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In fluid dynamics, the Magnus effect is the force perpendicular to the motion of a spinning object as
it moves through a medium. In general relativity, an analogous effect exists for a spinning compact
object moving through matter, purely as a result of gravitational interactions. In this work, we consider
a Kerr black hole moving at relativistic velocities through scalar dark matter that is at rest. We
simulate the system numerically and extract the total spin-curvature force on the black hole
perpendicular to its motion. We confirm that the force scales linearly with the dimensionless spin
parameter a=M of the black hole up to a=M ¼ 0.99 and measure its dependence on the speed v of the
black hole in the range 0.1 ≤ v ≤ 0.55 for a fixed spin. Compared to previous analytic work applicable
at small v, higher-order corrections in the velocity are found to be important: the total force is
nonzero, and the dependence is not linear in v. We find that in all cases the total force is in the
opposite direction to the hydrodynamical analog, although at low speeds, it appears to approach the
expectation that the Weyl and Magnus components cancel. Spin-curvature effects may leave an
imprint on gravitational wave signals from extreme mass-ratio inspirals, where the secondary black
hole has a non-negligible spin and moves in the presence of a dark matter cloud. We hope that our
simulations can be used to support and extend the limits of analytic results, which are necessary to
better quantify such effects in the relativistic regime.

DOI: 10.1103/PhysRevD.110.024009

I. INTRODUCTION

In classical fluid dynamics, the Magnus effect is the
phenomenon of a spinning object, moving through a fluid,
experiencing a force perpendicular to its motion and its
spin [1–3]. An analogous effect is also present in the case of
a black hole (BH) or other compact object due to gravi-
tational interactions when it is subject to a current of matter
or energy that is not aligned to its spin. Such an object will
then experience a force orthogonal to both the spin and the
matter current [4–7].
The Magnus effect in fluid dynamics is caused by

contact interactions between the fluid and the spinning
body at its boundary, which reduce the relative pressure
experienced by the body on the side that is corotating

with the flow. This leads to a net force perpendicular to
the motion and the spin (in the corotating direction).
The gravitational analog, on the other hand, only involves
gravitational interactions between the surrounding cloud
and the compact object and is not a contact force. In the
general relativistic picture, the curvature of the spacetime
displaces the passing matter differently on the corotating/
counter-rotating sides of the BH, leading to an asymmetry
in the flow pattern. Stable orbits on the corotating side can
also pass closer to the body, whereas on the counter-
rotating side, they will tend to be accreted at the same
distance. A higher matter density on one side of the body
will tend to gravitationally attract it, as happens in
dynamical friction [6], and preferential accretion on one
side will also alter its trajectory [5]. In summary, there is a
complex interplay that exchanges momentum between the
matter and the spacetime curvature of (and around) the BH,
leading to motion perpendicular to the matter flux and
the spin.
While previous studies agreed that such a force should

exist, they found conflicting results about the direction of
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the effect. References [5,6] suggested that the gravita-
tional effects produce an “anti-Magnus” force.1 However,
Ref. [4] argued for a gravitational Magnus force in
the same direction as the hydrodynamical Magnus
force when considering nonaxisymmetric relativistic
Bondi-Hoyle accretion.
These differences were resolved in Ref. [7], where the

force was studied in a more rigorous post-Newtonian
analysis. This work highlighted that the total spin-curvature
force (which the previous works had tried to measure) is
composed not just of a gravitational Magnus force, which
has a well-defined form and a direction that is the same as
the hydrodynamical case, but also a “Weyl force,” coming
from the magnetic part of the Weyl tensor, which is highly
dependent on the physical scenario and boundary con-
ditions. Physically speaking, we are interested in the total
force, composed of both Magnus and Weyl, since it is this
that determines the overall motion of the BH in the given
scenario. The direction of the total force is scenario
dependent, and in the case we study in this paper, we find
it to be overall anti-Magnus, in agreement with the work in
Refs. [5,6], since it is dominated by the dynamical friction-
like effect caused by the enhanced density of the flow on
the counter-rotating side (which one can identify with the
Weyl component).
Such spin-curvature effects could produce a detectable

change in gravitational wave signals where the progeni-
tors are located in a dense matter environment. Extreme
mass-ratio inspirals consist of a massive BH with mass
∼106M⊙ such as those observed at the center of galaxies
and a secondary BH with mass comparable to M⊙ [8,9].
During the long inspiral of the secondary [10], the
presence of matter around the massive BH can affect
its trajectory through effects such as modifications of
the mass distribution [11], dynamical friction [12–14],
and Magnus-like effects [7], potentially leaving an
imprint on the gravitational wave signal detectable by
LISA [15,16]. In Ref. [7], it is shown that the gravita-
tional Magnus effect causes orbital precession in extreme
mass-ratio inspirals with a unique modulating effect on
the gravitational wave signal that differentiates it from
other causes.
For the case of dark matter (DM) environments, on

which we focus in this work, the energy densities required
to have significant effects on the gravitational wave signal
are high relative to the expected average galactic values
[15,17–21]. However, average galactic densities describe
DM on large scales only, and the distribution on smaller
scales around BHs is less well constrained. Several

