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Causal set theory is perhaps the most minimalistic approach to quantum gravity, in the sense that it
makes next to zero assumptions about the structure of spacetime below the Planck scale. Yet even with this
minimalism, the continuum limit is still a major challenge in causal sets. One aspect of this challenge is the
measurement of distances in causal sets. While the definition and estimation of timelike distances is
relatively straightforward, dealing with spacelike distances is much more problematic. Here we introduce
an approach to measure distances between spacelike separated events based on their causal overlap. We
show that the distance estimation errors in this approach vanish in the continuum limit even for the smallest
distances of the order of the Planck length. These results are expected to inform the causal set
geometrogenesis in general, and in particular the development of evolving causal set models in which
space emerges from causal dynamics.
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I. INTRODUCTION

Planck units, introduced by Planck-self [1], mark a
pivotal cornerstone in the quest for natural units that rely
solely on the fundamental constants rather than on exper-
imental artifacts. At its inception, the significance of the
Planck scale was not fully realized even by Planck. This
scale, however, has emerged as a critical threshold,
embodying the limitations of modern physics in attempting
to reconcile quantum mechanics and general relativity. This
problematic reconciliation revealed a fundamental incom-
patibility between quantum mechanics and general rela-
tivity at the Planck scale, underscored by the Heisenberg
uncertainty principle [2] and the Schwarzschild black hole
radius [3]. This incompatibility asks for the formulation of
a theory of quantum gravity, a pursuit that remains a
fundamental challenge in physics for more than a century.
Causal sets theory (CST) stands as a promising avenue in

this pursuit, proposing a conceptual framework in which
spacetime at the Planck scale is discrete, consisting of
fundamental spacetime atoms interconnected by causal
relations [4–13]. This approach is motivated by the work
of Hawking, King, McCarthy [14], and Malament [15],
which shows that spacetimes sharing identical causal

structures are essentially equivalent up to a conformal
factor.
The discretization of spacetime suggested by CST

implies that our everyday experience of spacetime as a
smooth continuous manifold is an illusion induced by
coarse-graining at scales that are many orders of magnitude
larger than the Planck scale. This transition to larger scales
is known as the continuum limit of causal sets. Taking this
continuum limit demands the ability to measure distances
solely from the causal structure. This task is relatively
straightforward for timelike separated events [5], but it is a
significantly more intricate endeavor for spacelike sepa-
rated events [16–18].
Here, we introduce a methodology for measuring space-

like distances in Minkowski spacetimes and causal sets
built on them. We measure distances between spacelike
separated events based on causal overlaps between them,
and show that such measurements remain extremely precise
all the way down to the Planck scale. Furthermore, this
approach provides an easy-to-work-with framework for
defining reference frames and evaluating some kinematic
quantities along timelike paths.
We proceed by recalling some basic background material

concerning the evaluation of proper times between timelike
separated events and other relevant matters in Sec. II. In
Sec. III, we introduce our approach to measure proper*marian.boguna@ub.edu
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distances between spacelike separated events and discuss
the associated distance estimation errors, which all go to
zero in the continuum limit. In Sec. IV, we perform massive
numerical experiments to test our method both on long-
range distances as well as on short-range ones, which are of
the order of the Planck length. In Sec. V, we show how our
results enable the definition of inertial reference frames,
and how to measure some kinematic properties of timelike
curves. We conclude with relevant remarks, including those
concerning the possibility of extending our approach to
curved spacetimes, in Sec. VI.

II. CONNECTING DISCRETE AND CONTINUOUS
WORLDS: CAUSAL SETS VERSUS

LORENTZIAN MANIFOLDS

A causal set (C;≺) is a locally finite set with a transitive
order relation defined among some of its elements (see
Ref. [13] and references therein). By locally finite, we
mean that given two elements x ≺ y∈ C, the number of
elements in the set fz∈ Cjx ≺ z ≺ yg is finite. With this
order relation, the causet C can be fully encoded as a
directed acyclic graph GC defined as follows:
(1) Each element x∈ C is a node in the graph GC.
(2) There is a directed link in GC pointing from x to y if

and only if x ≺ y and ∄ z∈ Cjx ≺ z ≺ y.
In other words, a link from x to y means that there is no
alternative directed path in C from x to y. Notice that any
causal relation between two elements a and b in C (not
necessarily connected in GC) can be inferred from the
existence or absence of a path (or chain) in GC connecting
both elements. Thus, hereafter, we use the causet C or its
graph representation GC interchangeably.
As defined above, causal sets are general mathematical

structures unrelated to any physical system. However, they
are particularly suitable for describing the causal structure
of spacetime. Within this context, we say that for a pair of
elements x; y∈ C, x ≺ y if and only if y is in the future of x,
or x is in the past of y.
One connection between discrete causal sets and con-

tinuous spacetimes goes as follows. The causal structure of
a Lorentzian manifold M defines a transitive partial order
between spacetime points in the manifold. Therefore, a
Poisson point process of intensity ρ on M defines a
Lorentz-invariant causal set C. When the intensity ρ
diverges, one should be able to recover the original
continuum manifold M from this causal set C alone.
Understanding in what precise sense the continuum limits
of such discrete causal sets are smooth Lorentzian mani-
folds is one of the major challenges within the causal set
program [19–26].

A. Proper times in Minkowski spacetimes

Important steps in this direction have been taken to
recover the proper time between timelike separated events.

