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When classical degrees of freedom and quantum degrees of freedom are consistently coupled, the former
diffuse, while the latter undergo decoherence. Here, we construct a theory of quantum matter fields and
Nordström gravity in which the space-time metric is treated classically. The dynamics is constructed via the
classical-quantum path integral and is completely positive, trace preserving (CPTP) and respects the
classical-quantum split. The weak-field limit of the model matches the Newtonian limit of the full covariant
path integral, but it is easier to show that the theory is both diffeomorphism invariant and CPTP and has the
appropriate classical limit.
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I. INTRODUCTION

The setting where gravity is effectively classical but
matter retains its quantum properties belongs to the class
of hybrid classical-quantum systems. These are systems
whereby some parts of the system require a classical
treatment while others are to be treated as quantum.
Many challenges in modern physics, such as black hole
evaporation, inflationary cosmology, and the measurement
problem, occur in this regime, even if not all of them involve
gravity directly.A good description of the classical-quantum
regime is therefore paramount. While control of a quantum
system through a classical variable is well understood,
having a fully informative description of the classical-
quantum regime hinges on properly treating the backreac-
tion generated by the quantumsystemon the classical one. In
gravity, a common approach to studying backreaction is via
the semiclassical Einstein equations [1–3]. However, these
are inconsistent when applied to all quantum states [4–6], in
part because they ignore the correlations between the
classical and the quantum degrees of freedom [7]. It has
been shown in Refs. [8–15] that a classical-quantum treat-
ment is possible if one allows for a stochastic coupling
between the classical and quantum degrees of freedom.
This stochasticity allows one to write down consistent
evolution equations that are completely positive and norm
preserving on the hybrid state, side-stepping the various no-
go theorems and arguments about deterministic classical-
quantum coupling [16–25]. The most general form of

consistent classical-quantum coupling was obtained in
Refs. [7,26].
We call the resulting framework a “classical-quantum

theory” (CQ theory). In this framework, the classical degrees
of freedom act as aweakmeasurement apparatus, decohering
the quantum system. The rate of this decoherence depends
on the free parameters of the theory and is tied to the strength
of the backreaction. The backreaction of the quantumdegrees
of freedom on the classical ones necessarily induces a
stochastic diffusion process in the classical phase space
trajectories, transforming classically deterministic evolution
into probabilistic dynamics [27]. CQ dynamics can be
expressed in multiple ways; it was originally formulated in
the master equation formalism [8,10,26], but it has also been
expressed as an unravelled set of stochastic partial differential
equations (PDEs) [28,29] and via combined classical-quan-
tum path integrals [30,31]. In this paper, we will focus on the
path integral formulation of the framework [30,31].
Several models of gravitational CQ theories have

been studied. These include Newtonian theories based on
CQ master equations [32], measurement and feedback
approaches [12–14], and relativistic theories based off of
bothmaster equations [7] and path integrals [31]. Theweak-
field regime of gravitational CQ theories was recently
explored in Ref. [33]. A template was provided for con-
structing consistent gravitational classical-quantum dynam-
ics in the Newtonian limit. It was found that the weak-field
limit of the relativistic theories in Refs. [7,31] took the form
of Ref. [13]. These theories can be experimentally tested via
the decoherence-diffusion tradeoff [27], which is a relation-
ship between the rate of decoherence, the strength of the
backreaction, and the amount of stochasticity in the theory,
which all consistent classical-quantum theories must obey.
In a CQ theory of gravity, the challenge presented by the

presence of Hamiltonian constraints is not trivial [34], even
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in the Newtonian limit. In the standard general relativistic
treatment of the Newtonian limit, the dynamical gravita-
tional degrees of freedom vanish, and Poisson’s equation
for the Newtonian potential is found from the Hamiltonian
constraint. When the Newtonian limit is considered in
gravitational CQ dynamics, consistent coupling of the
classical and quantum degrees of freedom necessarily
introduces a diffusion process in the Newtonian potential.
The effect is that of a stochastic Newtonian constraint,
which requires a stochastic shift vector for the dynamics to
be consistent [33]. Away from the Newtonian limit, the
gravitational constraints in CQ theories are tightly related to
notions of complete positivity and diffeomorphism invari-
ance. Specifically, while the dynamics detailed in Ref. [7]
are recognized as completely positive and norm preserving,
their diffeomorphism invariance was not demonstrated.
Conversely, the full gravity theory quoted in Ref. [31] is
manifestly diffeomorphism invariant. However, its consis-
tency has yet to be fully verified because the constraint
contribution to the path integral does not look completely
positive. Additionally, the relationship between the dynam-
ics of Refs. [7,31] remains unclear, partly due to the
ambiguity surrounding the constraint algebra [35].
Since Nordström gravity is a self-consistent and diffeo-

morphism invariant theory of gravity that does not require
the Hamiltonian constraints, it can sidestep these compli-
cations. Furthermore, because the weak-field limit of
Nordström gravity is the Newtonian theory, it provides us
with a toy model that can be used to gain confidence in the
weak-field limit of Refs. [7,31]. The present paper aims to
construct a theory of Nordström gravity in the CQ frame-
work through the path integral formalism. This gives a
diffeomorphism invariant, though background-dependent,
theory of CQ-gravity, where the conformal factor
plays the role of the stochastic gravitational potential.
Nevertheless, we recover the same Newtonian limit
behavior as in Ref. [33], suggesting that the resolution
of the constraints and the resulting dynamics was correct.
The model also demonstrates no tension between diffeo-
morphism invariance and stochastic theories, nor any
tension with the classical-quantum split. The theory
provides a model in which various issues in quantum
and classical-quantum gravity can be explored in a
simpler form. It is also a manifestly Lorentz invariant
theory of stochastic collapse [36–40], as are the models of
Refs. [31,41].
The paper’s outline is as follows:
(i) In Sec. II, we summarize the CQ framework through

the path integral formalism. The CQ path integral
was introduced in Refs. [30,31], in which it is shown
it is possible to construct covariant path integrals for
classical-quantum systems that give rise to com-
pletely positive evolution. A natural class of theories
is then presented in which paths in CQ space are
weighted according to a classical-quantum action,

where classical paths diffuse away from their aver-
aged equations of motion, while simultaneously
enforcing decoherence on the quantum system.