mechanisms exist that could create DM overdensities
around isolated BHs. One is the super-radiant instability,
in which a bosonic field extracts energy and angular
momentum from a highly spinning BH via repeated
scattering in the ergoregion [22–32] (see Ref. [33] for a
review). Another is accretion in the potential well around
BHs, which creates “dark matter spikes” [34–38]. These
spikes have a power law profile with an exponent that
depends on the effective equation of state of the DM
[35,39–44]. For low-mass, wavelike DM candidates, their
form is dependent on the relative Compton wavelength of
the DM particle and the BH horizon [45–50]. Such over-
densities have recently been shown to persist even through
equal-mass mergers [51,52].
In this paper, we investigate numerically the magnitude

of the total effective spin-curvature force on a Kerr BH. We
model a scalar field surrounding the BH with an asymp-
totically homogeneous density, as a model for a light
bosonic DM environment (e.g., axions [53,54]). Our
particular setup for measuring the force is illustrated in
Fig. 1, where the central black circle represents the Kerr
BH, the Jz arrow represents the direction of its angular
momentum, and the vx arrow labels the direction of its
velocity. Due to the presence of the scalar field φ, the BH
experiences a force in the −x direction, which has been
studied in a similar setup in previous work [12,13]. The
force of interest for this work is the one in the −y direction,

FIG. 1. A schematic illustration of the setup of the numerical
simulations used to extract the total spin-curvature force. A
boosted Kerr BH is located at the center of the computational
domain, with its velocity pointing in the þx direction and its
angular momentum pointing in the þz direction. The distribution
of the scalar field φ changes as a result of the curvature of the
metric background, resulting in effective forces on the BH, Fx
(dynamical friction) and Fy (spin curvature). To quantify these
forces, we integrate quantities related to the scalar field momen-
tum within the spherical boundaries ∂Σo and ∂Σi and fluxes of the
scalar field momentum on ∂Σi. Further details are given in the
main text.

1The usual Magnus force has a direction given by ∼v × ω,
where v is the velocity of the fluid relative to the body and ω is the
spin direction of the body, whereas these authors suggested
results of the form ∼ω × v. In more intuitive language, the
authors found a force toward the side of the BH that is counter-
rotating with respect to the matter flux.
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perpendicular to the direction of motion.2 These forces are
labeled with the red arrows in Fig. 1. As in the previous
work, we simulate the scalar field on a fixed metric
background using the GRDzhadhza code [55], and as
such, our results are valid only to first order in the density
of the matter. We extract the total force on the BH in the
y direction by tracking the momentum fluxes of the
simulated scalar field. We fix the scalar field mass as
μ ¼ 0.2M−1, and study the effect of varying the spin and
the velocity of the Kerr BH on the resultant force.
The rest of this paper is organized as follows. In Sec. II,

we provide the scalar field evolution equations, the back-
ground metric on which it evolves, the key theoretical
background to which we compare our results, and details
of our numerical setup and method to extract the spin-
curvature force on the BH. In Sec. III, we present and
discuss the magnitude of the force extracted from our
simulations and its dependence on the BH spin and
velocity. We summarize our results and discuss future
directions in Sec. IV. In Appendix A, we provide further
details of the numerical tests we undertook to validate our
results. Throughout the paper, we use geometrical units
(G ¼ c ¼ 1).

II. SETUP AND NUMERICAL METHODS

A. Scalar field

We consider a complex scalar field, φ, minimally
coupled to gravity. The dynamics of such a field are
described by the following action,

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ð∇μφ
�∇μφ − μ2jφj2Þ; ð1Þ

where g is the determinant of the spacetime metric and μ is
the mass of the scalar field. Varying the field φ with this
action results in the Klein-Gordon equation

ð□g − μ2Þφ ¼ 0: ð2Þ

Solving Eq. (2) requires information on the spacetime
metric, which in the 3þ 1 Arnowitt-Deser-Misner decom-
position has the general form,

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð3Þ

where α is the lapse function, βi is the shift, and γij is the
spatial metric. The unit vector normal to the spatial slices is
nμ ¼ ð1=α;−βi=αÞ. The extrinsic curvature is defined as

Kij ¼ α−1DðiβjÞ; ð4Þ

where Di is the covariant derivative compatible with the
spatial metric γij. We can then recast Eq. (2) as evolution
equations for the real part and the imaginary part of the
scalar field. Explicitly, these take the form

∂tφ ¼ αΠþ βi∂iφ; ð5Þ

∂tΠ ¼ αγij∂i∂jφþ αðKΠ − γijΓk
ij∂kφ − μ2φÞ

þ ∂iφ∂
iαþ βi∂iΠ; ð6Þ

where Π is the conjugate momentum of the real and
imaginary parts of the scalar field φ and Γk

ij is the
Christoffel symbol associated with γij. In this work, the
metric functions α, βi, and γij are related to a boosted Kerr
background, and their specific form is given in the
following section.
We set the initial conditions so that the scalar field is

uniform in the simulation box, with φðt ¼ 0Þ ¼ φ0, and
Πðt ¼ 0Þ ¼ iμφ0. Therefore, the asymptotic density of the
scalar field in its rest frame is

ρ ¼ 1

2
μ2φ2

0 þ
1

2
jΠ2

0j ¼ μ2φ2
0: ð7Þ

Since we do not account for the backreaction of the scalar
onto the metric, the amplitude of the scalar field can
be arbitrarily chosen: the result simply rescales with the
physical value of ρ (assuming ρM2 ≪ 1). In all simula-
tions, we set M ¼ 1, μM ¼ 0.2, and φ0 ¼ 0.1 in the
geometrical units (G ¼ c ¼ 1) used in the code.

