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We present several high-accuracy surrogate models for gravitational-wave signals from equal-mass
head-on mergers of Proca stars, computed through the Newman-Penrose scalar ψ4. We also discuss the
current state of the model extensions to mergers of Proca stars with different masses, and the particular
challenges that these present. The models are divided in two main categories: two-stage and monolithic. In
the two-stage models, a dimensional reduction algorithm is applied to embed the data in a reduced feature
space, which is then interpolated in terms of the physical parameters. For the monolithic models, a single
neural network is trained to predict the waveform from the input physical parameter. Our model displays
mismatches below 10−3 with respect to the original numerical waveforms. Finally, we demonstrate the
usage of our model in full Bayesian parameter inference through the accurate recovery of numerical
relativity signals injected in zero noise, together with the analysis of GW190521. For the latter, we observe
excellent agreement with existing results that make use of full numerical relativity.
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I. INTRODUCTION

The detection of gravitational waves by the LIGO-Virgo-
KAGRA (LVK) detector network has opened a new era of
gravitational wave astrophysics [1–9]. During the first three
observing runs these detectors have already detected a large
collection of signals, Oð100Þ, from binary mergers of
compact objects, namely black holes and neutron stars,
together with an estimation of their physical parameters.
These signals have beenmainly detected and studied through
the matched-filtering of the experimental data [10–18] with
theoretical waveform template banks [12,19,20].
Even though templates from the coalescence of black

holes and neutron stars have dominated the search land-
scape as candidates for gravitational wave sources, the
possibility of alternative compact objects, known generi-
cally as exotic compact objects (ECO), has generated an

increasing interest in recent years [21]. In particular, much
scientific attention has been oriented towards those objects
that could generate gravitational-wave signals resembling
those of black holes, which could generate confusion in
their classification. These objects are typically known as
“black hole mimickers.”
A particularly important class of ECOs are those based on

gravitationally bound states of ultralight bosonic fields
[22,23]. These fields could appear in particle physicsmodels,
such as the string axiverse [24,25] or as extensions of the
StandardModel [26]. Ultralight bosonic fields are capable of
forming stationary states, resembling hydrogen orbitals [27],
which can also be rotating [28,29]. In the case of massive
complex vector fields—Proca fields—the objects are known
as Proca stars [30].
While sharing some similarities, scalar and Proca

bosonic stars have distinct behaviors regarding their for-
mation and stability [31]. In particular, some configurations
of rotating bosonic stars exhibit a bar-mode instability [32],
which can be prevented through the addition of nonlinear
interaction terms in their action [33,34] or considering
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multistate bosonic configurations [35]. On the other hand,
Proca stars are known to have sufficiently generic mech-
anisms of formation though the so-called gravitational
cooling mechanism [36,37] and a stable ground state
[38]. A general review on boson stars can be found in [39].
Numerical evolutions of Proca stars have been performed

at the fully nonlinear regime in 3þ 1 numerical relativity,
both with single stars [40] and head-on collisions [41,42].
This has allowed the use of the gravitational waveforms
extracted from the simulations to compare with actual
detections and perform parameter estimations (PE) [43,44].
In particular, statistical inference on the event GW190521
resulted in a very good agreement, evenwith a slightly higher
Bayes factor than with black hole templates [45].
The standard procedure for Bayesian PE involve sam-

pling over a large number of waveform templates generated
with different physical parameters, typically on the order of
millions. As numerical relativity simulations are computa-
tionally expensive, on the order of thousands of CPU hours
per simulation, generating all the templates by direct
simulation is not possible at the practical level. For the
specific case of binary black hole (BBH) mergers, the
development of waveform templates (or “approximants”)
based upon approximations to the equations of motion of
the two-body problem in general relativity, has already a
long history spanning over two decades [46]. For the three
main model families covering the whole inspiral-merger-
ringdown process, namely SEOBNR [47–50], TEOBRESUMS

[51–53], and IMRPHENOM [54–57], waveform templates are
either calibrated to numerical relativity using analytical or
semi-analytical expressions or they are obtained through
the “hybridization” of waveforms from numerical relativity
simulations and post-Newtonian approximations.
A fourth and more recent line of work is the construction

of surrogate waveform models, first proposed in the
seminal work of [58]. Such models have been shown to
reach an accuracy comparable to numerical relativity and
they will be the focus of our work (albeit in the context of
Proca-star mergers). For nonspinning quasicircular BBH
mergers up to a mass ratio q ¼ 8, the first attempt to build a
surrogate model employing waveforms from numerical
relativity was performed by [59]. This work was soon
followed by the first surrogate model for precessing
systems [60], NRSUR4DS2, built from a set of 276 precessing
BBH simulations, and by the corresponding extensions to
account for unequal masses and generic spins NRSUR7DQ2

