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We study hairy black hole solutions in Einstein(-Maxwell)-scalar-Gauss-Bonnet theory. The complex
scalar coupling function includes quadratic and quartic terms, so the gravitational action has a U(1)
symmetry. We argued that when the effective mass of the scalar field is at the critical value, the black holes
without hairs transform into hairy black holes in a symmetry-broken vacuum via spontaneous symmetry
breaking. These hairy black holes are stable under scalar perturbations, and the Goldstone bosons are
trivial. Moreover, we found that the spontaneous symmetry breaking associated with local U(1) is unlikely
to occur in this theory.
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I. INTRODUCTION

The detection of gravitational waves from the merger of
binary black holes by the Laser Interferometer Gravitational-
Wave Observatory (LIGO) [1] was a major breakthrough in
recent decades. One of the missions of gravitational waves is
to test general relativity since it alone struggles to explain
the presence of dark matter, dark energy, and inflationary
expansion [2–4]. As an alternative to general relativity [5–9],
we consider the Einstein(-Maxwell)-scalar-Gauss-Bonnet
theory which has a nonminimal coupling of the scalar field
with the Gauss-Bonnet(GB) term. The theory belongs to
Horndeski gravity and has second-order field equations, so it
is free of the ghost problem. Additionally, the evasion of the
no-hair theorem was first studied in [10] and later in [11]
based on Bekenstein’s argument [12,13]. The complete
derivation for the evasion of the no-hair theorem was done
in [14]. At the same time as the discovery of hairy black holes
in [10], spontaneous scalarization was proposed to explain
how black holes without hair can acquire scalar hair [15].
This mechanism relies on a tachyonic instability that triggers
the spontaneous growth of a scalar hair on a black hole
background [15]. However, the produced hairy black holes
are unstable under the perturbation of scalar fields [16,17].
Later studies showed that the coupling function with quad-
ratic and quartic terms can generate stable hairy black holes
in some parameter regimes [18–20]. Recently stable

spontaneous scalarization for a quadratic coupling is sug-
gested in [21,22].
We here consider Einstein-scalar-Gauss-Bonnet theory

in (2). We employ the scalar field coupling function f
which enjoys U(1) symmetry with a single complex scalar
field and a nonminimal coupling to the GB term:

fðφ�;φÞ ¼ αφ�ðrÞφðrÞ − λ
�
φ�ðrÞφðrÞ�2: ð1Þ

This allows us to study hairy black holes in symmetric and
symmetry-broken phases.We define the symmetric phase as
the phase in which the scalar fields near the horizon are at
either the “global” minimum (α < 0) or the “local” maxi-
mum (α > 0) of the interacting potential (V ¼ −fðφ�;φÞG).
The symmetry-broken phase is the phase in which the scalar
field near the horizon is at the “global”minimum (α > 0). In
contrast to spontaneous scalarization, which requires a
negative effective mass squared to generate hairy black
holes, we show that stable hairy black holes are generated
in the symmetry-broken phase when the effective mass
squared is positive. Thus we provides a mechanism for
generating stable hairy black holes rooted from the sym-
metry of the theory.
This paper is organized as follows. Section II discusses

the global U(1) symmetric theory and shows that the
Schwarzschild black hole becomes unstable beyond
αSch. against the scalar field perturbation. In Sec. III,
we find hairy black holes in symmetric and symmetry-
broken phases and investigate their instability. We also
calculate the mass and scalar charge of those hairy black
holes. In Sec. IV, we study electrically charged hairy
black holes by spontaneous symmetry breaking in the
theory with local U(1) symmetry. Section V summarizes
our results.
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II. GENERATION OF HAIRY BLACK HOLES

We consider the action in four-dimensional asymptoti-
cally flat spacetime:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−∇αφ
�∇αφþ fðφ�;φÞG

�
; ð2Þ

Lφ ¼ −∇αφ
�∇αφþ fðφ�;φÞG ¼ T − V; ð3Þ

V ¼ −fðφ�;φÞG: ð4Þ

Here G is the GB term

G ¼ RμνρσRμνρσ − 4RμνRμν þ R2; ð5Þ

the coupling function is given by (1), φðrÞ is a complex
field, and α, λ are coupling constants. We consider λ
positive and allow α to take any real values. This
Lagrangian respects the global U(1) symmetry

