, when dimensionally reduced,
describes a balanced superposition of any number of
dyonic rotating black holes in Einstein-Maxwell-dilaton
theory. It includes parameters such as mass, spin angular
momentum, and the position of each black hole. Moreover,
when all spin angular momenta approach zero, the solution
recovers the Majumdar-Papapetrou solution, as the scalar
field also vanishes in this limit.
Therefore, in this paper, as an extension of the study

performed on the Majumdar-Papapetrou dihole space-
time [27] to include spinning cases, we aim to investigate
the circular orbits of particles around a spinning black hole
binary using the Teo-Wan solution. In this study, we
assume that the two black holes have equal masses and
equal spin angular momenta (including spins in the same
and opposite directions), and we vary each parameter to
analyze the circular orbits of both massive particles and
massless particles such as photons. By incorporating the
rotation of black holes into the calculations, our aim is to
compute the particle orbits under conditions closer to
reality than those of particle orbits in the Majumdar-
Papapetrou solution. In particular, we discuss the stability
of circular orbits for massive and massless particles and
consider the effect of the spin of a black hole binary on the
region of existence where the innermost stable circular
orbits for massive particles exist, as well as the stability of
photon orbits.
In the following Sec. II, we provide the minimal knowl-

edge of the Kaluza-Klein multiblack hole solution neces-
sary for our analysis. In Sec. III, we derive the conditions of
stability for circular orbits of massive particles in the
spinning black hole binary with equal masses and equal
angular momenta. These conditions are expressed in terms
of a two-dimensional effective potential. In Sec. IV, we
study how the sequence of stable circular orbits depends on
the separation between two spinning black holes and the
spins of the black holes. In particular, for several typical
values of spin angular momenta of black holes, we discuss
the transition of the innermost stable circular orbit by the
separation parameter. We devote Sec. V to a summary and
discussions.

II. REVIEW OF TEO-WAN SOLUTIONS

In this section, we review the Kaluza-Klein multiblack
hole solution recently constructed by Teo and Wan [32].
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The Rasheed-Larsen solution describes the most general
rotating black hole in five-dimensional Kaluza-Klein
theory. The under-rotating extremal limit of this solution
corresponds to a general class of solutions of Kaluza-Klein
theory found by Clement [33], specified by two harmonic
functions on a three-dimensional flat base space. Teo and
Wan generalized this single extremal black hole solution to
a multiblack hole solution by replacing the two harmonic
functions, each having a single point source, with ones
having an arbitrary number of point sources. In the
dimensionally reduced four-dimensional spacetime, each
black hole has its mass, spin angular momentum, and
electric and magnetic charges, which are set to be equal for
simplicity, and each black hole is rotating with parallel or
antiparallel spin vectors. This solution describes a physical
spacetime such that there are neither naked singularities
nor closed timelike curves both on and outside each
black hole.
Let us start with the five-dimensional Kaluza-Klein

theory, in which the metric can be written as

ds2 ¼ e−
2ϕffiffi
3

p �
dx5 þ Aμdxμ

�
2 þ e

ϕffiffi
3

p
gμνdxμdxν; ð1Þ

where the functions ϕ, Aμ and the four-dimensional metric
gμν (μ; ν ¼ 0;…; 3) do not depend on the fifth spacial
coordinate x5, which has a period of 2πRKK . As is well
known, the dimensional reduction of the five-dimensional
Einstein theory leads the four-dimensional Einstein-
Maxwell-dilaton theory, described by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂

μϕ −
1

4
e−

ffiffi
3

p
ϕF2

�
; ð2Þ

where R is the Ricci scalar of the four-dimensional
spacetime, g ¼ detðgμνÞ, Fμν ¼ ∂μAν − ∂νAμ. From this,
the fields equations, the Einstein equation, the equations
for the gauge potential Aμ, and the scalar fields ϕ can be
written as, respectively,

Rμν ¼
1

2
∂μϕ∂νϕþ 1

2
e−

ffiffi
3

p
ϕ

�
FμρFν

ρ −
1

4
gμνF2

�
; ð3Þ

∇μ

�
e−

ffiffi
3

p
ϕFμν

� ¼ 0; ð4Þ

∇μ∇μϕ ¼ −
ffiffiffi
3

p

4
e−

ffiffi
3

p
ϕF2: ð5Þ

The four-dimensional metric, the gauge potential and
the scalar field of the multicentered rotating black hole
solution, found by Teo and Wan [32], can be written,
respectively, as

ds2ð4Þ ¼ −ðHþH−Þ−1
2ðdtþω0 · dxÞ2 þ ðHþH−Þ12dx · dx;

ð6Þ

A ¼
ffiffiffi
2

p

H−

�
−½ð1þ fÞf − 2g

�
dt

þ �ð1þ fÞω0 þH−ω̃5=
ffiffiffi
2

p
� · dx�; ð7Þ

ϕ ¼
ffiffiffi
3

p

2
ln
Hþ
H−

; ð8Þ

where the functions H�, one-forms ω0, ω̃5 on three-
dimensional Euclid space E3 are given by

H� ¼ ð1þ fÞ2 � 2g; ð9Þ

ω0 · dx ¼ −
XN
n¼1

2Jn½ðy − ynÞdx − ðx − xnÞdy�
jx − xnj3

; ð10Þ

ω̃5 · dx ¼
ffiffiffi
2

p XN
n¼1

Mnðz − znÞ½ðy − ynÞdx − ðx − xnÞdy�
jx − xnj½ðx − xnÞ2 þ ðy − ynÞ2�

;