B. Fixed metric background and choice of frame

Following Ref. [56], we write the Kerr metric in the
quasi-isotropic coordinates ðt̄; r̄; θ̄; ϕ̄Þ as

ds2 ¼ −
�
1 −

2MrBL
Σ

�
dt̄2 þ ψ4

0

� �
r̄þ rþ

4

�
2

r̄ðrBL − r−Þ
dr̄2

þ r̄2dθ2 þ A
Σ2

r̄2sin2 θ̄dϕ̄2

�
; ð8Þ

where we define

A ¼ ðr2BL þ a2Þ2 − Δa2sin2 θ̄; ð9Þ

Σ ¼ r2BL þ a2cos2 θ̄; ð10Þ

Δ ¼ r2BL − 2MrBL þ a2: ð11Þ

Here, M is the mass of the BH, a is the spin parameter,
rBL ¼ r̄ð1þ rþ

4r̄Þ2 is the Boyer-Lindquist radius, and

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
is the location of the horizons in

Boyer-Lindquist coordinates.

2As pointed out in Ref. [7], it should properly be thought of as
composed of both the Magnus force and the Weyl force and
referred to as the total spin-curvature force.
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As illustrated in Fig. 1, we need to create a relative
motion between the Kerr BH and the simulated scalar field.
To achieve this, we boost Eq. (8) in the x direction.
However, naively applied, this boost would result in the
BH moving across the simulation grid over time. To
remedy this, we also apply a Galilean transformation
(x → x − vt) so that the computational grid tracks the
movement of the BH. The result is that the normal
observers are in the rest frame of the scalar field and
observe a boosted, length-contracted BH, that moves in the
positive x direction. The timelike observers, on the other
hand, move with the BH, and so for them, the BH does not
move (although note that they are not simply in the rest
frame of the BH, as they observe it to be length contracted
and the matter to be at rest). The resulting transformation is,
as in Ref. [12],

t̄ ¼ t=γ − γvx x̄ ¼ γx ȳ ¼ y z̄ ¼ z; ð12Þ

where v is the velocity of the BH and γ is the Lorentz boost.
We call the resulting frame ðt; x; y; zÞ the “simulation
frame.” The original barred coordinates ðt̄; x̄; ȳ; z̄Þ are the
BH rest frame, in which it is most convenient to express our
results to compare with the existing literature.
The lapse α, shift βi, the spatial metric γij, and the

extrinsic curvature Kij can be obtained by applying
Eq. (12) to Eq. (8) and comparing the result against
Eq. (3). In the BH rest frame, ðt̄; r̄; θ̄; ϕ̄Þ, these quantities
can be easily read off from the metric, but in the simulation
frame ðt; r; θ;ϕÞ, the analytical expressions are compli-
cated (although straightforward to implement numerically).
See Sec. II D for more details on the numerical implemen-
tation of the metric background.

C. Quantification of the gravitational
spin-curvature force

We follow the approach described in Refs. [12,13,57] to
quantify the effective force on the BH in the direction
perpendicular to its motion. Strictly speaking, this is not a
gravitational force, since we are working in a general
relativistic framework, but rather it is an exchange of
momentum between the matter and the curvature.
However, given that we can identify observers in the
asymptotically flat region, and that we reach a stationary
state of the matter/BH system, we can define a force
4-vector on the BH Fμ ≡ ∂Pμ

∂τ , where P
μ is the momentum of

the spacetime as measured by the asymptotic observer and
τ is their proper time. We note that this approach relies on
an action-reaction principle in assuming that the force on
the matter is the inverse of the force on the BH. We are
therefore, as pointed out in Ref. [7], measuring the total
spin-curvature force, and not simply the Magnus force.
This will be discussed further in Sec. II E below.
Our simulations neglect the backreaction of the matter

onto the spacetime, which means that our measured force is

valid up to first order in ρM2 (the density as compared to
the curvature of the BH). This would be a reasonable
approximation for most physical scenarios involving DM;
even in the best cases for super-radiant vector clouds, this
number is of order 10−5 [58,59]. There is also a strong
advantage to working in such a fixed background, com-
pared to full numerical relativity as in Ref. [5], in that there
is a well-defined gauge in which to interpret the results.
The energy-momentum tensor of the scalar field, φ, with

the action in Eq. (1) has the form

Tμν ¼ ∇ðμφ�∇νÞφ −
1

2
gμν½∇δφ

�∇δφþ μ2jφj2�: ð13Þ

We define its projections normal to and into the three-
dimensional spatial slice of the spacetime as

ρ≡nαnβTαβ; Si≡−γiαnβTαβ; Sij≡γiαγjβTαβ: ð14Þ

Following Refs. [12,13,57], we extract the backreaction
force in the y direction by the scalar field on the BH in the
simulation frame as

