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Impact of unmodeled eccentricity on the tidal deformability measurement
and implications for gravitational wave physics inference
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With the expected large number of binary neutron star (BNS) observations through gravitational waves
(GWs), third-generation GW detectors, Cosmic Explorer (CE) and Einstein Telescope (ET), will be able to
constrain the tidal deformability, and hence the equation of state (EOS) of neutron star (NS) with exquisite
precision. A subset of the detected BNS systems can retain residual eccentricity in the detector frequency
band. We study the systematic errors due to unmodeled eccentricity in the tidal deformability measurement
and its implications for NS EOS and redshift measurement via the Love siren method. We find that the
systematic errors in the tidal deformability parameter exceed the statistical errors at an eccentricity of
~1073 (~3 x 10™*) at 10 Hz reference GW frequency for CE (ET). We show that these biases on tidal
deformability parameter can significantly bias the NS EOS inference. Furthermore, the error on tidal
deformability propagates to the source frame NS mass, which in turn biases the redshift inference. For CE,
the redshift inference is significantly biased at an eccentricity of ~10~3 (at a reference frequency of 10 Hz).
We also study the implications of biased tidal deformability in testing the Kerr nature of black holes.
Systematic error on the tidal deformability parameter leads to a nonzero value of tidal deformability for
binary black holes, indicating a false deviation from the Kerr nature. Finally, we show that including
eccentricity in the waveform model increases the statistical errors in tidal deformability measurement by a
factor of <2. Our study, therefore, highlights the importance of using accurate eccentric waveform models

for GW parameter inference.
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I. INTRODUCTION

Third-generation (3G) gravitational wave (GW) detec-
tors Cosmic Explorer (CE) [1,2] and Einstein Telescope
(ET) [3] will have an order of magnitude better sensitivity
compared to Advanced LIGO [4] and Advanced Virgo [5].
These detectors are expected to detect O(10°~10%) binary
neutron star (BNS) and O(10*-103) binary black hole
(BBH) systems per year with high signal-to-noise ratio
(SNR) [6-8]. Because of the rapid decay of eccentricity
caused by the emission of gravitational waves (GWs) [9],
most binaries are expected to be circularized when obser-
ved in ground-based detectors. To the leading order in the
small eccentricity limit, the orbital eccentricity decreases
with the GW frequency as e,/eq ~ (f/f)~"*/'® [10]. Here
e, is the “time eccentricity” when binary emits at the
dominant (second) mode of the GW frequency f and ¢ is
the initial value of ¢, defined at a reference frequency of f.
(Throughout the paper we define ¢, at a reference GW
frequency of f, = 10 Hz.) N-body simulations suggest that
a subset of binaries can retain non-negligible eccentricity
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(eg > 0.1), depending on their formation history, while
entering the frequency band of ground-based detectors.
Various mechanisms have been proposed that can lead to
the formation of highly eccentric binaries. Dynamically
formed binaries in dense stellar environments such as
globular clusters, nuclear star clusters, and near the super-
massive black holes can have non-negligible eccentricity at
10 Hz GW frequency [11-27]. Around 5% to 10% of all
dynamical mergers in globular clusters can give rise to
BBHs with initial eccentricity eq 2 0.1 [17,19,28]. The rate
of dynamically formed BNSs is expected to be relatively
low [14] (see however [29]). Since black holes (BHs) move
closer to the center of the cluster due to dynamical friction,
they prevent NSs from sinking towards the cluster core,
thereby reducing NS’s dynamic interactions with other
bodies. The observations of BNS in the Milky Way suggest
that the BNS are likely to have small eccentricity [O(1075)]
at 10 Hz GW frequency [30]. The reanalysis of detected
BNS signals GW170817 [31] and GW190425 [32] with
eccentric waveforms suggests that these systems have
€9 <0.024 and ¢; <0.048, respectively [33]. Nevertheless,
there are proposed mechanisms for the formation of eccentric
NS binaries. These include tidal capture and collisions
of NSs in globular clusters [34], Zeipel-Lidov-Kozai mecha-
nism [35-37] for a hierarchical triple system [38,39],
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dynamical interaction of NSs in globular clusters [40—44],
NS-BH mergers in globular cluster [45], BNS mergers in
young star clusters [46], BNS and NS-BH mergers in galactic
nuclei [47], and triple star systems in the field [48].
Population synthesis models predict that up to 4% of the
detected BNSs in the 3G era will have eccentricity ~0.01
when entering the frequency band of the detectors [49].