ð11Þ

with the two harmonic functions, f and g, having point
sources at the positions x ¼ xn ≔ ðxn; yn; znÞ (n ¼ 1;…; N)
on E3,

f ¼
XN
n¼1

Mn

jx − xnj
; g ¼

XN
n¼1

Jnðz − znÞ
jx − xnj3

: ð12Þ

This solution describes an asymptotically flat, stationary
multicentered rotating dyonic black holes, with each having
an extremal horizon. The nth black hole at the position
x ¼ xn on E3 carries the massMn, spin angular momentum
Jn, and equal electric and magnetic charges Qn and Pn,
respectively, given by Qn ¼ Pn ¼ Mn=

ffiffiffi
2

p
. Furthermore,

the regularity of the metric on the horizon requires the
condition

jJnj <
M2

n

2
; ð13Þ

since the horizon area, 4π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4

n − 4J2n
p

, vanishes if this is
saturated. Moreover, as shown in Ref. [32], under the
condition (13), the spacetime is free from closed timelike
curves on and outside the horizon. At the limit as Jn → 0
for all n, the scalar field ϕ vanishes, and consequently, the
Majumdar-Papapetrou solution describing static multiple
dyonic black holes is restored.
In the following section, we will delve into analyzing

the stability of circular orbits for particles orbiting a
spinning black hole binary. We specifically focus on the
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two-black-hole solution (denoted as N ¼ 2) expressed in
cylindrical coordinates ðρ; zÞ, where these coordinates
are defined by ðx; yÞ ¼ ðρ cosφ; ρ sinφÞ. The solution is
given by

ds2ð4Þ ¼ −ðHþH−Þ−1
2ðdtþ ω0

φdφÞ2 þ ðHþH−Þ12
× ½dρ2 þ dz2 þ ρ2dφ2�; ð14Þ

A ¼
ffiffiffi
2

p

H−

�
−½ð1þ fÞf − 2g�dt

þ ½ð1þ fÞω0
φ þH−ω̃φ

5=
ffiffiffi
2

p
�dφ�; ð15Þ

ϕ ¼
ffiffiffi
3

p

2
ln
Hþ
H−

; ð16Þ

where

H� ¼ ð1þ fÞ2 � 2g; ð17Þ

ω0
φ ¼ 2J1ρ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − aÞ2
p

3
þ 2J2ρ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðzþ aÞ2
p

3
; ð18Þ

ω̃5
φ ¼ −

ffiffiffi
2

p M1ðz− aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz− aÞ2

p −
ffiffiffi
2

p M2ðzþ aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ aÞ2

p ; ð19Þ

with two harmonic functions having point sources at
positions x1 ¼ ð0; 0; aÞ and x2 ¼ ð0; 0;−aÞ:

f ¼ M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − aÞ2

p þ M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðzþ aÞ2

p ; ð20Þ

g ¼ J1ðz − aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − aÞ2

p
3
þ J2ðzþ aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðzþ aÞ2
p

3
: ð21Þ

Here, two black hole are positioned along the z axis,
resulting in the spacetime possessing both an axial Killing
vector ∂=∂φ as well as a timelike Killing vector ∂=∂t. In the
next section, we define the functions A and B as

Aðρ; zÞ ≔ ω0
φ ¼ 2ρ2J1

½ρ2 þ ðz − aÞ2�3=2 þ
2ρ2J2

½ρ2 þ ðzþ aÞ2�3=2 ;

ð22Þ

Bðρ; zÞ ≔ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HþH−

p ¼ ½ð1þ fÞ4 − 4g2�1=2: ð23Þ

III. OUR FORMALISM

Following the procedure outlined in Ref. [27], we derive
the conditions of stability for circular orbits of a massive
particle moving around the dihole spacetime with equal
masses and equal spin angular momenta. This particle
motion can be reduced to the motion of particles in a

two-dimensional effective potential Uðρ; zÞ on the
ðρ; zÞ-plane. According to the linear stability analysis of
circular orbits, a circular orbit is stable if and only if it exists
at a local minimum point of U. We refer to such a circular
orbit as a stable circular orbit. Conversely, a circular orbit is
unstable if and only if it exists at a local maximum point
ofU or a saddle point ofU. We refer to such a circular orbit
as an unstable circular orbit. A stable circular orbit lies
somewhere at stationary points of U, where dU ¼ 0.
Hence, the condition of a stable circular orbit, which exists
at a local minimum point of U, is determined by the
positivity condition for two eigenvalues of its Hesse matrix
at the stationary point.
The four-velocity uμ ¼ ẋμ ≔ dxμ=dλ of particles must

satisfy the constraint

gμνuμuν ¼ −
1

B
ṫ2 −

2A
B

ṫ ϕ̇þ
�
Bρ2 −

A2

B

�
ϕ̇2 þ Bðρ̇2 þ ż2Þ

¼ −κ ≔
	
1 ðmassive particlesÞ
0 ðmassless particlesÞ ; ð24Þ

where we choose λ to represent the proper time for massive
particles and the affine parameter for massless particles.
From the Lagrangian for free massive or massless particles,

L ¼ 1

2
gμνẋμẋν; ð25Þ

the Euler-Lagrange equation can be expressed as

d
dλ

∂

∂ẋα
gμνẋμẋν −

∂

∂xα
gμνẋμẋν ¼ 0: ð26Þ

Since the time coordinate t and the angular coordinate ϕ
included in the Lagrangian are cyclic coordinates, the t and
ϕ components in Eq. (26) yield the constants of motion as

∂

∂ṫ
gμνẋμẋν ¼ −2εð¼ constÞ⇔ gtϕϕ̇þ gttṫ ¼ −ε ð27Þ

⇔
A
B
ϕ̇þ 1

B
ṫ ¼ ε; ð28Þ

∂

∂ϕ̇
gμνẋμẋν ¼ 2jð¼ constÞ⇔ gtϕ ṫþ gϕϕϕ̇ ¼ j ð29Þ

⇔ −
A
B
ṫþ

�
Bρ2−

A2

B

�
ϕ̇¼ j;

ð30Þ

where the constants ε and j represent the energy and
angular momentum, respectively, for a particle with unit
rest mass. By substituting Eqs. (28) and (30) into Eq. (24)
and eliminating ṫ and ϕ̇, we obtain
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Bðρ̇2 þ ż2Þ þ j2

