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Analytical model of precessing binaries using post-Newtonian theory
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We develop a fully analytical waveform model for precessing binaries with arbitrary spin vectors using
post-Newtonian (PN) theory in the extreme mass-ratio limit and a hierarchical multiscale analysis. The
analytical model incorporates leading PN order spin precession dynamics from spin-orbit, spin-spin, and
quadrupole-monopole couplings, and 2PN order dissipative dynamics truncated to first order in the mass
ratio ¢ < 1. Due to the pure analytic nature of the model, the framework developed herein can readily be
extended to both higher PN and higher-g order. Although the PN series is asymptotic to this limit, our
results can be used to estimate how precession affects the measurability of certain binary parameters, and to
inform and compare with other waveform approximants, such as effective-one-body models, hybrid

waveforms, and self-force calculations.
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I. INTRODUCTION

Extreme mass-ratio inspirals (EMRIs) are among the
most interesting sources for future gravitational-wave
(GW) detectors. In a typical EMRI, a small compact object
(the secondary) orbits a supermassive black hole (BH)
(the primary), performing O(1/q) cycles before plunging,
where ¢ < 1 is the binary mass ratio. Systems with a stellar
mass secondary and g < 107* emit GWs in the mHz
regime, falling in the frequency bucket of the LISA space
mission [1]. Less asymmetric binaries with lighter primar-
ies would push the emission at higher frequencies, possibly
entering the horizon of deciHz detectors [2]. Moreover, in
case subsolar compact objects exist, EMRIs could assemble
around stellar-mass or intermediate-mass BHs, providing a
novel source for ground-based detectors [3,4].

EMRI signals are chiefly emitted when the secondary
probes the strong-field region near the primary. This,
augmented by the large number of orbits performed before
the plunge, allows for unprecedented precision in the
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parameter estimation, and makes EMRIs unique probes
of strong gravity, to test both GW emission and the
structure of spacetime near supermassive compact objects.

Projections based on future LISA detections show that
tests of strong gravity with EMRIs will improve current
constraints by several orders of magnitude [5-8], including
searches for extra fundamental charges and fields [9-19],
anomalous multipole moments [5,20-26], tests of the Kerr
bound on the spin of the secondary [27], nonvanishing tidal
Love numbers of the primary [28-30], horizon-scale struc-
ture [31-33], and tests of exotic compact objects [34-36] and
of ultralight-boson condensates around BHs [37-40].

The large number of orbits in an EMRI is both a blessing
and a curse. On the one hand, it provides a magnifying
glass to measure and constrain the above effects to
unprecedented levels, often well below percent level. On
the other hand, this requires an equally exceptional model-
ing of the complex and long EMRI signal in order to tame
systematic errors (see [41] for a recent review). In particu-
lar, astrophysical EMRIs are expected to assemble mostly
due multibody scattering events, and therefore to evolve on
highly eccentric, nonequatorial orbits. For the same reason,
both the primary and secondary spin vectors are generically
oriented and not aligned with each other nor with the orbital
angular momentum. This implies that, at variance with

© 2024 American Physical Society
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stellar-mass binaries detected so far [42], precession in
EMRIs is the rule rather than the exception and should
therefore be accurately modeled.

State of the art perturbative self-force (SF) models are
currently able to provide waveforms accurate at first-post-
adiabatic accuracy, i.e., yielding a O(g) phase error over
the course of the inspiral [43—45]. Such models have been
computed for quasicircular inspirals of Schwarzschild BHs
in general relativity [46,47]. Extending these results to
generic orbits around a Kerr BH is a primary goal of current
efforts [48—55], possibly including other effects, as geo-
desic resonances and the spin of the secondary [56-61].
Further, in the broader context of GW modeling and
phenomenology, SF models overlap in validity with the
effective-one-body (EOB) framework [62-66], which
seeks to approximate the fully relativistic two-body prob-
lem through a deformed Schwarzschild/Kerr BH, with the
deformation informed from the current limit of PN theory
and calibrated to numerical relativity simulations. The two
approaches, SF and EOB, have shown quantitative agree-
ment for quasicircular nonspinning EMRIs [67].

With SF calculations beyond general relativity having
just started to develop consistent waveform models [68],
most of the studies about tests of gravity listed above are
typically restricted to simplified settings, especially to
circular and/or equatorial orbits around a Kerr BH.
When the secondary spin is included, this is typically
assumed to be aligned to the primary spin and to the binary
angular momentum, forcing zero precession [29,69—71].l
It is important to stress that, for EMRISs, there is no strong
underlying motivation for this assumption other than
simplicity. Furthermore, although challenging to model,
precession is crucial to disentangle certain effects due to the
objects’ multipolar structure [74].

The scope of this paper is to develop a new waveform
model for precessing binaries with arbitrary spin vectors.
By exploiting both the EMRI limit and the post-Newtonian
(PN) approximation, as well as using a multiscale analysis,
we can solve the equations of motion fully analytically.

While the PN series is known to be asymptotic to the
EMRI limit [75-77], and accurate waveform modeling for
EMRISs requires SF calculations, we believe our approach
can be fruitful for a variety of purposes. For example, the
generation of SF templates is computationally expensive
due to the long duration of the signal and high-harmonic
content, although impressive progress has been achieved
recently [78-81]. Our analytical waveform model can be
very useful for fast, order-of-magnitude measurability
estimates on the relevance of precession effects, and for
comparison/hybridization with other waveform models

'See [72,73] for recent progress in modeling a misalignment
between the primary spin and the orbital angular momentum at
first postadiabatic order.

aiming to incorporate SF results, for example to describe
less asymmetric binaries [41,82,83].

In this paper we present the formalism and analytical
computation. Parameter estimation will be discussed in a
follow-up work [84].

The rest of the paper is organized as follows. In Sec. 11
we present the setup, framework, and main equations. The
latter are then solved perturbatively in the ¢ < 1 and PN
limit in Sec. III. Radiation-reaction effects and waveform
approximants are computed in Sec. IV, while in Sec. V we
explicitly present quantitative estimates for the EMRI GW
phase introduced by precession. We conclude in Sec. VI
with a discussion on possible extensions. We use geom-
etrized (G = ¢ = 1) units throughout.

II. SETUP & FORMALISM

In this section, we provide the details of our formalism,
specifically the reduction of the PN precession equations
to the EMRI limit, and the details of our chosen spin-
precessing waveform.

A. EMRI limit of the PN spin precession equations

Consider the PN spin precession equations, which to
second order in the spins of the individual bodies include
the spin-orbit, spin-spin, and quadrupole-monopole cou-
plings [85-88]. To the leading PN order, the equations take
the form

§1 = S_i] X §1, (1)
3:2 = éz X 3:2, (2)
L=-L""(5, +5,). 3)
where
0 =07° + QP + o™, (4)
with
1 3m .
O = (2422211, 5
= a(23m) 5
ss 2 ~
Q" = 27 (S, —=3(S,- L)L}, (6)
oM 3 M5 ™)
213 m,

In the above expressions, L = uv/Mr, the masses of the
two BHs are (m,m,), g = m;m,/M is the reduced mass,
and M = my + m, is the total mass. The expression for éz
is obtained by taking 1 <> 2 in Egs. (4)—(7). The spins can
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be written in terms of dimensionless quantities as
(1,2). Equation (3) is due to the
fact that the total angular momentum, J=LL+S (where

S=5§ 1+ §2 is the total spin vector), is conserved on the
precession timescale.
Now, consider taking the EMRI limit of these equations.

SA = m3j,, with A =

Let the larger object have mass and spin (m, S 1), while the

smaller object has mass and spin (m,, S,). The limit is
given by m; > m,, with ¢ = m,/m; < 1. From this,

qm;
M=(14+qg)m,, = R 8
(+gm. p=0 ®)
gmi 3 2,22 22
L= 7 Sy = g miy, = q°0,, (9)
- - qm% A =
J=35, +7L+q202, (10)

where v = (M/r)!/? is the orbital velocity, and &, = y,m?
is a “renormalized” spin vector. The inclusion of quadru-
pole-monopole interactions introduces an additional con-
stant of motion on the precession timescale, specifically

Myt = <1 JF@) (§1 L)+ <1 +ﬂ> (§2 L), (11
my my

-

= (5, L) +4[(S,+5) - L]+ 43, L), (12)

where we have recast all expressions to highlight all ¢
factors. Inserting these into Egs. (1)—(3), and expanding in
q < 1 gives

d)(l

“r= 0@+ QY O <7 (13)
dy = -

“2 =18+ 0(g)] % 2o (14)
dL .
=187 + 481" + O(g) x L (15)

with 7 = t/m, and

- 3 N

Q(11) =’ (2_§v)(eff>lﬂ (16)

S 9 . 6

952) = -0 <§ - 3”){eff>L + %)(2 (17)

6

=0 A 00

Q£> =3 (I—U}(eff)L+7)(1 (18)
6

- v

G =5 (4= 3uran)?. (19)

=(1 3 - 3 by
Qé) = Evé(_3 + 2U/Yeff)){] +§U6(1 - UZeff))(Z' (20)

We have used the definition of y.; in Eq. (11) to replace all

instances of §1 - L. Tt is worth noting that Egs. (13)—(15) are
expanded to different orders in g. The reason for this is two-
fold: (1) it is a necessity to employ MSA when we study
solutions to the precession equations in the EMRI limit in

Sec. II1, and (2) it is necessary to ensure that 7 is conserved
on the precession timescale, due to the different scalings
of the spin vectors with ¢ in Eq. (10). Indeed, it is

straightforward to check that dJ/dt = O(g?), and thus J
is conserved at this order in the mass ratio (neglecting
radiation reaction).

At this stage, there is a useful simpliﬁcation that can be

performed, by replacing y; with J / m?. The expansion of J
in the EMRI limit is given by Eq. (10). Using this
expansion to replace ¥, in Egs. (19) and (20) will produce
aremainder O(g?), since the linear term in the mass ratio is
proportional to L and L x L. = 0. Such O(¢?) remainder
can be neglected, being higher order than what we are
presently considering. Likewise, performing the same
procedure with Eq. (18) yields a remainder O(g), which
can also be neglected. Thus, to the order we are working
in g, we may replace y, with 7/m% without loss of
accuracy. Doing so completely eliminates the precessing

1 from Egs. (14) and (15), and replaces it with the fixed J.
As a result, the evolution of y; decouples from the other
angular momenta. The latter, namely 7, and L, are the only
quantities we need to take into account when solving for the
precession equations in the EMRI limit.

B. Spin precessing SPA waveform

Gravitational waveforms from spin precessing binaries
were first studied in the PN approximation in [89], with
the first frequency domain templates being computed by
Lang & Hughes [90] using the stationary phase approxi-
mation (SPA) [91]. Standard SPA breaks down for spin
precessing waveforms [92], and is not suitable for actual
searches. However, the Lang & Hughes waveform provides
the necessary qualitative features to capture the effects of
spin precession of the frequency domain waveform, and
results in conservative estimates on parameter estimation
[93,94]. As a matter of simplicity, we limit ourselves to this
waveform model. We remark however that the formalism
and the analysis of the precession equations, contained in
Sec. III and IV E, are general enough to be used in any
precessing waveform.

