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Predicting the properties of the matter ejected during and after a neutron star merger is crucial to our
ability to use electromagnetic observations of these mergers to constrain the masses of the neutron stars, the
equation of state of dense matter, and the role of neutron star mergers in the enrichment of the Universe in
heavy elements. Our ability to reliably provide such predictions is however limited by a broad range of
factors, including the finite resolution of numerical simulations, their treatment of magnetic fields,
neutrinos, and neutrino-matter interactions, and the approximate modeling of the equation of state of dense
matter. To disentangle some of these uncertainties, in this manuscript we focus narrowly on the impact that
two small variations in the setup of numerical simulations can have on the matter ejected during the merger.
Specifically, we perform 4 simulations: one at higher residual eccentricity (e ~ 0.01), two with reduced
eccentricity (e ~ 0.003—0.004), and slightly different equation of state implementations, and a fourth at
higher resolution to estimate numerical errors. We perform these simulations for a single physical
configuration, a 1.3M g — 1.4M, binary neutron star system using the SFHo equation of state, ignoring
magnetic fields and neutrino effects. We find that a residual eccentricity e ~ 0.01, as measured ~4—6 orbits
before merger, causes O(25-30%) relative changes in the amount of ejected mass. These differences in
mass ejection appear mainly due to changes in the amount of matter ejected as a result of core bounces
during merger. We note that O(1%) residual eccentricities have regularly been used in binary neutron star
merger simulations as proxy for circular binaries, potentially creating an additional source of error in
predictions for the mass of the dynamical ejecta. On the other hand, we find that simulations performed
with slightly different implementations of the same equation of state are consistent within estimated

numerical errors.

DOI: 10.1103/PhysRevD.110.024003

I. INTRODUCTION

Over the last few years, neutron star mergers have
become an important source of information for theoretical
nuclear physics. The observation of the first binary neutron
star merger GW 170817, through gravitational waves [1],
provided us with constraints on the equation of state of
neutron-rich matter above nuclear saturation density [2]. In
that respect, gravitational wave observations complement
measurements of neutron star radii by NICER [3.,4],
astrophysical constraints on the maximum mass of neutron
stars [5], as well as laboratory measurements of heavy,
neutron-rich nuclei [6,7]. The ejection of neutron-rich
matter during and after merger also provides us with
important information about neutron stars, and their
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potential role in enriching the Universe in heavy elements.
Neutron-rich ejecta from binary neutron star and black
hole—-neutron star mergers undergo r-process nucleosyn-
thesis, and radioactive decay of the ashes of the r-process
power a UV/optical/infrared signal, hours to weeks after the
merger—a kilonova. Kilonovae carry information about the
properties of the merging compact objects (including
additional information about the equation of state of dense
matter) [8,9], and about the elements synthesized in the
ejecta [10].

Extracting information from kilonovae is a complex
problem, requiring merger simulations accounting for general
relativity, magnetic fields, and neutrino-matter interactions
(see, e.g., [11-17]), as well as radiation-hydrodynamics
simulation of the evolution of the ejected matter as it is
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continuously heated by nuclear reactions [18-21]. Our
current ability to model kilonovae remains limited by both
the accuracy of the simulations as well as the manner in which
they incorporate (often approximately) important nuclear
physics: dense-matter equation of state, neutrino transport,
neutrino-matter interactions, neutrino oscillations, out-of-
equilibrium nuclear reactions, photon transport, and opacities
in the ejecta... While these issues are well known, their actual
impact on our ability to extract information from kilonovae
remains uncertain.