Bρ2
þ 2A
Bρ2

jε − Bε2 ¼ −κ

⇔Bðρ̇2 þ ż2Þ þ ε2Uðρ; z; jÞ ¼ −κ; ð31Þ

where

Uðρ; z; jÞ ¼ Xðρ; zÞj2 þ Yðρ; zÞjþ Zðρ; zÞ; ð32Þ

with

Xðρ; zÞ≔ 1

Bρ2
; Yðρ; zÞ≔ 2A

Bρ2
; Zðρ; zÞ≔ A2

Bρ2
−B:

ð33Þ

Here, j̄ represents the angular momentum normalized by ε,
given by j̄ ≔ j=ε. Thus, the motion of particles around the
spinning black hole binary can be reduced to the motion of
particles in the two-dimensional potential Uðρ; z; j̄Þ.
Let us consider the circular orbits of particles rotating

around the z axis. It follows from ρ̇ ¼ ż ¼ 0 and Eq. (31)
that the potential U must satisfy

Uðρ; z; j̄Þ ¼ −
κ

ε2
: ð34Þ

Moreover, since such particles lie at stationary points of the
potential, U must satisfy

U;ρðρ; z; j̄Þ ¼X;ρðρ; zÞj̄2þY;ρðρ; zÞj̄þZ;ρðρ; zÞ ¼ 0; ð35Þ

U;zðρ; z; j̄Þ ¼X;zðρ; zÞj̄2þY;zðρ; zÞj̄þZ;zðρ; zÞ ¼ 0: ð36Þ

From Eq. (35), we can obtain

j̄ ¼ j̄0�ðρ; zÞ ≔
−Y;ρ ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y2
;ρ − 4X;ρZ;ρ

q
2X;ρ

; ð37Þ

where we note j̄0þðρ; zÞ > 0 and j̄0−ðρ; zÞ < 0, and for
simplicity, in the following, we represent either j̄0þðρ; zÞ
or j̄0−ðρ; zÞ as j̄0ðρ; zÞ. Therefore, substituting this into
Eq. (36), we can represent the sequence of circular orbits in
the ðρ; zÞ-plane as follows:

S ≔ fðρ; zÞjU;zðρ; z; j̄0Þ ¼ 0g; ð38Þ

which denote certain curves in the two-dimensional
ðρ; zÞ-plane. Additionally, from Eq. (31) and the positivity
of the function B, the allowed region of the particle motion
is given byUðρ; z; j̄0Þ ≤ 0; i.e., the two-dimensional region
in the ðρ; zÞ-plane,

V ≔ fðρ; zÞjUðρ; z; j̄0Þ > 0g; ð39Þ

corresponds to the forbidden region of the particle motion.
Finally, we further impose the stability conditions on

circular orbits. Let H ¼ ðHijÞ ≔ ð∂j∂iUÞ ði; j ¼ ρ; zÞ be
the Hesse matrix of U on the two-dimensional flat space
dρ2 þ dz2. Particles moving along stable circular orbits
exist at local minima of U, and hence, the stable circular
orbits must be included in the two-dimensional region H in
the ðρ; zÞ-plane defined by

H ≔ fðρ; zÞjd0ðρ; zÞ > 0; t0ðρ; zÞ > 0g; ð40Þ

where

d0ðρ; zÞ ≔ detHijðρ; z; j̄0Þ > 0; ð41Þ

t0ðρ; zÞ ≔ trHijðρ; z; j̄0Þ > 0: ð42Þ

Thus, we can visualize the sequence of stable circular orbits
for massive particles by the curve S inside the stable region
H and outside the forbidden region V in the ðρ; zÞ-plane.
Moreover, one observes from Eq. (34) that the circular
orbits for massless particles appear at the intersection of the
curve S and the boundary of the region V.

IV. ISCOS

We investigate circular orbits around the Teo-Wan black
hole binary for various separation parameters a between the
two black holes along the z axis, as well as the spin angular
momenta ðJ1; J2Þ of the black holes. Specifically, we
determine the positions of the ISCO and massless particles’
circular orbits for each parameter. For simplicity, we focus
on a binary system with equal masses M1 ¼ M2 and equal
magnitudes of spin angular momenta jJ1j ¼ jJ2j, assuming
that the two black holes are spinning either in the same
direction (J1 ¼ J2) or in opposite directions (J1 ¼ −J2).
Hereafter, we use the unit of M1 ¼ M2 ¼ 1.

A. Two black holes spinning in the same direction

First, we consider the case where two black holes have
the same spin angular momenta, varying the value of
J1 ¼ J2 from 0 to nearly 0.5. Due to the system’s sym-
metry, the appearance of orbits is symmetric with respect to
the z ¼ 0 plane. In the following analysis, we illustrate the
localization of circular orbits in the ðρ; zÞ-plane, as shown
in Fig. 1. Here, the sequence of stationary points S
comprises two curves, S1 and S2, depicted by solid lines.
S1 corresponds to the line z ¼ 0, while S2 represents the arc
connecting the two black holes. The red circle points on the
plot represent the innermost stable circular orbits (ISCOs)
for massive particles, while the green triangle and circle
points denote unstable and stable circular orbits for mass-
less particles, respectively. Additionally, the red-colored
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region denotes the stable region H, and the hatched region
represents the forbidden region V. S2 and the boundary of
H are always tangent at a point on z ¼ 0 for any a.