(ii) In Sec. III, we review Nordström’s theory of gravity
as a self-consistent theory of scalar gravity. The role
of the dynamical field is played by a scalar con-
formal factor, which evolves in a flat background.
We compare the theory’s advantages and shortcom-
ings in relation to general relativity, and we discuss
why it is useful as a toy model of classical-quantum
gravity.

(iii) In Sec. IV, we use the path integral approach to
introduce and study a consistent diffeomorphism
invariant theory of classical-quantum Nordström
gravity. This provides a proof of principle that
diffeomorphism invariant CQ dynamics can exist.
In the Newtonian c → ∞ limit, we find that the
theory gives rise to the Newtonian interaction on
average. Due to the decoherence-diffusion tradeoff,
the dynamics necessarily involves diffusion away
from the Newtonian solution by an amount lower
bounded by the decoherence rate into mass eigen-
states. Though this example is to be understood as a
toy model, it provides an instance where we have full
control over the symmetries of the theory and gives
support to the treatment of a more complete theory.

(iv) We conclude with a discussion in Sec. V.

II. PATH INTEGRAL FOR CQ DYNAMICS

This section introduces the CQ formalism, focusing on
CQ path integrals. We outline how to define a classical-
quantum state and how this state evolves through time
according to completely positive CQ dynamics with inter-
acting classical and quantum components. For a detailed
description of the CQ dynamics, its derivation, and its
properties, we point the reader to Refs. [7,26,29–31].
In the CQ framework, classical degrees of freedom live

in a classical configuration space M and are denoted by z.
There are no restrictions on what the classical degrees of
freedom can represent. The standard example is for them to
be the position and momentum of a particle, in which case
M ¼ ðR2Þ. On the other hand, quantum degrees of free-
dom live in a Hilbert spaceH. We denote the set of positive
semidefinite operators living in this Hilbert space as SðHÞ.
We define the CQ state of the system to be described at any
time by the map ϱðz; tÞ∶M → SðHÞ such that the state of
the system should always admit a decomposition into its
classical and quantum parts ϱðz; tÞ ¼ pðz; tÞσðz; tÞ, where
pðz; tÞ is understood to be the probability density over the
classical degrees of freedom z, while σðz; tÞ is a normalized
density matrix representing the quantum state. Therefore,
the CQ state ϱðzÞ is at every instant subject to a normali-
zation constraint

R
M dzTrH½ϱ� ¼ 1. To put it differently, we

associate to each classical degree of freedom an unnor-
malized density operator ϱðzÞ such that TrH½ϱ� ¼ pðzÞ ≥ 0
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is a normalized probability distribution over the classical
degrees of freedom and

R
M dzϱðzÞ is a normalized density

operator on H.
The time evolution of the hybrid state has been expressed

in three distinct, but ultimately equivalent, ways: via master
equations in Refs. [7,26], unravelings [28,29], and path
integrals [30,31]. Regardless of one’s choice, consistency
requires the dynamics of the hybrid system to be linear in
the density matrix, completely positive, and trace preserv-
ing. These conditions are necessary to preserve the density
matrix’s statistical interpretation and give rise to positive
probabilities when acting on half of an entangled state. The
dynamics are also generally assumed to be time local,
which is a sensible assumption that must be made to
entertain the possibility of the CQ theory describing a
fundamentally classical gravitational field [7].
The original formulation of the CQ framework was

carried out in the master equation picture. The advantage
of this approach is that the complete positivity and the
general consistency of the evolution are manifest.
Unfortunately, the master equation is ideal neither when
dealing with constrained systems [34] nor with numerical
simulations. Moreover, it is hard to properly impose
space-time symmetries directly at the master equation
level. However, the path integral formulation of the
framework works well for these tasks. First of all,
constraints can be directly imposed on trajectories through
the use of delta functionals, allowing one to consider only
the paths of the system that live on the constraint surface.
Second, there exist many efficient numerical methods
capable of simulating path integrals. For example, those
involving Monte Carlo methods find great applicability
everywhere from finance [42–44] to lattice gauge theories
and quantum mechanics [45,46]. Lastly, the path integral
formulation allows one to impose space-time symmetries
and gauge symmetries through an action. This formalism
makes it easier to formulate CQ dynamics in a covariant
manner [31] and to enforce the necessary principles when
studying effective field theories [47].
The classical-quantum state can be expanded in terms of

its components. Denoting a continuous quantum degree of
freedom by ϕ, we have

ϱðz; tÞ ¼
Z

dϕþdϕ−ϱðz;ϕþ;ϕ−; tÞjϕþihϕ−j; ð1Þ

where ϱðz;ϕþ;ϕ−; tÞ ¼ hϕþjϱðz; tÞjϕ−i. Here, we double
the degrees of freedom in order to define the density
matrix—the ϕ− field is the ket field, while the ϕþ field is
the bra field. A general CQ configuration space path
integral takes the form described in Refs. [30,31],

