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The accurate observations of neutron stars have deepened our knowledge of both general relativity and
the properties of nuclear physics at large densities. Relating observations to the microphysics that govern
these stars can sometimes be aided by approximate universal relations. One such relation connects the ratio
of the central pressure to the central energy density and the compactness of the star, and it has been found to
be insensitive to realistic models for the equation of state to a ∼10% level. In this paper, we clarify the
meaning of the microscopic quantity appearing in this relation, which is reinterpreted as the average of the
speed of sound squared in the interior of a star, hc2si. The physical origin of the quasiuniversality of
the hc2si − C relation is then investigated. Using post-Minkowskian expansions, we find it to be linked to
the Newtonian limit of the structure equations and the fact that the equations of state that describe neutron
stars are relatively stiff. The same post-Minkowskian approach is also applied to the relations between hc2si,
the moment of inertia, and the tidal deformability of a neutron star, in which cases the same degree of
universality is found across post-Minkowskian orders.

DOI: 10.1103/PhysRevD.110.024011

I. INTRODUCTION

Neutron stars (NSs) are highly compact astrophysical
objects, in which matter exists at extremely dense levels,
with their maximum density possibly reaching up to ∼10
times the saturation density ρsat ¼ 2.7 × 1014 g=cm3. This
unique environment renders a NS an ideal laboratory for
fundamental physics, encompassing tests of general rela-
tivity (GR) and investigations into the equation of state
(EOS) of supranuclear matter. To realize this potential,
accurate measurements of NS observables are needed.
Recent gravitational wave (GW) detections of binary NS
mergers [1,2], radio observations of pulsars [3–5], and
pulse-profiling of x-ray data from the Neutron-Star-Interior
Composition Explorer (NICER) [6–9], are beginning to
provide the first accurate measurements of NS radii,
masses, and tidal deformabilities. Next-generation GW
observatories such as the Einstein Telescope [10] and
the Cosmic Explorer [11], as well as future x-ray missions,
will allow an increase in abundance and precision of such
measurements.
An important tool for the interpretation of NS observa-

tional data and its linkage to the microphysics governing
the interior of these stars lies in approximate universal

relations, i.e., EOS-insensitive relations between NS prop-
erties. One example is the I-Love-Q relations [12], which
connect (a dimensionless version of) the moment of
inertia, tidal deformability, and quadrupole moment to
each other, and can be used to break degeneracies in GW
parameter estimation. Another example is the binary Love
relations [13,14], which connect (a dimensionless version
of) the tidal deformabilities of two NSs in a binary to each
other and can enable the measurement of individual tidal
deformabilities from GW data. For a review of approxi-
mate universal relations, we refer the reader to Ref. [15].
Approximate universal relations between macroscopic

observables and hydrodynamic quantities are also known to
exist. One example is the relation between the pressure at
densities ð1–2Þρsat and the radius and tidal deformability of
a NS with a mass of ð1–1.4ÞM⊙ [16,17], which has been
used to constrain the EOS space at these densities using
observational data [18,19]. In a recent study [20], a novel
approximate universal relation of this type was established.
This relation links the ratio between the central pressure
and the central energy density, denoted as pc=ϵc, to the
compactness C, dimensionless moment of inertia Ī, and
dimensionless tidal deformability Λ. This relation was
shown to hold for a large range of realistic and parametrized
EOSs commonly used to describe NSs, and is illustrated in
Fig. 1 for a set of tabulated EOSs. Through these relations,
a measure of C, Λ, or Ī would therefore yield an inference
of pc=ϵc.
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The perhaps surprising insensitivity of this relation to the
choice of EOS, despite it connecting hydrodynamic quan-
tities (pc=ϵc) to macroscopic observables, raises questions
about the underlying reasons for its existence. Previous
research, e.g., [12,28–30], has been dedicated to identifying
the causes of the emergence of EOS-insensitive relations
in NSs, particularly regarding the I-Love-Q one. In these
studies, several aspects of the approximate universal
relation were analyzed, such as analytic approximations
for the observables, the contributions of different segments
of the NS interior and EOS to the approximate universality,
and which assumptions are more relevant to the insensi-
tivity, among others. Inspired by the strategies adopted in
these works, we here study the physical origins of the
quasiuniversality of the pc=ϵc—C=Λ=Ī relation presented
in [20].
We begin by establishing that the ratio pc=ϵc can be

identified with the averaged speed of sound squared inside
a NS, hc2si, where the average is understood to be taken
across the range of energy densities present inside the star.
This reinforces the interpretation of this quantity as a
measure of the mean NS stiffness. Next, we study the
approximately universal hc2si − C=Λ=Ī relations analyti-
cally, both in the Newtonian limit and in post-Minkowskian
expansions. In the Newtonian limit, we find that the same
relation, hc2si ¼ C=2, applies for various EOSs (i.e., an
incompressible fluid, an n ¼ 1 polytrope, and a Tolman VII
density profile [31]), which, despite their simplicity, are
relevant to the description of NSs. We interpolate between
these models by considering two one-parameter families of
EOSs, namely, a family of polytropes and a family of
generalized Tolman VII profiles, the latter of which we
introduce in this paper. We show that, in the Newtonian
limit, the hc2si − C relation is remarkably flat over the range
of model parameters most relevant to the description of
NSs, with an EOS dependence of only ∼3% and ∼6% for

polytropic EOSs and the generalized Tolman VII model,
respectively (cf. Fig. 4 in Sec. III B 1).
We confirm and extend the above conclusions by

considering NSs in the post-Minkowskian expansion,
expressing solutions as power series in the NS compact-
ness. We find that the hc2si − C relation becomes increas-
ingly sensitive to the EOS as one includes higher powers
of compactness (i.e., higher order GR contributions). The
EOS dependence increases to ∼9% for both the polytrope
family and the generalized Tolman VII family, when
considering up to third-order contributions in compact-
ness for all stable NSs with these EOSs (cf. Figs. 5 and 6
in Sec. III C 1). We assess to which point these semi-
analytic results for simple, one-parameter families of
EOSs can be informative of realistic EOSs. We conclude
this is true as long as the star is sufficiently compact
(C ≳ 0.1).
With an understanding of the hc2si − C relation under our

belts, we consider the I-Love-hc2si relation. We conduct a
similar study in the Newtonian limit and through post-
Minkowskian expansions. Unlike in the hc2si − C case, we
find that the I-Love-hc2si relation presents the same degree
of universality in the Newtonian limit (cf. Figs. 9 and 10 in
Sec. IVA 2) and in the presence of increasing GR con-
tributions (cf. Figs. 11 and 12 in Sec. IV B). For example,
we find that the sensitivity of the I-Love-hc2si relation to
variations of the generalized Tolman VII family remains at
the ∼10%–11% level to all orders in compactness.
The remainder of this paper presents the details that

support the conclusions summarized above and it is
organized as follows. In Sec. II, we elucidate the physical
significance of pc=ϵc as the average speed of sound
squared. In Secs. III and IV, we delve into the origins of
the hc2si − C relation and I-Love-hc2si relations, corre-
spondingly, following a post-Minkowksian approach.
Section V summarizes our conclusions.