[61] and NRSUR7DQ4 [62]. The latter was calibrated with
1528 numerical relativity precessing simulations with
mass-ratio q ≤ 4 and spin magnitudes up to 0.8, covering
all harmonics with l ≤ 4, retaining all intrinsic degrees of
freedom of quasicircular BBH systems. NRSUR7DQ4 is the
most accurate waveform model for quasicircular BBH with
generic spins. This model has been employed to analyze
several exceptional events from the LVK collaboration
[4,63], to extract measurements of novel observables like

orbital precession [64], gravitational-wave recoils [65,66]
or the Chern-Pontryagin pseudoscalar [67].
In addition, Islam et al. [68] recently used NRSUR7DQ4 to

reanalyze 42 events detected by the LVK collaboration.
Moreover, for aligned-spin binaries, a surrogate model for
hybridized numerical relativity waveforms was constructed
in [69] using 104 simulations, employing effective one body
for hybridizing the orbital frequency and post-Newtonian
results for hybridizing the harmonic amplitudes. This was
extended in [70] who developed a nonprecessing two-
dimensional surrogate model of hybridized waveforms up
to mass-ratio q ¼ 15, NRHYBSUR2DQ15, in order to build a
template waveform for signal GW190814 [71]. It is also
worth mentioning that efforts based on machine learning,
namelyGaussian process regression, havebeen used to build
waveform surrogate models for both nonprecessing and
precessingBBH systems at points of the parameter space not
covered by numerical relativity simulations [72,73].
The progress in surrogate waveform models for BBH

mergers motivates the development of such models for
ECOs, in particular if a systematic search for Proca stars is
to be pursued. These models should be able to produce
accurate waveform estimates, taking as input the physical
parameters of the system, using modest computational
resources. Some attempts have been made in this direction
by application of generative adversarial networks [74],
already producing promising results. In this paper, we
perform a first approach to the use of surrogate models for
PE in Proca star binaries by restricting to head-on collisions
of Proca stars with equal masses. The choice of head-on
collisions instead of quasicircular inspirals is entirely
motivated by the much higher technical difficulty and
computational cost of the Proca inspirals, which makes
it challenging to perform numerical-relativity simulations
of such systems at the present time.
Therefore, in our case, the system depends on a single

physical parameter, the normalized frequency of the system
ω=μV , where μV denotes the mass of the ultralight vector
boson forming the stars. For the PE procedure to con-
fidently resolve the physical parameters of the system, the
error introduced by the surrogate model must be much
lower than the typical differences between templates in the
sampling range. For this reason, we analyze a variety of
possible surrogate architectures that can be used to fit the
simulation data. We compare their performances on a
testing set and we finally select the most reliable one for
the actual Bayesian analysis. The models in this study are
data driven, based entirely on a catalog of simulations [42],
with no built-in physical information.
In the first class of models, which we call two-phase

architectures, we encode the waveform data into a feature
space of lower dimension. This drastically reduces the
amount of numerical parameters that need to be fitted, thus
reducing the model size. The parameters in the feature space
(sometimes called latent space) can then be interpolated in
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terms of ω=μV . As we have only one independent variable,
we use standard cubic spline interpolation. The algorithms
that we analyze for the dimensional reduction phase are
singular value decomposition, empirical interpolant repre-
sentation [75] and a deep convolutional autoencoder. The
first two algorithms decompose the data as a linear combi-
nation of a suitable reduced basis, while the last one uses a
nonlinear mapping based on neural networks. The second
type of model is a more straightforward approach, which we
call monolithic, as a single neural network is used to map
the frequency values ω=μV to the temporal values of the
waveform.
We use our model to perform Bayesian parameter

inference on both simulated and real data. In the first case,
we perform parameter inference on numerical relativity
waveforms injected in zero noise, demonstrating that our
surrogate can accurately estimate the parameters of such
injections. In the second case, we perform parameter
inference on the data containing the signal GW190521,
showing that our surrogates faithfully match those obtained
through numerical relativity waveforms, presented in
[43,45], while using significantly less computational
resources. This indicates that this type of data-driven
surrogate models are a very promising tool to encapsulate
the catalogs of numerical boson-star waveforms in order to
be efficiently used in detection data analysis.
The paper is structured as follows. In Sec. II we present

the generation of the training data and its preparation before
it can be fed to the surrogate models. We also discuss the
criteria used for the evaluation and comparison of the
different models. Section III describes the different archi-
tectures of two-stage models, i.e., those who can be divided
into encoder and translator modules. A different type of
models, the monolithic surrogates, are exposed in Sec. IV.
The results of model evaluations, as well as the Bayesian
parameter estimations performed with the models, are
discussed in Sec. V. We conclude in Sec. VI.