In this manuscript, we begin an investigation of the
robustness of simulation results to changes in the simu-
lation setup and the input nuclear physics. To avoid
confusing the many potential sources of uncertainty affect-
ing neutron star mergers, we begin here with general
relativistic hydrodynamical simulations with neither mag-
netic fields nor neutrinos, and explore the sensitivity of the
inspiral merger and early-matter ejection to small changes
in the initial conditions (binary eccentricity), exact imple-
mentation of the dense-matter equation of state, and
numerical resolution. Previous simulations have already
shown that large eccentricities can lead to the ejection of
much larger amount of mass during tidal disruption of a
neutron star (see, e.g., [22,23]). Our results show that small
changes O(1%) in the initial eccentricity of the binary can
impact predictions for the ejected matter well above
estimated numerical errors. This is an important consid-
eration when attempting to predict the mass ejected by any
given binary system, as many existing numerical relativity
simulations have O(1%) residual eccentricity in their initial
conditions. In addition, the simulations presented here can
serve as a baseline for further investigation of the impact of
nuclear inputs and/or numerical methods on the main
observables extracted from merger simulations.

II. EQUATIONS OF STATE

All simulations presented in this manuscript are per-
formed with the SFHo equation of state [24]. We note
however that different implementations of this equation of
state are currently available, and that some postprocessing
is applied to publicly available equations of state in order to
make them usable by numerical simulations. Specifically,
our numerical simulations require subluminal sound speeds
and a one-to-one map between physical variables (density,
temperature, electron fraction) and evolved variables (con-
served mass density, energy density, momentum density).
We will see that different implementations of the same
equation of state lead to O(1%) variations in the fluid
properties, e.g., the pressure. One of the objectives of this
paper is to test whether such variations matter for the
predictions made for the dynamical ejecta. We will show
that for the simulations presented here and within our
estimated numerical errors, the two versions of the SFHo
equation of state used here provide consistent results.

To study the impact of these implementation details, we
consider two distinct tabulated versions of the SFHo
equation of state. First, we start from the table available
in the Compose database with a minimal amount of
postprocessing. We read the pressure P, specific internal
energy ¢, and sound-speed square ¢2 from the table. The
values are tabulated as functions of the logarithm of the
baryon number density 7, logarithm of the temperature 7,
and electron fraction Y,. Whenever a point in the table has
sound-speed square ¢Z > 1 or ¢2 < 0, we correct the value
of (P,e,c?) by simply taking the average value of all
neighboring points in the table (in 3D; thus from 8
neighboring points). We additionally correct the pressure
to guarantee that dP/dT > O everywhere, through linear
interpolation of the logarithm of P from neighboring point
of the table (in 1D only here at constant density and
electron fraction; thus from 2 neighboring points).

Our second version starts from the stellarCollapse [25]
table. As for the Compose equation of state table, we
correct the pressure to guarantee that dP/dT > 0 every-
where. The two equations of state are close to each other
(by the standard of the methods typically used to produce
equations of state matching specific nuclear physics mod-
els), but not exactly identical. Table I shows the gravita-
tional (ADM) mass, baryon mass, and radii of the stars
evolved in this manuscript, while Fig. 1 shows the mass-
radius relation of cold isolated neutron stars for both
equations of state, the pressure for 2 one-dimensional
slices through the table, and the relative differences in that
pressure. We see differences of O(1%) or less between the
two implementations. The two tables also differ in their
definition of the baryon mass at the O(1%) level, due to
different choices for the reference mass of a single baryon
(see below). We note that while we will refer to these
equations of state as “StellarCollapse” and “Compose”

TABLE 1. Properties of neutron stars evolved in this manu-
script. The table from which we construct the SFHo equation of
state (EoS) is either from StellarCollapse (SC) [25] or Compose
(Comp) [26,27], postprocessed for use in SpEC simulations. We
also quote the ADM mass, baryon mass (defined through
m = N,m,, with N, the number of baryons and m,, the neutron
mass), and circular radius of each neutron star, as well as the
simulations in which they were used (using the notation of
Table II). The circular radius is defined so that 2zRyg is the
circumference of an isolated neutron star at the equator.