1. Particles with a positive orbital angular
momentum (j > 0)

J1 ¼ J2 ¼ 0.01. As shown in Fig. 1(a), for a sufficiently
large separation (a ≫ 1), stable circular orbits exist along
S1. Additionally, they also exist on the portion of S2 extend-
ing from the intersection of S1 and S2 to the ISCOs near
the two black holes. The unstable circular orbits for mass-
less particles appear near the two black holes at the
intersections of S2 and the boundaries of V. As a decreases
to a0 ¼ 1.39…, the two ISCOs approach the intersection of
S1 and S2. At a ¼ a0, as depicted in Fig. 1(b), S2 and the
boundary of H intersect only at z ¼ 0, resulting in the

sequence of stable circular orbits existing only on S1. In
Figs. 1(d) and 1(e), for a ≤ a� ¼ 0.966…,H is divided into
two regions, H0 (including infinity) and H1 (excluding
infinity). The ISCO appears at the intersection of S1, S2,
and the boundary ofH1. At a ¼ a∞ ¼ 0.542…, as depicted
in Fig. 1(f), another unstable circular orbit for massless
particles appears at the intersection of S1 and the boundary
of H1. In Fig. 1(g), for ac ¼ 0.381… < a < a∞, a stable
circular orbit exists for massless particles at the intersection
of S1 and the boundary of V inside H1, along with three
unstable circular orbits. In Figs. 1(h) and 1(i), for a ≤ ac,
since the entire curve of S2 is included in V, the stable
circular orbits for massive particles appear only in H0,
where the ISCO appears at the intersection of S1 and the
boundary of H0. Meanwhile, for massless particles, the
stable circular orbit disappears, and two unstable circular
orbits on S2 merge into a single orbit on z ¼ 0.

FIG. 1. Circular orbits for massive and massless particles with j > 0 and J1 ¼ J2 ¼ 0.01. Each panel differs in the separation 2a
between two black holes located at ðρ; zÞ ¼ ð0;�aÞ: (a) a ¼ 5, (b) a ¼ a0 ¼ 1.39…, (c) a ¼ 1, (d) a ¼ a� ¼ 0.966…, (e) a ¼ 0.9,
(f) a ¼ a∞ ¼ 0.542…, (g) a ¼ 0.535, (h) a ¼ ac ¼ 0.381…, (i) a ¼ 0.3. The sequence of stationary points S comprises two curves,
S1 and S2, represented by solid lines. Here, S1 corresponds to the line z ¼ 0, while S2 represents the arc connecting the two black holes.
The red circle points represent ISCOs, while the green triangle and circle points denote unstable and stable circular orbits for massless
particles, respectively. Additionally, the red-colored region denotes the stability region H, and the hatched region denotes the forbidden
region V.
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J1 ¼ J2 ¼ 0.4. In this case, circular orbits exhibit similar
characteristics to the J1 ¼ J2 ¼ 0.01 case. However, as is
evident from Figs. 1(a) and 2(a), the ISCOs approach the
black holes due to the frame dragging effect. As shown in
Figs. 2(c) and 2(e), the transitions at a ¼ a0 and a ¼ a� in
the previous case now occur in reverse order. Furthermore,
as indicated in Fig. 2(i), the transitions at a ¼ ac in the
J1 ¼ J2 ¼ 0.01 case do not occur. Hence, for sufficiently
large spin angular momenta, the ISCO remains at the
intersection of S1, S2, and the boundary H1. For massless
particles, there exist three unstable circular orbits and a
stable circular orbit for arbitrarily small a.

J1 ¼ J2 ¼ 0.499. As depicted in Fig. 3(a), the ISCOs
continue to approach the black holes. In this case, not
only does the transition at a ¼ ac cease to occur, but also

the transition at a ¼ a0 appearing in the previous two cases.
There are always two ISCOs at the intersections of S2
and the boundary of H1 for a > 0, as shown in Fig. 2(h).

2. Particles with a negative orbital angular
momentum (j < 0)

For 0 < J1 ¼ J2 < 0.5 with j < 0, in general, the
transition of orbits is qualitatively the same as in the case
of J1 ¼ J2 ¼ 0.01 with j > 0. However, the orbits appear
at a greater distance from the black holes, as the counter-
rotation of the particle intensifies the centrifugal effect.
Here, we present two typical examples with J1 ¼ J2 ¼
0.01 and J1 ¼ J2 ¼ 0.499 in Figs. 4 and 5, respectively,
which are qualitatively similar but with significantly differ-
ent orbit positions.

FIG. 2. Circular orbits for massive and massless particles with j > 0 and J1 ¼ J2 ¼ 0.4. Each panel differs in the separation 2a
between two black holes located at ðρ; zÞ ¼ ð0;�aÞ: (a) a ¼ 5, (b) a ¼ 1, (c) a ¼ a� ¼ 0.762…, (d) a ¼ 0.75, (e) a ¼ a0 ¼ 0.604…,
(f) a ¼ a∞ ¼ 0.452…, (g) a ¼ 0.44, (h) a ¼ 0.3, (i) a ¼ 0.05. The sequence of stationary points S comprises two curves, S1 and S2,
represented by solid lines. Here, S1 corresponds to the line z ¼ 0, while S2 represents the arc connecting the two black holes. The red
circle points represent ISCOs, while the green triangle and circle points denote unstable and stable circular orbits for massless particles,
respectively. Additionally, the red-colored region denotes the stability regionH, and the hatched region denotes the forbidden region V.
In the panel (i), we also show the closeup near ðρ; zÞ ¼ ð0.04; 0Þ.
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3. General results for J1 = J2
In Fig. 6, we illustrate how each critical value of the

separation a depends on J1 ¼ J2 for each case of j > 0 and
j < 0. For j > 0, as shown in the left panel of Fig. 6, the
critical values monotonically decrease as the black holes’
spin angular momenta becomes larger. Remarkably, the
transition of ISCOs differs depending on the value of
J1 ¼ J2, which can be classified into the following three
patterns:
(1) For 0 ≤ J1 ¼ J2 ≤ 0.395…, the ISCOs appear at

(a) a > a0: the intersections of S2 and the boundary
of H or H1,

(b) ac < a < a0: the intersection of S1, S2 and the
boundary of H or H1,

(c) a < ac: the intersection of S1 and the boundary
of H0.

(2) For 0.395… < J1 ¼ J2 < 0.483…, the ISCOs ap-
pear at
(a) a > a0: the intersections of S2 and the boun-

dary of H or H1,
(b) 0 < a < a0: the intersection of S1, S2 and the

boundary of H1.
(3) For 0.483… < J1 ¼ J2 < 0.5, the ISCOs appear at

(a) a > 0: the intersections of S2 and the boundary
of H or H1.