In general relativity, the proper time of an observer is
defined as the time in the comoving reference frame, where
the space coordinates of the observer are fixed. In the case
of a causal set, the minimum possible step for any observer
is a link in GC. Thus, we can assume that such links define
the fundamental unit of proper time, ultimately related to

the Planck time tP ≡
ffiffiffiffiffi
Gℏ
c5

q
. The proper time elapsed along

any chain of links in GC is then proportional to the number
of steps along the chain. Using these ideas, in [16], the time
interval between two timelike separated events a ≺ b is
defined as the number of links in the longest chain
connecting a and b, denoted as nCða; bÞ, which defines
the geodesic in C between the two events.
For causal sets sprinkled via Poisson point processes

onto Minkowski Mdþ1 or conformally flat spacetimes of
any dimension dþ 1, it has been shown that the proper
time τCða; bÞ between any two events a ≺ b measured in
the causal set converges in probability to the timelike
distance τMdþ1ða; bÞ between the events in the spacetime,

τCða; bÞ≡ αdρ
−1=ðdþ1ÞnCða; bÞ ⟶ τMdþ1ða; bÞ; ð1Þ

as ρ → ∞ [16,27,28]. Here, αd is a constant that depends
only on the dimension of the spacetime. It is exactly known
only for d ¼ 1, α1 ¼ 1=

ffiffiffi
2

p
, whereas for higher dimensions

numerical simulations give α1 ≲ α2 ≲ α3 [29].
Setting nCða; bÞ ¼ 1 in Eq. (1) defines the characteristic

unit of proper time as a function of the density of the
Poisson point process as τ0 ∼ ρ−

1
dþ1. Equation (1) provides a

way to define an estimator of the proper time in the
manifold using only the information from the causal set.
More importantly, it can be shown that for large density

τCða; bÞ ¼ τMdþ1ða; bÞ þ ρ
βd−1
dþ1 ζd ð2Þ

with βd < 1 and ζd a random variable with bounded
fluctuations [28]. The exact values of the exponents βd
are only known for d ¼ 1, β1 ¼ 1=3, whereas for higher
dimensions take the approximate values β2 ≈ 1=4,
β3 ≈ 1=6, and βd ≈ 0 for d ≥ 4. Yet, even though the exact
value of βd is unknown, by knowing that it is smaller than
one, we observe that by just counting links in GC in the
continuum limit ρ → ∞, we recover the actual proper
times, up to the conformal factor αdρ−1=ðdþ1Þ.

B. Organization of links in Minkowski causal sets

Before proceeding to deriving similar results for space-
like distances, we need to recall how the infinite number of
links emanating from a given event in GC are distributed in
Mdþ1 [13].
Without loss of generality, let us focus on an event

located at the origin of coordinates xi ¼ t ¼ 0. Its first
neighbors are obviously within its future light cone and
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must be spacelike separated, as otherwise they could not be
first neighbors. In dþ 1 dimensions, the future light cone
of a given point can be parametrized such that the metric
tensor within the light cone can be written as

ds2 ¼ −dτ2 þ τ2ðdχ2 þ sinh2 χdΩ2
d−1Þ; ð3Þ

where dΩ2
d−1 is the metric tensor of a (d − 1)-dimensional

sphere of unit radius, τ is the proper time, and the term
within the parentheses is the metric of the d-dimensional
hyperbolic space of constant curvature K ¼ −1. A Poisson
point process with density ρ means that the local density of
sampled events is proportional to the volume element.
Thus, the expected number of events in C in an infinitesimal
neighborhood of coordinates ðτ; χ;Ωd−1Þ is then

ρdV ¼ ρ½τddτ�½sinhd−1 χdχdΩd−1�: ð4Þ

However, not all events in the future light cone are direct
neighbors of the root event. To calculate the density of first
neighbors, we must first evaluate the probability that an
event at proper time τ from the root event is actually
connected to it. Given that Poisson point processes are
Lorentz invariant, this probability is only a function of τ
and can be computed as the probability that there is not any
event within the Alexandrov interval between the root event
and the event on the hyperboloid of constant proper time τ.
This probability reads

ProbðτÞ ¼ e−ρVdðτÞ; ð5Þ

where VdðτÞ is the volume of the Alexandrov set given by

VdðτÞ ¼ vdτdþ1; vd ≡ 1

ðdþ 1ÞΓð1þ d
2
Þ
�
π

4

�d
2

: ð6Þ

The expected number of irreducible links of the root event
in an infinitesimal neighborhood of coordinates ðτ; χ;Ωd−1Þ
is then

½ρτde−ρVdðτÞdτ�½sinhd−1 χdχdΩd−1�: ð7Þ

This result tells us that while first neighbors are homo-
geneously distributed on the hyperbolic space at constant
density ½ðdþ 1Þvd�−1, their proper time coordinates are not
homogeneously distributed. Instead, they follow the nor-
malized measure

pðτ̂Þ ¼ ðdþ 1Þτ̂de−τ̂dþ1

; ð8Þ

where we have defined the dimensionless proper time

τ̂≡ ðρvdÞ 1
dþ1τ: ð9Þ

This equation confirms that the characteristic proper time of
an individual link in GC scales with the density as ρ−1=ðdþ1Þ.

Besides, if we interpret Eq. (8) as a probability density, we
can state that, with a confidence level of 99%, direct
neighbors of the root event are homogeneously distributed
within the hyperbolic shell enclosed by the two hyper-
boloids of proper times

τ− ¼
�
−
ln ð1 − pÞ

ρvd

� 1
dþ1

and τþ ¼
�
−
lnp
ρvd

� 1
dþ1 ð10Þ

with p ¼ 0.005. Figure 1 shows a case example of a
random sprinkling in a square patch of M2 at density
ρ ¼ 5000. Highlighted in red squares the figure shows the
events directly connected to the root event which, as
predicted, are within the two hyperboloids of proper times
τ� (highlighted in orange). It is also worth mentioning that
despite the fact that neighbors are homogeneously distrib-
uted in this hyperbolic shell, they are strongly correlated by
the condition of being spacelike separated. Besides, within
this shell, neighbors are distributed at a constant density
that does not depend on the sprinkling density ρ.
The particular form of Eqs. (8) and (9) implies that both

the average and standard deviation of proper times of direct
neighbors of the root event scales as ρ−1=ðdþ1Þ so that
fluctuations of the proper time of single links do not vanish
in the limit tP → 0 (or ρ → ∞). This, however, does not
imply that the continuum limit cannot be achieved. To see
this, imagine that we take a chain of n links from GC
without any particular selection rule of links. The total
proper time along the chain is