ϱðzf;ϕþ
f ;ϕ

−
f ; tfÞ ¼

Z
DzDϕþDϕ−N eI ½z;ϕþ;ϕ−;ti;tf �

× ϱðzi;ϕþ
i ;ϕ

−
i ; tiÞ; ð2Þ

where z ¼ ðz1;…; znÞ are the classical degrees of freedom,
I is the CQ action, and it is implicitly understood that
boundary conditions are to be imposed at tf. The N
normalization factor is included in case the action does
not preserve the norm of the state. A derivation of path
integrals from CPTP master equations that explicitly find
the normalization conditions on the action can be found
in Ref. [30].
According to the main result of Ref. [31], time-local CQ

path integrals with actions of the form

Iðz;ϕþ;ϕ−; ti; tfÞ
¼ ICQðz;ϕþ; ti; tfÞ þ I�

CQðz;ϕ−; ti; tfÞ

− ICðz; ti; tfÞ þ
Z

tf

ti

dtdx⃗
X
γ

cγðz; x; tÞLγðϕþÞL�
γðϕ−Þ

ð3Þ

define completely positive CQ dynamics. In Eq. (3),
ICQ determines the CQ interaction on each branch,
and ICðz; ti; tfÞ is a purely classical Fokker-Plank–like
action [48,49] taking real values. We assume that the path
integral defined by Eq. (3) is convergent, which enforces
that IC is positive (semi)definite, the real part of ICQ is
negative (semi)definite, and cγ ≥ 0. Any path integral
with an action of the form in Eq. (3) is completely
positive [31], and the scalar gravity CQ theory we
consider in Sec. IV is of this type.
One can notice that in Eq. (3) ϕþϕ− cross-terms are

contained only in the last term. This term is responsible for
the violation of the purity of the quantum system. However,
we can work in a regime where we can take the cγ ¼ 0 so
that pure quantum states are mapped to pure quantum states
and there is no loss of quantum information. Conditioned
on the classical trajectory, the quantum state evolution is
deterministic, which provides a natural mechanism for
wave-function collapse if the classical degrees of freedom
are taken to be fundamentally classical. This regime
coincides with the saturation of the decoherence-diffusion
tradeoff [27], which physically implies the presence of an
exact inverse relationship between the amount of diffusion
introduced in the classical system and the amount of
decoherence introduced in the quantum system when the
two are coupled.
A natural class of theories introduced in Refs. [30,31] are

those derivable from a classical-quantum protoaction
WCQ½z;ϕ� ¼

R
dtdx⃗ðLc½z� − VI½z;ϕ�Þ. Here, and in the rest

of the paper, we consider z to be a configuration space
variable. Lc is the Lagrangian density of the classical action
Sc½z� ¼

R
dtdx⃗Lc½z�, and VI is the interaction potential

density VI½z;ϕ� ¼
R
dtdx⃗VI½z;ϕ�, which in the case of

general relativity is just the Lagrangian for the matter
degrees of freedom. The action is given by

DIFFEOMORPHISM INVARIANT CLASSICAL-QUANTUM PATH … PHYS. REV. D 110, 024007 (2024)

024007-3



Iðz;ϕþ;ϕ−; ti; tfÞ ¼ iSQ½z;ϕþ� − iSQ½z;ϕ−�
þ iSFV½z;ϕþ;ϕ−� − Sdiff ½z;ϕþ;ϕ−�

¼
Z

tf

ti

dtdx⃗

�
iLQ½z;ϕþ� − iLQ½z;ϕ−�

−
1

2

δΔWCQ

δzα
D0;αβ½zðxÞ�

δΔWCQ

δzβ

−
1

2

δW̄CQ

δzα
D−1

2;αβ½zðxÞ�
δW̄CQ

δzβ

�
: ð4Þ

Equation (4) takes the form of Eq. (3) [31] and is motivated
by the study of canonical form CPTP master equations in
Ref. [30]. We now explain the notation in this action. Both
Dαβ

0 and D−1
2;αβ are positive definite matrices. They are

related by the so-called diffusion-decoherence tradeoff [27]

4Dαβ
0 ≽D−1

2;αβ: ð5Þ

We impose the saturation of the tradeoff through the matrix
restriction 4D0 ¼ D−1

2 . This ensures that the action takes
the form in Eq. (3) with all the cγ ¼ 0. Hence, the dynamics
will be completely positive, and the path integral will also
preserve the purity of the quantum system, conditioned on
the classical degrees of freedom [29].
In Eq. (4), we have introduced the notation for the �

averaged interaction

W̄CQ½z;ϕ� ¼
1

2
ðWCQ½z;ϕþ� þWCQ½z;ϕ−�Þ; ð6Þ

and the difference in the interaction along the � branches

ΔWCQ½z;ϕ� ¼ WCQ½z;ϕþ� −WCQ½z;ϕ−�: ð7Þ

LQ denotes instead the purely quantum evolution together
with any interaction terms between the quantum and
classical degrees of freedom. For example, it could be
any quantum field theory Lagrangian. The coefficient of
the difference in the interaction along the two branches is
denoted asD0. It regulates the decoherence of the system by
suppressing paths that have different values along the ϕþ
branch and ϕ− branches. By taking a covariant protoaction,
the dynamics described by Eq. (4) will be covariant [31]. As
such, they can be used to construct examples of relativistic
spontaneous collapse models [36–40]. We shall see an
explicit example of diffeomorphism invariant CQ dynamics
in Sec. IV. Examples of Lorentz invariant Lindbladian
dynamics can be found in Ref. [41], in contrast to the
Lorentz covariant dynamics found in Ref. [50] (see
also Ref. [51]).
As a toy example, we can take a single classical degree of

freedom describing a scalar field z ¼ fqðxÞg coupled to a
quantum scalar degree of freedom with spatial dependence
(i.e., a quantum field)

WCQ½q;ϕ� ¼
Z

dtdx⃗

�
−
1

2
∂μq∂μq − qðxÞϕðxÞ

�
: ð8Þ

Then, choosing for simplicity D0ðqÞαβ ¼ D0η
αβ,

iSFV½q;ϕ� ≔ −
1

2

Z
dtdx⃗

�
δΔWCQ

δzα
Dαβ

0 ðzÞ δΔWCQ

δzβ

�
ð9Þ

¼ −
1

2
D0

Z
dtdx⃗ðϕ−ðxÞ − ϕþðxÞÞ2 ð10Þ

acts like a Feynman-Vernon term [52], which causes
decoherence. The diagonal of the density matrix of
Eq. (1) occurs when ϕþ ¼ ϕ−, and on these components
of the density matrix, this term does nothing. Conversely,
the greater the difference between the bra and ket fields, the
more the paths are suppressed by the term in Eq. (10).
In a similar manner, D2 tunes the averaged interaction

term Sdiff , which is related to the diffusion of the classical
system; paths that deviate from the Euler-Lagrange equa-
tions of motion, which are derived from the protoaction
WCQ, are suppressed. In the simple example of Eq. (8),
one obtains