In particular, the ISCOs stay on S2 for arbitrary small a if
the spin angular momenta is sufficiently large J1 ¼
J2 > 0.395….
In contrast, for j < 0, as shown in the right panel of

Fig. 6, every critical value monotonically increases as the
spin angular momenta become larger, and no significant
change occurs in the transition of ISCOs.

FIG. 3. Circular orbits for massive and massless particles with j > 0 and J1 ¼ J2 ¼ 0.499. Each panel differs in the separation 2a
between two black holes located at ðρ; zÞ ¼ ð0;�aÞ: (a) a ¼ 5, (b) a ¼ 1, (c) a ¼ a� ¼ 0.706…, (d) a ¼ 0.68, (e) a ¼ a∞ ¼ 0.429…,
(f) a ¼ 0.42, (g) a ¼ 0.3, (h) a ¼ 0.05. The sequence of stationary points S comprises two curves, S1 and S2, represented by solid lines.
Here, S1 corresponds to the line z ¼ 0, while S2 represents the arc connecting the two black holes. The red circle points represent ISCOs,
while the green triangle and circle points denote unstable and stable circular orbits for massless particles, respectively. Additionally, the
red-colored region denotes the stability region H, and the hatched region denotes the forbidden region V. In the panel (h), we also show
the closeup near ðρ; zÞ ¼ ð0.02; 0Þ.
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B. Black holes spinning in opposite directions

Now, let us consider the circular orbits around black
holes spinning in opposite directions ðJ1 ¼ −J2Þ. Without
loss of generality, we can assume J1 ¼ −J2 > 0. In this
case, the circular orbits appear asymmetrically about z ¼ 0
but remain invariant under transformations j → −j and
z → −z. Therefore, we focus only on the j > 0 case.
Below, we present three typical cases: J1 ¼ −J2 ¼ 0.01,
0.4, and 0.499, which represent all three possible scenarios.
Generally, the curve S consists of two solid curves, S1 and
S2. Here, S1 is a curve starting from the black hole at
z ¼ −a and approaching z ¼ 0 as ρ → ∞, while S2 is an
arc connecting the origin ðρ; zÞ ¼ ð0; 0Þ and the black hole
at z ¼ a, as depicted in Fig. 7. The forbidden region V and
the stable region H are represented by the hatched region
and the red-colored region, respectively. Depending on
the parameter, H can split into two or three isolated

components. In the former case, we denote the part
including infinity as H0 and the other part as H1. In the
latter case, we denote the part including infinity as H0, the
part near S1 as H0

1, and the part near S2 as H
0
2, as illustrated

in Fig. 8(g). The ISCOs for massive particles are denoted
by red circular points, and unstable and stable circular
orbits for massless particles are represented by green
triangles and circular points, respectively.

1. J1 = − J2 = 0.01

First, we consider circular orbits for the J1 ¼ −J2 ¼
0.01 case, as presented in Fig. 7. For a > a0 ¼ 1.68…,
certain portions of S1 and S2 are included in H, allowing
stable circular orbits for massive particles to exist on both
S1 and S2. Since the smallest radius of stable circular
orbits on S2 is smaller than that on S1, the ISCO is located
at the intersection of S2 and the boundary of H, as shown

FIG. 4. Circular orbits for massive and massless particles with j < 0 and J1 ¼ J2 ¼ 0.01. Each panel differs in the separation 2a
between two black holes located at ðρ; zÞ ¼ ð0;�aÞ: (a) a ¼ 5, (b) a ¼ a0 ¼ 1.42…, (c) a ¼ 1, (d) a ¼ a� ¼ 0.976…, (e) a ¼ 0.9,
(f) a ¼ a∞ ¼ 0.547…, (g) a ¼ 0.54, (h) a ¼ ac ¼ 0.388…, (i) a ¼ 0.3. The sequence of stationary points S comprises two curves, S1
and S2, represented by solid lines. Here, S1 corresponds to the line z ¼ 0, while S2 represents the arc connecting the two black holes. The
red circle points represent ISCOs, while the green triangle and circle points denote unstable and stable circular orbits for massless
particles, respectively. Additionally, the red-colored region denotes the stability region H, and the hatched region denotes the forbidden
region V.
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in Fig. 7(a). Unstable circular orbits for massless particles
exist on both S1 and S2, where each intersects with the
boundary of V near each black hole. At a ¼ a0, the boun-
dary of H becomes tangent to S2, leading to the transfer of
the ISCO to a point on S1, as depicted in Fig. 7(b). This
transition causes a discontinuous jump in the ISCO radius,
contrasting with the continuous transition at a ¼ a0 in the
binary with J1 ¼ J2 as seen in the previous section.
For a� ¼ 0.97138928… < a < a0, H only intersects with
S1, and thus, the ISCO exists solely on S1 [Fig. 7(c)]. At
a ¼ a�, the boundary of H becomes tangent to S1, forming
a convex upward shape [Fig. 7(d)], leading to the division
of the existence region of stable circular orbits for massive
particles on S1 into two parts for a ≤ a�. Slightly below a�,
at a ¼ a#;1 ¼ 0.971380925…, H is also divided into two

FIG. 5. Circular orbits for massive and massless particles with j < 0 and J1 ¼ J2 ¼ 0.499. Each panel differs in the separation 2a
between two black holes located at ðρ; zÞ ¼ ð0;�aÞ: (a) a ¼ 5, (b) a ¼ a0 ¼ 2.00…, (c) a ¼ a� ¼ 1.20…, (d) a ¼ 1,
(e) a ¼ a∞ ¼ 0.649…, (f) a ¼ 0.645, (g) a ¼ ac ¼ 0.518…, (h) a ¼ 0.3. The sequence of stationary points S comprises two curves,
S1 and S2, represented by solid lines. Here, S1 corresponds to the line z ¼ 0, while S2 represents the arc connecting the two black holes.
The red circle points represent ISCOs, while the green triangle and circle points denote unstable and stable circular orbits for massless
particles, respectively. Additionally, the red-colored region denotes the stability region H, and the hatched region denotes the forbidden
region V.