φðrÞ → eiχφðrÞ ð6Þ

where χ is a constant. We use the metric ansatz

ds2 ¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þ r2ðdθ2 þ sin2 θdϕ2Þ: ð7Þ

We consider a linear perturbation of the scalar field
around the background solution to examine the instability.
The perturbation equation is written

ð∇α∇α þ fφ�φGÞδφðrÞ þ fφ�φ�Gδφ�ðrÞ ¼ 0; ð8Þ

where the subscript of f indicates a derivative with respect
to corresponding variables. To simplify the analysis, we
decompose the complex scalars into real scalars in (15) and
impose φ1 ¼ φ2 for simplicity. We replace the perturbed
field with the following substitution

δφ1ðt; r; θ;ϕÞ ¼
X
l;m

ΦðrÞYlmðθ;ϕÞ
r

e−iωt: ð9Þ

By employing the tortoise coordinates, the perturbation
equation becomes

Φ00ðr�Þ− ðVeff −ω2ÞΦðr�Þ¼ 0; dr� ¼
1ffiffiffiffiffiffiffi
AB

p dr;

VeffðrÞ¼
lðlþ1ÞA

r2
þ 1

2r
ðA0BþAB0Þ−1

2
fφ1φ1

AG; ð10Þ

where l is the angular momentum. The system becomes
unstable if the following condition is satisfied [23,24]

Z
∞

rh

dr
1ffiffiffiffiffiffiffi
AB

p VeffðrÞ < 0: ð11Þ

This examines the condition that the system has negative
energy under the scalar field perturbation. In this paper, we
only investigate a sufficient condition for instability. We
plug the Schwarzschild solution into (11), perform the
integration, and rearrange it in α. Then we obtain the
following condition:

α >
5

6

�
2lðlþ 1Þ þ 1

�
M2 ¼ αSch ð12Þ

If the condition above is satisfied, the Schwarzschild black
hole (where A ¼ B ¼ 1 − 2M

r and φ ¼ 0) becomes unsta-
ble. When M ¼ 1

2
and l ¼ 0, the critical value of α is

αSch ¼ 5
24
≈ 0.2083. A more rigorous examination of

dynamical stability is studied in [25].

III. HAIRY BLACK HOLES
WITH GLOBAL Uð1Þ SYMMETRY

For spontaneous symmetry breaking (SSB) to occur in
this theory, three conditions must be met: (i) the coupling
function fðφÞ must exhibit a certain symmetry; (ii) there
must exist different “global” minima ḟðφvacÞ ¼ 0 depend-
ing on the coupling constant; and (iii) φh, the near-horizon
value of φ, should lie near the vacuum of the potential:
φh ≈ φvac þ δφ. Our coupling function in (1) satisfies (i)
and (ii), and we impose the boundary condition for φh in
accordance with (iii).

A. Symmetric phase

When α is negative, the interaction potential V has a
minimum at φ ¼ φ� ¼ 0, which we call a vacuum of the
system. However, when α is positive, this point becomes a
local maximum, and the system develops a new vacuum.
Here, we search for hairy black hole solutions in the
symmetric phase by assuming a small value of φ (close to
the vacuum expectation value) near the horizon and varying
the value of α when λ ¼ 1

10
.

1. Equations of motion

We write the equations of motion as follows:

1

2κ2

�
Rμν−

1

2
Rgμν

�
¼−

1

2
ð∇αφ

�∇αφÞgμν

þ1

2
ð∇μφ

�∇νφþ∇μφ∇νφ
�Þ

−
1

2
ðgρμgλνþgλμgρνÞ

ϵκλαβffiffiffiffiffiffi−gp R̃ργ
αβ∇γ∇κf;

ð13Þ
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∇α∇αφþ ∂f
∂φ� G ¼ 0; ∇α∇αφ

� þ ∂f
∂φ

G ¼ 0: ð14Þ

Here f ¼ fðφ�;φÞ and R̃ργ
αβ ¼ ϵργστffiffiffiffi−gp Rσταβ. Complex scalar

fields are decomposed into two real scalar fields

φðrÞ ¼ 1ffiffiffi
2

p �
φ1ðrÞ þ iφ2ðrÞ

�
; ð15Þ

and the equations of motion (13)–(14) are expressed in
terms of φ1 and φ2. For the existence of a regular black
hole, specific boundary conditions must be imposed near
the horizon:

AðrÞ∼AhϵþOðϵ2Þ; BðrÞ∼BhϵþOðϵ2Þ;
φiðrÞ∼φihþφih;1ϵþOðϵ2Þ; ð16Þ

where ϵ ¼ r − rh is the expansion parameter, and
Ah; Bh;φih and φih;1 (i ¼ 1, 2) are constants. We also set
κ2 ¼ 1=2 hereafter. The following relations between the
constants are obtained from the equations of motion

Bh ¼
2

rhx1

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x1

p �			
rh
;

φih;1 ¼ −
rhφih

4x2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x1

p �			
rh
; ð17Þ

where

x1¼
96

r4h

�ðfφ1
Þ2þðfφ2

Þ2�; x2¼φ1fφ1
þφ2fφ2

: ð18Þ

We found that the numerical solutions can only be
generated for the minus sign before the root in Bh and
φih;1. In addition, φ00ðrhÞ diverges when the expression
under the square root is zero. We exclude this case
imposing the following condition:

ð1 − x1Þjrh > 0: ð19Þ

Asymptotic flatness is required at infinity, which gives the
following expansion:

A∼1þA1

r
−
A1x3
24r3

þ�� � ; B∼1þA1

r
þ x3
4r2

þ�� � ;

φi∼φi∞þφi;1

r
−
A1φi;1

2r2
þ��� ; ð20Þ

where x3 ¼ ðφ1;1Þ2 þ ðφ2;1Þ2, and all coefficients are con-
stants. We identify the coefficient A1 as the ADM mass of
black holes such that A1 ¼ −2M, and φi;1 is the scalar
charge φi;1 ¼ Qi.
In the presence of symmetry, the conserved current is

defined as

∂αJα ¼ 0; Jα ¼ igðφ�
∂αφ − φ∂αφ

�Þ: ð21Þ

The flux for a timelike hypersurface near the horizon reads

Z
Σ
Jαnα

ffiffiffiffiffiffi
−h

p
d3y¼

Z
Σ
½gðφ2∂rφ1−φ1∂rφ2Þ�

× ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞ

p
r2 sinθdθdϕdt� ¼ 0; ð22Þ

where nα is a spacelike normal vector defining the timelike
hypersurface Σ with the induced metric h. As we assume
that all solutions are well-defined near the horizon with the
expansion (16)–(19), the flux vanishes near the horizon.

2. Numerical solutions

The boundary conditions near the horizon are described by
two coefficients, Ah and φ2h ¼ φ1h ¼ φh in (16)–(19). The
value of Ah is determined by the asymptotic flatness (20),
while φh is constrained by (19). This condition restricts
the valid range of α, λ, and φh for a given rh. The
parameter space between these variables for the fixed
values of λ is drawn in Fig. 1. In the search of the
parameter space, we had difficulties to find the numerical
solutions just above the lower solid lines. The gray dashed
line denoted by αsol represents the first solution we found
by gradually increasing the α value from the lower solid
line. In contrast, numerical solutions are readily obtainable
within the range αsol ≤ α < αmax, where αmax is the value
corresponding to the upper solid line in Fig. 1. The
sufficient condition for instability is given by Eq. (11)
and the critical value of α for the onset of instability is
marked by dots labeled as αcrit in Fig. 1. Hairy black holes
become unstable when αcrit ≤ α < αmax.
The metric solutions are displayed in Figs. 2(a) and 2(b).

Themetric with αsol displays severe nonmonotonic behavior
near the horizon. Figure 2(c) shows scalar field solutions
and Fig. 2(d) illustrates the effective potential (10). As α
approaches αmax, the positive peak at αsol diminishes and
eventually turns negative, signaling the system’s instability.
We calculated the mass (M) and scalar charge (Q) in
Figs. 2(e) and 2(f) respectively. The colored dotted
lines represent the minimum values of αðαminÞ for the