Sdiff ½q;ϕ� ¼
1

2

Z
dtdx⃗

�
δW̄CQ

δzα
D−1

2;αβðzÞ
δW̄CQ

δzβ

�

¼ 1

2D2

Z
dtdx⃗

�
−∂μ∂μqðxÞþ

ϕþðxÞþϕ−ðxÞ
2

�
2

;

ð11Þ

where the force on the classical field is produced by the
average of the bra and ket quantum fields. This term allows
for fluctuations around the force but acts to suppress large
deviations from them.
It is possible to recognize how the CQ path integral

is connected to the path integral formulation of open
quantum systems. If the action I was only constructed out
of the quantum degrees of freedom I ½ϕþ;ϕ−; ti; tf� ¼
iS½ϕþ; ti; tf� − iS½ϕ−; ti; tf� þ iSFV½ϕ�; ti; tf�, we would
recover the standard decoherence functional of open
quantum systems. If the Feynman-Vernon term [52] were
not present (SFV ¼ 0), we would then recover standard
unitary quantum mechanics. Much like open systems have
a path integral formulation of their master equation
version, the CQ path integral can be directly thought of
as coming from the master equation formulation [7].
Nevertheless, according to Ref. [31], we can take the
path integral as the starting point of the CQ framework.
This allows for a simpler definition of the path integral,
given that deriving a clean form from the master equation
requires one to map between configuration space and
canonical coordinates [30].
In this section, we have introduced the formalism of the

CQ framework. We have summarized how a positive path

OPPENHEIM, RUSSO, and WELLER-DAVIES PHYS. REV. D 110, 024007 (2024)

024007-4



integral version of the dynamics can be written and
interpreted and how the classical-quantum path integral
incorporates the backreaction between the quantum and
classical systems, leading to decoherence and diffusion
effects. In Ref. [29], it was also shown that when con-
ditioned on the classical degrees of freedom a path integral
that saturated the decoherence-diffusion tradeoff [27]
preserves the purity of the quantum system. In the next
section, we will apply it to a diffeomorphism invariant
theory of scalar classical-quantum gravity and study its
weak-field limit. We will find that, in the Newtonian limit,
the theory predicts diffusion about the standard semi-
classical Newtonian solution by an amount that is lower
bounded by the decoherence rate into mass eigenstates
according to Ref. [33].

III. NORDSTRÖM GRAVITY

So far, we have reviewed how to couple classical and
quantum degrees of freedom via CQ path integrals. No
explicit choice of classical and quantum systems has been
made yet, and the equations presented so far hold in
general. We will now discuss the classical system of
interest in this paper, before integrating it into the CQ
framework in Sec. IV.
Nordström gravity [53,54] was a first attempt at merging

Newtonian gravity with relativity and ultimately led to the
formulation of GR as it currently stands [55]. In its final
formulation, Nordström gravity can be thought of as a self-
consistent scalar theory of gravity. It was the first metric
theory of gravity; hence, it obeys the equivalence principle.
The classical theory is described through a conformally flat
space-time background which couples to matter via the
equations,

R ¼ 24πG
c4

T; ð12Þ

Cμνρσ ¼ 0; ð13Þ

where R is the Ricci scalar, T denotes the trace of the
stress-energy tensor for the matter degrees of freedom ϕm,
andCμνρσ is theWeyl tensor. Equation (12) is the dynamical
equation of motion linking the Ricci scalar to the trace of
the stress-energy tensor. The vanishing of the Weyl tensor
in Eq. (13) implies that the metric is conformally flat and
always takes the form

gμν ¼ e
2Φ
c2ημν; ð14Þ

where Φ is the conformal degree of freedom and ημν is the
Minkowsky metric.
Nordström gravity merges relativistic ideas of causality

with Newtonian gravity but lacks many of the properties
required for a full description of gravitational phenom-
ena. One can immediately notice that the conformal

metric couples only to the trace of the stress-energy
tensor. However, some forms of energy and momentum,
like the stress-energy tensor for electromagnetic radia-
tion, are traceless. Therefore, Nordström gravity lacks the
ability to describe some gravitational phenomena. In
particular, it does not predict the bending of light, in
direct contrast with gravitational lensing effects observed
by astronomers [56,57]. With regard to other effects,
Nordström gravity correctly predicts the result of the
Pound-Rebka experiment for gravitational frequency shift
but fails to predict the correct time delay factor and is
missing subleading corrections to the acceleration of
static test particles.
However, much like General Relativity, Nordström’s

theory is diffeomorphism invariant, by which we mean
that ðg;Φ;ϕmÞ is a solution to the equations of motion if
and only if ðg�;Φ�;ϕ�

mÞ is also a solution to the same
equation’s of motion, where � denotes the transformed
variables after a diffeomorphism. In particular, conformal
flatness is preserved under diffeomorphisms. The con-
formal flatness condition does not fix the conformal factor,
which is the dynamical gravitational degree of freedom. For
example, given the form of the metric in Eq. (14), the Ricci
scalar reads

R ¼ −
6□̃e

Φ
c2

c2
e−

3Φ
c2 ; ð15Þ

where □̃ ¼ ∂μ∂νη
μν is the flat space D’Alabertian. In the

vacuum state (T ¼ 0), the field equation is the wave

equation for the scalar field □̃e
Φ
c2 ¼ 0. Therefore, the

theory has a propagating conformal scalar degree of free-
dom, but this kind of gravitational wave differs from those
predicted by General Relativity as they are scalar waves
and do not have a spin-2 mode.
Nonetheless, despite being diffeomorphism invariant, the

Nordström theory is intuitively background dependent.
It has a preferred frame given by the Minkowski metric
due to the condition that the metric be conformally flat. In
particular, it admits a background-dependent formulation
(which is still diffeomorphism invariant), where we first
stipulate that the metric takes the form of Eq. (14), with the
dynamics determined by Eq. (12). For a more detailed
discussion on the relationship between diffeomorphism
invariance and background independence, we refer the
reader to Ref. [58]. We now study a CQ version of
Nordström gravity. This provides a diffeomorphism invari-
ant, self-consistent theory of CQ gravity that has a sensible
Newtonian limit.