τðnÞ ¼
Xn
i¼1

τi; ð11Þ

where τi is the proper time of a single link of the chain. If
there is no bias in selecting links, we can assume that τis are

FIG. 1. Direct neighbors of the event at the origin of coor-
dinates (blue squares) in a causal set generated from a patch ofM2

at density ρ ¼ 5000. The red dashed lines are the hyperboloids of
constant proper times with τ� from Eq. (10). Gray symbols are
events in the future of the root event but not directly connected
to it.
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identical and independent random variables. Therefore, the
average and standard deviation of τðnÞ are given by

hτðnÞi ¼ nhτi; στðnÞ ¼
ffiffiffi
n

p
στ; ð12Þ

so that the coefficient of variation is

CVτðnÞ ¼
στffiffiffi
n

p hτi : ð13Þ

If we further assume that hτðnÞi is a macroscopic (but
constant) proper time in the Minkowski spacetime, then we
can write that

CVτðnÞ ¼
στffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihτihτðnÞip ∼ ρ−

1
2ðdþ1Þ → 0; ð14Þ

so that in the continuum limit (ρ → ∞) the graph definition
of proper time along any timelike curve is exactly the same
as in the manifold.

III. MEASURING PROPER LENGTHS BETWEEN
SPACELIKE SEPARATED EVENTS USING

CAUSAL OVERLAPS

The evaluation of proper lengths among spacelike
separated events from the causal structure is far more
complex than in the case of timelike separated events. This
is due to the fact that since spacelike events are causally
unrelated, distances between them can only be defined
based on the intersection of light cones. While this is not a
problem in the continuum, not all possible prescriptions to
evaluate geometric distances can be easily translated to
discrete causets [16,17].
One of the most recent and promising approaches [18]

evaluates the distance between two events a and b in a
Cauchy hypersurface Σ as

dΣða; bÞ ∝ inf
r∈Hða;bÞ

½VðrÞ� 1
dþ1; ð15Þ

where Hða; bÞ is the set of future events that are simulta-
neously null to both a and b and VðrÞ the volume of the
past light cone of one such point bounded from below by Σ.
Notice that Eq. (15) is the distance calculated with the
metric induced by Mdþ1 on Σ. While this has perfect sense
in the continuum, its implementation to causal sets has
some caveats. The first one concerns the fact that dΣða; bÞ
depends on the choice of the Cauchy hypersurface, which
in the causal set corresponds to an unextendable antichain.
However, discrete Cauchy surfaces in the causal set form an
uncountable infinite set and, thus, it is not clear what would
be the correct choice without the help of a preexisting
embedding into a continuous manifold. The second prob-
lem is due to the absence in causal sets of events in the null
surface Hða; bÞ, which induces a strong error at distances
of the order of the Planck scale.

Here we introduce a distance estimator for causal sets
that is able to overcome these problems. We begin not with
causal sets, but with a measure of the distance between two
spacelike-separated events in any spacetime based on their
causal overlap. Specifically, we define the causal overlap
Oða; bÞ between two events a and b with respect to an
arbitrary event c∈Pastða; bÞ in their common past as

Oða; bÞ≡ V½C�
min ðV½A�; V½B�Þ þ V½C� ; ð16Þ

where V½·� is the volume of regions A, B, C defined as in
Fig. 2. That is, with Iðx; yÞ ¼ PastðxÞ ∩ FutureðyÞ denoting
the Alexandrov interval between x and y,

A ¼ Iða; cÞnIðb; cÞ; ð17Þ

B ¼ Iðb; cÞnIða; cÞ; ð18Þ

C ¼ Iða; cÞ ∩ Iðb; cÞ: ð19Þ

With this definition, the causal overlap is always in the
rangeOða; bÞ∈ ½0; 1�. If events a and b are timelike or null
separated, then Oða; bÞ ¼ 1, whereas for spacelike sepa-
rated events Oða; bÞ < 1 unless both events are the
same event.
The definition in Eq. (16) is valid for any Lorentzian

manifold. Henceforth, we restrict our attention only to the
case when the spacetime is the Minkowski spacetimeMdþ1

of any dimension d, and discuss other spacetimes in Sec. VI.
Given the freedom in the choice of event c, it is always
possible to chose c such that V½A ∪ C� ¼ V½B ∪ C�.

FIG. 2. Definition of causal overlaps. Sketch of the regions
used for the computation of the causal overlap between events a
and b with respect to event c. Region A (B) is the part of the
Alexandrov interval between events a (b) and c that does not
contain the past of event b (a). Region C is defined as the
intersection of the common past of events a and b with the future
of event c. The causal overlap is the ratio between the volume of
region C and the smallest of the volumes of regions A ∪ C
and B ∪ C.
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In Mdþ1, this is equivalent to saying that events a
and b are at the same proper time τc from c so that
V½A ∪ C� ¼ V½B ∪ C� ¼ vdτdþ1

c . If, without loss of general-
ity, we set event c at the origin of coordinates, then events a
and b are located on the hyperboloid of constant proper time
τc from event c. Therefore, without loss of generality, we
henceforth choose a reference frame in which events a and b
are simultaneous. With these settings, events a and b are
separated by the hyperbolic distance dHdða; bÞ, which is
related to the distance in Mdþ1 as

dMdþ1ða; bÞ ¼ 2τc sinh

�
dHdða; bÞ

2τc

�
: ð20Þ

The crucial point to notice here is that the causal overlap, as

defined in Eq. (16), is just a function of
dHd ða;bÞ

2τc
:

OMdþ1ða; bÞ ¼ fd

�
dHdða; bÞ

2τc

�
; ð21Þ

where fdð·Þ is a function that depends on the spatial
dimension of Mdþ1. The distance can thus be evaluated as

dMdþ1ða; bÞ ¼ 2τc sinh ðf−1d ðOMdþ1ða; bÞÞÞ: ð22Þ

In dimension d ¼ 1, function f1ð·Þ takes a simple exponen-
tial form so that the causal overlap can be written as

OM2ða; bÞ ¼ exp

�
−
dH1ða; bÞ

τc

�
ð23Þ

so that the distance between a and b takes the form

dM2ða; bÞ ¼ τc
1 −OM2ða; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

OM2ða; bÞp : ð24Þ

In arbitrary dimensions, the causal overlap takes a cumber-
some expression (see Appendix A for an integral repre-
sentation). However, it is easy to see that in the limit τc ≫
dHdða; bÞ it behaves as

OMdþ1ða; bÞ ≈ 1 − cd
dHdða; bÞ

2τc
; ð25Þ

where

cd ¼
dþ 1ffiffiffi

π
p Γðd

2
Þ

Γðdþ1
2
Þ : ð26Þ

In principle, by knowing the exact expression of function
fdð·Þ, we can use any arbitrary point c (at proper time τc to a
and b) to evaluate the proper distance between a and b
through Eq. (22). However, precisely because point c (and so
τc) is arbitrary, by choosing one for which τc ≫ dHdða; bÞ,

we can use the asymptotic expression for the causal overlap
Eq. (25) and write that

dMdþ1ða; bÞ ¼ 2

cd
lim
τc→∞

τcð1 −OMdþ1ða; bÞÞ: ð27Þ

The estimation of distances based on causal overlaps
in Eqs. (16), (22), and (27) has a number of desirable
properties. The obvious one is that, thanks to the number-
volume correspondence, the definition of causal overlaps
in spacetimes translates straightforwardly to causal sets:
the volumes of regions A, B, C in Eq. (16) become the
numbers of elements in the corresponding sets in a causal
set. This implies that distance estimations are intrinsic to
the causal set graph, without any reference to an embed-
ding continuous manifold. Another interesting property of
Eq. (27) is that the dependence on spacetime dimension
appears only as a multiplicative constant. Therefore, even
without knowing the actual value of d, we can estimate
distances up to a conformal factor. Finally, we note that
there is an infinite number of possible events c giving rise
to the estimation of proper distances. Thus, the proper
distance between two events can be understood as a
measure of the entanglement of both events with their
common past.
We now focus on causal sets arising from Poisson point

processes on Mdþ1, in which case the effectiveness of
Eqs. (22) and (27) to recover the continuum in the limit
ρ → ∞ depends on the statistical properties of the causal
overlap in Eq. (16), which we can rewrite in this case as

OCða; bÞ≡ N½C�
N½A� þ N½C� ; ð28Þ

where N½C� is the number of events in region C and N½A� is
the number of events in region A or B defined in Eqs. (17)–
(19). We note that N½A� and N½C� are random variables
defined in disjoint regions, and so they are statistically
independent. Using this fact, it is easy to prove that the
average value of OCða; bÞ is

hOCða; bÞi ¼ OMdþ1ða; bÞ: ð29Þ

Thus, the causal overlap as measured on C is, on average,
the same as the causal overlap in Mdþ1.
Beyond the average, we can estimate the relative

statistical error of the causal overlap as [30]

δOCða; bÞ
hOCða; bÞi

¼ 1 − hOCða; bÞiffiffiffiffiffiffiffiffiffiffiffiffi
ρV½C�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V½C�

V½A�

s
: ð30Þ

This expression approaches zero when ρ ≫ 1, even at the
smallest scales. To see this, suppose that a and b are
separated by a proper length of the order of the Planck
scale, that is, dMdþ1ða; bÞ ≈ ρ−

1
dþ1 ∼ tP. Using now Eq. (25)

MEASURING SPATIAL DISTANCES IN CAUSAL SETS VIA … PHYS. REV. D 110, 024008 (2024)

024008-5



and the definition of causal overlap, we see that

1 − hOCða; bÞi ∼ V½A�
V½C� ∼

tP
τc
. Combining these scaling results

with Eq. (30) we conclude that the relative error of the
causal overlap between two events spacelike separated by a
Planck length scales as

δOCða; bÞ
hOCða; bÞi

∼
�
tP
τc

�dþ2
2

; ð31Þ

which goes to zero when tP → 0. These results show that
the continuum can be recovered by measuring causal
overlaps with the number of events instead of actual
volumes provided that tP → 0.
Finally, the error in the estimation of the distance by

Eq. (27) will have a contribution from the error in the causal
overlap computed above and the one from the estimation of
τc which, according to Eq. (2), is of the order ∼t1−βdP .
Combining both results, we conclude that the estimation of
the distance is accurate whenever τc ≫ t1−βdP .

IV. NUMERICAL EXPERIMENTS

We run extensive numerical simulations to test the
accuracy of Eq. (22) in measuring distances between
spacelike separated events, both at long and short scales.
To do so, we sprinkle uniformly at random a finite

number of events N in a box of side length 1 in Mdþ1,
d ¼ 1, 2, 3, so that the density of space-time events is set to
ρ ¼ N. The details of this sprinkling as well as other
simulation details can be found in Appendix B. We set two
events a and b separated by proper distance l located at
coordinates xμa ¼ ð1;−l=2; 0; 0Þ and xμb ¼ ð1; l=2; 0; 0Þ for
d ¼ 3 and similarly for d ¼ 1, 2. To perform long-scale
simulations we fix l to a given value while increasing the
density of events ρ. Instead, in short-scale simulations, we
set the distance to the minimum distance allowed by the
discretization of spacetime, that is, l ¼ ρ1=ðdþ1Þ, while
increasing the density of events.