FIG. 6. Critical values of the black hole separation a for J1 ¼
J2 with j > 0 (the left panel) and j < 0 (the right panel). In the
left panel, one can find ac ¼ 0 at J1 ¼ J2 ¼ 0.395… and a0 ¼ 0
at J1 ¼ J2 ¼ 0.483….
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parts, where the isolated region closer to the black hole is
denoted asH1, and the part containing infinity is denoted as
H0 [Fig. 7(e)]. Note that a� and a#;1 coincide for J1 ¼ J2,
as observed in the previous section.
As shown in Fig. 7(h), at a ¼ a∞ ¼ 0.544…, another

part of V appears as a point at the outer intersection of S1

and the boundary of H1, leading to the emergence of a new
unstable circular orbit for massless particles at this point.
However, the ISCO remains at the intersection of S1 and
the boundary of H1. For ac ¼ 0.418 < a < a∞, a stable
circular orbit for massless particles exists at the intersection
of S1 and the boundary of V inside H1, in addition to the

FIG. 7. Circular orbits for massive and massless particles with j > 0 and J1 ¼ −J2 ¼ 0.01. Each panel differs in the separation 2a
between two black holes located at ðρ; zÞ ¼ ð0;�aÞ: (a) a ¼ 5, (b) a ¼ a0 ¼ 1.68…, (c) a ¼ 1, (d) a ¼ a� ¼ 0.97138928…,
(e) a ¼ a#;1 ¼ 0.97138925…, (f) a ¼ 0.9, (g) a ¼ 0.545..., (h) a ¼ a∞ ¼ 0.544…, (i) a ¼ 0.5, (j) a ¼ ac ¼ 0.419…, (k) a ¼ 0.3. The
sequence of stationary points S comprises two curves, S1 and S2, depicted by solid lines. Here, S1 corresponds to the curve that starts
from ðρ; zÞ ¼ ð0;−aÞ and extends to ρ → ∞ approaching z ¼ 0, while S2 represents an arc connecting ðρ; zÞ ¼ ð0; aÞ and the origin
ðρ; zÞ ¼ ð0; 0Þ. The red circle points represent the ISCOs, while the green triangle and circle points denote unstable and stable circular
orbits for massless particles, respectively. Additionally, the red-colored region denotes the stability region H ¼ H0 ∪ H1, where H0

includes infinity and H1 does not, and the hatched region denotes the forbidden region V.
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other three unstable orbits [Fig. 7(i)]. At a ¼ ac, as
depicted in Fig. 7(j), the boundary of V becomes tangent
to S1, and S1 is fully covered by V, causing the ISCO to
jump to the intersection of S1 and the boundary of H0.
Consequently, the stable circular orbit and one of three

unstable circular orbits of massless particles on S1 dis-
appear, similar to the binary with J1 ¼ J2. For a < ac, as
shown in Fig. 7(k), the ISCO remains at the intersection of
S1 and the boundary of H0, while massless particles have
two unstable circular orbits: one at the intersection of S2

FIG. 8. Circular orbits for massive and massless particles with j > 0 and J1 ¼ −J2 ¼ 0.3. Each panel differs in the separation 2a
between two black holes located at ðρ; zÞ ¼ ð0;�aÞ: (a) a ¼ 5, (b) a ¼ a0 ¼ 1.8…, (c) a ¼ a� ¼ 1.006…, (d) a ¼ a#;1 ¼ 1.005…,
(e) a ¼ 1, (f) a ¼ a#;3 ¼ 0.894…, (g) a ¼ 0.88, (h) a ¼ ac0 ¼ 0.869…, (i) a ¼ a#;2 þ 10−3 ¼ 0.862…, (j) a ¼ 0.3. The sequence of
stationary points S comprises two curves, S1 and S2, depicted by solid lines. Here, S1 corresponds to the curve that starts from
ðρ; zÞ ¼ ð0;−aÞ and extends to ρ → ∞ approaching z ¼ 0, while S2 represents an arc connecting ðρ; zÞ ¼ ð0; aÞ and the origin
ðρ; zÞ ¼ ð0; 0Þ. The red circle points represent the ISCOs, while the green triangle points denote unstable circular orbits for massless
particles. Additionally, the red-colored region denotes the stability region H ¼ H0 ∪ H1 or H0 ∪ H0

1 ∪ H0
2, where H0 includes the

infinity, H0
1 denotes the part near S1 and H0

2 near S2. The hatched region denotes the forbidden region V.
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and the boundary of V, and the other at the intersection of
S1 and the boundary of V.

2. J1 = − J2 = 0.3

Next, we consider the case of J1 ¼ −J2 ¼ 0.3. As
depicted in Figs. 8(a)–8(e), the transition of circular orbits
follows the same pattern as in the J1 ¼ −J2 ¼ 0.01 case
but at different values of a0, a�, and a#;1. In Fig. 8(f), at
a ¼ a#;3 ¼ 0.894…,H1 further splits into two partsH0

1 and
H0

2, with H0
1 closer to S1 and H0

2 closer to S2. However,
since H0

1 intersects with S1 instead of H1, this topological
change does not affect the ISCO and the existence region of
stable circular orbits on S1. Therefore, for a0c ¼ 0.869… <
a ≤ a�, the existence region of stable circular orbits on S1
consists of two parts, and the ISCO lies at the boundary of
the part not connected to infinity [Figs. 8(c)–8(g)]. At
a ¼ a0c, depicted in Fig. 8(h), the boundary of H0

1 tangen-
tially touches S1, and the stable circular orbits exist only
within H0. This transition causes a jump of the ISCO from
the boundary of H0

1 to the boundary of H0, similar to the
transition at a ¼ ac for the J1 ¼ −J2 ¼ 0.01 and J1 ¼ J2
cases, but occurring through a different process due to
the latter occurring when H1 is fully covered by V. For
a < a0c, H0

1 and H0
2 never intersect with S1 or S2.