IV. CQ PATH INTEGRAL FOR
NORDSTRÖM GRAVITY

In this section, we will first introduce CQ gravitational
path integrals for general relativity, outlining the tension
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between complete positivity of the dynamics and the
gravitational constraints. Then, we construct the CQ path
integral for Nordström gravity. Our choice of classical
system will be the space-time metric, while the matter
degrees of freedom will have a quantum nature.

A. CQ general relativity

When writing the path integral for General relativity, we
follow Ref. [31] and write a manifestly covariant path
integral over 4-geometries g, of the form given by Eq. (4),

ϱðΣf;ϕ
þ
f ;ϕ

−
f ; tfÞ ¼

Z
DgDϕþDϕ−N eICQ½g;ϕþ;ϕ−;ti;tf �

× ϱðΣi;ϕ
þ
i ;ϕ

−
i ; tiÞ; ð16Þ

with

ICQ½g;ϕ�� ¼
Z

tf

ti

dtdx⃗

�
iðLQ½g;ϕþ�− ½g;ϕ−�Þ

−
Det½−g�

8
ðTμν½ϕþ�− Tμν½ϕ−�Þ

×D0;μνρσ½g�ðTρσ½ϕþ�− Tρσ½ϕ−�Þ

−
Det½−g�jc8
128π2G2

N

�
Gμν −

8πGN

c4
T̄μν½ϕþ;ϕ−�

�

×D0;μνρσ½g�
�
Gρσ −

8πGN

c4
T̄ρσ½ϕþ;ϕ−�

��
;

ð17Þ
where LQ½g;ϕ�� is the Lagrangian for the quantum matter
in curved space-time and we have suppressed the metric
dependence of all terms in Einstein equations for clarity. Σi
and Σf are the initial and final spatial surfaces. As a quick
note, introducing initial and final boundary conditions may
seem to reduce the set of diffeomorphisms to those that are
foliation preserving at the spacelike boundaries. While this
is true in the case when initial and final conditions are
imposed on the path integral, in general, we expect that
there should be a representation of the diffeomorphism
group that acts on CQ observables, forming a CQ repre-
sentation of the diffeomorphism group. We expect this
representation to be nonunitary to incorporate the nonuni-
tary CQ dynamics. For example, the generator of time
translations is described by the generator of a CQ master
equation. As such, we also expect the generators to be
related to the CQ action appearing in the path integral.
Studying CQ representations of space-time symmetries
beyond that of initial-/final-state path integrals is beyond
the scope of the current work. The term T̄μν½ϕþ;ϕ−�
indicates the average of the bra and ket stress-energy
tensors, as in Eq. (7),

T̄μν½ϕþ;ϕ−� ¼ 1

2
ðTμν½ϕþ� þ Tμν½ϕ−�Þ: ð18Þ

Here, we have assumed that the decoherence-diffusion
tradeoff is saturated ð4D0 ¼ D−1

2 Þ. This is a manifestly
diffeomorphism invariant hybrid path integral for General
Relativity, and it is fully characterized by the tensor density
D0;μνρσ½g�. As explained in Ref. [31], if we were to choose
D0 such that it is positive semidefinite, we would have a
consistent treatment of semiclassical General Relativity.
Unfortunately, choosing a positive semidefinite D0 and
capturing the transverse part of the Einstein equations are
not possible in Lorentzian signature. For example, one can
consider

D0;μνρσ ¼
D0ðxÞ
2

ffiffiffiffiffiffi−gp ðgμρgνσ þ gνρgμσ − 2βgμνgρσÞ; ð19Þ

with D0 a positive constant. In Lorentzian signature, this is
not positive semidefinite. However, one can choose

D0;μνρσ ¼
D0ðxÞffiffiffiffiffiffi−gp gμνgρσ: ð20Þ

This will lead to a positive semidefinite path integral
describing suppressed trajectories as they diffuse away
from the trace of Einstein’s equations.
Alternatively, if one is happy with a consistent diffeo-

morphism invariant toy model of gravity in the CQ
framework, one can instead start with a scalar theory of
gravity. In particular, Nordström gravity is an ideal candi-
date as a self-consistent theory of gravity that allows us to
study the gravitational backreaction of space-time and
quantum matter without worrying about the constraints
of General relativity or the positivity of the full CQ path
integral for GR. We also take this chance to address the
presence of higher-order derivatives in the path integral
action. The reader may be concerned about such actions
being associated with Hamiltonians unbounded from
below, as shown by Ostrogradsky [59]. However, problems
arise only when assuming that the action generates deter-
ministic evolution. Onsager Machlup path integrals for
stochastic processes often contain higher-order derivatives
when presented in configuration space (see Chapter 12 of
the work by Feynman-Hibbs [60]). The action is already
composed of the equation of motion. Its variation should be
interpreted as the most probable path between the set initial
and final points of configuration space. For example, a
stochastic harmonic oscillator will have a variation of its
Onsager-Machlup action, which results in an apparent
runaway of the solutions due to increasing the oscillation
amplitudes. However, this increase is necessary to reach
points that would normally be outside the range of the
equations of motion (EOM) for fixed initial position and
velocity. More about the relation between Ostrogradsky
and CQ path integrals is analysed in Ref. [61].
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B. CQ Nordström