In the frequency domain, the Lang & Hughes waveform
for spin precessing quasicircular binaries takes the form

" 5 M6

hi(f) = %mAl(f)f_w%@’(f) (21)
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with frequency £, chirp mass M = px*/3M?/ luminosity
distance D;, and the subscript I labeling the two possible
data streams from the three arms of the LISA detector.” The
amplitude function A;(f) is a slowly varying function of
frequency through the precession orbital angular momen-
tum of the binary and the motion of the LISA constellation.
For the present analysis, the phase is more important than
the amplitude, but explicit expression for the latter can be
found in Eq. (2.29) of [90]. The waveform phase @(f) is a
sum of multiple contributions, specifically

O(f) = ¥(f) - pors(f) - o(f) = 60().  (22)
with W(f) the Fourier phase arising from the evolution
of orbital quantities under radiation reaction, ¢, (f) the
polarization phase due to the time-(frequency-)varying
polarization basis of the GWs, ¢, the Doppler phase
due to the motion of the LISA constellation, and 6® the
waveform precession phase due to the precessing orbital
angular momentum. The first and last of these contributions
are most important to the present analysis, and are the focus
of the remainder of this paper. Expressions for the polari-
zation and Doppler phases can be found in Egs. (2.30) and
(2.31) in [90], respectively.

In the time domain, the Fourier phase W is given by

W(t) = 2zxft—2¢(1), (23)

with ¢(¢) the orbital phase, and for any given value of f.
The factor of two multiplying the orbital phase comes from
the leading PN approximation of GWs, specifically the
quadrupole approximation. Coordinate time ¢ and orbital
phase ¢ may be computed in TaylorF2 approximates in
terms of v = (2zMF)'/3, with F the orbital frequency.
Application of the stationary phase approximation to
Eq. (23) enforces f = 2F. Thus v = (zMf)'/3, and the
Fourier phase takes the form

28 {JFZ"’” ]

The PN coefficients of the phase are well known for generic
mass binaries; see for example [95]. We will provide
expressions in the EMRI limit in Sec. IV C.

The evolution of the waveform precession phase is
directly related to the precession equation of the orbital
angular momentum through Eq. (28) of [89], specifically

W(f) = 2aft, 2, -

(LxN)-

dsd (L; : (25)

V)
dt  1-(L-N)?

%|§>

*While our analysis is independent of the specific GW
detector, for concreteness we will focus on LISA, for which
EMRIs are a primary target.

where N is the line of sight from the detector to the source.
Since the LISA constellation is not fixed relative to
the Solar System’s barycenter, N is generally a function
of time. Further, because of the dependence on L, the
solution for 6@ is intricately tied to the solutions to the
precession equations. Solving for these equations is
the main goal of this work, and the detailed procedure
will be explained in the next sections. Once one obtains the
solution within the time domain, the waveform precession
phase can be computed in the frequency domain by
application of the stationary phase condition.

III. PRECESSION SOLUTIONS
IN THE EMRI LIMIT

The full precession equations in Eqs. (1)—(7) were solved
analytically in the compatible mass limit in [86—88]. The
procedure to obtain these solutions is to transform into a
coprecessing frame, where the angular momenta undergo
nutation parametrized by the magnitude of the total spin S2,
which can be solved for in terms of Jacobi elliptic
functions. One then returns to the inertial frame and solves
for the precession angle. Due to the multiple scales
associated with the problem (orbital, precession, and
radiation reaction), one must utilize multiple scale analysis
(MSA) to obtain solutions with sufficient phase accuracy
for GW modeling. In this context, the leading order secular
evolution at each scale is obtained by averaging over the
shorter scale(s), specifically the precession dynamics are
averaged over the orbital timescale, and the radiation
reaction effects are averaged over both the orbital and
precession timescale.

Since we are seeking precessing solutions within the
EMRI limit, we break from the previous work and focus
on solutions to the reduced equations in Egs. (13)—(20).
A tempting approach to solving Egs. (14) and (15) might be
to consider a series solution of the form

L) =Y g0 (), (26)
n=0

and likewise for y,. At leading order, the equations and
their solutions are all bounded. However, for LW the
subsequent evolution equations contain a resonance at
the frequency associated with Q(LO), causing the solution
to diverge linearly in time. This resonance is an artifact of
the expansion in Eq. (26), and is thus unphysical. Similar
pathologies appear in the study of nonlinear and/or forced
oscillators, and must be handled via MSA or renormaliza-
tion methods.

This consideration implies that, unlike the comparable
mass case in [87,88] (see also very recent work [96,97])
where there are only three scales, in the EMRI scenario,
there are actually four: one for the orbital timescale

Ty ~ 07>, two for the precession timescales 7, ~ v~°
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andT,, ~ gv~%, and one for the radiation reaction timescale
T, ~v~°. Of the two precession timescales, the former
arises from the precession of the orbital angular momen-
tum, while the latter arises from the precession of the
secondary’s spin and is suppressed by g. Note that the
presence of so many scales is largely a result of using PN
equations as an approximation to the systems we wish to
study. In a realistic self-force calculation, the only new
scale would result from the presence of the smaller mass
and would solely be coupled to the mass ratio g. Indeed,
this is what introduces the new scale within the precession
dynamics, specifically through the second term in Eq. (15).
In addition, to handle this new scale, we do not average
over the shorter scales as is typically done in PN problems.
Instead, the MS A we perform on the precession dynamics is
to eliminate the artificial resonances that lead to divergen-
ces in the precession solutions, thus renormalizing the
amplitude. While we use MSA to achieve this, one can also
use renormalization group techniques, which provide
equivalent solutions (see Appendix D).

To set up the MSA, we define the long timescale 7 = gr,
and seek solutions of the form

L(t) =) q"L"(z.%). (27)
n=0
The total derivatives with respect to z transform to
d 0 0
—=— —. 28
@ o 9% (28)

Under these assumptions, after expanding in ¢ <1,
Egs. (14) and (15) become

oL©) . }
e x [(e.2), (29)
=(0)

dy R . -

—di = (05,6, + w5 L] X)(<20)’ (30)

oL oL . .
0 T w é, x L — Ve x LO
7 7
+ g i) x LO (31)

with the frequencies

J° 3J1°
wy Zz—m%(“—%)(eff), )" Zz—m%(3—2”)(eff)’
3 Jv®
wgp, = 505(1 - U)(eff>’ Wsy = 2m% (32)

These new equations, specifically Eqgs. (29)—(31), can be
solved iteratively up to linear order in g.

A. L at O(q")

To leading order in MSA, the evolution of the orbital
angular momentum is given by Eq. (29). The presence of
the cross product therein couples the x- and y-components
of L together. However, these can be decoupled by
recasting the equations in second order form, specifically

PLY R *LY R
— =-wil,, afé =-w}L,. (33)

The general solutions are
L (2.%) = X () cosla(z)] + Y(#) sinja(z)],  (34)

L (2,%) = X(#) sin[a(z)] - Y(#) cosla(z)],  (35)

where (X, Y) are purely functions of the long timescale 7,
and the precession angle a is defined by

da

— = . 36
= (36)
which reduces to a(zr) = @, 7 since w; is a constant in the
absence of radiation reaction. However, once radiation
reaction is included, one needs to directly integrate Eq. (36)
to obtain the full evolution of a(z), i.e.,

a(v) = a, + / dv Z);/(Zi (37)

The z-component can trivially be solved to obtain
L0@) = z(). (38)

which does not depend on the short timescale z. The
functions (X, Y, Z) cannot be determined at this order in the
MSA, but due to the normalization of the orbital angular
momentum, they obey

X@OP +YEP +[2@)) =1. (39)

B. 7, at O(q")

To leading order, the precession equation for ;?g()) (7,7) is

given in Eq. (30), with the frequencies wg; and wg; given
in Eq. (32). The original precession equations possess a
sufficient number of constants of motion to define a
coprecessing reference frame, and the same holds true at
0O(q"). We can exploit this fact to define a frame where the
unit orbital angular momentum is fixed to be

LRy = [X(), Y(2), 2(7)), (40)
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while J still defines the z-axis of the frame. To define a
suitable basis in the coprecessing frame, allow two basis
vectors to be J and

LO % j
|L© x J|
[Xsina— Y cosa,—X cosa — Y sina, 0

- Ny @

the latter of these is orthogonal to the LJ-plane. A third can
then be defined by

ﬁ =

L JxP
C=17xp]
_ [Xcosa+Ysina, Xsina —Y cosa, 0] (42)
Vi-2? ’

which, along with L, spans the LJ-plane. The secondary’s
spin vector can then be written as

(0 A A A
7Y = 120 (@P + 12,0(1)0 + 12.4(2)], (43)
with the components satisfying

o.p

or = Wp (’7>)( 2,0 —Wgo (’7))( 2,05 (44)
)% .
% = wQ(T)ZZ.Ps (45)
ay .

0?1 = —wg(7)x2p (46)

where

wp(7) = ws\/ [X(D)] + [Y (D), (47)

wo(7) = ws; — 0, + w5, Z(7). (48)

This system can be decoupled to obtain a single equation
for y, p, specifically

dz)( 2,P
dr?

+ 0p(F)x2p =0, (49)

where

0p(®) = \/log ()] + g ()] (50)
The solution is then

X2.p = XpoCOS[yp(T)] + ¥posinfyp(z)], (51)

with [yp . %po| set by initial conditions, and the spin angle
yp is defined through

ag—: — wp(3). (52)

Much like the precession angle a, yp must be integrated
under the effect of radiation reaction. In general, [yp o, ¥p o]
are functions of the long-time variable 7. However, at the
order in ¢, where we are working, this dependence is
irrelevant and they may be taken to be constants.

The remaining two components satisfy equations that
depend on v, even after they are transformed to yp being the
dependent variable, i.e.,

dj;f = —ZQEZ;)Q,P(VP)’ (53)
Lz(;: = —ZiEZ;)(z,P(YP)- (54)

To solve these exactly, one would have to solve integrals of
the form

xu~/wwwmww, (55)

which are nontrivial. These can be evaluated by realizing
that wp in Eq. (52) is always positive definite, and thus,
there are no critical points of the phase yp. Then, the
integral can be approximated by Laplace’s method via
repeated integration by parts, the first application of which
produces a correction of order

i N (56)

wpdt 0v

while the leading order term is of order wg /wp ~ 1 + O(v).
Thus, y,; can be solved to high precision by assuming
vg = wg/wp does not evolve appreciably on the radiation
reaction timescale, with the result being

X2.0=X10+Vr|—xposinyp +ipocosyp]+O(v®), (57)

where y, is an integration constant. Likewise,

X2.0=Xo00+Volrposinye—jpocosyp] +O(v"), (58)

with vy = wy/wp, and the components of the secondary’s
spin in the coprecessing frame are now solved.

As a final point before proceeding, the solutions in
Egs. (51) and (57)—(58) possess four integration constants,
but y, has only three components. One of these is
redundant, which can be discovered by inserting these
solutions and Eq. (43) into the original precession equations
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in Eq. (30). This is only satisfied if y, 0 = wgx o/ @g, thus
eliminating the anomalous degree of freedom.

C. L at O(q)
We are now left with solving Eq. (31), which must
simultaneously give us L()(z) and [X(%),Y(%),Z(7)].
Rearranging terms, we may write

oL . oL .
S WLl % LW =— PP w\Ve, x LO),
+ g ) x LO. (59)

The left-hand side above indicates that L)) will oscillate
with phase variable a on the short timescale. The artificial
resonance arises due to the right-hand side of the above
equation containing two types of terms, specifically those
that oscillate solely with «, and those that couple both «
and yp. The former of these are what cause the artificial
resonance, and can be seen if one rewrites the source term
above, which only depends on L© and )?g)), into a
harmonic decomposition. More specifically

ot® .
pra Ci(7)cosa+ S,(7)sina+ Z'(7)é., (60)
7

with

€,(7) = [X'(2).-Y'(2).0],

$i(2) = [V'(2).X'(7). 0], (61)
where ' corresponds to differentiation with respect to 7.
Further,

é, x L0 = €,(%) cosa + 8,(%) sina, (62)

5:(%) = [-X(7). Y(3), 0]. (63)

+ Z D Ep(z)eliathe) - (64)

where

C3(7) = 200 F (7)Y (7). X(2). O], (65)

$3(7) = 200 F (1)[-X(3), Y (). 0], (66)
Fa) =20 _ ZE) N
® wr(®)  /XOP + [YE) (7

The [C;(7),$,(7), Z'(#)] produce the artificial resonance
and, thus, the sum total of them must vanish in order to
remove this. Thus, the equations that [X(%),Y(7),Z(%)]
must satisfy are

Z(7) =0, (68)
X'(7) = oxy(D)Y(7), (69)
Y'(7) = —wxy(1)X(7), (70)

with

(1)

- 1 )
wxy(T) = —w; +U)(Q,oi(ws1—wL)- (71)

wg(7)

Equation (68) implies that Z is a constant, and thus,
[wg. wg, wxy] are also constant as a result of the normali-
zation condition in Eq. (39). As such, we will drop the
dependence on 7 from the quantities. Choosing Z = LAz,O’
the solutions for X(7) and Y (%) are

X(7) = LAX,O cos[A(7)] — LAy.O sin[A(7)], (72)
Y(7) = —lA,y‘o cos[A(7)] — lfx’o sin[A(7)], (73)

where A(7), which we call the renormalization angle, is
defined by

di
% = Wyy, (74)

and [ltx,o,lty,o,LAz,O] are constants set by initial data. The
function L% (z,7) is now completely determined and we
have removed the artificial resonance in Eq. (31).