FIG. 1. Relation between the average speed of sound squared (or, equivalently, the ratio of central pressure to central energy density,
hc2si ¼ pc=ϵc) and the compactness (C), tidal deformability (Λ), and dimensionless moment of inertia (Ī) of NSs obeying a set of
realistic EOSs (KDE0v [21–23], KDE0v1 [21–23], Rs [21,22,24], SK255 [21–23], SK272 [21–23], SKI2-6 [25], SkMp [21,22,26],
SkOp [25], SLY2 [27], SLY230a [21,22,27], and SLY9 [21,22,27], with tables obtained from the CompOSE repository). Curves for an
incompressible fluid and the Tolman VII solution are also shown.
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II. pc=ϵc AS A MEASURE OF THE
AVERAGE NS STIFFNESS

Let us begin by providing a new interpretation for the
ratio pc=ϵc between the central pressure and central energy
density. As argued in [20], this ratio can be physically
interpreted as a measure of the mean stiffness of nuclear
matter inside a NS, indicative of the global growth of
pressure with respect to the energy density. Indeed, let us
assume that the energy density is zero when the pressure is
null, i.e., ϵðp ¼ 0Þ ¼ 0, so that then

pc

ϵc
¼ 1

ϵc

Z
ϵc

0

dp
dϵ

dϵ ¼ 1

c2ϵc

Z
ϵc

0

c2sdϵ≕ hc2si: ð1Þ

The quantity hc2si is the dimensionless speed of sound
squared averaged over the range of energy densities present
inside the NS. This expression reinforces the interpretation
provided in [20] since the speed of sound is a typical
indicator of the stiffness of an EOS.
Avisual representation of this average is shown in Fig. 2,

where we present the function c2sðϵÞ for two representative
EOSs. The filled circles in this figure indicate the central
energy density and the maximum speed of sound inside a
star with C ¼ 0.2. The speed of sound squared, averaged
over the energy density, is then nothing but the “area under
the curve” (i.e., the shaded regions) divided by the central
energy density (because the energy density at the surface
is zero).
The approximate universality between hc2si and C is then

connected to the fact that two NSs with different EOSs but
the same compactness will typically have different central
energy densities. As we can see from Fig. 2, as one
considers an EOS with a smaller stiffness, one naturally

decreases the rate at which the speed of sound increases as a
function of energy density in the NS interior. This,
then, implies that, to obtain the same compactness as a
NS with a stiffer EOS, the central energy density must be
higher. This naturally increases the area under the c2s − ϵ
curve, in such a way that the ratio of this new area to the
new central energy density is roughly unchanged. Beyond
these qualitative considerations, in the remainder of this
paper, we analyze the hc2si − C=Λ=Ī relations in a post-
Minkowksian framework.

III. hc2s i − C RELATION

To explore the underlying causes behind the quasiuni-
versality of the hc2si − C relation, in this section, we first
assess its presence within analytic solutions for the TOV
equation [31,33], namely, the incompressible, Tolman VII
and Buchdahl solutions. The common Newtonian limit of
the hc2si − C relation in those cases motivates us to follow
this up with a study of that relation for two one-parameter
families of EOSs: polytropes and a generalized version of
the Tolman VII EOS, first in the Newtonian limit and then
within a post-Minkowskian framework. Finally, we con-
trast these simple models with realistic EOSs and discuss in
which regime the results obtained for the former can be
informative of the latter.

A. Exact solutions in GR

While several known analytic solutions to the TOV
equations exist, not all of them yield relevant descriptions
for NSs. Here, as in [16], we shall present the hc2si − C
relation for three exact solutions of the TOVequations: the
incompressible fluid, a Tolman VII fluid, and a Buchdahl
fluid. For concreteness, and to further establish notation,
we review the TOV equations in GR in Appendix A 1.
Detailed formulas for the models we consider can be found
in Appendix A 3.

1. Incompressible fluid

We first examine the incompressible case, which describes
a fluid with constant density. The EOS is given by

ϵðpÞ ¼ ϵc ¼ constant; ð2Þ

which leads to the simple analytic relation1 (cf.AppendixA 3)

hc2si ¼
pc

ϵc
¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p
− 1

: ð3Þ

FIG. 2. Speed of sound as a function of the energy density
for two EOSs with varying stiffness, KDE0v [21,22,32] and
SLY2 [21,22,27] The filled circles indicate the central energy
density and the speed of sound squared that corresponds to a NS
with compactness C ¼ 0.2 for each EOS.

1Although an incompressible fluid does not satisfy the con-
dition ϵðp ¼ 0Þ ¼ 0 required for Eq. (1) to hold, and has a
diverging speed of sound, throughout the paper we adhere to the
definition hc2si≡ pc=ϵc.
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This can be expanded for small values of compactness to find

hc2si ≈
C
2
þ C2 þOðC3Þ: ð4Þ

Relation (3) presents some interesting, albeit well-known
behavior. First, the averaged speed of sound diverges when
C → 4=9, which corresponds to the Buchdahl limit, i.e., an
equilibrium sequence of incompressible solutions to the
TOVequations ceases to exist at this value of compactness.
Second, the average speed of sound squared exceeds unity
when C > 3=8. For extremely nonrelativistic stars, the
average speed of sound tends to zero, and, for weakly
gravitating stars, it scales with compactness. The radius of
convergence of the post-Minkowskian expansion (4) is
simply the Buchdahl limit, as one can confirm by inspec-
tion or through the ratio test.

2. Tolman VII fluid

The Tolman VII solution, introduced in [31], is charac-
terized by the density profile

ϵðrÞ ¼ ϵc

�
1 −

�
r
R

�
2
�
: ð5Þ

Again, the averaged speed of sound squared can be
computed analytically,

hc2si ¼
1

15

 
2
ffiffiffi
3

p
tanϕcffiffiffiffi
C

p − 5

!
; ð6Þ

where ϕc ¼ ϕcðCÞ is given by Eq. (A17). This expression
can be Taylor expanded in small C to obtain

hc2si ≈
C
2
þ 133C2

120
þOðC3Þ: ð7Þ

From Eq. (6) we see that the central pressure and,
consequently, the averaged squared speed of sound
becomes infinite when the compactness reaches the point
where ϕcðCÞ ¼ π=2, which corresponds to C ≈ 0.386. This
value of the compactness is lower than the Buchdahl limit
of incompressible fluids, and it defines the end of the
equilibrium branch of the Tolman VII solution. However,
before diverging, hc2si reaches and subsequently exceeds
unity at C ≈ 0.335, which sets the limit beyond which
the fluid becomes superluminal, on average. The Taylor
series (7) for this analytic relation converges for C≲ 0.386,
as one can check with the ratio test, which coincides with
the value beyond which the central pressure diverges.

3. Buchdahl fluid

The Buchdahl EOS [34] is given by

ϵðpÞ ¼ 12ðp�pÞ1=2 − 5p; ð8Þ

where p� is a constant. This equation of state reduces, in the
Newtonian limit, to a n ¼ 1 polytrope, p ∝ ϵ2.
As shown in Appendix A 3, the averaged speed of sound

squared can be cast in this case as

hc2si ¼
C

2 − 5C
; ð9Þ

and for small values of compactness:

hc2si ≈
C
2
þ 5C2

4
þOðC3Þ: ð10Þ

From Eq. (9) one sees that hc2si diverges when C ¼ 2=5.
Contrary to the previous cases, this is not due to the
divergence of the central pressure [which is given by the
regular expression (A24)], but to the fact that the central
energy density becomes null when C ¼ 2=5. This will be
the limiting factor that marks the end of the equilibrium
sequence for the Buchdahl solution. Before that value,
when C ¼ 1=3, the average squared speed of sound
becomes greater than 1, and the fluid becomes super-
luminal, on average. The expansion for low compactness
values, Eq. (10), has a convergence radius of C ¼ 2=5, as
expected from the analytic expression, and as can also be
found via the ratio test.
As a final remark, notice that, for the Buchdahl solution,

the relation between hc2si and C, given in Eq. (9), is exactly
the ratio of two linear polynomials, which succinctly
captures both the hc2si → C=2 limit as C → 0 and the pole
at C ¼ 2=5. This same structure, but suitably generalized,
could provide useful fitting formulas for the case of
realistic EOSs.

4. Comparing solutions

From the different hc2si − C analytic relations found
above, perhaps themost noteworthy feature is their common
Newtonian limit. The Taylor expansions of the analytic
expressions shown above imply that hc2si ¼ C=2þOðC2Þ,
and the coefficient of the C2 term is of order unity. This
observation leads us to speculate that the emergence of
universality in this limit may be attributed to the predomi-
nance of Newtonian effects over relativistic effects, at least
for EOSs close to those considered here. To further explore
this point, in the next subsection, we study the hc2si − C
relation in the Newtonian limit for two families of one-
parameter EOSs, which interpolate between the models
considered in this subsection. We will later perform a post-
Minkowskian expansion to elucidate the role of GR in the
quasiuniversality.
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B. One-parameter families of EOSs:
Newtonian limit

Given the common Newtonian limit of the averaged
speed of sound squared, regardless of the EOS considered
above, it is of interest to study the Newtonian limit directly
for other EOSs. By “Newtonian limit,” we here mean the
leading-order expansion of the equations of structure when
c → ∞, or equivalently, when G → 0 (see Appendix A 2).
Naturally, it is impractical to fully cover the space of EOS,
as an infinite number of parameters would be needed.
Instead, in what follows we present the hc2si − C relation
for two one-parameter families of EOS, namely, a poly-
tropic EOS and a generalized version of the Tolman VII
solution. As pictorially illustrated in Fig. 3, these families
interpolate between (the Newtonian limit) of the models
considered in Sec. III A. By varying the EOS parameters
that characterize them, one can get a handle on whether the
universal Newtonian limit found for the three models in
Sec. III A is preserved or not across (certain paths in) the
EOS space.