II. THE DATASET

A. The Proca merger catalog

The models are trained on a catalog of 59 equal-mass
simulations from [42], of Proca stars in Einstein-Proca
theory

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

4
FμνF̄μν −

1

2
μ2AμĀμ

�
; ð1Þ

where Aμ and Fμν are the Proca potential and field
strength, respectively, μ is the Proca field mass parameter,
and the bar denotes complex conjugation. We also take
c ¼ G ¼ 1. The interested reader is addressed to [42] and
references therein for details on the formalism. The
simulations were performed in the EINSTEIN TOOLKIT

[76], which uses the CACTUS framework [77], under the

Baumgarte-Shapiro-Shibata-Nakamura formulation using
the MCLACHLAN [78,79] and LEAN [80] thorns. Details on
the simulations and construction of initial data can be found
in [30,40,41]. The thorn containing the Proca equations
was implemented in [81] and is available in [82].
Each simulation produces gravitational waveforms for

the Newman-Penrose scalar ψ4, which are decomposed in
spherical harmonic modes. Our study will be centered on
the fundamental ðl; mÞ ¼ ð2; 2Þ and ðl; mÞ ¼ ð2; 0Þ modes.
An example of the waveforms, together with their pre-
diction by one of the surrogates presented below, is shown
in Fig. 1. Even though the Arnowitt–Deser–Misner (ADM)
mass of the initial data may vary due to the construction of
the Proca star binaries, the numerical relativity waveforms
are rescaled so thatMADM ¼ 1 before they are treated in the
surrogate pipelines.

B. Preprocessing of the data

The complex ψ4 waveforms of the original dataset are
subjected to a preprocessing pipeline before they are
submitted to the actual model. There are a number of
reasons for this. First, the algorithms will always tend to be
more effective when the samples are similar to each other.
For instance, having large time shifts between otherwise
very similar waveforms can unnecessarily increase the cost
of the fitting. Second, many machine learning algorithms
work best with data of numerical value of order one. As the
values of ψ4 vary usually on the order of 10−4, it is highly
advisable to rescale the data before making any learning
attempt on it. Additionally, numerical relativity simulations

FIG. 1. Example of the reconstruction of a ψ4 waveform by the
singular value decomposition (SVD) surrogate model, for the real
(top) and imaginary (bottom) parts of the mode ðl; mÞ ¼ ð2; 2Þ
at ω ¼ 0.8875.
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usually include a burst of unphysical junk radiation at the
beginning of the waveform, which has to be removed. And
last but not least, it is highly convenient to have all
waveforms on the same time grid, which makes it possible
to treat them on equal footing. To this end, a Gaussian curve
is fitted to the modulus jψ4j of the waves as

fðtÞ ¼ Ae−ðt−t0Þ2=s2 : ð2Þ

Then, the waveforms are time shifted by t0 so that all the
waves are centered at t ¼ 0. Then, they are divided by A so
their range of oscillation becomes of order one. In order to
perform the transformations, the original waveform is
interpolated by cubic splines and reevaluated on a fixed
grid of Nψ equally spaced points between −150 and 150.
ψ4 is set to zero for t < 100, to remove the junk radiation.
Figure 2 shows an example of the Gaussian curve fit to the
amplitude of a wave after the transformations.
In order for the surrogate to be used for parameter

estimation, the relative time positions of the different
modes have to be preserved. The values of the time shift
and amplitude ðt0; AÞ are stored in the dataset, as they also
need to be interpolated in order to recover the information
later. Once the model is evaluated, we multiply the wave-
forms by their respective amplitudes A and we time shift
them so that the peak of the reference mode ðl; mÞ ¼ ð2; 2Þ
lies at t ¼ 0. This way, the original relative time positions
of all the modes are preserved.
The method of the Gaussian fit for the identification of

the peak and amplitude of the waveform, as opposed to just
taking the absolute maximum of jψ4j, guarantees that the
parameters A and t0 will vary continuously with ω=μV . The
absolute maximum of jψ4j, on the other hand, can suffer
discontinuous jumps between relative maxima, which
would create discontinuous jumps on the data, thus
damaging the performance of the fitting algorithms.

C. Model testing

As in any data-driven learning algorithm, the surrogate
models are prone to suffer from overfitting. In other words,
the models will tend to perform better on the data they have
been trained than on new data that they have not seen
before. An example of this is shown in Fig. 3. Therefore,
before the surrogate model can be used on parameter
estimation samplers, an estimate must be done of its
reliability when generating waveforms outside of its own
training dataset.
The full waveform dataset from the original Proca

catalog is divided into training and testing datasets with
80% and 20% of the samples, respectively. All the model
fittings will be performed on the training dataset, and the
test set will be reserved as a final evaluation of the model.
As a metric for the accuracy of the model we employ the
mismatch [83–85] between the predicted and the actual
waveform, defined as 1 −Mðψ1;ψ2Þ. Here, the match
Mðψ1;ψ2Þ is given by

Mðψ1;ψ2Þ ¼ max
ts;ϕ

hψ1jψ2iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihψ1jψ1ihψ2jψ2i
p ; ð3Þ

with hψ1jψ2i the inner product defined as

hψ1jψ2i ¼ 4 × Re
Z

ν1

ν0

ψ̃1ðνÞψ̃2
�ðνÞ

SnðνÞ
dν; ð4Þ

where ψ̃ iðνÞ are the Fourier transforms, and ψ̃�
i ðνÞ their

complex conjugates. The match is maximized over relative
time shifts ts and phases ϕ between ψ1 and ψ2. SnðfÞ is the
one-sided noise power spectral density, which we take to
be flat.