We are now left with the task of determining LW, or
more specifically its dependence on the short timescale z.
The only remaining source on the right-hand side of
Eq. (59) is the double sum in Eq. (64), i.e.,

A

oL .

Foa w6, x LY = vwg S(7.7) (75)
with
3(1, 7) = Z Z Ejk(%)ei[j(l(7)+k7”(f)]- (76)
J k20
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It is simplest to consider each component of this separately.
The z-component of the above equation decouples and,
after integrating, produces

~(1 vw 2~ : y
LE ) 28 1—L§_0bgpwos1nyp +ipo(1—cosyp)].  (77)

wp

The x— and y—components are coupled in the same way as
in Sec. Il A. Decoupling them produces

PLY . i
el =g T (7)) (78)
where
o 0a 5 =~
7T.(7,7) = ESX(T, 7) —w;S,(7.7) (79)
o0 s 5
T,(1.7) = ESy(T, 7) + o, S, (7, 7). (80)

The sources 7, ,, can be written in harmonics of « and yp,
specifically

T,y =Q{CLY (B)cos[s, (7)) +SL (2)sinfs, (7))}
+9_{C (#)cos[s_(7)]+ 85 (F)sin[s_(2)]},  (81)

with Q. = 2w; + wp, 6+ = a £ yp, and the functions

C(7) = $57(7) = Aslrpo¥(®) F 2p0X(®)].  (82)

SV (7) = =C(2) = Aul£2p0Y () — 2p0X ()], (83)

L.o(wp twy) £w L w
A, = z,o( P Q) s F L7 gWst (84)

ZC()PQ / 1- Lg’o

are constants on the precession timescale. It is straightfor-
ward to show that the solutions to Eq. (78) are

£8)(2,8) = £, cos[al(z)] + 2, ,sina(7)]

FELLCE) () cosle (1] 85 (Psinfo. (7))

— 5L L) (#) cos B (2)] + SU () sin[5, (1))},

wp
(85)
where [£, ., fqu} are constants set by initial conditions. In
general, these will be functions of the long timescale 7,
which would then be determined by proceeding to next
order in our MSA. Since we are truncating our analysis at
linear order g, we take these to be constants instead.

At linear order in ¢, the initial conditions for [ are

. di" . .
h%U”:mﬁﬁL lim =1imS(z,7)=85(0),  (86)
11—

=0 t t—0

where the former comes from the standard perturbative
description for specifying initial data, while the latter is
enforced from the precession equations, more specifically
Eq. (75). Enforcing this, the constants [£, ,, 'x!y] are

£y = BLICE)(0) = €3 (0)], (87)
wp

> Sx.y(o) vy (+)

fx,y w; wpwp [(wL + wP>Sx»,V (0)
~ (. = 0p)S13)(0)]. (88)

This completes the solution to the precession equations to
the desired order in g.

D. Numerical comparison

Having obtained the solution to the PN precession
equations in the EMRI limit through MSA, we test the
accuracy of the solutions by comparing to numerical
evolutions of Egs. (13)—(20). Since we only desire to
understand the accuracy of the precession solutions, we
do not consider the effect of radiation reaction at this point,
which is instead discussed in Sec. IV.

The numerical evolutions are performed in
Mathematica with the NDSolve method. We use the
ImplicitRungeKutta method with accuracy and
precision tolerances set to 10713, We consider an EMRI
with ¢ = 1075, y; = 0.99, y, = 1, and initial L = [sin By,
0, cos fy] with fy = 1.04. As a result of these choices,
Xett = 0.5. We evolve the EMRI to 7, = 10°m;, which is
long enough for us to estimate the error in the MSA. For
this EMRI, the top panels in Figs. 1 and 2 provide a
comparison of the numeric and analytic solutions of the
components of 7, and L, respectively.

Generally, the analytic solutions dephase compared to
the numerical evolutions, due to the latter only being
accurate to finite order in the MSA, specifically O(q)
for 7, and O(g?) for L. To provide a complete estimate of
how large the error can become throughout a complete
EMRI coalescence, we empirically estimate the bounded
curve as

max |ﬁnum - £m| < Cq"z, (89)

where C is a number to be determined. Since we are
neglecting radiation reaction for this comparison, the
difference will generally grow linearly in 7= t/m,.
However, this growth will change when radiation reaction
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Top: comparison between numerical evolution (black line) of y, and the analytic MSA solution (red dot-dashed line) at order

0O(q°) for an EMRI with ¢ = 107>, By = 1.04, yo¢ = 0.5, ¥, = 0.99, and v = 0.3193. Bottom: difference between the numerical and
analytic solutions. The solutions generally dephase due to undetermined remainders of O(g) in the MSA. The difference is bounded by
the cyan dashed curves, which are directly proportional to the phase qw,t ~ A().

is included, becoming more rapid closer to merger. To
account for this, we recast Eq. (89) in the form

max |I:num - ian‘ < C(qw/l)n77 (90)
which is due to the fact that A is a proxy for the long
timescale 7 = gt through Eq. (74).

To find the value of C, we take each component of jy,
and L, and compute the difference between the MSA and
numerical evolution, which are shown in the bottom panels
of Figs. 1 and 2. We then find the points corresponding to
the maxima of the oscillations, and use the polyfit
function of NumPy in Python to find C. The resulting curves
are specificed by dot-dashed lines in the bottom panels of
Figs. 1 and 2. The components of L act as outliers in this
analysis. We find the bounding curves of the x— and
y—components to be approximately constants proportional
to the mass ratio ¢ to high accuracy. The reason for this
behavior arises from the constants ¢, , and l:ﬂx,y’ which
should generically be functions of the long timescale 7.
However, to completely obtain these, one would have to
proceed to higher order than we currrently desire in the
MSA to completely fix these functions. The near-constant
error in these two components is then a result of truncating
the MSSA at the desired order. On the other hand, the error in
the z—components scales with w? due to a remainder of

O(q?). As a result, the error on L is better controlled than

the other components of L. Note that the analytic solutions
can be improved by proceeding to higher order in the MSA,
but this goes outside the scope of this study.

IV. RADIATION REACTION & PRECESSION
PHASE

The precession solutions of the previous section provide
a solution to the binary dynamics on the precession
timescale. To include radiation reaction within these
solutions, we invoke the use of MSA again, now relying
on the fact that the radiation reaction timescale is longer
than the precession timescale. This can be seen readily from
the definitions of the precession timescale Ty, = 1/@w; ~
v~% and radiation reaction timescale T,, = 1/9 ~ v™°, and
thus T, /Ty ~ 3. As aresult, the evolution of the binary on
the precession timescale found in the previous section still
holds, but all precessional constants (such as J, w;, etc.)
become time dependent. Meanwhile, the evolution of the
binary on the radiation reaction timescale will be given to
leading order by the precession average of relevant quan-
tities containing [L, 7,].

At this stage, it is worth pointing out that the quantities
[¥0.0-XpPo-xpo) are not well behaved in the aligned limit.
This can be seen by taking our analytic solutions for the
components of ¥, and taking the limit 1 - 0 in a PN
expansion. In this limit, we may solve for the values of
these parameters in terms of the more reasonable initial
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FIG. 2. Top: comparison between the numerical evolution (black solid line) of [ and the analytic MSA solution (red dot-dashed line)
at O(q) for an EMRI with the same parameters as Fig. 1. The inset in the right plot shows a zoom of the behavior of ﬁz, due to the fact
that the nutational motion is suppressed by ¢. Bottom: difference between the numerical and analytic solutions. The solutions generally
dephase due to uncontrolled remainders in the MSA. For the x— and y—components, the difference is bounded by the cyan dashed
curves, which is directly proportional to the mass ratio g. The reason for this is that the constants of integration ¢, ,, and blﬂx;y in Eq. (85)
are technically functions of 7 in the MSA. However, these can only be obtained by going to higher order, whereas we have stopped at
first order in ¢, leaving them as undetermined constants. For the z—component, the difference is primarily controlled by the

undetermined remainder of O(g?).

components of ¥, in a (nonprecessing) Cartesian reference
frame. For each component, to leading PN order we have

X00 = \/ 1- L%,O(I:x,()fzc,o + ljy,Oxz,O + LAZ-OXE,O) + O(U),

(91)
Loorso—Leors
Kpo =220 O(0), (92)
1- LZ’0
o (1=L2)=L_o(L, + L,
)-(P‘0 :XZ,O( Z,O) Z.O( - ,OX-%,,O y,OZZ,O) + O(/I])’
1 - LZ.OZ

(93)

where 57 are the initial values of the secondary spin in a
nonprecessing reference frame, and are regular for aligned
EMRIS. One can see from the above expressions that one of
these components will vanish when L., — 1, while the
other two will diverge. In order to ensure regularity of all
quantities that enter the waveform, we define parameters

_ X0,
X00 = QOAz ) (94)
1- Lz,O
Zpo-2pol = /1 —L2[xpo-7pol: (95)

which are also regular in the aligned limit.

A. Precession averages

To begin, we provide explicit precession averages of
necessary quantities. More explicitly, within the radiation
reaction equation for o, a term (L - 3‘)1,2) will appear at
1.5PN order, whereas a term (S, - S,) at 2PN order. While
we did not explicitly solve for the evolution of S 1 from the
precession equations, the conservation of J on the pre-
cession timescale ensures that 3’1 =J-L- §2. For our
computations, the two averages of relevance are (ﬁ . §2)

and (5, - S,), due to the fact that any instances of (L - S;)
can be substituted with y. in Eq. (11).

The two averages of relevance will both be suppressed
by ¢? due to their dependence on the secondary spin.
At O(q?), both are independent of the evolution of L,
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only being time dependent through the phase y (7). Hence,
at leading order, the averages only need to be performed
with respect to yp, specifically

o))y =5 [ drofre) (96)

T

Inserting the precession solutions and taking the average
reveals

2.2
- g*miyo,
(L-S,), = 7@; = (wQLz,o +opy /1= L?.o) +0(4%),
(97)

- o ®
(81-8,), = qzm%JlQ,Ow—i + O(q%). (98)

It is worth noting that the above averages only depend on
one component of the secondary spin, specifically y;o. The
remaining two components are contained in the oscillatory
corrections to these, and will be necessary to ensure that the
various phases appearing in the waveform will contain all
of the components of y,. Thus, we write

A =

(L-S,)=(L- §2>y + ¢*miDy ,Ax(7) + O(q?), (99)

(S1+85) = (S) - 85), + ¢?miDy ,A7(7) + O(g)  (100)
with
Ay(z) = ypocos[yp(z)] = 7posinfyp(z)],  (101)
DL,Z = Lz,o ﬂ - @’ (102)
a)p CUP
J
Dy, = “r (103)

B. Evolution of J

Within the PN two-body problem, the evolution of the
total angular momentum obeys at leading PN order

daj P +17-$?
— = +— (104)
dL 2JL

where we recall that S? is the magnitude of the total spin

vector S =S 1+ :8:2. From the results of Sec. IVA, the
precession average can be readily taken, obtaining

dj PR =x X009
arN _ : O(5).
<dh>y 2jh Ty o)

(105)

where we have normalized all angular momenta by m?,
specifically J = jm? and L = hm?, with h = g/v. In the
comparable mass case, the evolution for J(L) can be
directly solved in closed form after taking the precession
average (see [88]). However, because of the presence
of J in Eq. (98), Eq. (105) is more complicated and an
exact closed-form expression form has not been found.
Physically, this arises due to the fact that, in the comparable
mass case, the orbital angular momentum constitutes the
largest contribution to the total angular momentum budget
of the binary. In the EMRI limit, it is the primary’s spin that
takes up this role, unless the primary is nearly nonspinning.