FIG. 1. The parameter space for α and φh for λ ¼ 1
10
and λ ¼ 3

10
is shown in blue and orange, respectively.
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corresponding colored solid lines. These figures show that
the hairy black holes are always heavier than Schwarzschild
black holes of the same radius, and the scalar charge
becomes larger as α approaches αsol. This might suggest
that a large scalar charge causes the metric near the horizon
to exhibit nonmonotonic behavior and the difficulties of
finding hairy black holes below αsol. Our findings might
implicitly indicate the existence of a relationship between
mass and scalar charge similar to the mass-charge condition
(M ≥ Qe) that prevents naked singularities in Reissner-
Nordström black holes.
Ournumericalsolutionswereobtainedusingthe“NDSolve”

inMathematicawith the options: WorkingPrecision → 40,
PrecisionGoal→ 40, AccuracyGoal→ 30, MaxSteps→∞,

and InterpolationOrder → All. These ensured high preci-
sion and accuracy in the numerical solutions. The numerical
integration commenced from rh þ ϵ, where ϵ ¼ 10−10, to
r ¼ 1014. The radial variables were rescaled by rh, which
was set to 1. We evaluated the accuracy of our numerical
solutions by substituting them back into the equations of
motion. We found that numerical errors is largest near the
horizon (around 10−16) and decreases toward infinity
(around 10−60).

B. Symmetry-broken phase

When α is positive, the potential V in (4) has degenerate
vacua, and the stable minima are determined by

FIG. 2. Hairy black holes in the symmetric phase.
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hφi ¼ veiβ; v ¼
ffiffiffiffiffi
α

2λ

r
; ð23Þ

where the vacuum states hφi are labeled by β. These ground
states do not respect the symmetry of the Lagrangian,
indicating that the symmetry is spontaneously broken. We
expand the field around a ground state v by reparametrizing
it as follows

φðrÞ ¼
�
vþ σðrÞffiffiffi

2
p

�
eiθðrÞ: ð24Þ

Here, σðrÞ and θðrÞ are physical fields because they
describe excitations above the vacuum. In terms of new
variables, the Lagrangian becomes

Lφ ¼ −
1

2
∇ασðrÞ∇ασðrÞ

−
�
vþ σðrÞffiffiffi

2
p

�
2∇αθðrÞ∇αθðrÞ þ fðσÞG ð25Þ

where

fðσÞ ¼ −ασðrÞ2 −
ffiffiffiffiffi
αλ

p
σðrÞ3 − λ

4
σðrÞ4: ð26Þ

The system originally had one complex scalar field but now
consists of one massive real scalar field σðrÞ and one
massless real scalar field θðrÞ, the Goldstone boson.

1. Equations of motion

The equations of motion are given as

1

κ2

�
Rμν−

1

2
Rgμν

�
¼
�
−
1

2
ð∇σÞ2−

�
vþ σffiffiffi

2
p

�
2

ð∇θÞ2
�
gμν

þ∇μσ∇νσþ2

�
vþ σffiffiffi

2
p

�
2∇μθ∇νθ

− ðgρμgλνþgλμgρνÞηκλαβR̃ργ
αβ∇γ∇κfðσÞ;

ð27Þ

∇α∇ασ −
ffiffiffi
2

p �
vþ σffiffiffi

2
p

�
∇αθ∇αθ þ fσG ¼ 0; ð28Þ

�
vþ σffiffiffi

2
p

�
∇α∇αθ þ

ffiffiffi
2

p ∇ασ∇αθ ¼ 0: ð29Þ

The field θðrÞ is decoupled from the system, and the
solution for θ0ðrÞ reads

θ0ðrÞ ¼ c2
4r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðrÞBðrÞp

�
vþ σðrÞffiffiffi

2
p

�
−2
; ð30Þ

where c2 is an integration constant. If c2 is not equal to
zero, the solution is regular at infinity but singular at the

horizon. If c2 equals zero, the Goldstone boson becomes
trivial. The corresponding flux for a timelike hypersurface
reads

Z
Σ
Jαnα

ffiffiffiffiffiffi
−h

p
d3y ¼

Z
Σ

�
−2g

�
vþ σðrÞffiffiffi

2
p

�
2

θ0ðrÞ
�

×
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AðrÞBðrÞ
p

r2 sin θdθdϕdt
i

¼ −8πgc2: ð31Þ

Since the flux is zero, as given by (22), c2 shall also be zero.
Thus, the singular Goldstone boson does not contribute to
the scalar hairs. The hairy black holes in this theory can
only have trivial Goldstone boson hairs. Consequently,
the global U(1) symmetry is effectively equivalent to Z2

symmetry in this perspective.
We also impose the same boundary condition as

in (16)–(17) near the horizon, but φiðrÞ is replaced by
σðrÞ. The expansion coefficients in (17) expand as

x1 ¼
96

r4h
ðfσÞ2; x2 ¼ σhfσ: ð32Þ

The boundary conditions are described only by the two
independent variables Ah and σh and the coupling con-
stants α and λ. The regularity condition (19) is also
required. The asymptotic flatness is imposed at infinity,
and the metric functions and the scalar field are expanded
in the same way as in (20), replaced by φ1 ¼ σðφ1∞ ¼
σ1∞;φ1;1 ¼ σ1Þ and φ2 ¼ 0ðφ2∞ ¼ 0;φ2;1 ¼ 0Þ.