1. Polytropic EOSs

A polytropic EOS is defined as

p ¼ Kρ1þ1
n; ð11Þ

where K is the polytropic constant, and n is the polytropic
index. For Newtonian polytropes, it is customary to define
the dimensionless variables

ξ≡ r=r0; μðN;PÞ ≡m=mðN;PÞ
0 ; ð12Þ

where

r20 ≡ ðnþ 1Þpc

4πGρ2c
; mðN;PÞ

0 ¼ 4πρcr30 ð13Þ

are given in terms of the central rest mass density
ρc ¼ ρðr ¼ 0Þ and the superscript ðN;PÞ stands for
“Newtonian polytrope.” The stellar radius is then given
by R ¼ r0ξ1 and is determined by finding the value of
the dimensionless variable ξ at which pðξ ¼ ξ1Þ ¼ 0.

Similarly, the stellar mass is given byM ¼ m0μ
ðN;PÞ
1 , where

μðN;PÞ
1 ¼ μðN;PÞðξ ¼ ξ1Þ.
With this in hand, we can now compute the averaged

speed of sound squared. From Eq. (13) it follows that

Gm0

r0c2
¼ ðnþ 1Þ pc

ρcc2
¼ ðnþ 1Þhc2si; ð14Þ

so that the stellar compactness is linearly related to hc2si via

hc2si ¼ C

"
ðnþ 1Þ μ

ðN;PÞ
1

ξ1

#−1
: ð15Þ

In this expression, it is evident that both (nþ 1) and

μðN;PÞ
1 =ξ1 are highly dependent of the EOS parameter n.

Consequently, any universality must arise from the combi-
nation of both terms.
The polytropic index values that suitably approximate

the behavior of realistic EOSs for NSs are limited to
n∈ ½0; 1�. For the boundaries, n ¼ 0 (the incompressible
limit) and n ¼ 1 (the Newtonian limit of a Buchdahl fluid),
the equations of hydrostatic equilibrium can be analytically
solved to find

n¼ 0⟶ pðξÞ¼pc

�
1−

ξ2

6

�
; μðN;PÞðξÞ¼ ξ3

3
;

ξ1¼
ffiffiffi
6

p
; μðN;PÞ

1 ¼ 2
ffiffiffi
6

p
: ð16Þ

n¼1⟶ pðξÞ¼pc

�
sinξ
ξ

�
2

; μðN;PÞðξÞ¼ sinξ−ξcosξ;

ξ1¼π; μðN;PÞ
1 ¼π: ð17Þ

Thus, one sees that in both cases

hc2si ¼
C
2

ðn ¼ 0 or 1Þ: ð18Þ

In fact, by solving the Lane-Emden equation (i.e., the
Newtonian version of the TOV equation in the reduced
variables defined above) numerically for values of
n∈ ½0; 1�, we find that the maximum fractional difference
in hc2si=C with respect to a fiducial EOS with n ¼ 0.5 (the
EOS median) is ∼3%. This can be seen in Fig. 4, where we

FIG. 3. Illustration of the two one-parameter families to be
considered along this work, namely, polytropes with n∈ ½0; 1�
and a generalized Tolman VII model which interpolates between
the original Tolman VII solution (k ¼ 2) and an incompressible
density profile (k → ∞).
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show the ratio hc2si=C for the extended interval n∈ ½0; 2�.
This ratio is notably flat for n∈ ½0; 1�, with a stationary
point at n ≈ 0.454, but rapidly increases for higher values
of n, eventually diverging as n → 5. It thus becomes clear
that the universality of the hc2si − C relation in the
Newtonian limit is restricted to relatively stiff EOS (i.e.,
to relatively low values of n).

2. Generalized Tolman VII EOS

Let us now consider fixing the density profile through a
generalized Tolman VII EOS, which we define as

ρðrÞ ¼ ρc

�
1 −

�
r
R

�
k
�
: ð19Þ

The constant k must here satisfy k > 1 to ensure that
dρ=drjr¼0 ¼ 0. When k ¼ 2, the above profile reduces to
the Newtonian version of the Tolman VII profile shown in
Eq. (5), which is thought to be a reliable approximation for
the density profile inside NSs. As k → ∞, we recover the
flat profile characteristic of an incompressible fluid [see
Eq. (2)]. Therefore, Eq. (19) provides an interesting way of
“interpolating” between the Tolman VII and the incom-
pressible fluid profiles, which allows for the analytic
analysis to be developed further.
Let us define the dimensionless variables

x≡r=R; μðN;TÞ≡ m

mðN;TÞ
0

; ð20Þ

where R is the stellar radius, and the superscript ðN; TÞ
indicates the Newtonian generalized Tolman VII solution,
where we set

mðN;TÞ
0 ≡ 4πρcR3: ð21Þ

Then, for arbitrary values of k, the equation of hydrostatic
equilibrium and the equation for the enclosed mass can be
solved analytically to find

pðxÞ ¼ pc

�
1 −

β

hc2si
�
x2

6
−

xkþ2ðkþ 6Þ
3ðkþ 2Þðkþ 3Þ

þ x2kþ2

2ðkþ 1Þðkþ 3Þ
��

; ð22Þ

μðN;TÞðxÞ ¼ x3

3
−

xkþ3

kþ 3
; ð23Þ

where anticipating the notation we will use in our post-
Minkowskian calculations, we have defined β≡Gm0=Rc2.
With this in hand, we can now compute the average

speed of sound squared. From the fact that pðx ¼ 1Þ ¼ 0,
and considering that

C ¼ GM
Rc2

¼ βμðN;TÞð1Þ ¼ β

�
1

3
−

1

kþ 3

�
; ð24Þ

one finds the simple relation

hc2si ¼
�
2þ 1

k
−

3

kþ 4

�
−1
C; ð25Þ

from where we see that

hc2si ¼
C
2

for k ¼ 2 and k → ∞: ð26Þ

For k∈ ½2;∞Þ in Eq. (25), the maximum fractional differ-
ence in hc2si=C with respect to the EOS median is ∼6%,
which characterizes the dependence of the relation with
respect to k in such interval. Here and below, when referring
to the generalized Tolman VII model, the median is defined
using a uniform probability distribution in the variable
q ¼ 2=k∈ ½0; 1�, i.e., it refers to a fiducial model with
q ¼ 0.5 (k ¼ 4). The ratio hc2si=C is shown in Fig. 4 for
the full range k∈ ð1;∞Þ. Similarly to the polytropic case,
hc2si=C is relatively flat over the range k∈ ½2;∞Þ, displaying
a stationary point between the incompressible and the
Tolman VII solutions, when k ¼ 2ð1þ ffiffiffi

3
p Þ ≈ 5.46, or

equivalently, q ≈ 0.37.

C. One-parameter families of EOSs:
Post-Minkowskian expansion

In the previous subsections, we observed that the
emergence of the quasiuniversality of the hc2si − C relation
is rooted in the Newtonian limit and restricted to relatively
stiff EOSs. Furthermore, upon examining the exact sol-
utions in GR, we noted that the contribution of higher-order

FIG. 4. Ratio between the average speed of sound squared and
the compactness for two one-parameter families of solutions to
the Newtonian equations of structure, the polytropic EOS (in
pink) and the generalized Tolman VII solution (in dashed cyan).
We use the polytropic index n to parametrize the former, and for
the latter, we use the quantity 2=k, which reduces to the
incompressible case when 2=k ¼ 0 and to the Tolman VII case
when 2=k ¼ 1.
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terms becomes increasingly dependent on the EOS. To
more precisely quantify the impact of GR on this depend-
ence, we perform a post-Minkowskian expansion for the
aforementioned one-parameter families of EOSs, which
allows us to systematically study and analyze such effects
semianalytically.