D. Model selection

Before the final evaluation on the test set, we have to
choose among a number of different architectures of
models, as well as the hyperparameters intrinsic to each
architecture. It is not convenient, however, to check the
performance of each configuration on the final test set. If
we did so, we could again be selecting the architecture that
best suits our particular test set, without it generalizing to
arbitrary data.
While this could be easily solved by splitting the training

set into two subsets—one for yet again training and the
other for validation—it would further reduce the number of
samples in each subset. Given the limited number of
simulations in our catalog, it would be convenient to use
a scheme where we could extract information from all the
data in the original training set. A good solution for this is
k-fold cross-validation on the training set. In this scheme,
the training set is itself divided in k (approximately) equal
parts, called folds. We then train k versions of the model.
For each version, we train the model on k − 1 of the folds,

FIG. 2. Transformed profile for the amplitude jψ4j of the mode
ðl; mÞ ¼ ð2; 2Þ at ω ¼ 0.8875, together with the fitted Gaussian
curve. After the transformation, the peak of the Gaussian lies at
coordinates ðx; yÞ ¼ ð0; 1Þ.
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and we validate it on the remaining fold. With this method,
all of the training data samples have been used as a
validation of the model architecture, without ever being
used both in the training and validation sets. It is important
to keep in mind that the final testing set does not intervene
at all during the model selection phase. In this paper we will
always use k ¼ 5.
In Fig. 4 we depict the mismatches of all the ðl; mÞ ¼

ð2; 2Þ waveforms in the dataset, evaluated on their corre-
sponding model, in this case based on the empirical
interpolant representation (see Secs. III A and III B). The

waveforms of the training set, which we depict as circular
dots, are divided in the five cross-validation folds, corre-
sponding to the five different colors of the dots. For the
validation on each of the folds, themodel has been trained on
the remaining four folds. On the other hand, for the wave-
forms in the final test set, the model has been trained on the
full training set (all five folds together). The distribution of
mismatches is quite similar for all the subsets, which
indicates that our statistical estimates of the surrogate
performance are consistent with each other. The points at
the edge of the domain, close toω ¼ 0.93, have significantly
higher mismatches as extrapolation is being used.
For the sake of consistency, in all of the dataset splittings,

we keep the different modes of each simulation together. In
other words, if the mode ðl; mÞ ¼ ð2; 2Þ is in one particular
subset, then so are the other values of ðl; mÞ.

III. TWO-STAGE MODELS

The two-stage surrogate models are divided in a pipeline
of two processes, that we chose to name as encoder-decoder
and translator.
(1) The encoder-decoder phase is an invertible process

of dimensional reduction from the Nψ complex
values of ψ i

4 to a feature space of lower dimension
NZ, which can be complex or real depending on the
algorithm.

(2) The translator phase interpolates the features Zj, as
well as the amplitude and peak position, as a
function of the physical parameters of the model.
In this case, the only physical parameter is the
frequency ω=μV of the merging Proca stars.

Schematically,

R → CNZ → CNψ

ω ↦ Zj ↦ ψ i
4: ð5Þ

When the model is evaluated for parameter estimation, the
process is then reversed. First, the physical frequencies are
used in the translator to obtain the coordinates Zj in feature
space, which then are passed through the decoder to recover
the values of the Newman-Penrose scalar ψ4.

A. Singular value decomposition

Our first approach for dimensional reduction is SVD.
This produces an orthonormal complex basis for our space
of waveforms, in such a way that successive basis vectors
are less and less important in the accurate description of the
data. The notion of importance is quantitatively encoded in
the singular values of the basis. Namely, if we construct an
Nψ × Nt matrix M, whose Nt columns are the training
waveforms, we can decompose it as

M ¼ UΣV†: ð6Þ

FIG. 3. Histograms of mismatches for the training and testing
sets of the SVD surrogate model for the mode ðl; mÞ ¼ ð2; 2Þ.
Some amount of overfitting can be appreciated, as the model
performs worse on the testing data (which has not been used in
the training), than on the training data itself.

FIG. 4. Mismatches of the empirical interpolant representation
model on the dataset, for the mode ðl; mÞ ¼ ð2; 2Þ. For each of the
five folds in the training set, shown by circular dots, the model
has been trained on the other four folds. For the test set, shown by
crosses, the model has been trained on the five folds in the
training set.
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Here the columns of U are the adapted orthonormal basis
ui, and the diagonal elements of Σ are their corresponding
singular values σi. By taking the first NZ of such vectors,
we can express a compressed version of any waveform as a
linear combination of them. Their NZ coordinates define
the feature space of the model. The fact that U is a unitary
matrix greatly simplifies its inversion, as U−1 ¼ U†, so the
encoding decoding of waveforms becomes trivial.
The main hyperparameter on the SVD models is the

number of vectors in the reduced basis NZ. We have thus
performed an analysis of such basis size on the performance
of the model, as shown in Fig. 5. The averaged mismatch
after the k-fold cross validation process decays approxi-
mately as an exponential law for 1 ≤ NZ ≤ 7, and remains
fairly constant after that. In other words, having more than
seven vectors in the reduced basis does not seem to increase
the precision of themodel.We have performed our parameter
estimation with a basis of 10 vectors, to keep a safe margin.