Fy¼∂tPy¼−
Z
∂Σi

dAjαT
j
y|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

“flux”F

−
Z
Σo−Σi

d3x
ffiffiffiffiffiffi
−g

p
Tμ
ν
ð4ÞΓν

μy|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
“source”S

; ð15Þ

where dAj ≔ d2x
ffiffiffi
σ

p
Nj, where σ is the determinant of

the induced metric on the 2-surfaces ∂Σ and Nj is
their outward-pointing normal, normalized such that
γijNiNj ¼ 1. Here, ð4ÞΓν

μi is the Christoffel symbol of
the full four-dimensional metric (see Ref. [57] for its
expression in 3þ 1 decomposed variables and further
implementation details), and Σi ⊂ Σo are three-dimensional
spherical volumes centered around the singularity (see
Fig. 1 for an illustration).
The first term in Eq. (15), which we refer to as the flux

F , is the change in the momentum of the BH due to
accretion of the scalar field into the region Σi near the BH.
The second term, which we refer to as the source S, is the
momentum exchange due to gravitational interactions
between the matter and the curvature (we see explicitly
that it is due to the coupling between the Christoffel symbol
and the stress-energy tensor in the surrounding volume).
In the Newtonian limit, the second term is simply the
gravitational attraction on the BH due to the integrated
effect of the unevenly distributed surrounding matter (see
Fig. 2). The component in the x direction is the dynamical
friction, and the component in the y direction arises due to
the spin-curvature effects. The total force Fi is a well-
defined quantity, while its split between the two terms on
the right-hand-side of Eq. (15) is dependent on the slicing
and on the exact choice of Σi. Nevertheless, we can loosely
identify the former part with the Magnus part of the force
and the latter with the Weyl part of the force (see Sec. II E
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below and Appendix B for further details and a justification
in the Newtonian limit).
To obtain the correct 4-vector component of the force,

we need to account for the difference between the asymp-
totic proper time (also the time measured by observers in
the BH rest frame) compared to our simulation frame. We
therefore find the ȳ component of the covariant spin-
curvature force in the BH rest frame to be

Fȳ ¼ ∂t̄Py ¼ γFy; ð16Þ

using the coordinate transformations in Eq. (12).
The contributions to the extracted force, as shown in

Fig. 3, are found to be oscillatory in time. This appears to
be due to our (somewhat artificial) choice to start
evolving the scalar field from a uniform distribution.
We observe that the total force evolves to a steady average
state, but a long-lived oscillation around that state is

present. We treat the amplitude of these oscillations as the
uncertainty on the force we measure, as marked by the
error bars in Fig. 4. The amplitude appears to gradually
decrease in time, so in principle we could extend the
simulation to later times to further constrain the force.
However, the damping time of these oscillations is long,
so reducing them requires significantly longer simula-
tions, which are computationally infeasible. In particular,
numerical errors and boundary effects accumulate over
time, and these affect the accuracy of the simulation (this
is discussed further in Appendix A).

D. Numerical implementation

We use an adapted version of GRDzhadhza, an analytic
background code [55] for efficiently evolving BH envi-
ronments, based on the numerical relativity code GRChombo

[60,61]. This code evolves the scalar field equations,
Eqs. (5) and (6), on the fixed Kerr background described

FIG. 2. The density ρ of the scalar field surrounding the BH at late times of the simulations with v ¼ 0.5 and different BH spins
a=M. The central black circle shows the inner extraction boundary ri=M ¼ 5. The gray dashed line shows the location of the x axis.
The angular momentum of the BH points to the z axis (pointing out of the page). We see that as the spin increases the matter density
is rotated so that it is higher in the −y direction, resulting in an attractive force in this direction that dominates the total spin-
curvature force. Here, we choose late-time snapshots of ρ where the field is in a roughly steady state, although small oscillations in
time still persist, as can be seen in Fig. 3.

FIG. 3. In this plot, we separate out the contributions to the overall force from the flux F and the source term S, which as discussed in
the main text can be loosely identified with the Magnus and the Weyl parts of the spin-curvature force. Each panel represents a different
speed v, giving rise to the points in third panel of Fig. 4. We use the BH spin parameter a=M ¼ 0.7 in all simulations shown here. We see
that at smaller speeds the contributions are roughly equal and opposite, which is consistent with Ref. [7]. As v increases, the source term
dominates, and we obtain an overall negative force in the y direction.
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above. We extract the induced force by evaluating Eq. (15)
in a fixed coordinate volume. The specific numerical setup
is detailed below.
In all of our simulations, we set the computational

domain size to be L ¼ 1500 M in all directions, but taking
advantage of the reflective symmetry in the z direction to
simulate only half of the domain. The grid spacing on the
coarsest level is Δ0 ¼ 11.718, and we have eight 2∶1
refinement levels, centered at the BH. This gives the finest
resolution Δ8 ¼ 0.046 around the horizon of the BH.
To describe the Kerr BH in the simulation coordinates