1. Polytropic EOSs

The relativistic generalization of the polytropic family of
EOS is

pðρÞ ¼ Kρ1þ1
n; with ϵ ¼ ρc2 þ np: ð27Þ

Wewill once more use the dimensionless quantities defined
in Eq. (12), ξ and μðPÞ here, where the superscript (P)
indicates that we are referring to the polytropic EOS.
Additionally, we use the definitions p̄≡ p=pc,
ρ̄≡ ρ=ρc, and ϵ̄≡ ϵ=ðρcc2Þ, where the subscript c stands
for the central value of a particular variable. The relativistic
structure equations can then be written as

dμðPÞ

dξ
¼ ξ2ϵ̄;

dp̄
dξ

¼−ðnþ1Þ ðϵ̄þσp̄ÞðμðPÞ þσξ3p̄Þ
ξ2ð1−2ðnþ1ÞσμðPÞ=ξÞ :

ð28Þ

The dimensionless parameter σ ≡ pc=ðρcc2Þ is related to
the average speed of sound squared via

hc2si ¼
pc

ρcc2 þ npc
¼ σ

1þ nσ
: ð29Þ

In the Newtonian limit, we have that σ ≪ 1, and therefore
hc2si ∼ σ ≪ 1 which then implies that all three quantities
(hc2si, σ, and C) are natural expansion parameters in the
post-Minkowskian approximation.
By considering σ as the small parameter, we can search

for power series solutions of the form

μðPÞðξ; σÞ ¼
XN
i¼0

μðPÞðiÞ ðξÞσi þOðσNþ1Þ; ð30Þ

p̄ðξ; σÞ ¼
XN
i¼0

pðiÞðξÞσi þOðσNþ1Þ: ð31Þ

Additionally, the dimensionless radius of the star and
dimensionless mass of the star can also be expanded in
the form

ξ1ðσÞ¼
XN
i¼0

ξ1;iσ
i; μðPÞ1 ðσÞ¼

XN
i¼0

μðPÞ1;i σ
i; ð32Þ

and can be obtained by solving the resulting equations
perturbatively (see Appendix B for details).

The averaged speed of sound squared as a function of the
compactness can now be found as follows. The compact-
ness is obtained by evaluating

C ¼ ðnþ 1Þσ μ
ðPÞ
1 ðσÞ
ξ1ðσÞ

ð33Þ

as a power series in σ. This series can be rewritten in terms
of hc2si, and can subsequently be inverted into a power
series in C. For example, for an n ¼ 1 polytrope, the next-
to-leading-order term in the hc2si − C relation can be
obtained analytically, and the subsequent terms can be
obtained numerically, namely

hc2si ≈
C
2
þ C2

16
½8þ 9CiðπÞ − 9Cið3πÞ þ 9 ln 3�

þ 2.97C3 þOðC4Þ

≈
C
2
þ 1.15C2 þ 2.97C3 þOðC4Þ: ð34Þ

Observe that, similarly to the analytic solutions, the
coefficient of the C2 term is of order unity.
The post-Minkowskian expansion of the averaged

speed of sound with n∈ ½0; 1� is shown in Fig. 5, which
demonstrates the effects of higher-order terms on the
hc2si − C relation. A significant observation derived from
this plot is that incorporating the C2 and C3 terms results in
an increased sensitivity to the EOS in the hc2si − C relation.
For a fiducial compactness of C ¼ 0.2, the maximal frac-
tional deviation with respect to the EOS median, for
polytropes with n∈ ½0; 1�, raises from ∼3% at OðCÞ
(Newtonian limit) to ∼7% at OðC2Þ, ∼9% at OðC3Þ,
and ∼17% in full GR. This observation is consistent with
the notion that the insensitivity to the EOS (for n∈ ½0; 1�),
which stems from the Newtonian limit, deteriorates (i.e.,

FIG. 5. The variation of hc2si in relation to the post-
Minkowskian expansion for the polytropic equation of state,
considering values of n∈ ½0; 1� along the bottom axis and
representing different compactness levels with distinct colors.
The expansion analysis starts from the first-order term and
progressively incorporates higher-order contributions, up to the
third order, proceeding from left to right. The black dotted line
indicates the numerical solution in full GR for a NS with C ¼ 0.2
for varying values of n.
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the hc2si − C relation becomes more sensitive to the EOS)
as GR contributions are included.

2. Generalized Tolman VII

Let us now consider the case of the generalized Tolman
VII density profile, defined in the relativistic regime as

ϵðrÞ ¼ ϵc

�
1 −

�
r
R

�
k
�
; ð35Þ

where k > 1. This family of solutions interpolates between
the Tolman VII solution, for k ¼ 2, and the incompressible
case, that once again corresponds to k → ∞. Taking the
Newtonian limit, ϵ ¼ ρc2, one recovers the results pre-
sented in Sec. III B 2. As done before, we define the
dimensionless quantities in Eq. (20), but replacing
Eq. (21) by

mðTÞ
0 ≡ 4πϵcR3: ð36Þ

We use the same definition of β, with p̄ ¼ p=pc and
ϵ̄ ¼ ϵ=ϵc. The equation for the enclosed mass can be
directly integrated and results in

μðTÞðxÞ ¼ x3

3
−

xkþ3

kþ 3
; ð37Þ

where the superscript (T) indicates the generalized Tolman
VII solution and where once again the compactness and the
parameter β are linearly related by

C ¼ GM
Rc2

¼ βμðTÞð1Þ ¼ β

�
1

3
−

1

kþ 3

�
: ð38Þ

The dimensionless pressure then obeys the differential
equation

dp̄
dx

¼ −
β

hc2si
ðϵ̄þ hc2sip̄ÞðμðTÞ þ hc2six3p̄Þ

x2ð1 − 2βμðTÞ=xÞ : ð39Þ

Let us now choose stellar compactness as our small post-
Minkowskian expansion parameter to obtain power series
approximations to the solution for the pressure:

p̄ðx;CÞ¼
XN
i¼0

piðxÞCi; hc2siðCÞ¼
XN
i¼0

diþ1Ciþ1; ð40Þ

where we write the relevant boundary condition as
p̄ð0;CÞ ¼ 1, while the requirement that p̄ð1;CÞ ¼ 0 deter-
mines the coefficients in the expansion of hc2siðCÞ. For the
generalized Tolman VII models, the structure equations can
be solved analytically, order by order, for any k and up to
high values ofN. Here we show such analytic solution up to
order C3 for generic values of k:

hc2si ¼
1þ 2

�
2
k

��
1þ �2k���2þ �2k��C

þ 1þ 17
3

�
2
k

�þ 239
24

�
2
k

�
2 þ 133

24

�
2
k

�
3

3
�
1þ �2k��2�3þ 8

�
2
k

�þ 4
�
2
k

�
2
�C2

þ 17

2

1þ 33
4

�
2
k

�þ 3165
136

�
2
k

�
2 þ 458

17

�
2
k

�
3 þ 1497

136

�
2
k

�
4�

1þ �2k��3�4þ 15
�
2
k

�þ 9
�
2
k

�
2
� C3

þOðC4Þ: ð41Þ

The influence of higher-order post-Minkowskian terms
(i.e., higher order inC terms) on the EOS dependence of the
hc2si − C relation is shown in Fig. 6. Introducing the C2 and
C3 terms leads to an increased variability in the hc2si − C
relation. This observation again, as in the polytropic case,
aligns with the notion that the insensitivity to the EOS (for
generalized Tolman VII models), which originates in the
Newtonian limit, diminishes as GR contributions are added.
For a fiducial compactness of C ¼ 0.2, the maximum
fractional deviation of hc2siwith respect to the EOS median,
for q ¼ 2=k∈ ½0; 1�, increases from ∼6% at OðCÞ
(Newtonian limit) to ∼8% at OðC2Þ, ∼9% at OðC3Þ,
and ∼13% in full GR.

D. Comparison to realistic EOSs

To conclude this section, let us assess how useful the
results obtained above (for simple, one-parameter families
of EOSs) can be for understanding the hc2si − C relation
when using realistic EOSs. To address this question, we
consider a set of 15 tabulated EOSs, which is the same as
that employed in Fig. 1. In particular, we consider the
KDE0v, KDE0v1, Rs, SK255, SK272, SKI2-6, SkMp,
SkOp, SLY2, SLY230a, and SLY9 EOSs, with tables
obtained from the CompOSE repository.