Instead of a closed-form solution, one can seek a
perturbative solution in ¢, with ansatz j(h) = jo(h) +
q*j>(h) + O(q?). The analytic solutions for j, and j, are

Jo(h) = \/x7 + h* + c,h, (106)
. _ Looxgo | hles + x50t (h)]
]2(h) - /—1 B Lio JO(h)

cihy olty(h) = ¢_(h) =Iny,] (107)

2x1Jo(h) ’
where [c|, ¢,] are integration constants that must be set by
initial conditions, and

£, =In[2jo(h) = ¢; — 2h]. (108)

£ =nljolh) = h £ 7). (109)

The above solution is obtained without taking either a
complete EMRI or PN expansion of the right-hand side of
Eq. (104), but is obtained by taking &7 = ¢/v as an indepen-
dent variable. In [88], it was found that for near equal mass
binaries, a naive PN expansion of expression similar to
Eq. (106) resulted in a significant loss of accuracy compared
to numerical integration of the PN precession and radiation
reaction equations. The reason for this poor convergence
results from the dependence of / (or L) on the PN expansion
variable v, which always enters such expressions coupled to
q. Taking an expansion in v then assumes particular limits of
the ratio ¢/ v, an assumption that can be broken as the binary
inspirals. For the EMRIs under consideration, g ~ 1076-107%,
and thus the ratio ¢/v only becomes of order unity when
q ~ v, which will only occur for EMRIs so widely separated
that their GW emission is typically outside of the detection
band. As aresult, we expand Egs. (106) and (107)ing < 1 to
obtain our final expression for j(v),

qci 2 - _C%_‘W%

+O(g?).

(110)
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Before continuing, it is worth noting that the above expression
for j(v) has a pole when y; = 0. This is a result of the
nonuniform nature of the ¢ << 1 expansion of Eq. (106). If
¥1 ~ q/v, then the expansion used to obtain Eq. (110) is no
longer valid. This is not unexpected, since a similar problem
arises in the comparable mass case [88]. For the EMRI system
usedinFigs. 1and2, g/v ~ 3 x 107 andy; = 0.99. Thus, in
order for the expansion in Eq. (110) to not be valid, the
primary would effectively have to be nonspinning to reason-
ably high precision. Since we are concerned with EMRIs
with a spinning primary, we use Eq. (110) for the remainder of
our analysis. If one desires to extend the analyses herein to
slowly spinning primaries, one must instead use Egs. (106)
and (107), and take caution when expanding in either ¢ < 1
orv < 1.

In Fig. 3, we provide an explicit comparison between the
analytic solution j(v) in Eq. (110) against the numerical
integration of the coupled PN precession and radiation
reaction equations. Unlike the comparisons in Figs. 1 and 2,
we do not restrict the comparison to a short time window,
but allow the EMRI to fully evolve up to the Schwarzschild
innermost stable circular orbit (ISCO). We simply choose
this as a convenient stopping point of the numerical
integration due to the long computation time of EMRI
inspirals. For the EMRI with the same physical parameters
as Figs. 1 and 2, the numerical integration is performed up
to time ~1.45 x 107m,, which corresponds to ~2.31 years
for a 10°M, primary. The numerical integration is per-
formed using Mathematica’s NDSolve function with the
ImplicitRungeKutta method, and accuracy and pre-
cision goals set to 10~!3. For this EMRI system, the total
integration takes approximately seven minutes on current
laptop processors without parallelization. On the other
hand, the analytic approximations developed herein can
be evaluated much more rapidly, highlighting one of the
main strengths of our analytical model.

The top panel of Fig. 3 provides a direct comparison
of the numerical and analytic solutions as a function of the
orbital velocity ». For the EMRI described above, the total
angular momentum does not vary significantly over the
inspiral, since the angular momentum budget is largely
controlled by the primary. Specifically, J only changes by
approximately a few parts per million of its initial value,
and thus the comparison in the top panel of Fig. 3 is
performed relative to the final value at the end of the
coalescence, J.. The bottom panel displays the relative
error between the two solutions, highlighting that the
EMRI expansion used to obtain Eq. (110) does not induce
significant error.

C. Expansion of dv/dt and TaylorF2 approximants
for orbital quantities

The relevant quantity where these averages will occur is
the evolution of the orbital velocity, which in PN theory
satisfies

r [ [ [ [ ]
| — Numeric |
== Analytic

1076 —

£ [ ]

~ L i

|

3 1077 —

~ & ]
1078

T
|

10710 =

é J

= J
E
~

| 10711 ?

10712 L=

0.32 0.34 0.36 0.38 0.40
v
FIG. 3. Top: comparison of the analytic expression for the

evolution of the total angular momentum J under radiation
reaction in Eq. (110) (red dot-dashed line) to an exact solution
obtained by numerically integrating the coupled PN precession
and radiation reaction equations (black solid line). For an EMRI,
J does not vary significantly over the inspiral, since the largest
contribution to the total angular momentum is the primary’s spin
for this EMRI, and the effect of radiation reaction constitutes a
first post-adiabatic (1PA) correction. As a result, the comparison
is displayed relative to the value at the end of the numerical
integration J.. Bottom: relative error between the numerical and
analytic solutions for J(v).

dv ao
= [1 +Za (q,84)v ] (111)
where the a, coefficients up to 2PN order are
961
ao(q) ~ 75 ai(q) =0, (112)
743 11
a(q) = =z =1 (113)
as(q) = 4x — fi3, (114)
34103 13661 59 ,
= —o, (11
44(9) = 5142 T 2016 " Ty o (1)
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The coefficients (3, 64) are the 1.5PN spin-orbit and 2PN
spin-spin corrections, specifically

13, 25mp) o
p=gm () G L. (116)
1 [247- = 728 = = .
- |ZZ2g. .5, — = . L . L
04 yM3 [48 17927 e (S )(Sz )}
1 233, 719 - .
+ZM2 2[ A—9—6(A-L)]. (117)

To expand these quantities in the EMRI limit, we substitute

all instances of §1 - L with y. in Eq. (11), replace all
remaining instances of dot products between angular
momenta with their precession averages in Eqgs. (97)
and (98), and finally series expand about ¢ < 1, followed
by v < 1. The end result is

dv 32 q 9 — _(1) n
E:?m—lv {l—l—;anv +q;an v

+qBy(rp)> _dv" + 0(612)] ; (118)
n=3

where the coefficients [a,,, 21511), d,] are given, to 2PN order,

in Appendix B.

Having obtained Eq. (118), the two relevant orbital
quantities we must solve for under radiation reaction are
the orbital phase ¢ and coordinate time ¢, the former of
which is related to » through

3
9 _o_ v (119)

while the latter can be computed from the reciprocal of
Eq. (118). TaylorF2 approximants are expression of the
form ¢(v) and #(v), which map to Fourier frequency
through the stationary phase approximation (SPA). By
using the reciprocal of Eq. (118), and PN expanding, the
evolution of ¢(v) can be written as

H(0) = Prcl) + Pse(0), (120)
and likewise for #(v), where ¢ is a purely monotonic
(secular) function of v, and ¢, is an oscillatory correction
due to precession. The TaylorF2 approximants for the
secular part of the orbital phase and coordinate time take
the form

Poclt) = o - [szqkqs“v o).

32‘]” =0 k=0

(121)

_ Sm, K (k=1) 2
) = = oL [H;kzoqtn v+ o).
(122)
with [¢.,1.] integration constants. The coefficients
[4),(,"),:2")] are given explicitly, up to 2PN order, in
Appendix B.

The oscillatory corrections require a more careful pro-
cedure. The historical method of doing has been to perform
MSA, similar to Sec. III, where, in this case, the two
timescales are the precession timescale of the secondary
spin f,., ~1/wp and the radiation reaction timescale
tw ~ 1/(dv/dt). However, for the current problem, this
is not actually necessary, and one can simply use the same
method, namely Laplace’s method, used to solve Egs. (53)
and (54) to obtain the oscillatory corrections. After one
application of Laplace’s method, we find for the oscillatory
corrections

1 osc) "
¢osc(7j) = 32q |:q )(T Z¢ + O )i|
(123)
fose (V) = Sm qeC)z:t =y 4 O(g?) |,
os¢ 256 !
(124)
where
rlre) = [ dretsetrn)
= Jp0COSYp + XpoSinyp, (125)

and the 7)°¢ coefficients are given in Appendix B. The
higher order corrections are suppressed by the factor
dv/dyp ~ tyn/ty ~qv*. This is the same factor that
appears at each order in MSA of the radiation reaction
effects, and thus the two methods are equivalent. Note that,
because of the nature of our perturbative expansion, only
the secular part of yp appears in the argument of y; for the
oscillatory corrections. An explicit expression for this is
given in the next section.

At the level of approximation we are currently working,
the coefficients of the secular contributions only contain
one component of ,, namely 7, which enters at 1.5PN
order and first order in the mass ratio g. The remaining two
components [7p . ¥p o] are contained in the coefficients of
the oscillatory correction in Eqgs. (123) and (124), which
enter at 3.5PN order and second order in the mass ratio. The
effect of the latter two components is, thus, highly sup-
pressed compared to j o. These will enter into the secular
part of the phases if one goes to higher order in the small
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mass ratio expansion. However, we do not do so here,
because the averages in Egs. (97) and (98) will depend on
the first order correction ;?(21), which has not been explicitly
computed here. There is nothing stopping one from
proceeding to higher order in the MSA of Sec. III, besides
the increasing analytic complexity that comes with high
order MSA computations. For our purposes, this goes
outside the scope of this paper, and we truncate the
expansions of the secular and oscillatory contributions at
the orders indicated in Eqs. (121)-(124), respectively. We
leave higher order computations to future work.

With the orbital phase and time in hand, we can readily
compute the stationary phase of the waveform from Eqgs. (21)
and (22). The stationary phase condition is still f =2F, and
the PN expansion parameter is v = (2zMF)'/3 = (zMf)'/3,
where the second equality holds only after applying the
stationary phase condition. The secular part of the waveform’s
stationary phase, up to 2PN order, is now

LPsec(f):271']02‘(.][)_2¢(f)_
ﬂ' (k=1)
=2rft,—2¢, — ",
mfte=2e =3+ g {Jquw v]
(126)
where
_ 5 8
1//51 D —gt( +§¢£z ) (127)
(0) (0) _
wO = $-3t T3¢ n=0 (128)
=3 437 189 >0

with [tn tn , q’zn q’zﬁ,o)] given in Appendix B. On the other
hand, the oscillatory correction is

Posc(f) = = Prr(rse)d wor | (129)
1280 e
with
(0sc) 3 (o) 8 ,(osc)
n =—1Ip —5Pn 130
% ¢ 39 (130)
such that W(f) = Weo(f) + Pose(f). This completes

the computation of TaylorF2 approximants for all orbital
quantities.