ðt; r; θ;ϕÞ, we transform the metric Eq. (8) [written in the
BH coordinates ðt̄; r̄; θ̄; ϕ̄Þ] to the simulation coordinates
according to Eq. (12). The expressions for the metric and
its derivatives can be written down explicitly, but are
extremely long, and we have found that their evaluation
causes a significant slowdown of the simulations to around
6M per hour. To remedy this, we numerically store the
values of the metric in the memory and evaluate the
derivatives using finite differences. Using the resolution
setup discussed above, the difference in the evolution of the
scalar is negligible compared to using the exact derivatives,
but significantly faster. A different coordinate system, such
as a boosted Kerr-Schild metric, would be more efficient
but would require a mapping of the observers (who are
infalling) to the correct inertial asymptotic observers in
order to obtain the correct force. This would require
significantly rewriting the code, but it is an update we
plan to implement in future work.
All results presented in this study are obtained with a

scalar field mass parameter μM ¼ 0.2. Higher masses
require significantly higher spatial and time resolutions,
so this is chosen for numerical convenience. As in the case

of dynamical friction [12–14], the scalar mass should have
an impact on the forces, but we do not study that
dependence in this work.
For the volume over which the force is evaluated, we put

the inner and outer boundaries ∂Σi and ∂Σo at coordinate
radii ri ¼ 5M and ro ¼ 700M in code units. The outer
boundary is sufficiently far out to ensure that we capture the
asymmetric part of the cloud profile (this depends on the
de Broglie wavelength of the scalar). It should also be
reasonably far away from the computational boundary to
reduce boundary effects. The inner boundary allows us to
account for the region close to the horizon where we do not
resolve the full dynamics, so it needs to be slightly outside
that. It is also chosen so that there is no overlap between its
surface and the mesh refinement boundaries, which reduces
numerical noise. Unlike the dynamical friction force, which
scales with r, the spin curvature force we measure seems to
be independent of the precise choices of ri and ro, as
illustrated in the tests presented in Appendix A. Physically,
this is because the asymmetric configuration of the matter
cloud around the BH in the y direction is concentrated
relatively close to it, and so (beyond some radius) there is
no further contribution to the force.

E. Theoretical expectation and interpretation

In Ref. [7], the authors calculate the total spin-curvature
force on a spinning particle moving though a DM cloud
using a first-order post-Newtonian (1PN) approximation.
They break the general formula for the total spin-curvature
force in two parts, as

Fμ
tot ¼ Fμ

Mag þ Fμ
Weyl: ð17Þ

FIG. 4. Magnitude of the total spin-curvature force induced by the scalar field with different BH spin parameters a=M and velocities v.
The left two panels show the extracted y component of the force with different BH spins a but the same BH velocity v (v ¼ 0.3 and
v ¼ 0.5 in the leftmost and central panels, respectively). The right panel shows the Magnus force at fixed BH spin a=M ¼ 0.7 but
different BH velocities. The error bars here show the amplitude of the oscillations between t=M ¼ 1000 and t=M ¼ 1500. The blue
dashed line shows a fit to our results. As discussed in Sec. II E, the total force would be expected to be zero for small v, but at relativistic
speeds, it shows an overall nonzero value in the anti-Magnus direction, in which the Weyl contribution dominates.
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Here, the Magnus force (having the same sign as its
hydrodynamical equivalent) is

Fμ
Mag ¼ 4πϵμνρσJνSρUσ; ð18Þ

where Jμ ¼ −Tμ
νUν is the energy current of the DM cloud

measured by an observer moving with 4-velocityUμ and Sμ

is the spin 4-vector of the BH. In the case of a particle, this
part is entirely determined by the local value of the stress
energy tensor (and equivalently, by the Ricci tensor), and
thus independent of the asymptotic behavior and boundary
conditions. In our framework, we can roughly identify it
with the flux term F defined above, although the precise
value is, as noted already, highly dependent on the choice
of ∂Σi.
The Weyl component is the projection of the spin vector

onto the magnetic part of the Weyl curvature tensor

Fμ
Weyl ¼ −BμνSν; Bμν ¼ ⋆CμανβUαUβ: ð19Þ

Since the Weyl curvature tensor conveys information on
nonlocal matter inhomogeneities, governing tidal forces
and gravitational radiation effects, it is very much deter-
mined by the physical scenario of interest, in particular the
surrounding matter configuration and the boundary con-
ditions. In our framework, it again makes sense to identify
this contribution with the term that is not local to the BH
horizon, that is, the source S.
Our physical scenario in this paper is most similar to the

slab geometry case described in Ref. [7], in particular
to their “case 2,” which is finite in the z direction.3 The
expectation in this case is that the Weyl and Magnus parts
of the force should be equal and opposite, and thus cancel
out to zero. We see evidence that this state is approached in
the low-v limit, as shown in Fig. 3, but at higher v, the Weyl
part appears to dominate, such that the overall force is in the
anti-Magnus direction.
In order to put our results into context, we compare

our total force to the magnitude of the Magnus part of the
force expected from Ref. [7] (but including the factors of
the boost γ that naturally appear). Consider the rest frame
of the BH, in which it has massM, angular momentum per
unit mass of a (so Sμ ¼ ð0; 0; 0; aMÞ), and 4-velocity
Uμ ¼ ð1; 0; 0; 0Þ, while the fluid 4-velocity is

Vμ ¼ ðγ;−γv; 0; 0Þ and so Jμ ¼ Tμ
0 ¼ ρVμV0 ¼ ðργ2;

−ργ2v; 0; 0Þ, with ρ the energy density of the matter in
its rest frame. The resulting formula for the force FMag;PN is

FMag;PN ¼ 4πvγ2ρaM; ð20Þ

in the positive y direction, where ρ ¼ μ2φ2
0 in our simu-

lation setup. In Fig. 4, we plot jFMag;PN j against our
simulation results to give an idea of the deviation from
the expected values at relativistic speeds.