FIG. 6. The variation of hc2si in relation to the post-
Minkowskian expansion for the generalized Tolman VII solution,
considering values of k∈ ½2;∞Þ along the bottom axis and
representing different compactness levels with distinct colors.
The expansion analysis starts from the first-order term and
progressively incorporates higher-order contributions, up to the
third order, proceeding from left to right. The black dotted line
indicates the numerical solution in full GR for a NS with C ¼ 0.2
for varying values of k.
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Realistic EOSs encode the rich behavior of nuclear
matter from the outer crust to the inner core. The adiabatic
index, Γ ¼ dðlogpÞ=dðlog ρÞ, predicted by these EOSs
typically spans a large interval, starting from ∼1.33 at the
outer crust, decreasing after neutron drip, and then increas-
ing considerably (typically above 3) after the crust-core
interface [35]. Naturally, a single polytrope is not capable
of capturing the full behavior of the nuclear EOS, nor is the
density profile fully described by a simple analytic function
as in Eq. (35). Still, it will be useful to construct effective
polytropic and generalized Tolman VII models to NSs
described by our set of realistic EOSs, in order to verify to
which extent (or in which domain) our results for the
former models can be used to build intuition for the latter.
From the many possible definitions of an effective

polytropic index of an EOS inside a NS, we select the
simplest one, consisting of

neff ¼
1

ΓðρcÞ − 1
; ð42Þ

and thus, neff is fully determined by the adiabatic index at
the center of the star. Additionally, we define an effective
generalized-Tolman-VII exponent, keff , by fitting an
expression of the form of Eq. (35) to the energy-density
profile of a given NS. To assess the adequacy of these
effective descriptions, we introduce the following error
measure:

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Δhc2si
hc2si

�
2

þ
�
ΔC
C

�
2

;

s
ð43Þ

where Δ denotes the difference between the quantities
predicted by the effective model (the polytropic or gener-
alized Tolman VII mimickers) and the original tabulated
EOSs, which is then divided by the quantity predicted by
the original EOS.
Figure 7 shows the effective indices qeff ¼ fneff ; 2=keffg

as a function of the stellar compactness, for our set of
tabulated EOSs, while the bottom panel shows the error E
as defined in Eq. (43). In the range of compactness
considered here, neff ∈ ð0; 1Þ for a polytropic description
of the EOS, but it fails to reasonably describe the NS
properties for C≲ 0.1, as the error E rapidly increases.
Physically, this is due to the fact that the effective polytrope
underestimates the stellar radius for low compactness NSs,
for which the crust occupies a larger portion of the stellar
volume. This can be visualized in Fig. 8, where the energy
density profile is represented for very low (C ¼ 0.05),
medium (C ¼ 0.2), and high-compactness (C ¼ 0.28) NSs.
Analogously, an effective generalized Tolman VII model

also fails to describe low compactness stars, with keff
eventually dropping below 1, which is physically unac-
ceptable. By construction, these models preserve the radius
of the star but may fail to reasonably predict its mass

(cf. Fig. 8), giving rise to large errors for small values of C.
For C≳ 0.1, E≲ 0.1 and our results for these simple one-
parameter families of EOSs can be extended to interpret the
case of realistic EOSs.

IV. I-LOVE-hc2s i
Alongside the near EOS-insensitive relation between

hc2si and C, Ref. [20] presented a similar relation between
the average speed of sound squared and both the dimen-
sionless moment of inertia Ī and the dimensionless tidal
deformability Λ, which is insensitive to the EOS at the
∼10% level for realistic EOSs. Having explored the origins

FIG. 7. Effective indices and error norm as a function of the
stellar compactness. The top panel shows the effective polytropic
index qeff ¼ neff (solid lines) and the effective generalized
Tolman VII exponent qeff ¼ keff (dashed lines) for fits to NSs
described by a set of 15 tabulated EOSs. The bottom panel shows
the error measure, as defined in Eq. (43).

FIG. 8. Energy density profiles for a low (left panel), medium
(middle panel), and a high-compactness (right panel) NS. In each
panel, the radial profile is shown for the tabulated (SLY9) EOS,
the effective polytrope, and the effective generalized Tolman VII
model, as defined in the main text.
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of the quasiuniversality of the hc2si − C relation, and
arguing that, for relevant models that describe the NS
interior, this quasiuniversality emerges from the Newtonian
limit and subsequently decays with increasing contribu-
tions of GR, we will now investigate the hc2si − Ī=Λ
relations. Because of the lack of analytic solutions in
GR for both these quantities, we start by analyzing the
relations in the Newtonian regime and proceed to study
their corresponding post-Minkowskian corrections.
Before we begin, let us define the dimensionless quan-

tities that shall be used throughout this section. The
dimensionless moment of inertia and the dimensionless
tidal deformability are respectively defined as

Ī ≡ c4I
G2M3

; Λ ¼ 2k2
3C5

; ð44Þ

where I is the moment of inertia and k2 is the l ¼ 2 tidal
Love number.

A. Newtonian limit

To delve into the question of the role of the Newtonian
limit in the hc2si − Ī=Λ relations, we study them in this
limit and compare any universality, to that present in the
hc2si − C relation, or lack thereof.
The moment of inertia in the Newtonian regime, which

we shall name IðNÞ, is defined as

IðNÞ ¼ 8π

3

Z
R

0

r4ρðrÞdr: ð45Þ

The tidal deformability is found through the perturbation of
a nonrotating equilibrium state. If a static quadrupolar tidal
field perturbs such state, the Eulerian change h2ðrÞ to the
gravitational potential can be found through the Newtonian
limit of Eq. (15) in [36]:

d2h2
dr2

þ 2

r
dh2
dr

−
�
6

r2
− 4πGρ

dρ
dp

�
h2 ¼ 0; ð46Þ

and noticing that regularity at r ¼ 0 implies that h2ðrÞ ∼ r2

as r → 0. Defining y≡ Rh02ðRÞ=h2ðRÞ, the Newtonian
l ¼ 2 Love number can be computed from

kðNÞ
2 ¼ 1

2

�
2 − y
yþ 3

�
; ð47Þ

which is then related to the dimensionless tidal deform-
ability via Eq. (44).

1. Polytropic EOSs

Let us first return to polytropic EOSs, defined in the
Newtonian limit in Eq. (11). For the analytic solutions
presented for polytropes in Sec. III B, when n ¼ 0 and

n ¼ 1, we obtain analytic solutions for the moment of
inertia:

n ¼ 0 ⟶ ĪðN;PÞ ¼ 2

5

1

C2
; ð48Þ

n ¼ 1 ⟶ ĪðN;PÞ ¼
�
2

3
−

4

π2

�
1

C2
; ð49Þ

which can then be related to the averaged speed of sound
squared via

n ¼ 0 ⟶ hc2si ¼
1ffiffiffiffiffi
10

p
�

1

ĪðN;PÞ

�
1=2

; ð50Þ

n ¼ 1 ⟶ hc2si ≈ 0.26

�
1

ĪðN;PÞ

�
1=2

: ð51Þ

Unlike the case of the hc2si − C relation, there is no
common limit of the hc2si − Ī relation between the incom-
pressible model and the n ¼ 1 polytrope. For polytropes
with n∈ ½0; 1�, the quantity ðĪðN;PÞÞ1=2hc2si displays a frac-
tional difference with respect to the EOS median of (at
most) ∼14%. This quantity is shown in Fig. 9 as a function
of n∈ ½0; 1�.
Such EOS dependence is also present in the relation

between the dimensionless tidal deformability and the
average speed of sound squared. When n ¼ 0 and n ¼ 1
we find that

n ¼ 0 ⟶ ΛðN;PÞ ¼ 1

2C5
; ð52Þ

n ¼ 1 ⟶ ΛðN;PÞ ¼ 15 − π2

3π2
1

C5
; ð53Þ

FIG. 9. hc2si Ī1=2 as a function of q ¼ n for a polytropic EOS
model (dot-dashed pink) and 2=k for a generalized Tolman VII
model (dashed cyan). Observe that for q∈ ½0; 1�, the quantity
hc2si Ī1=2 varies little, thus exhibiting an approximate EOS
universality.
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and thus

n ¼ 0 ⟶ hc2si ≈ 0.44ðΛðN;PÞÞ−1=5 ð54Þ

n ¼ 1 ⟶ hc2si ≈ 0.35ðΛðN;PÞÞ−1=5: ð55Þ

For polytropes with n∈ ½0; 1�, the quantity hc2siðΛðN;TÞÞ1=5
displays a fractional difference with respect to the EOS
median of (at most) ∼14%. This quantity is shown in Fig. 9
as a function of n∈ ½0; 1�.