To construct the CQ theory of Nordström gravity, we
let ϕm denote the quantum matter degrees of freedom
such that LQ½g;ϕm� is the matter Lagrangian (inclusive of
the appropriate metric determinant factor). Nordström
gravity can be derived classically from the action prin-
ciple in the Jordan frame defined in Ref. [62], which we
summarize in Appendix. In that derivation, a Lagrange
multiplier is used to impose the conformal flatness of the
space-time (14). Here, we are faced with two choices. We
could insert the constraint in the protoaction directly or
impose it through a delta functional. Given that in
Nordström gravity matter fields do not couple to the
Weyl tensor, we do not expect the backreaction of the
quantum degrees of freedom to break the conformal
flatness of the metric. After some consideration, one
can realize that it is more sensible to choose the latter,
imposing the constraint in a way that is more akin to a
gauge fixing of the classical degrees of freedom.
Therefore, we construct the protoaction for Nordström
gravity with matter as

WCQ½gμν;ϕm� ¼−
c4

48πGN

Z
d4x

ffiffiffiffiffiffi
−g

p
Rþ

Z
d4xLQ½g;ϕm�:

ð21Þ

While this action might look similar to the Einstein-
Hilbert action, one should notice the different coefficients
of the gravitational sector and the different relative signs
between the gravitational and matter part; both are
required to obtain the correct Nordström dynamical
equation. We are now in the position to write down
the CQ path integral. We choose the trace realization of
the decoherence coefficient in Eq. (20) and impose the
conformal flatness constraint as a delta functional through
a Lagrange multiplier λνρσμ ,

ϱðΣf;ϕ
þ
m;f;ϕ

−
m;f; tfÞ

¼
Z

DgDϕþ
mDϕ−

mDλνρσμ N eICQðgμν;ϕþ
m;ϕ−

m;tf;tiÞ

× ϱðΣi;ϕ
þ
m;i;ϕ

−
m;i; tiÞ; ð22Þ

where the CQ action is

ICQðgμν;ϕþ
m;ϕ−

m; tf; tiÞ

¼
Z

tf

ti

dtdx⃗

�
iðLQ½g;ϕþ

m� − LQ½g;ϕ−
m�Þ

−
D0ðxÞ
2

ffiffiffiffiffiffi−gp δΔWCQ

δgμν
gμνgρσ

δΔWCQ

δgρσ

−
2D0ðxÞffiffiffiffiffiffi−gp δW̄CQ

δgμν
gμνgρσ

δW̄CQ

δgρσ
− iλνρσμ Cμ

νρσ

�
; ð23Þ

and we have saturated the decoherence diffusion tradeoff:

4D0½g� ¼ D−1
2 ½g�: ð24Þ

Once we integrate over the Lagrange multiplier, the delta
function will ensure that we only sum over 4-geometries
that are conformally flat Cμ

νρσ ¼ 0. Any conformally flat

metric can be written as gμν ¼ e2
Φ
c2ημν for some Φ by

definition. Therefore, we find the Nordström hybrid path
integral

ϱðΣf;ϕ
þ
m;f;ϕ

−
m;f; tfÞ

¼
Z

DΦDϕþ
mDϕ−

mN exp

�Z
dtdx⃗iðLQ½ϕþ

m�

−LQ½ϕ−
m�Þ −

ffiffiffiffiffiffi−gp
D0ðxÞ
8

ðT½ϕþ
m�− T½ϕ−

m�Þ2

−
ffiffiffiffiffiffi−gp

c8D0ðxÞ
1152π2G2

N

�
R−

24πGN

c4
T̄½ϕþ

m;ϕ−
m�
�

2
�

× ϱðΣi;ϕ
þ
m;i;ϕ

−
m;i; tiÞ; ð25Þ

where we have suppressed the Φ dependence in R, T, and
LQ to lighten the notation. When integrating over con-
formally flat metrics, we include any Jacobian factor in the

measure DgC¼0 ∼ 2
c2 e

2Φ
c2DΦ, as it will not be relevant to the

Newtonian limit of interest in this paper. In particular, to
leading order, we have that DgC¼0 ∼ 2

c2 DΦ. Since the
action in Eq. (25) contains quantum terms proportional
to the square of the stress-energy tensor, a sufficient
condition for the path integral to be normalized is that
the purely quantum part of the action LQ½q;ϕ�� contains
higher-derivative kinetic terms ∼ϕ̈2 [63], which is sugges-
tive that Eq. (25) describes an effective theory [47].
The action has the effect of diffusing away from the

bra/ket averaged Nordström equations, while simultane-
ously decohering the quantum system according to the
stress-energy tensor of the matter and the coupling D0½Φ�.
Treated classically, the action is manifestly diffeomorphism
invariant, which also includes the case where the diffeo-
morphism σ∶M → M is dependent on the classical and
quantum trajectories σ½Φ;ϕ�

m�. However, just as for the
classical theory, the CQ theory is not background inde-
pendent and has a preferred frame given by the requirement
that the metric is conformally flat.
We now wish to compute the Newtonian limit of the

theory in order to gain insight into the Newtonian limit of
more general classical-quantum theories and compare and
contrast it with Ref. [33]. We recall that the final goal is to
search for low-energy experimental signatures of CQ by
treating the gravitational field classically. To that end, we
shall take the quantum degrees of freedom to be described
by a pressureless dust distribution T̂μν ¼ m̂ðxÞUμUν where
m̂ðxÞ� is a (smeared) quantum mass density.
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Using the conformally flat metric and our choice of
matter, we can rewrite some of the quantities in the path
integral as

ffiffiffiffiffiffi
−g

p ¼ ce
4Φ
c2 ; R½Φ� ¼−

6□̃e
Φ
c2

c2
e−

3Φ
c2 ;

T�½Φ;m��¼−e
2Φ
c2m�ðxÞ; ð26Þ

and the path integral takes the form

ϱðΣf; m
þ
f ; m

−
f ; tfÞ

¼
Z

DΦDmþDm−N exp

�Z
tf

ti

dtdx⃗iðLQ½Φ; mþ�

− LQ½Φ; m−�Þ − cD0ðxÞe
6Φ
c2

8

�
mþðxÞ −m−ðxÞ�2

−
c7D0ðxÞ
192π2G2

N

�
−e

Φ
c2□̃e

Φ
c2 þ 4πGNe

6Φ
c2

c2
m̄ðxÞ

�
2
�

× ϱðΣi; m
þ
i ; m

−
i ; tiÞ; ð27Þ

where m̄ðxÞ ¼ 1
2
ðmþðxÞ þm−ðxÞÞ.