III. RESULTS

Our numerical results are summarized in Fig. 4. In the
left two panels, we observe a linear relationship between
the magnitude of the total spin-curvature force Fȳ and
the BH spin parameter a, at two different BH velocities,
v ¼ 0.3 and v ¼ 0.5. This relationship between the angular
momentum of the compact spinning object and the mag-
nitude of the spin-curvature forces is consistent with the
scaling in Eq. (20). However, in the 1PN analysis of
Ref. [7], the Magnus and Weyl parts of the force cancel
exactly, and so one expects zero net force. For these larger
values of v, it is clear that the behavior changes, with the
Weyl part of the force dominating, such that the net force is
in the anti-Magnus direction, the direction where the flow is
counter-rotating with the BH spin.
The nontrivial dependence on v is shown in the third

panel of Fig. 4, where we now plot the magnitude of the
force against the velocity at one BH spin, a=M ¼ 0.7. We
have fitted a quadratic in v to the results simply to provide
a numerical fit, but further work is needed to understand
the functional form. We can see that the simple addition
of appropriate boost factors to the 1PN Magnus force to
account for the increase in the relative flux, as in Eq. (20),
does not appear to account well for the results.
While we do not present the results here, for v > 0.6 we

see tentative evidence for a drop in the magnitude of the
Magnus force, and even hints that it may change sign,
which supports the use of a quadratic fit. However, it is hard
to simulate BHs with velocities higher than v ¼ 0.55 using
our current numerical setup. At higher velocities, the scalar
field wavelength becomes smaller in the simulation coor-
dinates, making it harder to resolve the field. Our grid
refinement scheme can resolve fine features of the scalar
field in the vicinity of the BH. However, the higher-velocity
simulations require higher resolutions across the whole
simulation domain, which is prohibitively expensive in our
numerical setup. We suggest ways to address this limitation
in Sec. IV.
We also track the dynamical friction force in the x

direction and find that it is not changed significantly
compared to previous results [12,13]. The spin-curvature
force is approximately 1% of the dynamical friction force,
and as such any effect it has on the latter is undetectable

3It is not obvious to us why our results should differ from the
slab geometry that is finite only in the y direction, provided
the finite size h is larger than the size of the region in which
the stationary end state of the cloud becomes asymmetric. The
authors of Ref. [7] discuss this inconsistency as a limit of the
post-Newtonian approach, so this is perhaps resolved by the fully
general relativistic treatment used here. In such a case, they find
that the Weyl force should be equal and in the same direction to
the Magnus force. This is clearly inconsistent with our results, for
which the contributions appear to be of opposite sign, as we will
discuss in Sec. III.
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within the large error bars of that measurement. However,
looking at the changes in the flow pattern in Fig. 2, it is
clear that the spin must have an impact on the dynamical
friction force at some level.
Intuitively, we can understand the total spin-curvature

force as arising from two competing effects. Firstly, as
the BH travels through the matter, an overdensity of the
scalar field forms in the wake of the BH [12]. This
overdensity results in the dynamical friction force Fx. In
the case of a spinning BH, this overdensity is frame
dragged in the direction of the spin, resulting in a buildup
of the field on the counter-rotating (negative y) side of the
flow. This can be clearly seen in the density profiles in
Fig. 2. Overdense regions tend to gravitationally attract
the BH, or, more properly, they contribute to the Weyl
curvature that tends to divert the course of the BH in that
direction. This first contribution can therefore be iden-
tified with the Weyl component of the spin-curvature
force, that acts in the negative y direction. We note that as
the velocity increases, overdense features in front of the
BH shift in the positive y direction, which may contribute
to the fact that the source part of the force appears to be
saturating and possibly even reversing at higher v, as
shown in Fig. 4.
The second contribution to the force comes from F , the

momentum flux of the scalar field onto the BH. This tends
to act in the opposite direction: the scalar is being accreted
preferentially on the counter-rotating side, and the flux
carries momentum in the positive y direction into the BH.
This second contribution can be identified with the Magnus
component of the spin-curvature force, since it acts locally
on the BH. However, for numerical reasons, we measure
this at ri ¼ 5M, rather than at the BH horizon, and, as a
result, what we measure contains contributions from the
Weyl part, too. We clearly see that taking the flux at smaller
r makes F more negative and expect that it should be
possible to reconcile this better with the analytic Magnus
force in coordinates such as Kerr-Schild where we are able
to measure the flux on the horizon. However, the values
shown for F in Fig. 3 give an approximate measure of how
this component scales with v.
Finally, we note that another limitation of our study is the

large uncertainty in the extracted force. We use the time
evolution of the scalar field to arrive at a steady-state field
configurations around the central BH from (arbitrarily
chosen) homogeneous initial conditions. The transient
oscillations of the scalar field are long lived, and so it
would be desirable to start with a configuration closer to the
final state.