D. TaylorF2 approximants for precessional quantities

Having solved for the orbital quantities under radiation
reaction, we now turn to the effect of radiation reaction
upon precessional quantities and seek TaylorF2-style
approximants for them. The quantities of relavance are
the three phases that parametrize the precession solutions in
Sec. III, namely the precession angle a, the spin angle yp,
and the renormalization angle A, which are defined in
Egs. (36), (52), and (74), respectively.

The method for obtaining the TaylorF2 approximants for
these is nearly identical to that of Sec. IV C, with two small
caveats. For the spin angle yp, the frequency wp defined in
Eq. (52) is a complicated function of (¢, v) and must be PN
expanded to obtain the approximant. For the renormaliza-
tion angle A, this quantity is already suppressed by a
factor of ¢ and, thus, we only solve for its evolution at
leading order in the mass ratio. Following the procedure of
Sec. IV C, the total (secular plus oscillatory) solutions are

5 0sc
a(v) = 6—32’;1]2 +§n:Zq oV 4+ bV ) + Py (70 n > )v”], (131)
5 0sC) p
o) = 1= g | 1+qu D )+ ) A, (132)
457, [ (k=1) 1,(k=1) n . (0s¢)
Mo) =2+ 52 _HE(/M + 2 Inv) +qm(7*p"c);in v"|, (133)

where [a., 7., .| are integration constants, and the secular

coefficients [aﬁ,k), ai,’(k) , y,(p , y,l{(k), /1510) , /1;1{(0)

coefficients [a&oso),yﬁosc),ﬁiosc)] are given explicitly in

Appendix B. Note that the secular parts of these quantities
can be obtained by setting the oscillatory coefficients to
zero in the above expressions. Further, unlike the orbital

| and oscillatory

quantities, the secular parts of these expressions contain
terms dependent on the logarithm of v. These naturally
appear at sufficiently high order in the PN expansion, and
appear here due to the starting PN order of these precessional
quantities. These will also appear for the orbital quantities in
Egs. (121) and (122) if one proceeds to higher PN order.
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E. Waveform precession phase 6@

The evolution of the precession phase of the waveform is
given in Eq. (28) of [89], specifically

>

o

L-N)
dt 1—(L-N)?

(LxN)- (134)

SIS

where N is the line of sight from the detector to the source.
Since the precession phase 6® is a scalar quantity, it does
not matter which frame one chooses to compute it in, i.e.,
the inertial frame of the binary versus the inertial frame of
the detector. For simplicity, we choose to do the compu-

tation in the former where J is fixed and defines the z-axis
of the coordinate system. Then,

N= [sin @y cos ¢y, sin Oy sin ¢y, cos Oy ], (135)
and applying Eq. (15), Eq. (134) becomes
do® = (i Aﬁ)a {wLPLN(‘_i)
dt 1 —(L-N)?
+alos Puv(Z) o Piy@]}. - (136)
where
Puv(A) = (L-A)L-N)~(A-N)  (137)

for an arbitrary vector A. Generically, (Oy, py) will be
functions of time due to the fact that the LISA detector is
not fixed relative to the inertial frame of the binary.
However, we argue that this effect can be neglected in
the computation of the precession phase in Appendix A.
The right-hand side of Eq. (136) must be expanded in
g < 1, and we seek a solution of the form
5® = 600 (1) + g6@(7) + O(g?).  (138)
Formally, one should perform MSA to solve for the
precession phase. However, we employ a shortcut that
reproduces the results of such an MSA, and does not result
in a loss of accuracy. Because of the algebraic complexity
of solving for the precession phase, we split the compu-
tation into two separate parts below.

1. 6® at O(q")

At leading order in ¢ < 1, one simply has to take ¢ — 0
and L — L in Eq. (136). The definition of N is given in
Eq. (135), while () is given by Egs. (34), (35), (38), (72),
and (73). Thus, we have

lf-]T]:I:z,OcosﬁN—l— \/1=L%sinOycosa, (139)

and, at O(q°), Eq. (134) becomes

dso© by + by cos @ + b, cos® &
_ o + by cosa+ b, cos aEfo(&)a

da dy — d, cos @ — dy cos> &

(140)

where @ = a+ A — ¢y + ¢ with ¢p; = arctan(LAy,O/lA,x,o),
A is given by Eq. (74), and the (b;, d;) coefficients are only
functions of the constants (L,,,6y) and are given in
Appendix C. The presence of 1 in this expression would
normally require the application of MSA to solve for 6®(©).
However, the shortcut in Sec. IV C to obtain the oscillatory
corrections to the TaylorF2 approximants may also be
employed here. More explicitly, the solution is

500 (7) = / daFola(a)),

:/d&(] + quxy) ' F(a), (141)

where to obtain the second equality we have performed
a change of variables, and the factor in the parentheses
comes from

da
— = 1+ quxy(7),

Ja (142)

with vyy(7) = wyy/®;, which only varies on the radiation
reaction timescale. Further, F(@) only varies on the more
rapid precession timescale, and @ does not possess any
stationary points. Thus, we may again employ Laplace’s
method to obtain

0O () = 5, + N pa(z) + g [h_E_(7) = h &, ()]

+ O(g*v?), (143)

where the remainder is determined by dvyy/da expanded
in g < 1 and v < 1, and §,. is an integration constant. The
purely oscillatory (nonsecular) functions £ are explicitly

E4(1) —tan‘l[ p sina(z) ]

1 —picosa(r) (144)

quantities (N g, h, ) are functions of the (b;, d;) coef-
ficients and are given explicitly in Appendix C.

2. 6@ at O(q)

At first order in the mass ratio,

d5q)(1) _ wy Bl (aa ﬂ,, rps U)
dyp  wpdy—d;cosa—d,cos?a

o, By(a.A.yp. v)
wp (dy — d; cos @ — d, cos®> @)*’

(145)
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where B, are complicated functions of time through
[a, A, yp] on the precession timescale and » on the radiation
reaction timescale. We do not provide explicit expression
for these, but they can be readily derived from Eq. (136)
by inserting L — L£© 4+ gL and 7, — )?éo), and expand-
ing in ¢ <« 1. In terms of these vector quantities

~ (L0 NPR (). (146)
By = (LY - NY{2(L© - )Y (LO . N)
—(J-N)[1 + (£O - N1, (147)

where vg; = v /o, v = w(Ll)/a)L, and ’P(LOK, is given by
Eq. (137) with the replacement L — LO),

There is no exact closed-form solution to Eq. (145), but
an approximate solution can be obtained from the following
considerations. The ratios [vg;,v;] only vary on the
radiation reaction timescale, and not significantly. For
the example EMRI system studied in Fig. 3, vg; varies
by only ~2% over the course of the inspiral, while v, varies
by ~0.6%. Thus, we treat these factors as effectively
constant when solving Eq. (145). Further, yp varies more
rapidly than a and 4, which can be seen from the PN scaling
of these quantities in Egs. (131)—(133). More specifically,
da/dyp = w; /wp ~ O(v). Since we are working in a PN
expansion, we define £ = w; /wp to be an order-keeping
parameter and perform MSA using £ < 1. Equation (145)
can now be solved by using

d 0 0
—=—+¢&— 14
dyp Oyp éaa (148)

and seeking a solution of the form

5(1)(1) = 5(1)(();)%(0{, /1) + Zék [5(IDI<J())SC<(1, /1’ }’P)
k=1

+ 601, (. 2)] (149)

Note that 5CI>(])

0.scc does not have an oscillatory contribution

so from now on we define 5‘1)(()1,2“ = 5@&” for the ease of

notation. We write the functions B, as

B, = <Bl,2>§'0> (a0, 2) + 58(1?2)(a, A yp)

+¢|Bi) (@) + 8B s, (150)

where 5[3'(&1) are purely oscillatory functions in yp,
ie, (68%"), =o.

14

At first order in &, Eq. (145) becomes

doo!) . o). (B +oB
da doyp  dy—d, cosa—dzcosza
(B)" + 589

+

. 151
(dy—d, cosa—d,cos*a)? (151)

Averaging the above equation with respect to yp eliminates

the second term on the left-hand side, as well as the 585?2)
terms on the right hand side. This decouples the dynamics

of the secular 6(I><1) from the oscillatory s®\)  The

1,0sc*

averages (B 2) take the simple forms

B = bV + bV cosa + b} cos? a, (152)

3 2
<BZ>J(,O) = <Z c,(cl) cosk 55) +sina <Z s,(cl) cosk Ez) (153)
k=1 k=0

with the coefficients [b(-l) cl(l), s§1>] given in Appendix C.

Due to the superposition of the source term in Eq. (145), we
can split the solution for 6®(!) into the linear combination
of solutions sourced from 3; and B, separately, specifically

5(13(()') = 6d>(()B‘) + 6@862). The necessary integral with
respect to a can be performed using the same method in
Eq. (141), with the end result being

V2

5% = —Ng?'>a+d—2 W (@) -nBe ()], (154)

50\ =\ gZ)&—FﬁE(r)
0
V2
MAI[ )+ <r>}

0y +6Ccos&—|—ag~ ) sm&—l—ag ) sin(2a)

2dyAgA

155
1(dy—d, cos@— d,cos’@) (155)

with

\/ AO - dl - 2d2 COS &(T)
VA, + d, + 2d, cosa(t)]’

L(z) =log (156)

and [./\/'Ef“),hf’),Al,K,gi,oo,ac,o-(sl’z)] are given in
Appendix C. Generically, one could also have integration
constants in Eqs. (154) and (155), but these can be
eliminated by redefintion of . in Eq. (143). For the
oscillatory contribution, the solution is trivially given by
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1 1 0
50}, = i@ / dyp 6B\ (a, 2, 7p)

1
+ W / dyp 539 (o, 4, 7p),

BS(@@) | BS()

‘{ 4@ 'da >12}“’””
@, B@)

+{ <>+[d<a>]}s e

where [BS,,By,] are functions of @ given explicitly in
Appendix C. We stop our computation here, since it
suffices for capturing the leading-order behavior of the
secondary spin. The methodology can be extended to
higher order if one desires more phase accuracy.

Finally, we have numerically checked that the phase

contribution of 5@5 3ec is negligible, so we do not provide
analytical results for this term.

In Fig. 4, we provide a comparison of our analytic
solution for the total 6@ to numerical integration of
Eq. (134) for the same EMRI system in Fig. 3. The

dephasing (bottom panel) between the two solutions is

(157)

I I I I I I ]
—— Numeric

==+ Analytic
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I
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FIG. 4. Top: comparison of the analytical result for the wave-
form precession phase 6@ found by combining Eqs. (143), (154),
(155), and (157) (red dashed line) to an exact solution obtained by
numerically integrating Eq. (134) (black solid line). Bottom:
absolute error between the analytic and numerical solutions.

~2 radians over the full coalescence, indicating the
accuracy of the approximations used to obtain the analytic
expression in Egs. (143), (154), (155), and (157). It is worth
remembering that this total dephasing is over > 2 years
of inspiral, while over the last year of the inspiral, the
dephasing is ~1 radian for this EMRI. While typically this
could impact parameter estimation, the goal of this study is
not to develop the most accurate model possible for EMRIs,
but a model that has the necessary qualitative features to
forecast uncertainties on the secondary’s spin. If one
desired more phase accuracy, one could carry out the
analysis here to higher order. This completes the compu-
tation of the waveform precession phase.