EoS table M apm M, Riire Simulations
Units Mg Mg km

SC 1.30 1.44 11.92 SC-MR/SC-HR
SC 1.40 1.56 11.88 SC-MR/SC-HR
Comp 1.30 1.44 11.94 Comp-no-ecc
Comp 1.40 1.56 11.90 Comp-no-ecc
Comp 1.29 1.42 11.95 Comp-ecc
Comp 1.39 1.55 11.90 Comp-ecc
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FIG. 1. Top: mass-radius relationship for the two equations of
state used in this manuscript. For the range of masses used in our
simulations, the radii differ by ~20 m or less. Middle: pressure as
a function of energy density for the same equations of state. We
consider pressure at 7 = 0.1 MeV and for either the initial
equilibrium Y, or for fixed Y, = 0.06. We show results in units
of G = My = ¢ = 1, for the range of densities accessed by the
simulations. Bottom: relative error between the two equations of
state, for the same quantities as in the middle panel.

here, the differences between tables used in our simulations
are likely due in part at least to interpolation from tables
with different grids in density, temperature, and electron
fraction—i.e., they may tell us more about errors due to the

finite resolution of the tables than about differences
between StellarCollapse and Compose.

III. INITIAL DATA AND ECCENTRICITY

We generate initial conditions using the Spells initial
data solver [28,29]. Spells begins by generating quasie-
quilibrium binaries with zero initial radial velocity (“qua-
sicircular” binaries, with neutron stars distorted according
to equilibrium tides) for user-provided values of the neutron
star baryon masses and binary separation. This typically
results in orbits with residual eccentricity e ~ 0.01, which
can be further reduced through an iterative procedure
solving for the angular and radial velocity of a binary
with the same baryon masses and separation but zero
eccentricity [30,31]." We note that eccentricity is not a
uniquely defined quantity for inspiraling binaries. Here, we
calculate the eccentricity as in [31]; i.e., we measure the
orbital angular velocity Q(r) from the first 2.5 orbits of the
trajectory of the center of mass of the neutron stars, and fit
the functional form

Q([) = AO(tc - [)_”/8 +Al(tc - t)_]3/8
+ B cos (wt + ¢ + Cr?), (1)

with free parameters Ay, A, ?.,»,¢. By analogy with
the eccentricity of Newtonian orbits, we define e =
B/(2Q(0)w). Alternative fits that impose C =0 and/or
A; = 0 can also be used and provide equivalent results for
this simple equal mass, nonspinning system.

In this manuscript, all simulations are started ~6 orbits
before merger. We begin by applying the eccentricity
reduction procedure to the StellarCollapse equation of state
table, with neutron star baryon masses (1.42M g, 1.55M )
corresponding to gravitational masses (1.30M, 1.40M )
for neutron stars in isolation. All neutron stars are initially
nonspinning. This results in an eccentricity e ~ 0.003 in the
simulation continued through merger. We then use the same
baryon masses, angular velocity, and radial velocity for the
Compose equation of state table. We note however that the
two tables use different definitions of the baryon mass.
Taking the Compose definition m = N,m,,, with N, the
number of baryons and m, the mass of the neutron, the
baryon masses of the StellarCollapse stars are actually
(1.44M, 1.56M ). Due to this and other small differences
in the equation of state implementations, the Compose
simulation has neutron stars with gravitational masses
(1.29M o, 1.39M ). As gravitational wave emission and
orbital evolution are primarily driven by the gravitational
masses, this results in slightly different orbits, with residual