While LIGO can measure ¢y ~ 0.05 for GW150914-like
systems [50,51], 3G detectors—with better low-frequency
sensitivity and hence a much longer inspiral in the band—
will be able to measure ¢; 2 103 for BBHs [52]. BNS
systems will spend an even larger number of GW cycles in
the detectors’ frequency band, allowing us to measure even
smaller eccentricities than ey ~ 107 with exquisite pre-
cision. Current template-based GW searches by LIGO-
Virgo-KAGRA do not account for eccentricity. However,
various alternate search methods have been proposed to
detect eccentric BBHs and BNSs [53-59].

The analysis of an eccentric GW signal using a quasi-
circular waveform model will introduce systematic bias in
the estimated parameters [51,60-62]. As a BNS typically
spends a large number of GW cycles while sweeping
through the frequency band of the detector compared to
BBHs, systematic errors may accumulate over a large
number of GW cycles and can become dominant even at
a very small eccentricity. The authors of Ref. [60] studied
the effect of neglecting eccentricity for BNSs in LIGO and
3G detectors and found that the systematic bias on binary
parameters exceeds the statistical errors even for small
eccentricity ey ~ 10731072, In the LIGO band, an eccen-
tricity of ey = 1072-0.1 can significantly bias the estimated
masses and spins of BHs [51,62] and NSs [61].
Eccentricity-induced systematic bias can also bias the tests
of general relativity (GR) and appear as a false violation of
GR [63-66]. These biases become even more severe when
performing tests of GR from a catalog of events [67,68].

The systematic errors are independent of SNR, while
the statistical errors scale as the inverse of SNR. Hence,
for loud events (high SNR), the systematic errors can
easily become greater than the statistical errors. Since CE
and ET will observe GW events with higher SNR, leading
to a precise measurement of binary parameters like the
tidal deformability, and hence the equation of state of NS
[69-71] and the cosmological parameters [72—74], there-
fore, systematic errors can easily bias these parameters.

In this work, we study the impact of unmodeled
eccentricity on the measurement of the tidal deformability
parameter in 3G detectors. In particular, we study the
implications of the biased estimation of tidal deformability
on the NS EOS, redshift measurement through the Love
siren technique, and the test of the Kerr nature of black
holes. Since eccentricity and tidal deformability are rela-
tively low-frequency and high-frequency effects, respec-
tively, their measurement is naively expected to have
negligible effects on each other. However, we show that

the precise measurement of the tidal deformability in 3G
detectors can be biased even for a very small (unmodeled)
eccentricity.

A. Implications of biased tidal deformability

1. Inference of NS EOS

During the later stages of NS binary inspiral, the tidal
interactions resulting from their finite size effect start coming
into play. These effects are imprinted in the emitted GW
signal and carry information about the internal structure of
the stars [75,76]. The corrections due to tidal deformations
appear at fifth post-Newtonian (PN) order." As the name
suggests, tidal deformability measures the quadrupolar
deformation of a star in response to the external field exerted
by its companion in the case of binary. It acts as a
proportionality constant relating the object’s quadrupole
moment with the external tidal field [77-80].

The observation of GWs from NS binaries can pro-
vide valuable information about the nuclear EOS [78].
Observations of GW170817 and GW 190425 have already
put constraints on the tidal deformability, which provided
information about the NS EOS [81,82]. Additionally,
pulsar observations provide information for the NS
EOS by precisely measuring the mass and the radius of
NS [83-85]. The measurement of macroscopic properties
such as mass, radius, and tidal deformability allows us to
constrain the underlying EOS of NS, which carries infor-
mation about the microscopic properties of NS matter.
In the 3G era, the observations of BNS will tightly
constrain NS EOSs [86-90]. Therefore, a biased measure-
ment of the tidal deformability may lead to a biased
inference of the EOS.

2. Measurement of redshift through “Love siren”

The observation of GWs allows for the direct measure-
ment of the luminosity distance of the source [91,92].
Since GWs do not require any other calibration for
distance measurement, these are called “standard candles.”
Estimating the Hubble constant (H,) requires the knowl-
edge of the luminosity distance and the redshift to the
source. GWs do not directly provide the redshift informa-
tion, which must be “inferred” through other channels.
Once redshift to the source is known, the measurement of
luminosity distance from GWs can be used for estimating
cosmological parameters [93-97].