B. Empirical interpolant representation

The empirical interpolant representation (EIR) is an
additional step we take after SVD to obtain a more
convenient basis for the space of waveforms in our model.
The idea behind EIR algorithms is to choose a reduced
basis Bj of the waveform space and a subset of indices

I ⊂ ZNψ
; jI j ¼ NZ ð7Þ

such that

Bi
j ¼ δij ∀ j∈ I : ð8Þ

In other words, the coordinates of ψ4ðtÞ in the basis Bj are

its values at certain selected times ψ4ðt ¼ TjÞ ¼ ψ j
4, for

j ⊂ I , as

ψ i
4 ¼

X
j∈ I

ψ j
4B

i
j: ð9Þ

This process is performed by the PYTHON library
ROMPY [75,86], which takes as an input the SVD basis
uiði ¼ 1;…; NZÞ and computes the basis vectors Bj as well
as the relevant indices I .
The encoding procedure of the waveforms into the

reduced feature space is then straightforward, as it just
involves taking the elements of ψ4 in the selected positions
I . The decoding is also simple, just multiplying the feature
space coordinates by the basis vectors Bj.
In a similar way as in the case of SVD, we have studied

the mismatch dependence on the number of EIR basis
vectors NZ, as shown in Fig. 6. The plot looks very similar
to that of SVD, with an exponential decay which stabilizes
for Nz ≥ 7.

C. Deep convolutional autoencoder

Autoencoders provide a nonlinear alternative to EIR
dimensional reduction. In this case, we set up two 1D
convolutional neural networks, which will act as an encoder
and a decoder, respectively. The encoder will learn a map
from the real and imaginary parts of the waveform ψ i

4 to the
feature space Zj, which is now taken to be real. In other
words, the encoder will become a nonlinear mapping from
CNψ to RNZ . On the other hand, the decoder will learn the
inverse mapping, trying to recover ψ i

4 from the features Zj.
In the context of autoencoders, the reduced feature space Zj

is typically known as latent space.
The training process is performed on a concatenation of

the encoder and decoder networks, in such a way that the
goal of the full system is to learn the identity function, with
the output being as close as possible to the input. This
process is nontrivial as the number of parameters has to be
drastically reduced from Nψ to NZ as the information is
transmitted through the bottleneck between the networks.
A schematic representation of this configuration is shown
in Fig. 7. We define the loss function of the system as

FIG. 5. Average mismatch of the SVD model on the k-fold
cross-validation of the test set, for the mode ðl; mÞ ¼ ð2; 2Þ. The
mismatch decreases exponentially with the number NZ of vectors
until NZ ¼ 7. Adding more vectors does not seem to help.

FIG. 6. Average mismatch of the EIR model on the k-fold
cross-validation of the test set, for the mode ðl; mÞ ¼ ð2; 2Þ. The
mismatch decreases exponentially with the number NZ of vectors
until NZ ¼ 7. Adding more vectors does not seem to help.
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L ¼ 1

2Nψ

XNψ

i¼1

jψ i
4 − ψ̃ i

4j2; ð10Þ

with ψ i
4 and ψ̃ i

4 the original and recovered waveforms,
respectively. The loss is also averaged over the instances in
the training batch. After the training, the encoder and
decoder modules can be used separately to map the
waveforms to their coordinates in the latent space and
vice versa. Figure 8 shows the embedding of the waveforms
in a latent space of NZ ¼ 2, where the model has sponta-
neously ordered the waveforms by their value of ω=μV . In
this case the mapping is nonlinear, so the number of
coordinates in the latent space is usually lower than the
number of basis vectors that are needed in SVD or EIR
encoding.
The structure of the networks is fairly symmetric

between encoder decoder. The encoder receives the training
minibatch of waveforms as a tensor of dimensions

ðNB; 2; NψÞ. NB ¼ 16 is the number of instances in the
training minibatch, two is the number of channels (corre-
sponding to the real and imaginary parts of the wave), and
Nψ ¼ 512 is the length of the time series containing the
wave. The batch is first passed through a one-dimensional
convolutional layer of 16 filters of kernel size 4, stride 2,
and padding 1. After that a leaky ReLu activation function,
with a negative slope of 0.2, is applied. Then the batch goes
through a series of six more convolutions with identical
kernel configurations, but each time duplicating the number
of filters. After each convolution, we apply a batch
normalization and another leaky ReLu with a negative
slope of 0.2. This configuration of filters reduces the length
of the data samples by 2 at each convolution, while
doubling the number of channels. Finally a last convolution
is applied, this time with a stride of 1 and padding reduced
to 0, with NZ filters. This reduces the minibatch to a tensor
of size ðNB;NZ; 1Þ, where the NZ channel values are taken
to be the coordinates in the latent space.
The architecture of the decoder is quite exactly inverse

from the encoder. The input minibatch of dimensions
ðNB;NZ; 1Þ is passed through a transposed convolution with
64 filters of kernel size 4, stride 1, and padding 0. Then, a
series of 7 more (transposed) convolutions are applied, now
with a stride of 2 and padding of 1, each one duplicating the
size of the data instances and halving the number of filters.
After each convolution (except the very last one), we apply
batch normalization and a ReLU activation. The last con-
volution actually reduces the number of filters down to 2 (real
and imaginary parts of ψ4), resulting in an output of
dimensions ðNB; 2; NψÞ, as expected.
The training is performed on a Nvidia RTX 4090 24GB