2. Numerical solutions

We plot the parameter space satisfying (19) with (32) for
given λ values in Fig. 3. The parameter space is symmetric
under φh → −φh in the symmetric phase. However, this
symmetry is not present in the vacua of this phase. For a
given value of σh, the feasible range for α is 0 < α < αmax,
restricted by (19). Similar to the symmetric phase, our
search for solutions to hairy black holes had difficulties to
find beyond a certain value of α, denoted αsol, for given

FIG. 3. Parameter space for α and σh for λ ¼ 1
10

and λ ¼ 3
10

is
shown in blue and orange, respectively.

HAIRY BLACK HOLES BY SPONTANEOUS SYMMETRY … PHYS. REV. D 110, 024012 (2024)

024012-5



values of λ and σh. In Fig. 3, the gray dashed lines represent
the last solutions we found by increasing values of α
when λ ¼ 1

10
.

In Figs. 4(a) and 4(b), we displayed the metric functions
for σh ¼ 1

10
. When α is small, the metric functions exhibit

monotonicity, preserving the property of gttgrr ≈ −1.
However, as α increases, these properties are lost near
the horizon. The scalar fields in Fig. 4(c), on the other hand,
remain monotonic for all values of αð0 < α ≤ αsolÞ and
their amplitude increases as α increases. Figure 4(d) dis-
plays the effective potentials in (10). Each color in the
figure corresponds to the solution with the same parameter
sets presented in Fig. 4(c). The effective potentials are

always positive, indicating no direct indication of insta-
bility in the system. Given the same horizon radius
(rh ¼ 1), a hairy black hole always has a larger mass than
a Schwarzschild black hole, as illustrated in Fig. 4(e). The
colored dotted lines share the same values of σh with the
corresponding colored solid lines and represent the maxi-
mum values of α from (19). Figure 4(f) plots the scalar
charge of a hairy black hole as a function of α.

IV. HAIRY BLACK HOLES
WITH LOCAL U(1) SYMMETRY

Now, we examine the theory with a local U(1) symmetry
by adding the gauge field to the Lagrangian:

FIG. 4. Hairy black holes in the symmetry-broken phase.
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S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

−
F2

4
−ðDαφÞ�Dαφþfðφ�;φÞG

�
ð33Þ

where F2 ¼ FαβFαβ with Fαβ ¼ ∇αPβ −∇βPα (Pα: an
electromagnetic potential), Dα ¼ ∇α − iqPα, and q is an
electric charge of scalar fields. This action is invariant
under gauge transformations φðrÞ → φðrÞeiχðrÞ where χðrÞ
is an arbitrary function.
Equations of motion include the gauge terms on the right

side of (13)

1

2κ2

�
Rμν −

1

2
Rgμν

�
¼ 1

2
FμδFν

δ −
1

8
FαβFαβgμν

−
1

2

�ðDαφÞ�Dαφ
�
gμν

þ 1

2

�ðDμφÞ�DνφþDμφðDνφÞ�
�

−
1

2
ðgρμgλν þ gλμgρνÞ

× ηκλαβR̃ργ
αβ∇γ∇κf; ð34Þ

DαDαφþ
∂f
∂φ�G¼0; ðDαDαφÞ�þ

∂f
∂φ

G¼0 ð35Þ

where ∇α is changed to Dα in (13) and (14). This action
also gives the gauge field equations

∇μFμν − iq
�
φ�Dνφ − φðDνφÞ�� ¼ 0: ð36Þ

We take the ansatz of the electric potential to be
P ¼ PtðrÞdt. The r-component of (36) requires

ðφ�φ0 − φφ�0Þ ¼ 0 ð37Þ

where 0 is a derivative with respect to r. To satisfy
this condition, we demand φ ¼ φ1 ¼ φ2. We follow the
same procedure as before, requiring the near-horizon
expansion (16) with