2. Generalized Tolman VII

Let us now examine the hc2si − Ī=Λ relations using the
generalized Tolman VII profile. The relevant EOS expres-
sion and equilibrium equations pertaining to this solution
were discussed in Sec. III B 2.
By substituting the density profile, ρðrÞ, presented in

Eq. (19), into the integral shown in Eq. (45), we find that

ĪðN;TÞ ¼ 8π

3

Z
R

0

r4ρc

�
1−
�
r
R

�
k
�
dr¼ 8π

3
R5ρc

�
1

5
−

1

kþ5

�
;

ð56Þ

where the superscript ðN; TÞ indicates we are in the
Newtonian regime and using the generalized Tolman VII
solution. By referring to Eq. (24), we can establish the
relation 4πρcR2 ¼ 3Cðkþ 3Þ=k. Substituting this relation
into Eq. (56) yields

ĪðN;TÞ ¼ 2

C2

�
1þ 3

k

��
1

5
−

1

kþ 5

�

¼ k2ðkþ 3Þðkþ 4Þ2
10ðkþ 5Þðk2 þ 3kþ 2Þ2

1

hc2si2
; ð57Þ

where we have used the hc2si − C relation for the gener-
alized Tolman VII solution in the Newtonian limit. With
this expression, we obtain the following limits when k ¼ 2
and k → ∞:

k¼ 2 ⟶ ĪðN;TÞ ¼ 1

14hc2si2
⟶ hc2si≈0.27

�
ĪðN;TÞ�−1

2;

ð58Þ

k→∞ ⟶ ĪðN;TÞ ¼ 1

10hc2si2
⟶ hc2si≈0.32

�
ĪðN;TÞ�−1

2:

ð59Þ

As expected, when k → ∞, which corresponds to the
incompressible case, one obtains the same limit as that
found using the polytropic EOS when n ¼ 0. Also,
similarly to that case, there is no common limit between
the incompressible case and the Tolman VII profile. For
q ¼ 2=k∈ ½0; 1�, the quantity hc2si

�
ĪðN;TÞ�1=2 displays a

maximum fractional difference with respect to the EOS
median of ∼10%. This quantity is shown in Fig. 9 as a
function of q.
For the tidal deformability, we find that

k¼ 2⟶ ΛðN;TÞ≈0.22
1

C5
⟶ hc2si≈0.37

�
ΛðN;TÞ�−1

5

ð60Þ

k → ∞ ⟶ ΛðN;TÞ ¼ 1

2C5
⟶ hc2si ≈ 0.44

�
ΛðN;TÞ�−1

5:

ð61Þ

For q ¼ 2=k∈ ½0; 1�, the quantity hc2siðΛðN;TÞ1=5 displays a
maximum fractional difference with respect to the EOS
median of ∼10%. This quantity is also shown in Fig. 10 as a
function of q.

3. Comparing solutions

The hc2si − Ī=Λ relations present a stronger dependence
on the EOS than the hc2si − C relation, at least in the
Newtonian regime. The variation in the hc2si − Ī=Λ rela-
tions is depicted in Figs. 9 and 10, respectively, with an
EOS sensitivity of ∼14% for a polytropic EOS with
n∈ ½0; 1� and ∼10% for the generalized Tolman VII
solution with q ¼ 2=k∈ ½0; 1�. To put these numbers in
perspective, we can compare them to the EOS sensitivity of
the (Newtonian) hc2si − C relation, 3% for polytropes and
6% for the generalized Tolman VII solution.
The parallels between the hc2si − Ī and hc2si − Λ relations

are noteworthy, although unsurprising, as these observables
are well known for having a strong universal relation both
in GR and in the Newtonian limit [12]. Given the known
quasiuniversal relations I-Love-C in GR [37,38], one might

FIG. 10. hc2siΛ1=5 for two types of solutions to the Newtonian
equations of structure, the polytropic EOS (in pink) and the
generalized Tolman VII solution (in dashed cyan). We use the
polytropic index n for the former, varying it in the interval that is
relevant for NSs, and for the latter, we use the quantity 2=k that
varies between the incompressible case, when 2=k ¼ 0, and
Tolman VII, when 2=k ¼ 1.
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wonder whether the influence of incorporating GR correc-
tions, as observed in the hc2si − C relation, will similarly
manifest in the moment of inertia and tidal deformability.
We tackle this question next.

B. Post-Minkowskian expansion

To assesswhether increasingGR contributionswill lead to
a reduction in the universality for both hc2si − Ī=Λ relations,
we perform a post-Minkowskian expansion. This enables us
to derive GR contributions in an order-by-order manner,
facilitating a more precise assessment of the impact of each
contribution. In this section, this will be done for the
generalized Tolman VII models alone, defined in Eq. (35).
The relativistic moment of inertia can be derived under the

context of slow rotation, as originally outlined byHartle [39]:

I ¼ 8πR5

3

Z
1

0

dx x4
ðϵþ pÞ

c2
eðλ−νÞ=2ω̄: ð62Þ

Here, gtt ¼ −eν and grr ¼ eλ are metric coefficients describ-
ing the unperturbed (i.e., nonrotating) spacetime, while
gtϕ ¼ −Ωð1 − ω̄Þr2 sin2 θ describes the perturbation due
to rotation (to first order in the angular velocity Ω). The
function ω̄ðxÞ, with x≡ r=R, obeys

1

x4
d
dx

�
x4j

dω̄
dx

�
þ 4

x
dj
dx

ω̄ ¼ 0; ð63Þ

with j≡ e−ðνþλÞ=2, along with the boundary conditions
dω̄=dxjx¼0 ¼ 0 and limx→∞ω̄ðxÞ ¼ 1.
The function λðxÞ, for the generalized Tolman VII

models, can be directly derived from Eq. (37) as λðxÞ ¼
− logð1 − βμ=xÞ. For the metric potentials ν and ω̄, we
employ a power series approximation analogous to Eq. (40):

νðx;CÞ¼
XN
i¼0

νiðxÞCi; ω̄ðx;CÞ¼
XN
i¼0

ω̄iðxÞCi: ð64Þ

We can now solve Eq. (63) and the corresponding equation
for ν,

dν
dx

¼ −
2hc2si

ϵ̄þ hc2sip̄
dp̄
dx

; ð65Þ

analytically, order by order inC, which allows the relativistic
moment of inertia (62) to be computed in successive post-
Minkowskian approximations. In the Newtonian limit (i.e.,
when N ¼ 0), we recover Eq. (57) for the dimensionless
quantity Ī.
The relation Ī − hc2si can be found using Eq. (41). As our

interest lies in the inverse relation, hc2si as a function of Ī,
we perform a series expansion of the moment of inertia
corresponding to an expansion of hc2si about 0. Since in the
Newtonian limit we have that hc2si ∝ Ī−1=2, we expand

around Ī approaching infinity, or, equivalently, Ī−1=2 → 0.
The resulting series converges for Ī−1=2 ≲ 0.49, or Ī ≳ 4.2
(with the radius of convergence being roughly independent
of k). The effects of this expansion in powers of Ī−1=2 on the
hc2si − Ī relation is depicted in Fig. 11, where we show
values of Ī for which hc2si < 1 in GR. Additionally, we
show the full GR curve for a NS with Ī ¼ 10, which agrees
with results displayed in [40]. Observe that, as we consider
higher-order post-Minkowskian orders, hc2si approaches
the full GR value. We expect that the correct solution is
obtained when N → ∞, for values of Ī−1=2 within the
radius of convergence of the series.
Importantly, we observe that the increasing post-