Consequently, the stable circular orbits appear only within
H0 on S1, and the ISCO remains on the boundary of H0.

At a ¼ a#;2 ¼ 0.861…, as shown in Fig. 8(i),H0
1 shrinks to

a point and disappears. Therefore,H has only two parts,H0

and H0
2, for a < a#;2, where H0

2 does not intersect S1 or S2
and is finally included in V [Fig. 8(j)]. Additionally, the
massless particles admit only two unstable circular orbits
around each black hole for any a, with one on S1 and
another on S2.

3. J1 = − J2 = 0.499

Finally, let us consider the case of J1 ¼ −J2 ¼ 0.499,
which differs drastically from the previous two cases. From
Fig. 9, we can observe the following: For sufficiently large
a, as shown in Fig. 9(a), both S1 and S2 are partially
included in the stable region H, and stable circular orbits
exist on both curves. By comparing the minimum radii of
stable circular orbits on S1 and S2, we find that the ISCO
lies on S2. At a ¼ a#;3 ¼ 1.42…, depicted in Fig. 9(b), H
splits into two parts, H1 and H0, where H0 extends to
infinity, and H1 is closer to S2. However, this topology
change occurring away from S1 or S2 does not affect the
topology of stable circular orbits. For a0 ¼ 0.593… <
a < a#;3, H1 contains a part of S2 instead of H, as shown
in Fig. 9(c), and hence, the ISCO remains on S2. At a ¼ a0,
the boundary of H1 tangentially touches S2, leading to the
ISCO transitioning from a point on S2 to a point on S1 as
depicted in Fig. 9(d). For a ≤ a0, the ISCO stays at the

FIG. 9. Circular orbits for massive and massless particles with j > 0 and J1 ¼ −J2 ¼ 0.499. Each panel differs in the separation 2a
between two black holes located at ðρ; zÞ ¼ ð0;�aÞ: (a) a ¼ 5, (b) a ¼ a#;3 ¼ 1.42…, (c) a ¼ 1, (d) a ¼ a0 ¼ 0.593…, (e) a ¼ 0.3.
The sequence S of stationary points comprises two curves, S1 and S2, depicted by solid lines. Here, S1 corresponds to the curve that starts
from ðρ; zÞ ¼ ð0;−aÞ and extends to ρ → ∞ approaching z ¼ 0, while S2 represents an arc connecting ðρ; zÞ ¼ ð0; aÞ and the origin
ðρ; zÞ ¼ ð0; 0Þ. The red circle points represent the ISCOs, while the green triangle points denote unstable circular orbits for massless
particles. Additionally, the red-colored region denotes the stability region H ¼ H0 ∪ H1, where H0 includes infinity and H1 does not,
and the hatched region denotes the forbidden region V.
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intersection of S1 and the boundary of H0. Meanwhile,
similar to the J1 ¼ −J2 ¼ 0.3 case, massless particles have
an unstable circular orbit on S1 and another on S2 for any a.

4. General results for J1 = − J2
In general, the phase of circular orbits in the binary with

J1 ¼ −J2 fits into one of the three patterns described
earlier. In particular, from Fig. 10, we can observe that the
transition of the ISCO occurs differently for the following
ranges of J1 ¼ −J2 > 0.
(1) For 0 < J1 < 0.160…, the ISCO appears at

(a) a > a0: the intersection of S2 and the boundary
of H,

(b) ac < a < a0: the innermost intersection of S1
and the boundary of H or H1,

(c) a < ac: the intersection of S1 and the boundary
of H0,

(2) For 0.160 < J1 < 0.467…, the ISCO appears at
(a) a > a0: the intersection of S2 and the boundary

of H,
(b) a0c < a ≤ a0: the innermost intersection of S1

and the boundary of H or H1 or H0
1,

(c) a ≤ a0c: the intersection of S1 and the boundary
of H0,

(3) For 0.467 < J1 < 0.5, the ISCO appears at
(a) a > a0: the intersection of S2 and the boundary

of H or H1,
(b) a ≤ a0: the intersection of S1 and the boundary

of H0,
where each case corresponds to J1 ¼ 0.01, 0.3, 0.499. The
three critical curves a∞, ac, and a0c intersect at ðJ1; aÞ ¼
ð0.160…; 0.565…Þ, where S1 intersects with the boundary
of H1 and V at a single point (the left panel in Fig. 11).

Similarly, the two critical curves a0c and a� intersect at
ðJ1; aÞ ¼ ð0.467…; 1.07…Þ, where S1 becomes tangent to
the boundary ofH0 up to second derivatives (the right panel
in Fig. 11). It is worth noting that a0c and a� do not extend
beyond J1 ¼ 0.467… without reaching a0.
In the right panel of Fig. 10, we present the critical values

relevant to the topology change of H. Although these
values are not directly involved in the transition of orbits,
they are useful for understanding the appearance of stable
circular orbits. The curves a#;1 and a#;3 correspond to the
critical values where H splits into two parts. The former
corresponds to situations depicted in Figs. 7(e), 8(d),
and similar cases. The latter corresponds to situations
depicted in Figs. 8(f), 9(b), and similar scenarios. The
curve a#;2 represents the critical value where an isolated
component of H shrinks to a point and disappears, as
shown in Fig. 8(i). Interestingly, a#;1 and a#;2 meet at

FIG. 10. Critical values of the black hole separation a for J1 ¼ −J2 responsible for the orbit transition (left panel) and topology change
of the stable regionH (right panel). In the right panel, H has only one connected part in the hatched region, two in the white region, and
three in the red region. a� and a#;1 seem to coincide, but a� is always slightly greater than a#;1 in the closeup. Similarly, a part of a0c and
a#;2 seems quite close, but a0c is always greater.