Bh ¼
32y2P2

hþY
64y2ð6AhþP2

hÞ
; φh;1 ¼

32y2P2
h−Y

32Ahy
ð38Þ

where

Y¼ 4AhþP2
h−

ffiffiffi
z

p
; y¼φhðα−2λφ2

hÞ
z¼ð4Ahþð32y2þ1ÞP2

hÞ2−512y2Ahð6AhþP2
hÞ; ð39Þ

and additionally demand the regularity condition for the
gauge field near the horizon

Pt ∼ PhϵþOðϵ2Þ: ð40Þ

Assuming asymptotic flatness and neutral scalar fields
(q ¼ 0), the metric, gauge, and scalar fields expand as

A ∼ 1þ A1

r
þ P2

1

4r2
−
A1φ

2
1

12r3
þ � � � ; ð41Þ

B ∼ 1þ A1

r
þ P2

1 þ 2φ2
1

4r2
−
A1φ

2
1

4r3
þ � � � ; ð42Þ

Pt ∼ P∞ þ P1

r
−
P1φ

2
1

12r3
þ � � � ; ð43Þ

φ ∼ φ∞ þ φ1

r
−
A1φ1

2r2
þ φ1ð4A2

1 − P2
1 − φ2

1Þ
12r3

þ � � � ð44Þ

where all the coefficients are constants. This applies to
hairy black holes with mass and electric charge but
electrically neutral scalar hair (q ¼ 0). The corresponding
numerical solutions are shown in Fig. 5.
When q ≠ 0, asymptotic expansions of the gauge and

scalar fields give P∞ ¼ P1 ¼ 0 or φ∞ ¼ φ1 ¼ 0. This may
mean that the gauge or scalar field decays faster than 1=rn

at infinity or that no electrically charged scalar hairy black
hole solutions exist. In our numerical calculation, we could
not find any hairy black hole solutions with electrically
charged scalar hair. These two findings strongly suggest the

FIG. 5. Numerical solutions for q ¼ 0.
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absence of charged hairy black holes in our theory. Thus,
this theory might not realize SSB associated with local U(1)
symmetry.

V. CONCLUSION

This study reveals that spontaneous symmetry breaking
(SSB) enables the formation of “stable” hairy black holes in
Einstein-scalar-Gauss-Bonnet (EsGB) theory with U(1)
symmetry, starting from black holes without hair. The
vanishing of the Gauss-Bonnet term at infinity confines the
SSB process to the vicinity of the black hole horizon, where
the interacting potential has a nontrivial effect. To support
this argument, we generated hairy black holes irrespective
of the sign of the coupling function in [14]. This is different
from the spontaneous scalarization [15] which necessitates
a positive coupling function for hairy black hole formation.
We then investigated the stability of hairy black holes for
various values of α in the symmetric and symmetry-
broken phase.
We first discovered that when 2M ¼ 1 and l ¼ 0,

Schwarzschild black hole becomes unstable beyond
αSch ¼ 5

24
and is expected to transform into hairy black holes.

To describe this,we focus on the initial stage of forming hairy
black holes, where a scalar field is beginning to develop.
Thus small values for the scalar field are imposed near the
black hole horizon, specifically jφhj ≤ 3

10
and jσhj ≤ 3

10
in the

symmetric and symmetry-broken phase respectively.
For the global U(1) symmetry, hairy black holes

become unstable if αcrit ≤ α < αmax. In the limit of a
small field value of φh, the critical point of α at which the

hairy black hole become unstable are approximately equal
to the value for the Schwarzschild black hole (αSch ≈ αcrit).
Therefore, the Schwarzschild black hole might not evolve
into hairy black holes in the symmetric phase. In the
symmetry-broken phase, the effective potential takes
positive values, indicating that the hairy black holes are
all stable against the scalar field perturbation. Thus, we
expect that the Schwarzschild black holes in the unstable
range of αðα > αSchÞ would evolve into the hairy black
holes in the symmetry-broken phase.
For the local U(1), we found electrically charged black

holes with neutral scalar hairs but no hairy black holes with
electrically charged scalar hairs. This indicates that SSB
associated with local U(1) is unlikely to occur within this
theoretical framework.
Our approach applies to theories with diverse sym-

metries and admits generalization using a broader class
of coupling functions. To advance our understanding, we
must explore the possibility of identifying the scalar hair
with one found in standard models. This connection could
imply the existence of hairy black holes generated through
spontaneous symmetry breaking in our universe.
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