Minkowskian orders seem to have minimal effects on
the EOS dependence of the hc2si − Ī relation. For instance,
for the fiducial dimensionless moment of inertia Ī ¼ 10,
and considering q ¼ 2=k∈ ½0; 1�, the quantity hc2si displays
a maximum fractional difference with respect to the EOS
median of 10% to 11% to all orders. Thus, the degree of
universality observed in the Newtonian limit remains
consistent as we move to higher post-Minkowskian orders.
This is to be compared to the effect of post-Minkowskian
corrections to the hc2si − C relation, which tends to deterio-
rate the EOS quasiuniversality, as discussed earlier.
Now let us consider the tidal deformability. This quantity

is obtained from the generalization of Eq. (46) into

d2h2
dr2

þdh2
dr

	
2

r
þeλ

�
2Gm
r2c2

−
4πGr
c4

ðϵ−pÞ
�


þh2

�
−
6eλ

r2
þ4πGeλ

c4

�
5ϵþ9pþ ϵþp

dp=dϵ

�
−
�
dν
dr

�
2
�
¼ 0;

ð66Þ

FIG. 11. The variation of hc2si − Ī in relation to the post-
Minkowskian expansion for the generalized Tolman VII solution,
considering values of k∈ ½2;∞Þ along the bottom axis and
representing different moment of inertia levels with distinct colors.
The expansion analysis starts from the first-order term and
progressively incorporates higher-order terms, up to the third
order, proceeding from left to right. The black dotted line indicates
the numerical solution in full GR for a NS with Ī ¼ 10 for varying
values of k. The minimum value for the moment of inertia is
determined by the point where hc2si becomes greater than 1 for the
GR solution.
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where h2ðrÞ ¼ −e−νδgtt represents the perturbation to the
ðt; tÞ component of the metric, in terms of which all other
metric potentials can be obtained. The relativistic l ¼ 2Love
number can be computed fromEq. (50) ofRef. [41], recalling
that y≡ Rh02ðRÞ=h2ðRÞ. Furthermore, we again define the
dimensionless tidal deformability through Eq. (44).
Despite h2ðrÞ having an analytic solution in terms of

hypergeometric functions for the generalized Tolman VII
profiles in the Newtonian limit, exact analytic solutions
could not be found to higher post-Minkowskian orders.
Still, to access the impact of post-Minkowskian corrections,
we introduce the power series approximation

h2ðx;CÞ ¼
XN
i¼0

h2;iðxÞCi; ð67Þ

where x ¼ r=R and h2;iðxÞ is calculated numerically.
The relation between the dimensionless tidal deform-

ability and hc2si can be found by rewritingC as a function of
hc2si using Eq. (41). As we are interested in hc2si as a
function of Λ, we perform a series expansion of the tidal
deformability in powers of hc2si, as done previously for the
moment of inertia. Since in the Newtonian limit we have
that hc2si ∝ Λ−1=5, we expand around Λ approaching
infinity, or, equivalently, Λ−1=5 → 0. This expansion, up
to the third order, is displayed in Fig. 12, where we show
values of Λ for which hc2si < 1 in GR. Additionally, we
show the numerical solution for a NS with Λ ¼ 100, which
agrees with measurements for a typical NS [2]. Observe
again that, as we include higher post-Minkowskian orders,
hc2si approaches the full GR result. We expect that the
correct solution is obtained when N → ∞, for values of
Λ̄−1=5 within the radius of convergence of the series
solution.

Importantly, we observe that, for the values for which the
series is convergent, the increasing post-Minkowskian
orders seem again to have minimal effects on the EOS
dependence of the hc2si − Λ relation. For the fiducial tidal
deformability Λ ¼ 100, and considering q ¼ 2=k∈ ½0; 1�,
the quantity hc2si displays a maximum fractional difference
with respect to the EOS median of 10% to 11% to all
orders. Thus, the degree of universality observed in the
Newtonian limit remains consistent as we move to higher
post-Minkowskian orders.

V. CONCLUSIONS

We have here explored the underlying physics respon-
sible for the approximately universal relations between the
ratio of the central pressure to the central energy density,
pc=ϵc, and dimensionless astrophysical observables,
namely, the compactness C, the tidal deformability Λ,
and the moment of inertia Ī of NSs [20]. The quantity pc=ϵc
was reinterpreted as the squared speed of sound averaged
over the range of energy densities present inside the star,
hc2si. The averaged speed of sound squared has a natural
interpretation as a measure of the mean stiffness of the EOS
up to the central energy density of a given NS.
We first studied the hc2si − C relation using analytic

solutions of the TOVequation for an incompressible fluid, a
Tolman VII profile, and the Buchdahl fluid. We found
that, albeit quite different from each other, these EOSs
led to hc2si − C relations with the same Newtonian limit,
hc2si ¼ C=2. This prompted further study of the Newtonian
limit and its relativistic corrections, which we performed
for two one-parameter families of EOSs that interpolate
between the (Newtonian limit of the) models considered
previously: polytropic EOSs and a generalized Tolman VII
profile. For the range of parameters most relevant for the
description of NSs, the hc2si − C relation was shown to be
remarkably flat (with respect to EOS variation) in the
Newtonian limit. This insensitivity to the EOS then
deteriorated as relativistic corrections were included. For
instance, for polytropic EOSs with n∈ ½0; 1�, the maximal
fractional difference of the hc2si − C relation with respect to
the EOS median increased from 3% at OðCÞ (Newtonian
limit) to 9% at OðC3Þ and 17% in full GR.
When contrasting realistic EOSs to the one-parameter

families considered previously, we found that the latter
provides reasonable approximants to the former, as long as
the compactness of the NS is sufficiently large (C ≳ 0.1).
Thus, the EOS insensitivity of the hc2si − C relation, for
realistic EOSs, can be linked to EOSs being relatively stiff
throughout a large portion of the NS for sufficiently large
values of the stellar compactness.
In contrast to the case of the hc2si − C relations, we found

that the approximate universality of the hc2si − Ī=Λ rela-
tions is not enhanced in the Newtonian limit. Indeed, for the
generalized Tolman VII profile with k∈ ½2;∞Þ, we showed

FIG. 12. The variation of hc2si − Λ in relation to the post-
Minkowskian expansion for the generalized Tolman VII solution,
considering values of k∈ ½2;∞Þ along the bottom axis and
representing different tidal deformability levels with distinct
colors. The expansion analysis starts from the first-order term
and progressively incorporates higher-order terms, up to the third
order, proceeding from left to right. The black dotted lines
indicate the numerical solution in full GR for a NS with Λ ¼ 100
for varying values of k.
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that the EOS dependence remains at the 10%–11% level to
all orders in compactness. This is also the case when using
realistic EOSs, as long as the NS is sufficiently compact.
Our work suggests a few avenues for future work. One

possibility would be to study potential approximately
universal relations between hc2si and the quadrupole and
higher-order multipole moments of rotating NSs. This could
be done by considering the slow-rotation expansion [39],
and constructing equilibrium sequences of stars with fixed
rotational periods. Such a study would also benefit from the
post-Minkowskian analysis we laid out in this work.
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APPENDIX A: EQUATIONS OF STRUCTURE
AND ANALYTICAL SOLUTIONS

1. General relativity

The relativistic equation of hydrostatic equilibrium is

dp
dr

¼ −
G
c2

ðϵþ pÞmþ 4πr3p=c2

r
�
r − 2Gm

rc2
� ; ðA1Þ

wherem is the enclosed mass, p is the internal pressure, ϵ is
the energy density, and r is the radial coordinate. The
enclosed mass satisfies the equation:

dm
dr

¼ 4πr2
ϵ

c2
: ðA2Þ

These two equations form a closed system once an EOS is
prescribed and their solution requires boundaryconditions.As
usual, we impose regularity at the center of the star, enforcing
mðr ¼ 0Þ ¼ 0, whilepðr ¼ 0Þ ¼ pc, wherepc is the central
pressure. With these conditions, the radius of the star R is
defined as the radial coordinate atwhich the pressurevanishes,
pðr ¼ RÞ ¼ 0, while the stellar mass is the enclosed mass
evaluated at this radial coordinate M ¼ mðr ¼ RÞ.