We take the Newtonian c → ∞ limit of the metric
perturbations. Carrying out the transformations, we get

ffiffiffiffiffiffi
−g

p ¼ ce
4Φ
c2 ≈ c

�
1þ 4Φ

c2

�
þO

�
1

c3

�
; ð28Þ

e
Φ
c2□̃e

Φ
c2 ≈

□̃Φ
c2

þO
�
1

c4

�
; ð29Þ

4πGNe
6Φ
c2

c2
m̄ðxÞ ≈ 4πGN

c2
m̄ðxÞ þO

�
1

c4

�
: ð30Þ

To leading order in c, we then arrive at the Newtonian
limit of the CQ scalar gravity theory

ϱðΣf; m
þ
f ; m

−
f ; tfÞ ¼

Z
DΦDmþDm−N eICQ½Φ;mþ;m−;ti;tf �

× ϱðΣi; m
þ
i ; m

−
i ; tiÞ; ð31Þ

with CQ action given by

ICQ½Φ;mþ;m−;ti;tf�¼
Z

tf

ti

dtdx⃗

�
iðLQ½mþ�−VI½Φ;mþ�

−LQ½m−�þVI½Φ;m−�Þ
−D̃0ðxÞ

�
mðxÞþ−mðxÞ−�2

−
c2D̃−1

2 ðxÞ
6

�
□̃Φ
4πG

−m̄ðxÞ
�

2
�
; ð32Þ

where VI½Φ; m�� is the interaction potential coming from
the expansion of the metric determinant in the quantum

Lagrangians. For example, in the spirit of Ref. [33], one

could have Vi ¼ Φm�. We have defined D̃0ðxÞ ¼ cD0ðxÞ
8

,

D̃−1
2 ðxÞ ¼ cD0ðxÞ

2
, which are related to the decoherence and

diffusion coefficients of the Newtonian potential. With
these redefinitions, these coefficients relate to physically
observable quantities: D̃0 quantifies the suppression of
quantum trajectories away from mðxÞþ ¼ mðxÞ−, which is
the decohered trajectory. We point out that the Vi is a
quantum term with classical control; it does not contain
information about the backreaction of the classical on the
quantum degrees of freedom, which is instead present in the
decoherence term. On the hand, D̃2ðxÞ ¼ 1

2
σ2Φ, where σΦ

quantifies the variance away from the semiclassical
Newtonian solution. They saturate the decoherence-
diffusion relation:

4D̃0ðxÞ ¼ D̃−1
2 ðxÞ: ð33Þ

In Eq. (32), we have explicitly kept the d’Alambert operator
to highlight the fact that, differently from Ref. [33], ϕ is in
principle still a dynamical variable as it is not constrained
by the Arnowitt–Deser–Misner (ADM) constraints.
Keeping the d’Alambert operator is also required for
normalization [63]. However, in the slow-moving limit,
we recover the randomly sourced Poisson equation and
exactly match the Newtonian limit of Ref. [33].
Although the scalar theory is a toy model, it is worth

highlighting some of its appealing features which we
expect to apply to more general CQ theories. First, as
mentioned, we have both diffusion in the Newtonian
potential and decoherence in the quantum system, by an
amount quantified by Eq. (33). More generally, we expect
that the amount of diffusion in the Newtonian potential will
be lower bounded by (33), which is an experimental
signature of classical-quantum theories [27]. Indeed, we
see the same decoherence-diffusion relation between the
diffusion of the Newtonian potential away from its aver-
aged solution, and the decoherence rate into the mass
eigenbasis, as for the Newtonian path integral of Ref. [33].
Second, expanding out Eqs. (25) and (32), we see that

all the � cross-terms cancel so that the path integral
preserves the purity of the quantum state even though the
state decoheres into the mass eigenbasis. Such classical-
quantum theories, therefore, provide a natural mechanism
to describe wave function collapse via the interaction of a
classical field with a quantum one. Moreover, the fact that
the classical field is dynamical is enough to restore
apparent diffeomorphism invariance in the theory, which
can be seen via the diffeomorphism invariant action
in (25). The fact that gravity interacts with matter through
its stress-energy tensor provides an amplification mecha-
nism by which small masses can maintain coherence,
while macroscopic objects will be decohered. Indeed, if
one disregards the classical degrees of freedom, then the
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resulting dynamics are very similar to the dynamics of
collapse theories [36–40], but we see that the full theory is
diffeomorphism invariant due to the fact that we consider a
dynamical classical field.
Let us finally comment on the continuity properties of

the Nordström theory and its Newtonian limit. Typically, in
path integral approaches, the path integral can be under-
stood as an integral over paths that are (almost surely)
continuous. The reason for this is that they typically involve
kinetic terms i

ℏ ½1δt ðxtþδt − xtÞ�2 which give a highly oscil-

latory contribution to the path integral ∼e
i

ℏδt2 if the paths are
discontinuous. For the Nordström theory, we expect similar
behavior for the gravitational field in the full path integral
[Eq. (25)] due to the − R2

4D2
term, which includes kinetic

terms through e□Φ. However, in the c → ∞ limit, we are
led to neglect such terms, leading to a discontinuous path
integral in Eq. (32). This is a remnant of the approximation,
and we expect that any physical measurable quantity of
interest should be smeared over a timescale to reflect this.