FIG. 11. Circular orbits for critical parameters ðJ1; aÞ ¼
ð0.160…; 0.565…Þ and ðJ1; aÞ ¼ ð0.467…; 1.07…Þ. In the left
panel, S1, the boundary of H1 and V are all tangent to each at a
point. In the right panel, S1 and the boundary ofH0 are tangent up
to second derivatives.
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ðJ1; aÞ ¼ ð0.245…; 0.748…Þ, while a#;2 and a#;3 meet
at ðJ1; aÞ ¼ ð0.468…; 1.07…Þ.

V. SUMMARY AND DISCUSSION

In this paper, we have investigated the motion of
particles around two spinning charged black holes by using
the Teo-Wan solution. We have shown that the motion of
both massive and massless particles around this binary
black hole system can be reduced to a two-dimensional
potential problem. We have made assumptions that the
masses of the two black holes are equalM1 ¼ M2 ¼ m, the
directions of the spin angular momenta are aligned with
the line connecting the two black hole centers, and the
magnitudes of the spin angular momenta are equal.
Subsequently, we divided the analysis into cases where
the two black holes are spinning in the same direction and
in opposite directions and examined the stability of
particle’s circular motion. Since the upper limit of the spin
angular momenta of the black holes is 0.5m2, which
corresponds to a singular solution, we investigated how
the range of existence of particle’s circular motion changes
as we varied the spin angular momenta jJ1j; jJ2j of the
black holes from 0 to 0.499m2, with the distance between
the black holes as a parameter.
First, for binary black holes rotating in the same

direction, the shape of the curve S, which represents a
set of stationary points of the effective potential, could be
described as a straight line at z ¼ 0 and a semicircular
curve connecting the black holes, similar to the case when
there is no rotation of the black holes. Particles rotating
in the same direction as the black holes exhibit smaller
radii for both the ISCO and the circular orbits of mass-
less particles compared to when there is no rotation.
Additionally, as the magnitude of the black holes’ spin
angular momentum increases, these radii become smaller.
On the other hand, particles rotating in the opposite direc-
tion to the black holes exhibit larger radii for both the ISCO
and the circular orbits of massless particles compared to
when there is no rotation. Moreover, as the magnitude of
the black holes’ spin angular momentum increases, these
radii become larger. For particles rotating in the same
direction as the black holes, we also found that the
transition of the ISCO occurs differently in the three ranges
of angular momenta, 0 < J1=m2 ¼ J2=m2 < 0.395…,
0.395… < J1=m2 ¼ J2=m2 < 0.483… and 0.483… <
J1=m2 ¼ J2=m2 < 0.5, while for particles rotating in the
opposite direction to the black holes, the transitoin occurs
in the same manner for 0 < J1=m2 ¼ J2=m2 < 0.5.
Next, for binary black holes rotating in opposite direc-

tions, the curve S, which is a set of stationary points of the
effective potential, consists of two curves. One curve
connects the center between two black holes to the black
hole rotating in the same direction as the particle, while the
other curve asymptotically approaches z ¼ 0 from the

black hole rotating in the opposite direction to the particle.
As a common feature independent of the magnitude of
angular momenta, it was found that when the distance 2a
between the black holes is large, the ISCOs exist on the
arched curve, and when the distance is small, they approach
z ¼ 0 along the curve. Furthermore, it was found that
reducing the distance between the black holes leads to a
discontinuous change in the radius of ISCO, causing it to
increase. Additionally, for the nonrotating black holes, it
was found that at certain values of a, massless particles
have only up to four circular orbits. However, when the
spins of the black holes are both small in magnitude
(0 < J1=m2 ¼ −J2=m2 < 0.160…), it was found that at
certain values of a, there exist, at a maximum, a total of
eight simultaneous circular orbits for massless particles.
Among these, as discussed in Sec. IV B 1, four correspond
to particles with j > 0, while the remaining four corre-
spond to particles with j < 0. We also found that the
transition of the ISCO occurs differently in the three ranges
of angular momenta, 0 < J1=m2 ¼ −J2=m2 < 0.160…,
0.160… < J1=m2 ¼ −J2=m2 < 0.467…, and 0.467… <
J1=m2 ¼ −J2=m2 < 0.5.
These phenomena are considered to be caused by the

dragging effect of the spinning black holes. The space
around a spinning black hole is dragged by the black hole,
causing particles that are stationary at the location near the
black hole to appear rotating when viewed from afar. In
other words, around a spinning black hole, particles rotate
in the same direction as the black hole. As a result of this
effect, particles rotating in the same direction as the black
hole behave as if they are rotating faster. Therefore, it is
expected that they can rotate at positions closer to the
center. Conversely, particles rotating in the opposite direc-
tion to the binary black holes appear to rotate slower;
hence, it is expected that their rotating radii becomes larger.
In this paper, for simplicity, we assumed that black holes
have equal masses and equal spin angular momenta.
Investigating the case with different masses and spin
angular momenta is a topic for our future research.
A realistic astrophysical black hole binary is dynamic,

coalescing through the stages of inspiral, merger, and ring-
down, while emitting gravitational waves. Therefore, since
the exact solution for a black hole binary used in this paper
is stationary and does not emit gravitational waves, it does
not fully describe such a physical process. However, when
the separation between two black holes is large enough
before they begin to coalesce, the spacetime can be
expected to be approximately stationary. In such cases,
exact solutions of static or stationary black hole binaries,
such as the Majumdar-Papapetrou and Teo-Wan solutions,
can be treated as toy models. Our results indicate that when
the distance between black holes is sufficiently large for
spacetime to be considered stationary, the region where
stable circular orbits for massive particles exist around the
black hole binary is not confined to a single plane but can
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also take on a spherelike shape, depending on the spin
angular momenta of the black holes. Therefore, since the
distribution of matter around a black hole binary differs
from that around a single black hole, our results may be
useful for observing black hole binaries in the future.
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