V. WAVEFORM PHASING DUE TO SPIN
PRECESSION AND SECONDARY SPIN

Finally, with the analytical results of the previous
sections at hand, we can now quantify the GW phase
introduced by spin precession and by the presence of a
(non)precessing secondary spin. The total waveform phase
is given in Eq. (22), with the Fourier phase W(f) and
precession phase 6®(f) being the most relevant for our
analysis. We define the quantity

Wr(f10°75) = W00 25) — SO(f:0°25),  (158)
with x5 = [700.Zpo-Xpol, and 0= [my,q.L o, dr.c1.
X1 Xeit> Ons Py tes e, 8. are the waveform parameters
not associated with the secondary’s spin. Further, we define
the total phase accumulated by W7 over one year of inspiral
to be

ATT(GG )(3)

=Y7(fisco (159)

ga’){g) _lPT(fl yr;gav)(‘21>»
where figco is the Fourier frequency associated with the
Kerr ISCO, and f, is the Fourier frequency one year
before the EMRI reaches the ISCO.

From the total accumulated phase in Eq. (159), we
consider two quantities that act as measures of the impact of
spin precession on the waveform. The first is the dephasing
between an aligned (nonprecessing) EMRI and an EMRI
undergoing spin-orbit precession (without a spinning sec-
ondary), specifically

6‘PL (eu) - AIPT(eu ’)(g :O) ATT(Gallgn’)h O) (160)

a
where 9a11gn

quantity 6¥; provides us with a measure of how many
radians of phase the leading-order spin-orbit interaction
introduces in the waveform. For this comparison, the spin
of the secondary is neglected, while we take y . = ¥, L.,
which follows from the expansion of Eq. (11) about ¢ < 1.
The aligned limit, specified by 6%, is givenby L, = 1.

are the parameters in the aligned limit. The

align’

We use the TaylorF2 approximation for W(f) given in
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Eq. (126), while for 6@(f) we use the analytic approxi-
mation given in Sec. IV E with a and yp given by Eqgs. (131)
and (132), respectively. For the analysis carried out here,

we fix the orientation of the line of sight vector ]_\;,
which enters the precession phase 6®, to 8y = z/6 and
¢y = /4. We fix y; = 0.9 and ¢ = 107>, and study how
the dephasing 8¥; varies with increasing misalignment,
i.e., with decreasing L. . Figure 5 shows the results of this
comparison, revealing that increasing misalignment pro-
duces greater dephasing compared to the aligned limit,
owing to the increasing precession effects on the binary.
The total dephasing is generally large, typically >10*
radians or larger, even for EMRIs with small misalignment.
The reason for this is that the misalignment enters the
GW phase at leading order in the mass ratio O(g~!) and at
1.5PN order, O(v%), through y.¢. Thus, the contribution for
generic spin-orbit precession is large compared to a non-
precessing EMRI.

The second quantity we can consider is the dephasing
between an EMRI with a spinning secondary and one
without it,

8, (6°.75) = AWr(6%. 48) — A¥7(6. 14 = 0),  (161)
where 6“ is held fixed between the two inspirals. Studying
the above quantity is useful since, assuming the absence of
parameter degeneracies, a dephasing greater than one
radian would substantially impact a matched-filter search,
leading to a significant loss of detected events, and being
potentially detectable [98]. The quantity 6'¥,, is dependent

on the parameters ¢“, but many of these have negligible
impact on the dephasing. The three most important param-
eters we have identified are g, L, o, and y,. The first should
be obvious since the secondary’s spin is coupled to the
mass ratio. The z-component of the orbital angular momen-
tum’s initial orientation L, controls the amplitude of
precession effects, specifically, more misalignment (smaller
L,o) leads to stronger precession effects. Lastly, the
primary’s spin controls the location of the ISCO, and the
total angular momentum through Eq. (110), modulating
how much the primary influences the precession of the
secondary.

Figure 6 shows the dephasing 6%¥,, as a function of
frequency (left) and time (right) for various values of the
primary’s spin, and with 7o =1 and ypy =0 = Ypo- In
this case, the secondary’s spin is a constant in the
coprecessing reference frame of Sec. IIIB, and thus
only undergoes simple precession (no nutation). The
total dephasing over one year of inspiral is typically
0.7-1.0 radian, depending on the value of the primary’s
spin y;. Larger values of of y; produce slightly more
dephasing than lower values, owing to the ISCO being
smaller for prograde orbits and allowing for a larger
number of total GW cycles. Figure 7 shows the same
comparison, but for the secondary spin with orientation
WQ,O’)?P,O’)?P.O] = [0687, —0259, —0635} The dephas—
ings in this case are slightly smaller than those in Fig. 6,
due to the fact that the components [7pg,7po] mainly
contribute to the phase through oscillatory corrections,
which are suppressed by ¢* Thus, the component 7

| T T
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e E

o o

= ro
]
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-
o o B
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FIG. 5.
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GW dephasing (160) between an aligned EMRI (L_o = 1) and a precessing configuration with varying misalignment

(colored curves, smaller values of L, , correspond to large misalignment). The EMRI in this figure has a nonspinning secondary, and
the precession is induced by the spin-orbit coupling between the primary spin and orbital angular momentum. Further, we fix

x1 =0.90 and ¢ = 1073,
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FIG. 6. GW dephasing (161) between an EMRI with a spinning secondary and one without, as a function of the frequency (left panel)
and of the time (right panel). We consider binaries with mass ratio ¢ = 1073, evolving for one year until the ISCO. Colored curves refer
to different values of the primary spin y;, while we fix L.y = 0.87, 750 = 1.jpo =0 =¥po-
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FIG. 7. Same as Fig. 6 but for L, = 0.87, g = 0.687,jpo = —0.259, yp o = —0.635. The latter two component of the secondary
spin contribute to the waveform phase in oscillatory corrections, which are suppressed by ¢ while 7, is only suppressed by ¢. As a

result, there is less de-phasing compared to the case in Fig. 6.

produces the largest contribution to the phase, and will
likely be the best recovered component of the secondary’s
spin when performing parameter estimation. Note that this
is not unexpected, since it is known that the component of
the secondary spin parallel to the total angular momentum,
which is related to (o, produces the dominant contribu-
tion to the GW phase [99-102].

In Fig. 8, we investigate how the initial misalignment of
the orbital angular momentum, encoded in L, (, impacts the
phase accumulated due to the secondary’s spin. The limit
L,y — 1 corresponds to alignment between the orbital
angular momentum and primary spin, and decreasing
values provide greater misalignment. Generally, more
misalignment produces more precession cycles, thus
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FIG. 8. Same as Fig. 6 but for y; = 0.90 and varying the value of L_ . Smaller values of L, correspond to systems with greater initial
misalignment between the orbital angular momentum and primary spin, leading to more precession cycles in the waveform, and thus,
larger 6'¥,,,.
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FIG. 9. Same as Fig. 6 but for y; = 0.90,L,, = 0.87, and varying the value of the mass ratio g. Since the secondary’s spin is
suppressed by the mass ratio, larger and more comparable mass systems produce more dephasing over a fixed one year duration of

inspiral.

increasing the impact of the secondary spin on the
waveform’s phase. For the largest misalignment studied
here, specifically L,, = 0.1, 6¥,, ~ O(10) radians after
one year of inspiral. The case L,, = 0.87 provides the
smallest dephasing, which is due to the fact that L is
nearly aligned with the line of sight vector N. Lastly,
in Fig. 9, we study the impact of the mass ratio on
the dephasing. Due to the fact that spin effects are

suppressed by the mass ratio, more comparable mass
systems (larger g) produce more dephasing over one year
of inspiral than more disparate mass systems.

The PN analysis carried out here suggests that we may
expect O(1) — O(10) radians of phase from EMRIs with a
precessing secondary. To understand if this is reasonable,
we may compare to aligned results obtained using
Teukolsky fluxes in [27]. In Fig. 2 therein, it was found
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that one may reasonably expect ~O(10) radians of dephas-
ing due to an aligned spinning secondary. In our case, Fig. 8
shows that close to alignment (solid line), only ~O(1)
radians are accumulated, an order of magnitude less than
that found in [27]. We owe the difference to the fact that we
are using the PN approximation to model an EMRI system,
which is known to not be a reasonably accurate approxi-
mation of the dynamics of EMRIs. Nevertheless, this
comparison shows that the dephasing we obtain from
our naive PN analysis is a conservative estimate of the
effects of the secondary’s spin. As a result, we expect that
results on the uncertainty of the secondary’s spin compo-
nents obtained in a parameter estimation study that makes
use of our waveform model will also be conservative
estimates of those obtained from a proper self-force wave-
form that includes a precessing secondary. Such an analysis
goes outside the scope of this paper, and we plan to address
this in future work [84].

VI. CONCLUSION AND FUTURE WORK

In this work we have developed a consistent and fully
analytical framework to describe precessing binaries with
generic spin vectors and a large mass ratio asymmetry,
exploiting both the PN theory in the EMRI limit, as well as
a hierarchical multiscale analysis. We have solved the
equations of motion for precessing quantities at the leading
order in the mass ratio.

As a key result of our formalism, we have computed
the PN phase corrections due to precession within the
TaylorF2 GW approximant in the frequency domain,
including contributions from both the primary and secon-
dary spin vectors with generic orientation. We have there-
fore developed a fully analytical waveform model for
precessing EMRIs with arbitrary spin vectors.

The agreement between our analytical results and
numerical integrations of the equations of motion is well
controlled. While we find excellent agreement to O(g°),
the maximum dephasing to O(q) is less controlled, up to
two radians for a full evolution lasting a few years up to
the ISCO of the primary. Note that our perturbative
procedure can be extended to higher orders in ¢, and
there is nothing preventing one from including high order
MSA computations, which will presumably make the final
result more accurate.

In any case, the intrinsic error of the analytical waveform
is typically smaller than those of the precession and
secondary-spin effects that we have focused on.
Furthermore, despite this intrinsic error, our analytical
template can be useful to forecast the order of magnitude
of the parameter errors inferred by future observations
(using either Fisher-matrix or more sophisticated
Monte Carlo Markov Chain approaches), or for comparison
with other waveforms in certain regimes. The model
developed here can also be used for producing hybrid
waveforms aiming to describe less asymmetric binaries by

matching SF models that include PN contributions and the
EOB formalism.

In a follow-up work [84], we will use our TaylorF2
model to perform parameter estimation using a Fisher-
matrix analysis. Preliminary results show that, although the
PN series is known to be only asymptotic to the EMRI
regime (and is therefore not a faithful representation of the
signal), it nevertheless provides reliable results for what
concerns the errors of the waveform parameters. Thus, it
can be exploited to estimate how precession affects the
measurability of certain binary parameters, especially those
that feature degeneracies in the nonprecessing case. A
detailed study on this problem will appear in [84].
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APPENDIX A: ARGUMENTS FOR NEGLECTING
THE LISA CONSTELLATION MOTION IN THE
CALCULATION OF THE PRECESSION PHASE

Consider, in addition to the line of sight from binary to
detector N , the line of sight from binary to the barycenter of
the ecliptic Ny, which is parametrized by a new set of
angles (Oyg, dnr). We assume that the inertial frame of the
ecliptic is fixed relative to the inertial frame of the binary,
and thus (Oyg, ¢png) are fixed. Then, one has the distance
from the binary to the ecliptic’s barycenter I_éE = RE]V Es
the distance from the binary to the LISA detector
R(1) = R(t)N(¢), and the distance from the ecliptic’s
barycenter to the LISA detector rp = rpiip(f). Here
rp =1 AU, and these vectors satisfy R(7) = Ry + 7(1).
Rearranging, we have

L Ry - r(f)
yoRe g, r0

R() E W”D(Z)- (A1)
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One can also show using the law of cosines that
R(t) ~ Rg + O[r(t)/R()]. Combining this with Eq. (A1),
we realize that N ~ N + O(r/Rj), where R can be taken
as the luminosity distance to the source. Since rp, = 1 AU,
and Ry ~ 100 Mpc — 10 Gpc, the ratio /Ry ~ 10714 - 10716,
which is approximately the limit of double precision
accuracy. Hence, we can consider (@y, ¢y) as fixed when
considering the precession phase of the waveform 6®.
The LISA constellation’s motion does, however, enter the
definitions of the beam pattern functions.