IV. CONCLUSIONS

In this work, we simulated a Kerr BH moving at
relativistic velocities through scalar DM that is at rest.
We studied the effect of two parameters (the BH spin
parameter a and the BH velocity v) on the total force

transverse to the motion of the BH and to its spin, which we
identify with the total spin-curvature force.
We confirmed that the total force on the BH scales

linearly with the spin parameter a of the BH up to
a=M ¼ 0.99 and measured its dependence on the speed
v of the BH in the range 0.1 ≤ v ≤ 0.55 for a fixed spin.
The behavior at larger v is nonlinear, and so higher-order
corrections in the velocity must be important, motivating a
search for higher-order analytic results than the previous
1PN estimates that predicted zero net force.
We find that in all cases the total net force is in the

opposite direction to the hydrodynamical analog, although
we confirm that it is made up of both positive and negative
contributions, and at low speeds it appears to approach the
expectation that these Weyl and Magnus components
cancel. Spin-curvature effects may leave an imprint on
gravitational wave signals from extreme mass-ratio inspi-
rals, where the secondary BH has a non-negligible spin and
moves in the presence of a DM cloud. We hope that our
simulations can be used to support and extend the limits of
analytic results, which are necessary to better quantify such
effects in relativistic cases. Further studies can also inves-
tigate the change in the Magnus force induced by scalar
fields with different masses.
The extracted Magnus force in this paper has large

uncertainties due to the long-lived transient oscillations,
and we were limited in the duration of the simulations and
the range of v that we could explore due to numerical
constraints. Using a horizon-penetrating coordinate system
that admits a concise analytic expression for the spinning
boosted case, such as Cartesian Kerr-Schild coordinates,
would help significantly in improving the efficiency and
accuracy of the simulations. This is not as straightforward
as simply changing the fixed background, as one needs to
work out the correct formalism for calculating the exchange
of momentum according to the correct asymptotic observ-
ers. However, there is no major conceptual nor technical
barrier to doing so, and we plan to implement this in
future work.
While this work was in preparation, we became aware of

a concurrent effort to study the aerodynamics of spinning
BHs in full general relativity with a semianalytical
approach [62]. This work considers both particlelike and
scalar field DM models and calculates the backreaction
force in both the y direction (the direction of the BH spin)
and in the z direction (perpendicular to both the BH spin
and the BH velocity), finding that the Magnus force
reverses direction when the BH velocity is larger than
0.55. We find tentative agreement with their result in our
parameter regime, but we leave a full comparative analysis
for future work.
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APPENDIX A: NUMERICAL VALIDATIONS

We validated our fixed background metric by checking
that the Hamiltonian constraints converges to zero at an
appropriate order with increasing resolution and that the
time derivatives for the metric fields are zero.
To test the robustness of the spin-curvature force

extracted from the simulations to changes in the integration
volume, we compared the magnitude of the total force with
different radii ri, and ro of the extraction surfaces Σi, and
Σo, respectively. The result is shown in Fig. 5.
The Magnus forces extracted with different radii ri, ro

are found to be similar. The size of the extraction surfaces
does slightly affect the value of the Magnus force as a
function of the simulation time, but taking the oscillations
of the force magnitude as the level of uncertainty (as we
did in Fig. 4), the end values of the Magnus force are
indistinguishable. Therefore, in the main text, we use
ri ¼ 5M and r0 ¼ 700M for all simulations presented.
Another check we performed was provided by comput-

ing the change in the total y momentum within the
coordinate volume of interest and reconciling it to the
fluxes and sources measured, as described in Ref. [46]. This
provides a strong check on the validity of all parts of the
computational domain. We show the case for v ¼ 0.5 in
Fig. 6, which illustrates well why we find it hard to push
our simulations to higher velocities. The total source and
flux measurements agree well with the change in momen-
tum at early times but diverge after around t ¼ 400M. At
this time, we are able to make a measurement of the force
from the inner flux and source terms as shown in Fig. 3, and

these remain regular for some time afterward. However, the
outer flux and the volume integral for the momentum are
clearly not behaving well, as they are affected by the lower
resolution in the outer part of the domain and the outer
boundary effects. Such effects will eventually propagate
inward and spoil the inner flux and source integrals, and in
general we should not trust our results after these integrals
start to diverge. Above v ¼ 0.6, the agreement is lost even
before a steady state is reached, and so we are not confident
in presenting the results we find for such cases.

FIG. 5. The Magnus force on the BH, Fy, extracted with
different values of ri and ro, as a function of simulation time t=M.
We show here the simulations with parameters v ¼ 0.55 and
a ¼ 0.7. The ri=M ¼ 5, ro ¼ 700 line is used to extract the
Magnus force magnitude presented in the main text.