A. Determination of event c

Given the volume-number correspondence, and so the
equivalence between causal overlaps measured inMdþ1 and
C [as stated in Eq. (29)], we could use Eq. (22) to measure
any distance using only the information in C. However,
to use Eq. (22) we must first find an event c that is
simultaneously at (arbitrary) proper time τc from events a
and b using only the structure of the causal set. In our
simulation setup, such events have coordinate x ¼ 0 and
are located at the intersection of the past light cones of a
and b. In principle, given the discreteness of the causal set,
it is not possible to find such events, although it is always
possible to find events that are arbitrarily close to x ¼ 0. To
find them, we use a double filter method.

First filter. Equation (2) poses a resolution limit in the
estimation of proper times in the causal set. Thus, we first
preselect events c such that

jnCðc; aÞ − nCðc; bÞj < ρ
βd
dþ1; ð32Þ

where nCðc; aÞ is the longest path inGC connecting events a
and c. In this way, we can say that, up to our resolution
limit, such c events are at the same proper distance to a and
b. We note that this filter requires the knowledge of the
density of the Poisson point process and the dimension of
the embedding spacetime. This information is not con-
tained in the causal set. We use it only to speed up the
numerical simulations, but next we introduce a second filter
that relies only on information contained in the causal set.
Second filter. For each selected event c in the previous

step, we measure the number of events in the Alexandrov
set between a and c, N½A ∪ C�, and between b and c,
N½B ∪ C�. In Mdþ1, if c is exactly at the same proper time
from a and b, the difference Zcða;bÞ≡N½A∪C�−N½B∪C�
is a random variable with the zero mean and variance

σ2Zc
¼ hN½A ∪ C�i þ hN½B ∪ C�i − 2hN½C�i: ð33Þ

Therefore, out of all events c selected in the previous step,
we only keep those that satisfy

jZcða; bÞj <
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N½A ∪ C� þ N½B ∪ C�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −OCða; bÞ

p
:

ð34Þ
The prefactor 1=2 in this last inequality is arbitrary and can
be selected to gauge the error in the estimation of event c.
We emphasize an important point here that this inequality
uses only information in the causal set, without any
reference to the embedding Minkowski spacetime.
The question is whether Eq. (34) selects events that are

arbitrarily close to x ¼ 0 in the limit ρ → ∞. Let us
consider an event c with an offset in the x coordinate of
δx, so that xμ ¼ ðt; δx; y; zÞ. The coordinates t, y, and z are
such that if the event had δx ¼ 0, the proper time from a
and b to c would be τc. Then, the expected value of
Zcða; bÞ when δx ≠ 0 is

hZcða; bÞi ¼ vdρτdþ1
c

��
1 −

δx2 þ lδx
τ2c

�dþ1
2

−
�
1 −

δx2 − lδx
τ2c

�dþ1
2

�
: ð35Þ

By comparing this expression with Eq. (34), it is possible to
determine the value of δx above which event c is rejected as
a suitable event. Assuming that δx=τc ≪ 1, the event c is
rejected when

lδx
τ2c

>

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −OCða; bÞ

2ðdþ 1Þ2vdρτdþ1
c

s
; ð36Þ
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where we have used that N½A ∪ C� þ N½B ∪ C�≈
2vdρτdþ1

c . In the case of long-scale distances with l fixed,
the causal overlap is constant and the right-hand side of

inequality Eq. (36) scales as tðdþ1Þ=2
P . This implies that

in the continuum limit tP → 0, the selection criteria of
events c are more and more stringent, with selected
events approaching arbitrarily close to x ¼ 0. In the case
of short-scale distances l ∝ tP, the causal overlap scales
as 1 −OCða; bÞ ∼ tP=τc, so that the inequality Eq. (36)
becomes

δx
τc

>

�
tP
τc

�d
2

: ð37Þ

Again, we see that the right-hand side of the inequality
goes to zero in the continuum limit, so that even at the
smallest length scales the selection of events c becomes
asymptotically exact.
Notice that, in fact, we could use only Eq. (34) to select

events c, which relies only on information in the causal set,
whereas Eq. (32) uses information about the dimension of
the embedding space. However, using the first step is more
computationally efficient because, in this case, we only
have to measureN½A ∪ C�; N½B ∪ C�, andN½C� for a subset
of events c.

B. Numerical results

Figure 3 shows simulation results for long distance
estimations in M3. The top row in Fig. 3 shows the x
(left) and y (right) coordinates of selected events c at two
different densities, ρ ¼ 104 and ρ ¼ 105. As it can be
seen, selected events are more concentrated near the plane
x ¼ 0 when the density is increased, as predicted in the
previous section. For each selected event c, we evaluate
the proper distance between events a and b using the
numerical solution of Eq. (22), where τc is computed as
τc ¼ ðτMdþ1ðc; aÞ þ τMdþ1ðc; bÞÞ=2 using the actual coor-
dinates in Mdþ1 of events a, b, and c. In this way, the
randomness in the estimation of distances comes from the
fluctuations associated with the causal overlap alone.
Concerning event c, a priori, any such event can be used

in Eq. (22). However, those with low proper time τc ≲ l=2
have a higher statistical error due to the spacetime dis-
cretization. Besides, due to the simulation setup, events
with values of the y coordinate far from y ¼ 0 have part of
their past light cones outside the simulated box, inducing an
extra error term. This problem can be, however, minimized
by choosing events with τc ≈ 1 as such events have
necessarily y ≈ 0. The bottom left plot in Fig. 3 shows
the inferred proper distances when l ¼ 0.1, 0.2, 0.3 as a
function of the actual proper time τc of all selected events c
compared against the actual values indicated by the dashed
red lines. We can see that the error in the estimation of
distances due to the choice of events c is small and becomes
even smaller when the density increases. However, in this

result we still use a bit of information not contained in the
causal set because we plug the actual proper times τc of
events c to check our predictions. Instead, the bottom right
plot in Fig. 3 shows the same inferred proper distances but
estimating the value of τc using only the causal set
structure:

τ̂c ¼
1

2
αdρ

−1=ðdþ1ÞðnCðc; aÞ þ nCðc; bÞÞ; ð38Þ

with αd measured numerically in the simulations. In this
case, the estimation of proper distances contains two
sources of stochasticity, the one associated with causal
overlaps and the one associated to the estimation of τc.
However, given that estimations of proper times in causal
sets can be done with a very small error when τc ≫ tP, as in
the present case, we observe very similar results as on the
plot on the left for τc > 0.5.
Figure 4 shows the same analysis but for the estimation

of short distances. In particular, we set l ¼ ρ−1=ðdþ1Þ and
increase ρ from 103 to 3 × 105. As in the case of long-scale
distances, selected events c are more aligned along the
plane x ¼ 0 as the density increases. The plots at the
bottom of Fig. 4 show the perfect estimation of all distances
at any value of the density, showing that, indeed, distances
can be measured in causal sets at all scales. Finally, Fig. 5

FIG. 3. Long-scale simulations inM3. The top row shows the x
(left) and y (right) coordinates of selected events c used to
estimate the distance between events a and b for two different
densities, ρ ¼ 104 (red circles) and ρ ¼ 105 (green circles). The
proper distance between events a and b is 0.2. The bottom left
plot shows the distance estimations for all selected events c
shown in the top plots as a function of the actual proper time τc of
event c. The orange and gray circles correspond to distance
estimations of events separated by proper distances 0.1 (gray) and
0.3 (orange) at density ρ ¼ 105. The dashed lines indicate the
actual distances that are inferred. The bottom right plot shows the
same as the left plot but using the estimation τ̂c of proper times of
events c in Eq. (38).
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shows results for M2 and M4 Minkowski spacetimes,
showing that proper distances can be measured with the
same method in any dimension. Notice that the differences
in magnitude of the fluctuations in different dimensions are
due to the fact that we use the same density ρ for d ¼ 1, 2

and d ¼ 3, which result in different values of tP in different
dimensions.

V. KINEMATICS OF MINKOWSKI CAUSAL SETS

The continuum limit of causal set theory suggests
that at scales exceeding the Planck scale, it becomes
feasible to reconstruct the spacetime manifold structure.
This reconstruction includes the capability to define inertial
frames of reference directly on the causal set, using only the
information contained in it. Consequently, events within a
causal set can be described using spacetime coordinates.
Such inertial frames play a pivotal role: in addition to the
spatial-temporal characterization of events, they also enable
the measurement of velocities of timelike trajectories
within a causal set, thereby establishing the kinematics
intrinsic to causal sets.
Our methodology facilitates the accurate measurement of

proper times and distances between events that are either
timelike or spacelike separated using information in the
causal set alone. This accuracy allows for a reliable definition
of inertial frames of reference, leading to a clearer under-
standing of instantaneous velocities along timelike curves.
This approach enhances our ability to interpret and analyze
the dynamics within causal sets, shedding light on the
complex interplay between discrete and continuous visions
of spacetime.
In this sectionwe discuss two aspects of this program: how

such reference frames can be set up, and how some kinematic
aspects enabled by them (Lorentz factor) can be measured.

A. Reference frames

In general, an inertial frame of reference can be defined
by a geodesic timelike curve, with one of the events in the
geodesic chosen as its origin of coordinates. In the causal
set, a geodesic timelike curve between two events is defined
as the longest chain of links connecting both events.
Consider the geodesic made of the sequence of ordered

events

A ¼ fai ∈ Cj � � � ≺ ai−1 ≺ ai ≺ aiþ1 ≺ � � �g: ð39Þ
Given an event b not contained in A, there is a finite
number of events in A that are spacelike separated from b
that we denote by Sðb;AÞ. We then define the distance
between event b and geodesic A as

dðA; bÞ ¼ sup
ai ∈ Sðb;AÞ

dMdþ1ðai; bÞ ¼ dMdþ1ðam; bÞ; ð40Þ

with am as the event in Sðb;AÞ maximizing the proper
distance to b. If a0 ∈A [31] is chosen as the origin of
coordinates, we can define the spacetime coordinates of
event b, xμb ¼ ðx0b;xbÞ, in the reference frame defined by A
and a0 as

x0b ¼ τCða0; amÞ; jxbj ¼ dMdþ1ðam; bÞ; ð41Þ

FIG. 4. Short-scale simulations inM3. The top row shows the x
(left) and y (right) coordinates of selected events c used to
estimate the distance between events a and b, which is set to
l ¼ ρ−1=ðdþ1Þ with ρ ¼ 103;…; 3 × 105. The bottom left plot
shows the distance estimations for all events shown in the top
plots as a function of the proper times τc of events c. The dashed
lines indicate the actual distances that are inferred. The bottom
right plot shows the same as the left plot but using the estimation
τ̂c of proper times of events c in Eq. (38).
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FIG. 5. Long- and short-scale simulations in M2 and M4 as a
function of the proper time of event c. The left column shows
results for long-scale (top) and short-scale (bottom) simulations
inM2 and the right column forM4. For the long-scale simulations,
we fix the density to ρ ¼ 105. In the case of short-scale simulations,
we set the density to ρ ¼ 103; 3 × 103; 104; 3 × 104; 105; 3 × 105