APPENDIX B: COEFFICIENTS OF TaylorF2
APPROXIMANTS

In this section we provide the explicit expression for the
coefficients appearing in various PN quantities in Sec. IV.
For dv/dt expanded in small mass ratio in Eq. (118), the
PN coefficients are

I 7 R 113
612:—%, as :47'[—3)(@&7 (Bl)
_ 34103 233 2 719 ,
B2
“ = 1g144 " 96 41 96 et (B2)
0 _a 435
a(()) :—3, ag):ma <B3)
1
al) = T3 (=147 + 37T + 3870,). (B4)
_(1y 215 1165 719 133 _
94" =159 + Wﬁ - i)(gff - FLZ,OXIXQ-O
1 _
+ 54Xt 00> (BS)
_ 19 - 1 247
dy = FDL 2s dy = g DLaKeit _K,Dl,% (B6)

with D; , and D;, velocity dependent factors given in
Egs. (102) and (103). To leading order in a PN and small
mass ratio expansion

Dy ~—x1v+ O(q,v?), (B7)

Dy, ~ =y +0(q.v). (B8)

The nonzero coefficients of ¢(v) and #(v) in Egs. (121)
and (122) up to 2PN order read

t2 = —gaz, l’,; = ——a3, (Bg)

iV =2a3-a). i) =-a’ . (B10)
4

A0 (2@5”(;2 - ag”), (B11)

8
A = (2aas - a"). (B12)
i) = -6y} + 4a,a;" + 4a'a, - 2a),  (B13)
608
gosc) _ _T)(l’ (Bl4)
1216 , 992
t(SOSC) = ( 9 Lz())(l + 15 )(eff))(l’ (BlS)
~ 5 _ 5_
4 =Sa, 0 --3a, (16)
3 2
¢V =s5@-a). @) =-1-a)).  (B17)
5
89 =3 (a2 + 2003, - ). @13)
5
¢(30> (a3 + 2a, )a3 - agl)), (B19)
o = 5[(1 +3a))a3 - 2a,a."
— (1+2a"Ma, + aﬁl)} , (B20)
380
¢§ ) = _TZI’ (B21)
(osc) 4 ’
W = =501 (190L 71 +93x). (B22)

For the precessional angle in Eq. (131), the nonzero PN
coefficients up to 2PN order are

_ 3 - _ 3
ag 1 — _EZEH’ (xg b = 2(1;0) — E}{effag))’ (B23)
- -, 3 1(-1) ~
Ay~ = da— dy = Kot ds, @ =20, (B24)
3
P B (O L (B25)
31 81
a<10) é)( ffa(()l) - ﬁ‘_h (B26)
e b
2 1
3
a<30) = Zagl) 461361(() ) + 3a2aé )Xeff ZXeffagl)
(4612 — 4614 + 3)(etta3) (B27)

4;(1
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() _ o) 3 oy 3

_ _ Cc _ _ _
O =al ) = Xeftdy — *12 (8a@a3 — 3a3yesr + 3asyerr).  (B28)

— 72 =
a,’ =a, +3ayay’ —2a4a, —2a,a, +§)(effa3a0

4 871
ab©@ =22l — 4a,al" + @ (4as — 3aryes) (529)
1
152
o _ =2, (B30)
(osc) 2 3
o = -2 (760x1 L, o + 8Txcfr)- .

For the spin angle yp in Eq. (132), the nonzero PN coefficients are

—1 3 ~ —1 — A 3 A
7(1 )= —E(Lz.o)m + Xefr)» 7§ )= 3a, + 3 Xerilzo + EZ%(l —L2y), (B32)
(0 3@ + Gy — @) = 3L 01 (@5 — Gngert) — 2 an(L2g — 1 §£ o= 1 > 0= 612+ 1)zt
va = =3(a5 + Gsyer — a4) 2ox1(@3 — Gxxerr) 2612( 20— xt 5 ( Wi ett + 8( + Dxfs
(B33)
1(—1 _ _ _ o~ 3. ~ 3 4
73< )= 3(as — axyesr) — 3aL oy + ELZ,O(L?O -yl - 2 (L2o = D) xes, (B34)
_(0) 1) 2ciLg 0 _3_m, » ~ 3L, oxerr
Yo = —dg _5—)(11 ; =54 (1Lzo +xerr) +er | 1= L2, +7j)(1 =), (B35)
0 . _a 2a,L.0 3 . . 3 4 . . _(
7/2 ) — 60261(() "¢ (% - E(Lg,o = 1)L ox1 — xett) | — Ea(() " (—L2ox1 + 2L oxere + 21) — 361& ), (B36)
1
©) _ 3 fo4-2-(1) (1) (1) ()7
vy = 3 {24(12% — 8a, {”0 X1 (Lzo(—)(l) + 2LZ et + 1) + 2@, } + 16asa, 'L zo)(l + l6a3a0 Xeff
_ - _(1) £ _(1) £ _(1) _(1) £
- 16a4a(() ) _ Sa(() >L40)(‘11 + 4aé )L3 M%}(eff + 6a(() )Lio;(l 4a(() 0 Zoxlxeff - a(() >)(1 4a§ )Lio)(%
—(1 —
+ 8“2 X et 45’& ))( 8a§ Loy — 8a§ >)(eff + 802 }
+ % [802 20— 6(12( — Dy (2L, OX1 = Xeit) — 8‘_13@,0)(1 + 6513l:z,0)(eff + 8azy; — 85141:z,0
+ 35[2,0)(411 - 15@,0)({’%& - 50[:3,0)(‘11 + 18[2,0)(?%&“ + 15ljz.0)(41‘ - 3)(?)(eff:| ) (B37)
Loy 3/,
7/3'< ) — 5 (40261(() 'L Loy + 4a2aé ))(eff - 4030(() ) ao L30Z1 +ay )Lzoﬂm(eff + aé 'L L.oxi - af) )Zl)(eff
_(1 _ cy oI N . N
- 2“§ 'L L.oxi— 2“5 ))(eff + zagl)) + ﬁ [az(_SLg,OXI + 6L, oxerr + 821) — 8asL
1
+ (L20 = Dx(20L2 1 = 9L oxrers = 4)(1)}, (B38)
osc 1235 osc 13
7% = _W)(l’}'é = —@)(1(95)(114 — 2 efr)- (B39)
Lastly, for the renormalization angle 4 in Eq. (133), the nonzero PN coefficients are given by
0 4 2 _
A = ~3 et T 3X 00, (B40)
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_ 4 2
/1(30) =2a3 — 3Xefi @2 + 34004 (B41)
PSR I _ _ _
/14(;0) =-ai+ay 3 (2asyer + a3y o0+ doxerilo0). (B42)
1,(0) _ 2
Ay =24, + 3XetiZ 0.0 (B43)
152
/Igosc) = _T}( 1> (B44)
0SC 8
ose) — ——x1(570x, Lo + 583yesr — 152%00). (B45)

8 135

APPENDIX C: COEFFICIENTS OF THE
WAVEFORM PRECESSION PHASE

The (b;,d;) coefficients appearing in the reduced evo-
lution equation for 6® in Eq. (140) are

by = L_o(1 = L%;)cos Oy, (C1)
by = (1-2L%)\/1 = L2 cosOysinby, (C2)
by =L.o(1 —L?,)sin’ Oy, (C3)
dy=1—L2cos’ Oy, (C4)
dy = L_g\/1—L2sin(20y), (C5)
dy = (1 = L2 )sin® 0. (C6)

From these, and defining { = 1 + guvyy, the coefficients
appearing the solution in Eq. (143) are

Ay = &% + 4dyd,, (C7)
Ay =di =2dy(—dy+ dy) F di\/Ay. (C8)
ey = VA F dy +2ds, (C9)
ey ny —1
p— N pu— 3 Clo
ny oA, Pa ne 1 (C10)
b = bidy + byd, _ byd? + 2bydydy + bydydy — 2byd3
{vAL CVAAL
(C11)
—V2by—h., +h_
Ny ZY2br— it (C12)
V2¢d,

The discriminants Ay and A, are all positive definite for
any value of (S, 0y).
For the solutions at linear order in ¢, the coefficients

appearing in 5@88'> are

A

L,
by :U—(l L2 [Ull/mv
RP

+VsiXo0 <URP£Z,0 —vopy/ 1= ﬁ%,o)} cos?Oy, (C13)

(1-2L%)) 12
b<11) = TPZO |:I/RP 1 - (I/] +Lz ()I/SLXQ 0)

-(1- )’/QPVSL)(Q o} sin(20y). (C14)

b = —b{Vtan? (). (C15)

The quantities [N ((/,B‘),h(f1>

| are given by Egs. (C1 1)
and (C12), with the replacements /. — h ) and b, — b

for i =0, 1, 2. For 6@8 ), the coefficients are

1 A N
V= ~1(2=3L2+ L2 cos(20,)) L. sin(26y).  (C16)
S =200\ /1 = L2, L, sin* (Oy), (C17)
cgl) —(1=L%))L, cosOysin’ Oy, (C18)
st = —(1=2L2 y+ L2 cos2 Oy ) L_ cosOy sind (C19)
0o - z,0 z,0 N — N N>

sV = 2L, g\/1 = L2 L_sin* O, (C20)
s\ = —(1 = [2,)£_ cos Oysin® Oy, (C21)
Ly =\/E2+ 2 cosdycosdy £ \/E2 + £2 cosy, sin gy,
(C22)

$o=dN— L, (C23)
¢1 = tan_l(l’ﬂy/fx) - ¢N’ (C24)
Y, = tan_l(l’.ﬂy/lf.ﬂx) - ¢Nv (CZS)
Ay =~ + & + 2dydy — &2, (C26)
= —2d2S0 + dlsl + 2d0S2 s (C27)
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9. = "y (243 (d = \/Bo) + 2dods (v/Bg = 4d) ) + i (=33 + /Body +28) )

+cf! <—d (d2 Vhod, +4d2) +d0d2(d2 3/ Bod, +4d2) +d (dl \/—))
+eh (—2dg(d1 - \/A_O) +d <4d1d2 —6md2) +2d, (d? — /Aol 3d, & +2\/K0d§) +d%d2(\/fo—d1)),
(C28)

9. =—c"d, (—2015 (\/Kg+ d1> + 2dyd, <m+4d1) +d, (3Jf +/Aod, — 2d§))

= (B (& -+ /Body +4dB) = dods (& +3\/Body +48) = (& (VAg+ 1)) )

e <2d8<\/A_0+d1) ~2d2d, (3\/A_0+2d1) —2d0(d? +/Bod2 = 3d, d2 —2¢K0d§) +d%d2(\/AT)+d1)),
(€29)

oo = 2d3d;sS") — 4d3dys\") — 2d3d,dys\)) — 4d3d dyst") + 8B\ — 2dod3s") + ddyddys) + Adyd, s

+ 2dydy 35\ — 4dyd3s\) + 2d3dys\") — 2d, ). (C30)
oc = 2(—d2 + 2dyds + &3 — &B)(2dydst)) + s — dydys\) + 2425, (C31)
oy = 2dyd;(c{" 2dy(dy — dy) + d}) + 5y (do + dy) + i) (2dF — 2dyd, - dY)). (C32)
o) = Wy &2 + Va3 + 268V B3z — 26 dyd3 — BB - ) dZdydy + 3¢V dod 2 + ¢\ d3d,, (C33)
1 1
NE) = {,/A [c“d 24, (d% — ddydy + &) — /Do (2do(dy — dy) + &) — 3d3
[0} \/§A8/2\/A—_\/A7+A] +1¢1 2( 1( 0 062 2) 0( 0( 2 0) 1) 1)