V. DISCUSSION

In this work, we have constructed the covariant path
integral of a full diffeomorphism invariant theory of CQ
Nordström gravity and derived its Newtonian limit. The
result matches the Newtonian limit obtained in Ref. [33],
where we started from general relativity and proceeded
with gauge fixing the Newtonian metric. In both cases, the
nonrelativistic path integral describes a classical Newtonian
gravitational field diffusing around Poisson’s equation of
motion. At the same time, quantum matter degrees of
freedom decohere into mass eigenstates due to the back-
reaction of the classical geometry. For the dynamics to be
completely positive, the amount of diffusion is lower
bounded by the coherence time for superpositions of mass
distributions. Differently from Ref. [33], our choice of
classical system was Nordström’s scalar theory of gravity.
While Nordström’s theory does not accurately describe all
gravitational phenomena, it is nonetheless a self-consistent
theory of relativistic gravitation. The main appeal of this
choice is that it allows us to bypass any discussion or
concern regarding gravitational constraints, serving as
proof that there is no fundamental impediment to con-
structing a positive diffeomorphism invariant theory of CQ
gravity. We expect the scalar theory to be an interesting toy
model for exploring conceptual issues around classical-
quantum gravity theories, for example, whether or not they
can be made renormalizable [61].
One can also study the Nordström theory as a toy model

for exploring experimental signatures of CQ gravity since
the theory has the same Newtonian limit [33]. Tests of CQ
gravity include applications to cosmology and galactic
rotation curves [64] and proposals for the detection of
gravitationally induced entanglement between masses in
interferometric setups [65–73], c.f. [74], which may

become feasible in the next decade or two. There are also
experiments that can exclude classical theories of space-time
through the decoherence vs diffusion tradeoff [27], as in
Eq. (33). So far, the upper bounds on diffusion have been
found from precision mass experiments measuring the
variation in acceleration experienced by mass in a
Newtonian potential. Tighter bounds would follow from
increased precision in the readings of acceleration experi-
enced by the masses. On the other hand, improved
decoherence times would lead to stronger lower bounds
onD2 and further squeeze theories in which gravity remains
classical. As explained in detail in Ref. [27], since the
tradeoff is in terms of the inverse Lindbladian couplingD−1

0 ,
one can also constrain classical theories of gravity by bounds
on anomalous heating of the quantum system [75–88].Other
experimental proposals look for coherence or correlations in
the gravitational interaction [89,90]. The variety of exper-
imental proposals and new theoretical tools suggest that
probing the quantumvs classical nature of space-time can be
accomplished at low energy and is likely to shed light on
attempts to reconcile quantum theory with general relativity.
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APPENDIX: NORDSTROM GRAVITY
FROM ACTION VARIATION

In this Appendix, we summarize the derivation of the
Nordström equation of motion from an action principle.
This derivation is discussed in detail in Ref. [62]. To begin,
one considers an action similar to that of Eq. (21),

S½gμν;ϕm; λ
νρσ
μ � ¼ −

c4

48πGN

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ λνρσμ Cμ
νρσÞ

þ
Z

d4xLQ½g;ϕm�; ðA1Þ

where λνρσμ Cμ
νρσ is the Weyl tensor which is constrained to

vanish through the Lagrange multiplier λνρσμ . Here, the
Lagrange multiplier is directly inserted in the action. When
this action is varied with respect to the matter degrees of
freedom, the Lagrange multiplier, and the metric, one
obtains for its extrema
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δS
δϕm

¼∇νT
μν
m ¼ 0;

δS
δλνρσμ

¼Cμ
νρσ ¼ 0; ðA2Þ

which impose energy conservation and conformal flatness of the metric on the constraint surface gμν − e
2Φ
c2ημν ≈ 0. Lastly,

δS
δgμν

¼
8<
:

R − 24πGN
c4 Tm ¼ 0 trace part

∂
α
∂βλ

β
μαν

ϕ2 ¼ − 24πGN
c4

�
Tm;μν −Rμν − 1

4
gμνðTm þRÞ� traceless part:

ðA3Þ

This leaves the equation of Jordan’s frame version of
Nordström’s final theory to be

R−
24πGN

c4
Tm ¼ 0; ∇νT

μν
m ¼ 0; Cμ

νρσ ¼ 0: ðA4Þ

The traceless part can be written in terms of flat
covariant derivatives using the conformal flatness of the
metric

Rμν ¼ −e−
Φ
c2∂μ∂νe

Φ
c2 − ημνe

−Φ
c2□̃e

Φ
c2 þ 4e−

2Φ
c2∂μe

Φ
c2∂νe

Φ
c2

− ημνe
−2Φ

c2∂ρ∂
ρe

Φ
c2 ðA5Þ

R ¼ −
6□̃e

Φ
c2

c2
e−

3Φ
c2 : ðA6Þ

This is often found in the literature written using the

notation e
Φ
c2 ¼ ϕ, which results in

Rμν ¼−
∂μ∂νϕ

ϕ
−ημν

e□ϕ

ϕ
þ4

∂μϕ∂νϕ

ϕ2
−ημν

∂ρ∂
ρϕ

ϕ2
; ðA7Þ

R ¼ −
6e□ϕ

c2ϕ3
: ðA8Þ

Once the solution for the conformal factor ϕ is known, the
traceless equation is an equation of motion for the Lagrange
multiplier λμνρσ. However, the system is undefined as λ has
10 components (it has the same symmetries as the Weyl
tensor), but the system of equation composed of (A2)
and (A5), being traceless, has only 9. Classically, this is not
a problem, as the Lagrange multiplier does not enter the
equation of motion for the Nordström field ϕ. For the CQ
equations considered in Sec. IV, the Lagrange multiplier
enforces a delta function δC in the path integral. This
allows us to only consider diffusion away from the trace of
the equations of motion, which are exactly the Nordström
field equations.
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