2. Newtonian limit

Using that in the Newtonian limit ϵ ¼ ρc2, where ρ is the
rest mass density, Eqs. (A1) and (A2) reduce to

dp
dr

¼−ρ
m
r2
;

dm
dr

¼ ρ
Gm
r2

: ðA3Þ

Just as in the relativistic case, these equations must be
closed by choosing an EOS and prescribing boundary
conditions.

3. Analytical solutions to the TOV equations

In this section we derive expressions (3), (6), and (9) for
the hc2si − C relation for an incompressible fluid, a Tolman
VII density profile, and the Buchdahl EOS, respectively.

a. Incompressible fluid

A constant-density profile

ϵ ¼ ϵc ¼ constant ðA4Þ

results in the following analytic solutions to the TOV (A1)
and the enclosed mass (A2) equations:

pðrÞ¼ ϵc
�
R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2C

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−2Cr2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−2Cr2

p
−3R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2C

p ; mðrÞ¼ 4

3
πr3

ϵc
c2
;

ðA5Þ

where the central energy density ϵc can be expressed in
terms of the stellar mass and radius by

ϵc ¼
3Mc2

4πR3
: ðA6Þ

Evaluating pðr ¼ 0Þ, we obtain

pc ¼ ϵc
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p
− 1

; ðA7Þ

which leads to the simple analytic relation

hc2si ¼
pc

ϵc
¼ 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p
− 1

: ðA8Þ

b. Tolman VII fluid

The Tolman VII solution [31] is characterized by the
density profile

ϵðrÞ ¼ ϵc

�
1 −

�
r
R

�
2
�
: ðA9Þ

To simplify the resulting analytic expressions presented
in [42], we introduce the dimensionless variable x ¼ r=R.
The mass aspect function and pressure can be expressed as
follows:

mðxÞ ¼ 4πϵc
R3

�
x3

3
−
x5

5

�
; ðA10Þ

pðxÞ ¼ c4

4πGR2

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ce−λ

p
tanϕ −

C
2
ð5 − 3x2Þ

�
; ðA11Þ
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where ϵc can be expressed in terms of R and the stellar mass
M, or, alternatively, the compactness C, as

ϵc ¼
15Mc2

8πR3
¼ 15c4C

8πGR2
: ðA12Þ

The functions λðxÞ and ϕðxÞ are given by

e−λðxÞ ¼ 1 − Cx2ð5 − 3x2Þ; ðA13Þ

ϕðxÞ ¼ k −
1

2
log

 
x2 −

5

6
þ

ffiffiffiffiffiffiffi
e−λ

3C

r !
; ðA14Þ

where

k¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C

3ð1−2CÞ

s
þ1

2
log

 
1

6
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2C
3C

r !
: ðA15Þ

At the center of the star (x ¼ 0), we have that λ ¼ 0 and

pc ¼
ϵc
15

�
2
ffiffiffi
3

p
tanϕcffiffiffiffi
C

p − 5

�
; ðA16Þ

where

ϕc ¼ ϕð0Þ ¼ k −
1

2
log ð1=

ffiffiffiffiffiffi
3C

p
− 5=6Þ: ðA17Þ

All of the above allows us to easily calculate the
averaged speed of sound squared analytically, namely,

hc2si ¼
1

15

�
2
ffiffiffi
3

p
tanϕcffiffiffiffi
C

p − 5

�
: ðA18Þ

c. Buchdahl fluid

The Buchdahl EOS [34] is given by

ϵðpÞ ¼ 12ðp�pÞ1=2 − 5p; ðA19Þ

where p� is a constant. With this EOS, one can find an
analytic solution to the TOV equation, which, as presented
in [16], is

pðrÞ ¼ c4

8πG
A2u2ð1 − 2CÞð1 − Cþ uÞ−2; ðA20Þ

where

r ¼ r0ð1 − Cþ uÞð1 − 2CÞ−1; ðA21Þ

u ¼ CðAr0Þ−1 sinAr0; ðA22Þ

A2 ¼ 288πp�Gc−4ð1 − 2CÞ−1: ðA23Þ

At the center of the star, r ¼ r0 ¼ 0 and u ¼ C; thus, the
central pressure can be expressed as

pc ¼ 36p�C2; ðA24Þ

and, from Eq. (8), the central energy density is

ϵc ¼ 72p�C
�
1 −

5C
2

�
: ðA25Þ

With all of the above, we can now compute the averaged
speed of sound square as

hc2si ¼
C

2 − 5C
: ðA26Þ

APPENDIX B: POST-MINKOWSKIAN
EXPANSION OF C− hc2s i FOR

POLYTROPIC EOSS

Differently from the generalized Tolman VII density
profile, for which the post-Minkowskian expansion of the
hc2si − C relation can be found analytically, in the case of a
generic polytropic EOS, the hc2si − C relation must be
obtained numerically. In this appendix, we sketch the
numerical procedure and discuss certain subtleties that
render the straightforward computation of high post-
Minkowskian coefficients of that expansion numerically
challenging.
The compactness C is related to hc2si by

C ¼ ðnþ 1Þσ μ
ðPÞ
1 ðσÞ
ξ1ðσÞ

; ðB1Þ

where σ ¼ ð1=hc2si − nÞ−1 [cf. Eq. (29)], which can be

expanded to any desired order. Here, μðPÞ1 ðσÞ ¼ μðPÞðξ1ðσÞÞ,
and the dimensionless stellar radius, ξ ¼ ξ1, is deter-
mined by

p̄ðξ1ðσÞ; σÞ ¼ 0: ðB2Þ

Inserting the Taylor expansion of Eq. (32) for ξ1ðσÞ in the
above equation, we can solve the latter order by order in a
post-Minkowskian expansion. For example, at Newtonian
order, one obtains

pð0Þðξ1;0Þ ¼ 0; ðB3Þ

which implicitly defines ξ1;0. The coefficient ξ1;i with i ≥ 1

then depends on the respective pressure coefficient pðiÞ, as
well as on derivatives of the lower-order pressure coeffi-
cients (pðjÞ, j < i), evaluated at ξ1;0. Explicitly, for i ¼ 1, 2,
one has
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ξ1;1 ¼ −
pð1Þðξ1;0Þ
p0
ð0Þðξ1;0Þ

; ðB4Þ

ξ1;2 ¼−
pð2Þðξ1;0Þþ ξ1;1p0

ð1Þðξ1;0Þþ 1
2
ξ21;1p

00
ð0Þðξ1;0Þ

p0
ð0Þðξ1;0Þ

: ðB5Þ

The numerical procedure then consists of the follow-
ing steps:

(i) numerically solving the Newtonian equations for

pð0Þ and μðPÞð0Þ , and extracting the value of ξ1;0 such

that Eq. (B3) holds, as well as μðPÞ1;0 ;
(ii) numerically solving the equations for pðiÞ, μ

ðPÞ
ðiÞ , for

i ≥ 1 up to the desired order in the fixed domain
ξ∈ ½0; ξ1;0�, and computing the coefficients ξ1;i and

μðPÞ1;i ; and
(iii) computing the C − hc2si relation from the Taylor-

expanded version of Eq. (B1).

Now, it canbe shown that, around ξ ¼ ξ1;0, the ith pressure
coefficient has the leading behaviorpðiÞ ∝ ðξ − ξ1;0Þn−iþ1. In
the range of interest 0 ≤ n ≤ 1, Eq. (B4) presents a 0=0
indeterminacy, and must be computed by taking the limit of
that expression as ξ → ξ1;0. This limit is expected to be finite
and is easily handled numerically. However, in the same
range 0 ≤ n ≤ 1, Eq. (B5) displays an apparent divergence in
the limit ξ → ξ1;0, since the numerator goes as ðξ − ξ1;0Þn−1
and the denominator goes as ðξ − ξ1;0Þn. A careful analysis of
the differential equation for pð2Þ shows, however, that the
coefficient of the dominant term in the numerator of Eq. (B5),
i.e., ∝ ðξ − ξ1;0Þn−1, vanishes exactly, so that the true lead-
ing-order behavior of both the numerator and denominator is
ðξ − ξ1;0Þn, yielding a finite value for the ratio in the limit
ξ → ξ1;0. A similar situation is expected for higher-order
coefficients (ξ1;i, i > 2). However, numerically the cancel-
lation of diverging terms described above is not guaranteed
due to the inevitable presence of numerical errors, and a
higher-precision calculation may be required.
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