GPU over minibatches of 16 waveforms going through 500
iteration epochs with a learning rate of 10−3, using an
Adam optimizer with parameters ðβ1; β2Þ ¼ ð0.5; 0.999Þ,
in the framework PYTORCH [87].
Figure 9 shows the average mismatch of the surrogate as

a function of the latent space dimensionNZ, computed over
the k-fold cross validation process. Even though the
waveforms depend on a single physical parameter, namely
the frequency ω=μV, the model has proven to perform much
better if we allow at least two dimensions in the latent
space. A latent dimension higher than that does not have a
large influence on the mismatch. For this reason, the final
selected model has ben chosen to have NZ ¼ 2.

D. The translator phase

The task of the translator phase of the model is to
interpolate the coordinates in feature space Fj as a function
of the Proca star frequency ω=μV. As there is only one
independent variable, order 3 spline interpolation is an
efficient and fast method. These are provided by the
scipy.interpolate function interp1d, which is
applied to every coordinate in the latent space, as well

FIG. 7. Schematic diagram of the autoencoder architecture.
Two deep convolutional networks, the encoder and the decoder,
have to reconstruct the original signal by encoding the informa-
tion in a reduced latent space. Once the autoencoder is trained, the
decoder can be used on its own to produce waveforms from
vectors of coordinates Zj in the latent space.

FIG. 8. Distribution of the dataset waveforms in the two-
dimensional latent space, with coordinates ðZ1; Z2Þ, for the mode
ðl; mÞ ¼ ð2; 2Þ. The autoencoder has autonomously ordered the
waveforms by their governing physical parameter ω=μV along a
continuous curve embedded in the latent space.
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as the peak position and amplitudes ðt0; AÞ, as a function of
the variable ω=μV .

IV. MONOLITHIC MODEL

We have, for completeness, trained a monolithic model
based on fully connected neural networks. In this case,
instead of performing a preliminary dimensional reduction
before the final interpolation in ω=μV , we allow a single
neural network to receive ω=μV and produce ψ i

4 directly. In
this case, the real and imaginary part of the waveform are
concatenated in a single vector of dimension 2Nψ ¼ 1024,
as complex values are not trivially handled by common
activation functions. Cubic splines are used to learn the
dependence of the peak position and amplitudes ðt0; AÞ, as
defined in Sec. II B.
The wave-fitting network has an input layer with 1

neuron (receiving ω=μV) and successive layers of sizes 64,

256, 512, and 1024 (the output layer). We use GELU
activation functions after each layer except the last one.
As in the case of the autoencoder, training is performed on a

Nvidia RTX 4090 24GB GPU over 500 iteration epochs
divided in minibatches of 16 waveforms, with an Adam
optimizer of learning rate of10−3 and ðβ1; β2Þ ¼ ð0.5; 0.999Þ.
In order to gauge the dependence of the model on

hyperparameters, we introduce a number of replicas of the
layer of size 64, exclusively on the wave-fitting network.
As an example, the network with two extra hidden layers
would have sizes (1, 64, 64, 64, 256, 512, 1024). In Fig. 10
we observe that the results improve significantly when we

FIG. 9. Average mismatch of the autoencoder model on the k-
fold cross-validation of the test set, for the mode ðl; mÞ ¼ ð2; 2Þ.
The performance does not seem to vary as long as the latent space
dimension NZ is strictly larger than 1.

FIG. 10. Average mismatch of the monolithic model on the
k-fold cross-validation of the test set, for the mode ðl;mÞ¼ð2;2Þ.
The performance does not seem to vary as long as we include at
least one extra hidden layer of 64 neurons.

FIG. 11. Histograms of the distribution of the mismatches on
the final test set for the four tested model architectures. Lower
mismatches correspond to a better model accuracy. We consider
the two dominant modes: ðl; mÞ ¼ ð2; 2Þ in the upper plot and
ðl; mÞ ¼ ð2; 0Þ in the lower plot.
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add one extra layer but plateau after that. For this reason,
we used one extra layer for the final model.