'We note that the initial angular and radial velocity of the
binary are the actual free parameters that can be set in our
simulations, not the eccentricity or mean anomaly, which we can
only approximately measure after a few orbits of evolution.
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eccentricity e ~ 0.01. While residual eccentricities of that
order are commonly used as initial data for binary neutron
star mergers in the numerical relativity community, we will
see that this results in differences in the merger time and
dynamical mass ejection beyond the estimated numerical
errors. To better differentiate the effect of equation of state
implementation and eccentricity, we thus perform an addi-
tional simulation with the Compose equation of state table,
now keeping the gravitational mass of the neutron stars
constant. This brings the eccentricity down to e ~ 0.004.
We will see that this latter simulation is in better agreement
with the simulation performed using the StellarCollapse
equation of state table. We note that matching baryon
masses for equations of state using different definitions of
that quantity was obviously not the right choice to make.
The two simulations performed here with stars of the same
gravitational mass in fact also have nearly the same baryon
mass (see Table II) when the same reference baryon mass
m,, is used consistently for both simulations. This error in
our initial choice of matching initial conditions however
ends up allowing us to test the outcome of simulations with
very similar neutron stars but different eccentricities.
Finally, in order to compare the effect of equation of state
implementation with the expected numerical error, we also
perform the simulation using the StellarCollapse equation
of state table at higher resolution. Specifically, our standard
simulation setup is such that our finite-difference grid
initially has ~91 grid cells across the diameter of each
neutron star, while the high-resolution simulation has ~113
grid cells across the diameter of each neutron star. These are
fairly standard resolutions for pure hydrodynamics or
radiation-hydrodynamics  simulations, though much
coarser than what would be required to perform accurate
magnetohydrodynamical simulations of these systems.
During the evolution, the grid spacing decreases by as
much as 20% as the grid contracts to follow the inspiral of
the binary (i.e., the resolution used during the evolution is
at most times better than the initial resolution quoted here).
The pseudospectral grid used to evolve Einstein’s equations
uses adaptive mesh refinement, with the number of basis

TABLE II. List of simulations performed for this manuscript.
The EoS table is defined as in Table I. The initial grid spacing of
the finite-difference grid Ax, rp and initial eccentricity e are also
provided. Note that in the coordinates of the simulation (quasi-
isotropic coordinate), the radius of each neutron star is only
~9.3 km; additionally, the grid resolution at later times is always
finer than the initial resolution (by as much as ~20%).

Sim EoS table Axypp [m] e
SC-MR SC 205 0.003
SC-HR SC 165 0.003
Comp-no-ecc Comp 205 0.004
Comp-ecc Comp 205 0.01

functions in each element chosen to reach a target trunca-
tion error in the spectral expansion [32,33]. When going
from standard to high resolution, that target error is
multiplied by (Axyr/Axyr)?’, with Axypmr the grid
spacing on the finite-difference grid in our standard-
high-resolution simulation.

To summarize, we perform 4 simulations in this manu-
script (see also Table II):

(1) The merger of a system with ¢ = 0.003 using the
StellarCollapse version of the SFHo equation of
state, at standard resolution (SC-SR)

(i) The merger of a system with ¢ = 0.003 using the
StellarCollapse version of the SFHo equation of
state, at high resolution (SC-HR)

(iii) The merger of a system with e = 0.004 using the
Compose version of the SFHo equation of state at
standard resolution (Comp-no-ecc)

(iv) The merger of a system with ¢ = 0.010 using the
Compose version of the SFHo equation of state at
standard resolution (Comp-ecc)

all started 6 orbits before merger with nonspinning neutron
stars. The first three simulations have neutron stars of
gravitational mass 1.30M and 1.40M; the fourth has
gravitational masses 1.29M, and 1.39M, (see Table I for
other properties of these stars).

We note that we choose these initial conditions because
they allow us to study a wide range of physical processes
observed in neutron star merger simulations. The mass
asymmetry is enough to lead to the production of small
amounts of tidal ejecta, O(1073M). The system is of low
enough mass that the remnant does not immediately
collapse to a black hole, leading to the ejection of matter
associated with the collision of the two neutron stars, but
high enough mass that it is expected to collapse on tens of
milliseconds timescales. The same system was for example
evolved to black hole collapse in [34], with 2-moment
neutrino transport. In this manuscript, as we lack any
microphysics in the simulations, we focus solely on the
dynamical ejecta and formation of the early neutron star
remnant, leaving the study of black hole formation for
simulations including some means of modeling angular
momentum transport in the remnant.