(from top to bottom) and measure the corresponding distances,
which are highlighted by the red dashed lines.
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where τCða0; amÞ is the proper time from a0 to am measured
in C, as given by Eq. (1). Again, notice that this definition is
intrinsic to the causal set graph because dMdþ1ðam; bÞ is
measured in terms of causal overlaps in C and τCða0; amÞ is
proportional to the number of steps in A from a0 and am.
The determination of the individual components of the

spatial part of b’s coordinates can be performed by defining
the subspace of simultaneous events to am in A, B⊥ðAÞ,
defined as the set of spacelike separated events fb⊥ ∈ Cg
that have am as the event in A maximizing the distance
dMdþ1ðam; b⊥Þ. The setB⊥ðAÞ is a numerable set of spacelike
separated events. Thus, using Eq. (27), we can compute the
matrix of proper lengths among them. Using this matrix, the
dimension of the subspace can then be easily estimated by
measuring the volume of balls as a function of their radius,
similar to the Hausdorff and spectral dimension estimations
proposed in [18,32]. Our approach represents an alternative
to the Myrheim-Meyer [33] and midpoint-scaling [34]
methods to estimate the spacetime dimension [35]. Finally,
we canuse any embeddingmethod from the computer science
literature (such as Laplacian Eigenmaps [36]) that, by using
thematrix of distances, finds a mapping between events from
B⊥ðAÞ and points inRd. This programwill be developed in a
forthcoming publication.

B. Lorentz factor

Beyond the spatial-temporal characterization of events in
the reference frame defined above, we can also characterize
how objects move relative to this frame. Using the results in
the previous section, we can make a step forward and
measure the instantaneous velocity of a timelike curve and
the corresponding Lorentz factor.
Suppose that a given observer is at event b and travels to

its future event b0 using a geodesic path. This new event b0
is at distance dðA; b0Þ to A with a corresponding event a0m
in A. Suppose that, during this transition, the observer’s
proper time increases by nCðb; b0Þ steps in the causal set.
Therefore, the Lorentz factor—defined as the ratio between
the variation of the coordinate time and proper time—can
be defined in the causal set as

γA ¼ nCðam; a0mÞ
nCðb; b0Þ

: ð42Þ

Using this equation, we can derive an expression for the
speed of a timelike curve from b to b0 in the reference frame
defined by A, v2A ¼ 1 − γ−2A . Similarly, the radial velocity
ṙA can be computed as the variation in the distance to the
geodesic A, that is,

ṙA ¼ dðA; b0Þ − dðA; bÞ
τCðam; a0mÞ

: ð43Þ

And using this expression along with Eq. (42), we can
evaluate the modulus of the angular component of the
velocity.

In the limit tP → 0 the expression for the Lorentz factor
in Eq. (42) converges to the actual value of γ inMdþ1 while
still describing an infinitesimal variation of the time-
like curve. This can be achieved when the total proper
time between b and b0 is very small, that is, when
nCðb; b0ÞtP ≪ 1 and, simultaneously, the relative error in
the estimation of proper times is also very small. According
to Eq. (2), this condition is fulfilled as long as
nCðb; b0ÞtβdP ≫ 1. This defines a range in the number of
steps in C,

t−βdP ≪ nCðb; b0Þ ≪ t−1P ð44Þ

within which the accuracy in the evaluation of γ using
Eq. (42) is high while the proper time between events b and
b0 is small. Since βd < 1, in the limit tP → 0 the upper
bound in Eq. (44) grows faster than the lower limit so that it
is always possible to measure instantaneous velocities of
timelike curves (not necessarily geodesic) in any reference
frame with arbitrary precision.
We perform numerical simulations to test Eq. (42) inM2.

We generate ten different realizations of the Poisson
sprinkling in M2 at density ρ ¼ 105. For each realization,
we set the event a0 to be at the origin, a0 ¼ ð0; 0Þ, and find
the geodesicA connecting a0 to the event closest to (0.5,0).
These geodesics are depicted by the orange lines in Fig. 6.
We then set events b to be also at the origin, b ¼ a0, and
sample uniformly at random 100 events b0 per sprinkling
in the domain tðb0Þ∈ ð0; 0.5Þ, xðb0Þ∈ ð0.1; 0.9Þ, and
nCðb; b0Þ > t−βdP , which are also shown in Fig. 6. These
settings limit the maximum sampled value of the Lorentz
factor to γ < 5 (close to 99% of the speed of light). For each
sampled event b0, we compute γA using Eq. (42). In Fig. 6,
we compare this estimation to the actual value of γ
measured with the actual coordinates in M2. Despite the
noise in the estimation due to finite size effects, the
agreement is very good. We notice, however, a small
systematic bias in γA that has two different sources. The
first one is due to Jensen’s inequality, which implies that
hnCðb; b0Þ−1i > hnCðb; b0Þi−1. The second sources of the
bias are the intervals, used in the computation of causal
overlaps, that partially lie outside of the simulation box,
thereby affecting the estimation of proper distances. This
effect is more prominent for events with high values of t
and x, and so with high values of the Lorentz factor.

VI. CONCLUSION

The estimation of distances in causal sets is a funda-
mental roadblock on the route toward understanding their
continuum limits. Here we introduced a methodology to
measure spatial distances in causal sets. This methodology
works well all the way down to the Planck scale, the
ultimate granularity of spacetime structure. This break-
through advances our understanding of the continuum limit
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of discrete spacetimes, and opens avenues for defining local
reference frames [37] and studying kinematics in them.
While our findings are anchored in Minkowski space-

times, it is possible to extend them to other spacetimes.
Indeed, the metric tensor of any Lorentzian manifold can
be approximated by the Minkowski metric to the first order
in a small neighborhood around any point, making local
physics indistinguishable from that in the flat Minkowski
spacetime [38]. In addition to showing that proper distances
among spacelike separated events can be measured all the
way down to the Planck scale, we have also showed that to
get accurate estimates for such distances, the proper time τc
to events c must be greater than t1−βdP , where βd is from
Eq. (2). This limit sets the minimum scale above which a
local neighborhood can be defined around a given event.
Therefore, if the characteristic scale of the curvature of a
spacetime is larger than t1−βdP , our approach can be used to
define infinitesimal distances around any event in such a
spacetime. In addition to that, the number of events within
such neighborhoods can be determined, thus effectively
defining the metric tensor.
Central to our approach is the definition of causal