FIG. 6. This shows our check in which we reconcile the change
in the total y momentum within the coordinate volume of interest
to the (inner and outer) fluxes at the boundaries and the source
term S, as suggested in Ref. [46]. The total source and flux
measurements agree well with the change in momentum at early
times but diverge after around t ¼ 400M due to boundary and
resolution effects. This is sufficient for us to make a confident
measurement of the force but limits the duration of the simulation
in cases of higher v values.
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We also checked the convergence of the measured force
with the BH velocity v ¼ 0.3 and the BH spin parameter
a ¼ 0.99. We choose three different resolutions N1 ¼ 48,
N2 ¼ 64 (which is used in all simulations in the main text),
and N3 ¼ 80. The expected convergence factor cðtÞ is

lim
Δ→0

cðtÞ ¼ Δn
1 − Δn

2

Δn
2 − Δn

3

¼


2.16 for n ¼ 2;

3.66 for n ¼ 4;
ðA1Þ

using Δ1;2;3 ¼ L=N1;2;3. From the simulations, we obtain
the force Fy. We then calculate the difference ΔFy between
the middle-resolution run and the low-resolution run (MR-
LR) and that between the high-resolution run and the
middle-resolution run (HR-MR). We multiply the MR-LR
result by the two cðtÞ factors in Eq. (A1) and plot them
against the HR-MR ΔFy in Fig. 7.
We see that the HR-MR result lies between the second-

order and fourth-order predictions, as expected. We note
that the integration method in time used in our code, RK4, is
a fourth-order numerical scheme, and we use fourth-order
finite difference stencils in space. However, calculations of
the force requires surface and volume integrals, which
reduce the total order of convergence.

APPENDIX B: CORRESPONDENCE OF WEYL
AND MAGNUS FORCES WITH FLUX AND

CURVATURE SOURCE TERMS

In the main text, we make the correspondence between
the momentum “flux” into the black hole and the Magnus

force and the curvature “source” term and the Weyl force
as identified in the previous work of Ref. [7]. One can
show that in the nonrelativistic limit the accretion of linear
y-momentum onto a sphere around the BH,

Facc;y ¼
Z
∂Σi

dSjT
j
y;

reduces to the PN expression for the Magnus force,

Fmag ¼ 4πJxS ¼ 4πρvaM:

The remaining balance of the forces (the source and the
Weyl force) must then also correspond in this limit. This
can also be inferred because the Weyl force represents
the gravitational effects of nonlocal matter acting on the
perturber. In the Newtonian picture, this is the integrated
gravitational force of the matter distribution around the
object. The curvature source term corresponds to this
quantity in the Newtonian limit, that is,

Z
Σ
d3x

ffiffiffiffiffiffi
−g

p
Tμ
ν
ð4ÞΓν

μy ≈
Z
Σ
d3x αT0

0
ð4ÞΓ0

0y

≈
Z
Σ
d3x

ρMy
r3

; ðB1Þ

where we have used that ð4ÞΓ0
0y≈∂yα=α and α2¼1−2M=r.

To show the correspondence of the flux and the Magnus
force, we start from the expression for the deflection angle
of a null geodesic around a Kerr BH [67],

δ ¼ 4M
b

þ 4Ma
b2

;

whereM is the mass of the BH, a is its spin parameter, and
b is the impact parameter. This formula is valid on the
equatorial plane of the BH, in the limit of small M=b and
small a=M. It is known that deflection reduces by half for
nonrelativistic trajectories. We can also extrapolate this
formula out of the equatorial plane by projecting the spin
into its component perpendicular to the plane described by
the incoming trajectory of the particle and the center of the
perturber, giving

δ ¼ 2M
b

þ 2Ma sin θ
b2

;

where θ is the angle of the incoming particle with respect to
the z axis in the y − z plane, as shown in Fig. 1.
Solving for b while taking the limit a=M ≪ 1, we get

b ¼ 2M
δ

� a sin θ;

FIG. 7. The difference in the extracted Magnus force between
simulations with three different resolutions, N1 ¼ 32 (LR),
N2 ¼ 64 (MR), and N3 ¼ 96 (HR). The black solid line is the
difference of the Magnus force between the HR and the MR
simulation, and the red solid line is that between the MR and the
LR simulation. The dashed green and blue lines are the expected
MR-LR difference for second- and fourth-order convergence,
respectively. This convergence test is done with parameters
a ¼ 0.7 and v ¼ 0.55.
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where the plus sign is taken when the scattering particle is
corotating with the BH (y > 0) and the minus sign is taken
when it is counter-rotating (y < 0).
Assuming that all particles with δ > δ0 are accreted onto

the BH, then all particles within a semicircle with radius
2M=δ0 − a in the þy direction and all particles within
the radius 2M=δ0 þ a in the −y direction are accreted. The
deflection of the incoming xmomentum into the y direction
can be estimated as

Jy ¼ Jxδ0
yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p

on the edge of the semicircle of accretion. In the limit of
a → 0, the contributions of the two sides would cancel out
(i.e., there is no overall accretion of y momentum due to
the symmetry of the problem). However, with nonzero BH

spin, there is an additional annulus of matter being accreted
on the counter-rotating side with thickness a and an equal
reduction of the accretion on the corotating side. The
additional accreted y-momentum per unit time is then

Facc;y ¼ 2

Z
annulus

Jy dA

¼ 2Jx δ0

Z
annulus

r sin θ
r

r dr dθ

¼ 4Jx δ0

Z
π

0

sin θdθ
Z

2M=δ0þa sin θ

2M=δ0

r dr

¼ 4πJxaM;

which is the Magnus force in the nonrelativistic limit if we
make the identification Jx ¼ ρv.
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