IV. NUMERICAL METHODS

We evolve the binary neutron star systems presented here
using the Spectral Einstein Code (SpEC) [35]. SpEC
evolves Einstein’s equations in the generalized harmonics
formalism [36] on a pseudospectral grid, and the general
relativistic equations of hydrodynamics in the Valencia
formalism [37] on a separate finite-volume grid.
Specifically, the fluid evolution assumes a perfect fluid
with stress-energy tensor

T = pohu*u® + Pg*", (2)
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with p, the fluid baryon density, P its pressure, h =
1 4+ ¢+ P/py its specific enthalpy, € its specific internal
energy, u its 4-velocity, and ¢*” the inverse 4-metric. We
evolve the densitized baryon density

Psx = \/?uﬂnﬂpm (3)
with n,, the unit normal perpendicular to a constant time

slice and y the determination of the spatial 3-metric y;;. We
also evolve the projections of the stress-energy tensor:

T = ﬁnﬂanﬂD = P, (4)
S = _\/77an¢’ (5)
and the conserved electron lepton number density p.Y,,

with Y, the electron fraction of the fluid. The evolution
equations are

0up. + 0y(p.v) =0, (6)

,(p.Y.) +0;(p.Y ) =0, (7)

0,7 + 0,~(a2\/]7T0i —p*vi) = _aﬁTﬂbvpnyv (8)
; 1

6,S,» + a](a\/?T{) = Ea\/?T’waigm/' (9)

Here, a = 1/+/—g'" is the lapse scalar, and the 3-velocity v’
is defined such that u* = W(n* 4+ v*), with W the Lorentz
factor and vn, = 0. The equation of state closes this
system of equation by providing us with a prescription for
P(po,T.Y,), €(po,T,Y,), with T the temperature.

We use a third-order Runge-Kutta method for the time
discretization, and the WENOS [38—40] reconstruction and
HLL [41] approximate Riemann solver to capture shocks in
the fluid evolution. Details of the methods used to evolve
binary neutron star systems in SpEC can be found in
[33,42]. In these simulations, we ignore magnetic fields and
neutrinos.

The initial finite-volume grid covers a rectangle
[—45,45] x [-22.5,22.5] x [-22.5,22.5] km. The initial
location of the neutron star centers is at x, = +22.5 km,
on the x axis, and the rectangle rotates with the binary.
During tidal disruption, a second level of refinement is
created, twice as large and with half the grid resolution.
Finally, after merger, we switch to a cubic grid with four
levels of refinement. The finest level has sides of length
40 km, with each coarser level increasing in size by a factor
of 2. Each refinement level uses 256* cells (3123 at high
resolution), for a grid resolution on the finest grid of 156 m
(128 m at high resolution). We switch from the rectangular
to cubical grid as soon as matter outflows at the boundary

rises above 0.2M/ 5.2 As we focus on the production of
dynamical ejecta, we follow all systems to 3.5-ms post-
merger only. Here, the merger time is defined (semiarbi-
trarily) as the time at which the maximum baryon density
on the grid rises 3% above its value at + = 0 (due to the
collision of the cores).

We note that here and in the rest of the manuscript,
distances are reported in the coordinates of the simulations,
which evolve according to the generalized harmonic
equations. Distances are thus not coordinate-invariant
quantities here, and are mostly useful to guide our under-
standing of the dynamics of mergers.

V. DEFINITION OF UNBOUND MATERIAL

We measure the unbound mass following the methods
described in [43]. For ease of comparison with other work,
we report results using the geodesic criterion u, < —1, the
Bernoulli criterion hu; < —h,, = —1 (for our equation of
state table), as well as the most advanced model of [43] that
accounts for heating from r-process nucleosynthesis, cool-
ing from neutrino emission during the r-process, and the
finite amount of time available for bound material to gain
energy from the r-process before it reaches apoastron.