overlaps between events. These overlaps are a form of
entanglement within the shared past of the events, a picture
applicable to any spacetime. We believe that this form of
entanglement must play a pivotal role in the ambitious goal
of constructing models of evolving causal sets in which
spatial geometry emerges from their dynamics [9,39–43].
Such geometrogenesis models may not use anything related
to continuous spacetimes, since there are no continuous
spacetimes beyond the Planck scale to begin with. The
causal set evolution rules in such models are allowed to use
only the structure of the causal sets that they grow. Yet
when grown to large continuum-limit sizes, these causal
sets must be indistinguishable at a large scale from causal
sets obtained by sprinkling onto continuous spacetimes
with spatial geometry of our physical spacetime. We
believe that it is very difficult, nearly impossible really,
to build such models without good understanding of how

spatial distances can be reliably estimated in causal sets
using only their structure.
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APPENDIX A: CAUSAL OVERLAP IN Md + 1

Without loss of generality, we place event c at the origin
of coordinates and events a and b at ðta; x1;a; 0⃗Þ and

ðtb; x1;b; 0⃗Þ, respectively, with ta ¼ tb and x1;b ¼ −x1;a.
Events a and b are at proper time τc from c and so
t2a ¼ τ2c þ x21;a. To compute the causal overlap OMdþ1ða; bÞ,
we first must compute the volume Vcða; bÞ at the inter-
section of the future light cone of c, given by the equation
t ¼ r, and the past light cones of a and b, which in
spherical coordinates are given by

t ¼ ta −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x21;a − 2x1;ar cos θ

q
; ðA1Þ

t ¼ tb −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x21;b þ 2x1;br cos θ

q
; ðA2Þ

and where we have chosen the coordinate x1 ¼ r cos θ,
with θ∈ ½0; π�. After some algebra, we obtain

Vcða; bÞ ¼
4πðd−1Þ=2

Γðd−1
2
Þ

Z
π=2

0

sind−2 θdθ
Z

r�ðθÞ

0

rd−1
�
ta − r

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x21;a þ 2x1;ar cos θ

q �
dr; ðA3Þ

where

r�ðθÞ ¼ τ2c
2ðta þ x1;a cos θÞ

: ðA4Þ

Notice that by setting x1;a ¼ 0, we recover the volume of
the Alexandrov set in Eq. (6). Thus, the causal overlap can
be written as

OMdþ1ða; bÞ ¼ 2dþ2ðdþ 1ÞΓð1þ d
2
Þffiffiffi

π
p

Γðd−1
2
Þ

Z
π=2

0

sind−2θdθ

×
Z

r̂�ðθÞ

0

rd−1
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x̂21;a

q
− r

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ x̂21;a þ 2x̂1;ar cos θ

q �
dr; ðA5Þ

FIG. 6. Measuring the Lorentz factor in the causal set. The plot
on the right shows the geodesics A used as a reference frame
(orange) and the set of events b0 used to evaluate γA. The plot on
the left shows γA from Eq. (42) versus the actual value in M2.
The density is set to ρ ¼ 105.
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where

r̂�ðθÞ ¼ 1

2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x̂21;a
q

þ x̂1;a cos θ
� and x̂1;a ¼

x1;a
τc

:

ðA6Þ
Taking the limit x̂1;a → 0 in Eq. (A5) leads to the
asymptotic result Eq. (25).

APPENDIX B: POISSON POINT PROCESSES
AND OTHER SIMULATION DETAILS

A Poisson point process [44] of rate δ in an arbitrary
manifold is defined as a random point process in which the
random number of points n in any chunk of space of volume
V is given by the Poisson distribution with mean δV:

Probfnjδ; Vg ¼ 1

n!
ðδVÞne−δV; ðB1Þ

and the numbers of points in any two nonintersecting
volumes are independent random variables. If the manifold
is MinkowskiMdþ1, then the Lorentz invariance of volumes
guarantees that Poisson sprinklings are Lorentz invariant
as well.
To generate Poisson sprinklings of rate N in Mdþ1, we

placeN events at random spacetime positions xμ ¼ ðt;xÞ as
follows:
(1) Each of the d spatial coordinates xi of each event

i ¼ 1;…; N is chosen uniformly at random within
the interval ð− 1

2
; 1
2
Þ.

(2) The temporal coordinate of event i is set to

ti ¼ ti−1 þ ξi; ðB2Þ

where t0 ¼ 0 and ξi > 0 are random numbers drawn
independently from the exponential distribution of
rate N whose PDF is pðξÞ ¼ Ne−Nξ.

In assigning the temporal coordinates in the last equation,
we rely on the fact that time differences between any two
consecutive events in a Poisson point process are inde-
pendent exponentially distributed random variables [44].
This time-ordered coordinate assignment is also conven-
ient for simulation purposes because to check whether an
event j is to the future or past of an event i, we only
need to check whether j > i or j < i, respectively. An
alternative to that, with random time coordinate assign-
ments, is to keep link directions below, which would be
more computationally intensive. We note that the time
coordinate of the Nth point (the height of our hypercube)
is the sum of N exponentially distributed random
numbers ξi of rate N, so it is also a random number
whose mean is 1 and whose distribution is a Gamma
distribution.
Once every event within our simulation hypercube has

its random coordinates in Mdþ1 assigned as prescribed by
the sprinkling procedure above, a causal relation between
all pairs of events i and j is defined whenever jxμi − xμj j < 0,
with j in the future of i if j > i and in its past otherwise.
The set of events combined with their causal relations
defines the causal set G. We then apply a transitive
reduction to the causal set G so that only irreducible links
remain in its graph representation GG.
The actual spacetime coordinates of the events are then

not used in the distance estimation, but they are used to
compare the results of this estimation against the true
distances. The dimension of spacetime is used in the
distance estimation Eq. (22).
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