V. RESULTS

A. Model evaluation

Figure 11 shows histograms of the mismatches obtained
on the final testing set by the four categories of models. We
consider the two dominant modes, namely ðl; mÞ ¼ ð2; 2Þ
and ðl; mÞ ¼ ð2; 0Þ. In both cases we can observe that the
SVD model seems to work best, followed by EIR, the
autoencoder, and finally the monolithic fully connected
network. There is, however, a significant overlap between
the distributions.
There are several possible reasons for the better perfor-

mance of SVD. A lower number of parameters makes the
model less prone to overfitting and therefore more robust.
Also, SVD is based on standard linear algebra algorithms,
which do not require training by gradient descent, which
removes the possible accuracy losses due to early or late
stopping of the training process.
The significantly better performance of the SVD model

on the testing set, together with its simplicity and the fact
that its training is much faster than those based on neural
networks, clearly indicate that this type of model is the
most convenient for our physical system. Indeed, the
parameter estimation Bayesian parameter inferences in

Secs. V B and V C have been performed with SVD models
with 10 basis vectors and Nψ ¼ 3001, in this case trained
with the complete dataset of 59 waveforms.

B. Injection recovery

We test the performance of our model in parameter
inference and model selection tasks. To this end, we inject
in zero noise a family of 30 signals from head-on Proca-star
mergers of varying ω=μV , directly obtained through
numerical-relativity simulations. We recover these injec-
tions using our SVD surrogate model together with the
parameter inference code BILBY [15] in its parallelizable
version PARALLEL BILBY [88]. We set uniform priors in the
detector-frame total mass and ω=μV . In addition, we set
isotropic priors both on sky location and source orientation,
together with a uniform prior in the polarization angle and a
prior in distance uniform in comoving volume. These priors
match those used for the analyses presented in [43,45]
restricted equal-mass systems. We choose a three-detector
network formed by the two Advanced LIGO detectors and
Advanced Virgo equipped with their power spectral density
at the time of the GW190521 event. We perform our
analysis directly on the Newman-Penrose scalar ψ4, as
described in [43]. We sample the parameter space using the
sampler DYNESTY [89] with N ¼ 1024 live points.
Figure 12 shows the posterior distributions, together with

90% credible intervals, for the field frequency ω=μV, as a

FIG. 12. Posterior distributions for the field frequency ω=μV as a function of the corresponding true values. We obtain these through
the injection of numerical relativity waveforms in zero noise and their posterior recovery using our surrogate model. True values are
denoted by red dots (red line) in the lower (upper) plot while maximum likelihood values are denoted by yellow stars. The horizontal
bars delimit 90% credible intervals.
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function of the true injected value ωtrue=μV . The true values
are denoted by red circles while maximum likelihood (ML)
values (i.e., those producing the best fits) are denoted by
yellow stars. As somewhat expected from our match

analyses, we find that the posterior distribution always
peaks very close to the true value, with the latter being
always contained within the 90% credible intervals. The
same is found in most cases for the ML values, which

FIG. 13. Posterior distributions for the source-frame total mass (top) and the ultralight boson mass (bottom) as a function of the value
of ω=μV . True values are denoted by red dots in the plot while maximum likelihood values are denoted by yellow stars. The horizontal
bars delimit 90% credible intervals.
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always lay very close to the true parameters found by the
sampler. We note that the sampler is not designed to find the
actual best-fit parameters but to reconstruct the correspond-
ing posterior probability distributions. Due to this, in some
cases, the recovered ML parameters may not match the true
ones, even if the waveform model is infinitely accurate.
This is the case, for instance, when there are large
degeneracies in the parameter space or when the sampling
is not extremely aggressive. Nevertheless, since in certain
situations parameter recovery can be strongly influenced by
Bayesian priors causing shifts in the posteriors, we report
the location of the ML points to show that such shifts are
indeed sourced by priors and not by systematic errors due
to the waveform model.
We find that certain values of ωtrue lead to varying

features in the posteriors. First, some cases lead to wide
distributions while others lead to significantly sharper ones.
This reflects the fact that, in certain regions of the parameter
space, small changes in ωtrue cause significant changes in
the waveform morphology while smoother changes are
induced in other regions. Second, for some cases we find
somewhat bimodal distributions. Far from denoting any
issues in the analysis or systematic errors in the waveform
model, these features come as a consequence of the physics
governing Proca-star waveforms. In particular, mergers
corresponding to the lower and upper end of our ω=μV
range, are significantly louder than those corresponding to
intermediate frequencies. Therefore, such configurations
are highly favored by our distance prior, producing sec-
ondary peaks of the posterior distribution either at large
frequencies (for the lowest frequency injections), both large
and low frequencies (for the midfrequency injections), and
almost imperceptible peaks at low frequencies for the
highest-frequency injections. For the latter, the posterior
also somewhat extends artificially to lower frequencies due
to the upper frequency cutoff imposed by the model, which
prevents the posterior distribution to extend beyond such
cutoff.
Figure 13 shows the posterior distributions for the total

massMtotal of the binary and the corresponding boson mass
μV . First, we note that the true values are again always
contained within the 90% credible intervals. Second, we
note that the posteriors for Mtotal are systematically shifted
towards lower values. Again, far from reflecting systematic
errors in our model, this is due to the impact of the prior for
the luminosity distance [43,45]. Recall that the source-
frame total mass isMtotal ¼ Mdet=ð1þ zÞ, whereMdet and z
are, respectively, the detector-frame total mass and the
redshift. Since the distance prior strongly favors large
distances, we find that such estimates, and therefore those
for z, are always shifted towards large values, causing the
opposite effect on Mtotal. The same effect is present but
less pronounced for μV, owing to its strong dependency on
the—better captured—value of ω=μV . Finally, we note that
ML values are always closer (when not directly on top) to

the true injected values than the bulk of the posterior
distributions.