The geodesic criterion typically provides a lower bound
on the mass and kinetic energy of the ejecta, while the
Bernoulli criterion overestimates the ejecta. Indeed, the
geodesic criterion ignores r-process heating and adiabatic
expansion of the fluid, while the Bernoulli criterion ignores
cooling and the finite time available for r-process heating.
The more complex criterion is far from perfect, as it still
ignores nonlocal effects in the evolution of the fluid.
In [43], we showed that for the one comparison point
available with a full 3D time evolution [44], the latter
criterion predicted the mass and kinetic energy of the ejecta
accurately. It did not however accurately predict its geom-
etry or velocity distribution. We infer from this that our
criterion appears to do well at predicting global quantities,
but is not an appropriate replacement to long-term hydro-
dynamics evolution of the ejecta for more detailed proper-
ties of the outflows.

We also calculate the mass-weighted root-mean-square
average velocity (v,j) and mass-weighted average electron
fraction (Y, ), using the more complex criterion for unbound
mass. The average electron fraction is not particularly
meaningful for these simulations, however, as we do not
include neutrino-matter interactions here and thus ignore
what should be the main source of variation of the electron
fraction. All simulations find (Y,) € [0.035,0.037], but the
correct electron fraction would certainly be higher when

*We note that this mass loss occurs over a timescale of a
fraction of a millisecond. In all of our simulations, the mass loss
at the boundary during that time is less than 10~#M . The mass
loss is computed by integrating the mass fluid p,»’ across a
surface 6 grid cells away from the domain’s spatial boundary.
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accounting for weak interactions (e.g., [34] finds (Y,) ~
0.27 for this system).

VI. RESULTS

At the beginning of our simulations, the main difference
observed between our four cases is due to the residual
eccentricity of these systems (or, equivalently, the differ-
ence in initial gravitational masses of the neutron stars).
The system with e ~0.01 merges about half an orbit
(1.2 ms) later than the other simulations. For comparison,
the merger times of the other three simulations, defined in
SpEC as the time at which the maximum density of the grid
reaches  Pax (fmerger) = 1.03pmax (1 = 0), are all within
40 ps of each other. We illustrate these differences in
Fig. 2, which shows the coordinate separation between the
two neutron stars as a function of the time to merger.

In all systems, the remnant is a neutron star supported by
differential rotation, surrounded by an accretion disk of a
few percent of a solar mass. These remnants are, in most
respects, very similar to each other. We can for example
look at the properties of the disk (defined as the mass with
p < 1013 g/cc) about 2.5-ms postmerger, and find that all
simulations show disk masses M € [4.6-4.8] x 1072M,
with average temperature 7 €[11.5-12.5] MeV. The
differences in these quantities are largest between the
medium and high-resolution simulations, indicating that
any impact of the eccentricity or equation of state imple-
mentation on these quantities is not resolved. These
quantities would nearly certainly be more significantly
impacted by the introduction of realistic magnetic-field
evolution [12,45,46] than by any of the effects studied here.
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FIG. 2. Coordinate separation between the center of mass of the
neutron star as a function of the time to merger. The high-
resolution SpEC simulation would, on this scale, be indistin-
guishable from the other two low-eccentricity evolution.

Specifically, we would expect the rapid growth of magnetic
field in the contact regions between the two neutron stars
due to the Kelvin-Helmholtz instability, with potentially
significant impact on the heating of the remnant, angular
momentum transport in the remnant, and collapse time. We
visualize the evolution of the binary through merger in
Fig. 3. We clearly see the heating of the contact regions to
tens of MeV, and the formation of hot tidal arms (a few
MeVs) outside the remnant. We note that what we call
“disk” in these systems is far from the conventional
axisymmetric torus around a compact object. In such a
merger, the system is not expected to become symmetric
until after collapse to a black hole.