) (=i (d (VB + ) +43) + dods (& +3+/Body +4d3) + &} (VA + d ) )|

+ \/7[ \d, (2d1 (2 — 4dody + &B) + /Do (2dy(d> — do) + d2) — 3d3)

+cl (\/_ d\(d3 = 3dods — &) — B — A + dodds + Adyd + dm

+ iV /A (\/A_O(zdg — 6d2dy — 2dyd? + 4dod3 + didy) + dy (=2d3 + 4d3d, + 2dy(d> - 3d3) — d%dz))

~ /A, <\/A_O(2dg — 6d3dy — 2o + 4dod3 + dBdy) + dy (2d3 — 4d3dy — 2dod + 6dod5 + d%dz)) }
(C34)

For the oscillatory correction in Eq. (157), the functions HE = ll:g,ol/QP)?P,o(Sinz Oy — 2cos2 Oy), (C37)

0 z
B (@) can be decomposed as 0 ~3

L,o(20%, -1
pe ~LeoClao= D) o cosysingy,  (C38)

2 (1) ~
BES = v > [HGS cos(ka) + KGS sin(ka)].  (C35) VI-Lio
k=0
1. .
H(%) = ELZOI/QP)(P,OSIIlz 91\1, (C39)
BSS = "L 1(3) 75 (@), (C36) i
wp L

X poCos Oy sinby, (C40)

. 0
1
' (1) /7] ~
with

024006-25



LOUTREL, MUKHERIJEE, MASELLI, and PANI

PHYS. REV. D 110, 024006 (2024)

1. .
K(%) = EZP.OSIHQ Oy (C41)
1 a - .
H(SO> = ELiOvQP)(P‘O(San Oy — 2cos? Oy), (C42)
L0202, -1 .
H?l) = Z’0(—1.0,\)IJQP)_(})yO COSHN Sin HN, (C43)
\J1-L2,
S 1 P2 - -2
Heyy = ELz.oVQP)(P,oSIH Oy, (C44)
K5, = 07, cosOysind 45
=" —J'pocos Oy sinOy, (C45)
\1-L2,
s LS
Ky = =5 Tnasin? Oy (cae)
I(a) = (1 =2L2, + L?cos? Oy) cos Oy,
— 2L gy/1 = L2 sin® Oy cosa
+ (14 L2) cos Oy sin Oycos? Oy, (C47)
T* (@) =ypocosby
+ [S)(C”) cosgy +S§a> sinqﬁN} sinfy sina
+ [C)((a) cos¢y + C§~a> sinng} sinfycosa,  (C48)
T (@) =Jpocosby
+ [CJ(CS> cosgy + C;fv) sin¢N} sin@y sina
+ [Sff) cosgy + Sy) sinqﬁN} sinfy cosa, (C49)
¢ =clh - ). e =) + 7, (C50)
SW) = st = st st = s+ 57, (C51)

(£) +)
Yy

where Sy, and C)(C ; are given in Eqgs. (82) and (83).

APPENDIX D: OBTAINING i(q) THROUGH THE
RENORMALIZATION GROUP METHOD

In addition to the MSA technique used to integrate
L(q) as discussed in Sec. IIIC, we now employ the
Renormalization group (RG) method to obtain L(g).
The RG method is a perturbative approach, and particularly
useful to study nonlinear equations [103]. For example, in
order to solve an equation of the following form

¥+ ox = ex?, (D1)

the RG method can be useful. Note that in this example, the
right-hand side (rhs) contains a nonlinear perturbation
(proportional to x*), and € is the perturbation parameter.
Within a perturbative scheme, the zeroth order solution acts
as a source of perturbation for the first order, and it
introduces a diverging feature. In the present context, it
turns out that £ can also be written as Eq. (D1), and the RG
method can be implemented. Our aim is to compare MSA
and RG methods, and understand how well these analytical
techniques match with the numerical estimation.

In order to employ the RG method in the present paper,
we are interested to write L as in Eq. (D1). By using
Egs. (13)—~(20), and ignoring terms ~O(q?), we arrive at the
following expression:

sz‘x,y 27 (1)
a2 + wLLx,y = Q{_Z [_wL oy + UwSLwL)Qz} L,

¥
+ vaLwLizZZx,}' F UCUSLCUSJ[:y,x}-
(D2)
Here we have ignored the z-component of L as our
interest is to address the artificial resonance or divergence,

which appears from the x and y components of L. We can
now seek a perturbative solution of L, I:x_y = I:fc(?y) + qL,g;,
and arrive at the following expression

2L
dr?

+ wiiilﬂ = {—2 [—w(Ll)CUL + UCUSLCULZE?} I:X%

+ UwSLwLEEO))(g))c).y F ”a)SLwSJlAI;(,)x}-
(D3)

From this point, we will only focus on the x-component,
whereas the y-component can be derived similarly. To
proceed further, we will adopt the notion used in Sec. III,
and obtain )(g), L,(C(_)y) accordingly. Let us first introduce the
following expressions:

X =sinfycos¥y, Y =-sinfycos¥,, Z=cosp,  (D4)

where we have dropped the 7 term in bracket. However, as
can be understood from the discussion in Sec. III, the above
quantities only change over the radiation reaction time-
scale. With this substitution, we obtain P and Q as follows:

P = (sin(a + W), —cos(a + ¥,).0),
Q = (cos(a + ¥,).sin(a + ¥,),0).

Therefore, the expression for I:}(CO)) has become:

(D5)

L () = sin By cos(a + ¥o). L} (z) = sin fy sin(a + ¥y),
(D6)
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where the values of ¥, and f§, can be fixed from the initial

conditions. With these implementations, we now write

(0) )

down the expression of y,,/ and ;(g; as follows:

0 A A
)(gx) = 12.p(P %) + x2,0(Q - X) = ygocos(a+¥y) + F,,

(D7)
where

Fe=Fui COS[5+ + ‘PO] + Fox 005[5_ + ‘PO]
+ F3X Sin[5+ + \Po] + f4x Sin[é_ + lpo], (DS)

(0)

with 57 = (w; + wp)r, and 6~ = (w; — wp)7. The expres-
sions for F,, F,., F3, and F,, are given by

Fro==(1/2)(vg + Dipro,
Fowe=—(1/2)(vg = )ipos
Fse = (1/2)(vg + Dy

Fax = —(1/2)(VQ - Dyxpyo- (D9)

To expand Eq. (D3), the other quantity of particular interest

is ;(g;) By using Egs. (43) and (57), we arrive at

~(0 A0 . . ~(0
KDL = 1oL + vpl~xp o sin(yp) + 7po cos(yp)|LY

~(0
:)(J.OLJ(C )

= X],OLA)(CO) + gx9

where

G, = G, cos[6" + ¥y] + Gy, cos[6™ + ¥

+ Ga, sin[6T + W] + Gy, sin[6” + W],  (D11)
and
a*L 3 : .
s + co%L)((1> =-2 —a)(Ll)a)L + va)SLa)L)(gg) LY
=-2 _—w,€]>

+ UwL(USLlA‘gO)Fx - 2vw w5 Gy,
(1)

+ g sin fo[—xpo sin(yp) + ipo cos(wpt)] cos(a + ¥y),

(D10)
Vg SIn Poy
G =Gy = Riﬁ())(}’,()’
2
Vg Sin
Gy = Gy, = — LRMPoXPO 2ﬁ°’“’~°‘ (D12)

Therefore, the final expression reads

] ~(0) (0 ~(0
x + UwSLwLLg ))(g)) - UwSLwSJL§’ >’

O + V051 OLX 10 I:)((O) —+ vaLwLLAEO);(QVO cos(a)Lf -+ ‘PO) - vaLa)sle,go)

==2|-w; 0, + vos 0 x50 LY+ Vg 01 s Py o cos(w, T+ o) — v ws; sin fy sin(wy 7+ P)

+ vy wsy cos foF . — 20w w5y Gy

In the last line of the above expression, we have used

£§0> = cos ffy, and expressed £§0 ) from Eq. (D6). Before
solving the above equation using the RG method, we can clean
it a bit by introducing the following notations, along with
setting y .o = Uryyo (as discussed at the end of Sec. Il B):

(1)
A=-2 (_wL @p + V050X )0 )
B = vwg oy, cos PovrX 10
C = —vwgs wg; sin fy,
D, = v wgy cos Py,

D2 = 2'UO)LCOSLgx. (D14)

(D13)

|
With these expressions, we arrive at

L
dr?

3L = ALY + Beos(wy t + W)

+ Csin(w; 7+ ¥y) + (D F, — D,G,).
(D15)

The perturbations that lead to diverging solutions are given by
the first three terms, whereas the last term (D F, — D,G,)
contains 6 which provides regular solution. Therefore, our
goal is to renormalize the first three terms of the above
expression.
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With this equation at hand, we are now in a position
to employ the RG method. By following the standard
convention to employ RG techniques in literature [104],
we require the leading-order solution to be
A,(7) cos(w,7 + ¥, (7). With this, the final solution,
truncated at the first order, can be written as [104]:

LAx(T) = Aq(T) COS(a)LT + qu(T)) + qyl (T9Aq’ \Pq) + qu
(D16)

in which A (z) and ¥,(7) are to be expanded in the
perturbation parameter, i.e., mass ratio ¢. In the above
equation, y; is obtained by obtaining the Fourier transform
of the perturbation term, i.e., the entire rhs of Eq. (D3). To

|

be precise, ¥; is the nonsecular part of this Fourier trans-
formation and therefore, gives a regular solution. In order to
achieve this, we reintroduce the long timescale 7 = ¢gr, and
use a near-identity transformation on A, and ¥:

A7) = A;(%) + qa(r,ffq),‘l’q(r) = ‘I7q(%) + gp(z, A~q).
(D17)

In a naive sense, the values of ffq, ‘I7q, a, and g will be fixed
by ensuring that all the secular terms are eliminated. The
other quantity in Eq. (D16) that is yet to be defined is given
by R,. It appears due to (D, F, — D,G,) in Eq. (D15), and
is given by:

cos(6t + W) cos(6- + ¥y) sin(6" + W)
Ry=R R F F F
= Rocolonr+ Ra) vy cospo P30 4 T
sin(6~ + ) cos(6" + ¥y) cos(6- + ¥p) sin(6" + W)
F X -2 x X X
B T e e N e A P
sin(6~ + ¥
+ Gy ( > ")2 : (D18)
(0 —wp)* —w

In the above expression, the first term on the rhs is the homogeneous part of the solution. Here R, and R, are free
parameters which can be determined from the initial conditions. Finally, we arrive at

qrt

A,(r) = A,0) 0 C.yy =0,
¥, () = ¥, (0) - ﬁfq(o) (B+ A,(0).A). (D19)
It is easy to note that A,(0) = sinf, and ¥,(0) = ¥,. Therefore, we write down the expression for L.(7) as
L.(7) = <sin Bo— ﬂc) cos <er F ¥ -1 (Bysin ﬂOA)) +gR,. (D20)
2w, 2w,A,(0)

(0)

By setting ¢ = 0, we end up with Ly (7) = sinfy cos(w, 7 + Wy), which is consistent with the previously obtained result

in Eq. (D6).

We can now compare the results from MSA and RG methods for a given set of parameters. This is shown in Fig. 10 for a
mass ratio of ¢ = 107 and representative binary parameters.
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FIG. 10. Top: comparison of the RG solution (purple dot-dashed line) in Eq. (D20) for ﬁx(t) to the numerical solution (black solid
line) of the PN precession equations for the same EMRI considered in Figs. 1 and 2. Bottom: difference between the numerical and
analytic RG solutions (purple solid line). The same quantity, but with the MSA solution (cyan dashed line), is provided for comparison
between the two techniques. Generally, the RG performs worse due to the linearly growing component of the amplitude in Eq. (D20),
which can be corrected by proceeding to higher order in the RG method.
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