C. GW190521 parameter estimation

We perform parameter inference on the GW event
GW190521, which has been previously analyzed directly
using numerical relativity simulations for head-on Proca-
star waveforms, both restricted to equal-mass cases [43,45]
and extended to unequal-mass ones [44]. We set the exact
same priors described in the previous section, which match
those used in [43,45]. We will compare our results to those
reported in the second column of Table III in [43], which
unlike those in [45], make direct use of the Newman-
Penrose scalar. The two main differences between these
two analyses are (i) the usage of a surrogate model instead
of numerical relativity waveforms and (ii) the continuous
sampling of the parameter space as opposed to the
exploration of a discrete set of values of ω=μV .

FIG. 14. Posterior probability distributions for the field fre-
quency ω=μV and the ultralight boson mass μV for GW190521.
The black curve corresponds to the analysis carried out with our
surrogate model. The red curve corresponds to the analysis
carried out directly with numerical relativity templates, using
the exact framework described in [43,44].

NUMERICAL RELATIVITY SURROGATE WAVEFORM MODELS … PHYS. REV. D 110, 024004 (2024)

024004-11



Table I reports the parameter estimates obtained from our
analysis together with those obtained in [43], expressed as
median values together with symmetric 90% credible
intervals. In addition, Fig. 14 shows the corresponding
posterior distributions for the field frequency ω=μV and the
ultralight-boson mass μV . We note that the results are in
very good agreement, indicating again the reliability of our
surrogate model. Table I also shows the corresponding
natural log-Bayes’ factors with respect to the noise hypoth-
esis, which match within the sampling uncertainty of 0.1.
Finally, we find that the numerical relativity model recovers
a slightly larger log likelihood, indicating that the best-
fitting waveform fits the data marginally better than in the
surrogate case. We attribute this to the following fact. While
for the case of the surrogate model we perform a single
inference run over all waveform parameters, for the NR
model we combine the result of many runs that sample over
the extrinsic waveform parameters and total mass for fixed
ω=μV [45], which leads to a more aggressive sampling of
the parameter space.

VI. DISCUSSION

We have constructed several accurate surrogate mod-
els that generate waveforms of head-on collisions of
equal-mass Proca stars. The models are purely data
driven, without any predefined physical input, and are
trained on a catalog of 59 numerical relativity waveforms
with several multipoles each. Different model architec-
tures have been analyzed. On the one hand, a collection of
two-stage models, which implement a dimensional reduc-
tion algorithm followed by cubic spline interpolation of
the governing parameters. The dimensional reduction
algorithms discussed comprise singular value decompo-
sition, empirical interpolant representation, and finally
a deep convolutional autoencoder. On the other hand,

we have also tested a monolithic model where a fully
connected neural network interpolates the full waveform
time series as a function of the physical parameter
ω=μV .
While all four models have proven to be accurate, with

all mismatches below 10−3 for the mode ðl; mÞ ¼ ð2; 2Þ,
the model based on singular value decomposition has
proven to be the most precise. In terms of precision,
SVD is followed by the empirical interpolant representa-
tion, the autoencoder and finally the monolithic fully
connected network. The two first models are not only
the most precise but also much faster than those based on
neural networks, as they do not require gradient descent
optimization. However, the neural networks are able to
encode waveforms nonlinearly from very few input real
parameters (2 for the autoencoder, 1 for the fully con-
nected), while SVD and EIR require at least seven complex
parameters for our dataset.
We have tested the SVD surrogate model within the task

of Bayesian parameter inference through the recovery of
numerical relativity injections in zero noise, obtaining
excellent results. Finally, we have also performed param-
eter estimation on GW190521 data, finding strong agree-
ment with the results obtained directly using numerical
relativity templates. As a general summary, we conclude
that the type of surrogate models investigated in this
work can be regarded as a convenient tool to efficiently
perform Bayesian analysis on gravitational waveforms
from bosonic star mergers.
A natural extension of this work is the inclusion of

waveforms from Proca star mergers with unequal masses.
Our early attempts at this extension, however, have
encountered serious difficulties due to the interference
effects between the stars at merger [42]. When the Proca
fields from the two colliding stars oscillate at different
frequencies ω1 and ω2, the relative phase at the point of
encounter depends on the particular values of these
frequencies. This causes an interference pattern, where
the amplitude of the emitted gravitational waves presents
strong variations. Additionally, at the regions of lowest
amplitude, the shape of the waveform changes very rapidly
with ω1 and ω2. At present, our catalog of simulations is
not sufficiently dense in these difficult regions for the
model to reach the desired precision.
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