The most important output from our simulations that
appears impacted by their residual eccentricities is the
dynamical ejecta, depicted in Figs. 4 and 5. In this system,
unbound matter is continuously ejected by the remnant,
first in the tidal tail, then due to core bounce and possibly
tidal arm instabilities [47]. The amount of cold material
from the tidal tail marked as unbound stabilizes about 1 ms
postmerger at My €[0.9-1.4] x 1073M. The effect of
eccentricity, of numerical resolution, and of the criterion
used to define unbound matter are, at this step, compa-
rable.” We note that our interpretation of the material as
coming from the “tidal tail” or “core bounce” is largely
based on the very different temperature of the two compo-
nents, as demonstrated in Fig. 5.

The amount of matter marked as unbound after the first
core bounce is most cleanly measured around (2-2.5) ms
postmerger (see Fig. 4). As this matter is hotter, the choice
of unbound criteria now becomes particularly important—
the geodesic criteria, which ignore the internal energy of
the fluid, predict significantly less ejecta than the other
criteria. A summary of the unbound mass for each
simulation and each criterion at that time is presented in
Table III. We see that especially for criteria that do include
the internal energy of the fluid, uncertainties in the
predicted amount of ejecta are now clearly dominated by
residual eccentricity. We see ~25-30% differences between
the two simulations using the Compose table, with the
e = 0.004 simulation using the Compose table being closer
to the e = 0.003 simulation using the StellarCollapse table
than then e = 0.01 simulation using the Compose table.
A clear difference is also observable in the velocity of

The mass quoted here is for the more advanced criterion of
[43], as will generally be the case here unless otherwise noted. On
the other hand, the figure shows results for the Bernoulli criterion,
which typically overestimates outflow masses. We use that simple
criterion in the figure because the more advanced criterion was
only computed as a postprocessing step on specific simulation
snapshots, and thus we do not have densely sampled data for that
criterion. We only show densely sampled results for the Stellar-
Collapse table for the same reason: due to the different definition
of the baryon mass in the Compose table, the outflow mass in
those simulations was only computed as a postprocessing step on
a few specific snapshots, shown in the figure.
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jumps correspond to the tidal tail and the first two core bounces.
‘We note that the difference between numerical resolution (solid
vs dashed line) is noticeably smaller than the difference between
simulations at difference eccentricity (green vs red dots). Bottom:
densest point on the computational grid as a function of time
postmerger, for all simulations.

the ejecta. The average velocity of the ejecta in the three
low-eccentricity simulations is v € 0.25¢, while it is only
v = 0.22¢ for the e ~ 0.01 simulation. We will come back
to these differences in our discussion of the results below.

At later times, unbound material is more continuously
ejected. We can still see the impact of matter ejection from
core bounces (at ~3-ms postmerger in Fig. 4), but the exact
amount of material flagged as unbound depends more
sensitively on the semiarbitrary definition of merger time
used in this work. We also note that we cannot, in these
simulations, follow the unbound matter for more than
~3 ms after ejection, given the size of our computational
grid, so by that time some of the matter counted as unbound
in Fig. 4 has left our computational domain (we sample all
matter leaving the computational grid, and account for
that matter in all masses reported here). The differences in
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FIG. 5. Distribution of the unbound matter shown in
Fig. 4, 2.5-ms postmerger and as a function of distance R from
the remnant, temperature 7', and polar angle €. We can clearly see
the two distinct components: the cold, mostly equatorial tidal ejecta
about 70 km from the remnant, and the hot core-bounce ejecta with
broader angular distribution about 30 km from the remnant.

outflow masses between simulations only increase how-
ever, with an extra ~0.004M of material ejected in low-
eccentricity simulations between 2.5-3.5 ms postmerger,
but only an extra ~0.0025M of material ejected in the
e ~0.01 simulation.

We can get a hint of the physical source of these
differences from the bottom panel of Fig. 4, which shows
the maximum density on the computational grid for all four
simulations. We see that the ¢ ~ 0.01 simulation has weaker
core-bounce oscillations, and a lower maximum density at
the peak of the oscillations of the postmerger remnant.

TABLE III.  Unbound mass M, as measured on the computa-
tional grid 2.5 ms after merger. The ejected mass is determined
using either the geodesic criteria u, < —1, the Bernoulli criteria
hu, < —1, or the more complex method of [43] approximately
accounting for r-process heating and neutrino cooling over the
finite time needed for the matter to reach apoastron. We also show
the average asymptotic velocity of unbound matter, according to
the latter method.

Sim Me(u,)  Mg(hu)  Mg(rp)  (vg(rp))
Units M, Mg Mg c
SC-MR 0.0021 0.0050 0.0044 0.24
SC-HR 0.0027 0.0054 0.0048 0.25
Comp-no-ecc 0.0027 0.0054 0.0048 0.25
Comp-ecc 0.0015 0.0041 0.0035 0.22
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The e = 0.004 simulation using the Compose table has
slightly larger oscillations of the core than the simulations
using the StellarCollapse table. We discuss a potential
interpretation of these results in the next section.

These results should be considered as a measure of the
impact of residual eccentricity, while keeping in mind the
other limitations of our simulations. The introduction of
realistic magnetic fields would likely modify the mass of
the outflows, while neutrinos would change their compo-
sition—two effects completely ignored in this study.

VII. DISCUSSION

In this manuscript, we find that small differences in
residual eccentricity (e ~ 0.01) ~5 orbits before merger can
have a measurable impact on the observed amount of
ejected mass in binary neutron star mergers. The exact
process that leads to these differences cannot be rigorously
demonstrated from a single set of simulations, yet based on
our simulations we can propose a reasonable guess at least.
Even a small residual eccentricity can lead the two cores to
merge in a slightly more “grazing” or more ‘“head-on”
collision, depending on the phase of epicyclic oscillations
at the time of merger. In the former case, we would
naturally expect the kind of results observed in this
manuscript: weaker core bounce, and as a result less mass
ejection. In the latter case, one might however expect the
opposite effect. Accordingly, we propose that a small
residual eccentricity will have a significant (i.e., numeri-
cally resolved) effect on the outflow mass and, likely,
the time to black hole formation. On the other hand, the
direction in which the residual eccentricity modifies the
outflow mass is unknown, as for any given binary the phase
of epicyclic oscillations at merger cannot be easily pre-
dicted. This interpretation is at least partially supported by
the amplitude of the density oscillations observed in the
different postmerger remnants simulated in this manuscript,
and the fact that the differences in outflow masses are
largely due to changes in the amount of hot material ejected
during core bounces.

We note that this effect could lead us to predict larger
estimated numerical errors in the ejected mass for simu-
lations with O(1%) residual eccentricity, as simulations
performed at different numerical resolutions may merge at
different points in their epicyclic oscillations. This effect
would of course disappear as resolution is increased and the
simulations converge to a well-defined epicyclic phase at
merger, but they would converge to a solution for the ejected
mass that may have a bias with respect to the e = 0 answer.
This may be an important caveat to existing predictions for
mass ejection, as many numerical simulations (including
those performed by our own collaboration) have considered
residual eccentricities of O(1%) as acceptable for outflow

modeling. We caution however that this interpretation needs
to be confirmed with a larger sample of simulations. In
particular, we note the possibility that the eccentricity
dependence observed here is particularly strong for binaries
with total mass close to the prompt collapse threshold (as is
the case for the system studied here), for which the core
bounce and early postmerger oscillations are stronger than
for lower or higher-mass systems.

It is also worth mentioning that the impact of eccentricity
in this study is likely comparable to known sources of
biases, e.g., the limited microphysics of many simulations
[9]. The fact that our simulations do not include magnetic
fields or neutrinos certainly impact the properties of the
postmerger remnant, as well as the properties of the
outflows [12,48]. Our results show that residual eccentric-
ity should be seen as one more source of error to carefully
consider when analyzing simulations, though one whose
impact may have been underestimated so far.

Finally, we find no clear evidence of disagreement between
simulations using the Compose and StellarCollapse versions
of the SFHo equation of state—any actual difference is
significantly smaller than the impact of the initial orbital
parameters on our results.
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