Various methods have been proposed to measure the
redshift to the source. The mergers of BNSs are likely to be
associated with electromagnetic (EM) emissions like short-
gamma ray bursts and afterglow emissions similar to
GW170817 [31]. The electromagnetic observations from

'In a PN series, a term proportional to v?" relative to the

Newtonian term (proportional to ™) is called the nPN order
term.
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these mergers can be used to locate the host galaxy
enabling the redshift measurement and hence H,
[31,98-101]. This method is called the “bright siren”
method. However, most BBH mergers are not likely to
be associated with EM counterparts, rendering the redshift
measurement via the bright siren method. In the absence of
an electromagnetic counterpart, the sky-localization asso-
ciated with a GW event can be used to identify the potential
host galaxies using galaxy surveys. Statistical methods can
then be implemented to combine the H, measurement from
the potential host galaxies [102-107]. This is called the
“dark siren” technique. Another way to obtain the redshift
of the source is to use the features in the source mass
distribution of NSs [108,109] and BHs [110]. The redshift,
in the “spectral siren”” method, is inferred by measuring the
detector frame mass and jointly fitting the source mass
distribution and cosmological parameters [111,112].

In this paper, we focus on yet another technique of
redshift inference called the Love siren method [113]. This
method exploits the fact that the tidal effects are completely
described by the source frame NS mass for a given EOS.
The detector frame mass is directly measured from the GW
data. The redshift of the source is inferred using the relation
between the source frame mass and the detector frame
mass. This method allows GW observations in 3G detectors
alone to constrain cosmological parameters like H, with
subpercent accuracy [114]. A systematic bias on the tidal
deformability parameter, due to neglecting eccentricity, will
propagate to the source frame mass, leading to a biased
inference of redshift.

3. Test of Kerr nature of binary black holes

Lastly, we study the impact of biased tidal deformability
measurement on the Kerr nature of the BHs. Within GR,
black holes (both static and rotating) have zero tidal
deformability [115-122] (see however [123,124]). On
the other hand, exotic compact objects are known to have
nonzero tidal deformability [125-127]. The tidal deform-
ability parameter is directly proportional to Love number
which has been widely explored for BHs [128-133] and
through the I-Love-Q relations for NS [134-138]. In
the context of BHs, our study acts as a null test for
BBH nature, with systematic biases producing nonzero
tidal deformability leading to false inference of a source
as non-BBH.

B. Eccentricity evolution as a function
of GW frequency

In post-Newtonian theory [139], the decay of eccentric-
ity with the GW frequency is described by an analytical
expression of the form [Eq. (4.17a) in [140] ]

<f>‘19“8 {(M,n. f)
e; = eyl — _—

fo {(M.n, fo) 0

The term ¢ has the PN structure

B 2833 197 \ , ]
C—l—i—( 2016+72’7>U+ O(r°), (2)

where v = (zMf)'/3 is the orbital velocity parameter,
M = m; +m, is the total mass of the source, and

n= (mmi"rfz)z is the symmetric mass ratio. The full expres-
1

sion for ¢ can be found in Ref. [140]. Figure 1(a) shows the
decay of eccentricity as a function of GW frequency in the
CE and ET frequency bands. Three distinct lines in
different colors represent different mass binaries. If the
three systems have the same initial eccentricity, the
BNS system retains a higher value of eccentricity (at a
particular frequency). Moreover, the BNS system merges at
a higher frequency and spends more time in the detector
band. The main factors that play a role in the accumulation
of systematic error for a given binary are (i) the rate of
decay of eccentricity in the frequency band of the detector,
(ii) the time of onset of tidal effects, and (iii) the number of
GW cycles in the detector band. Though the tidal effects
come into play when the stars come sufficiently close to
each other, the BNS system can retain a higher value of
eccentricity and spend more time in the detector band.
Therefore, neglecting eccentricity can potentially bias the
tidal deformability parameter which is indeed found to be
true in our study.

Figure 1(b) shows one of the main results of the paper.
It shows the inferred redshift via the Love siren method can
be significantly biased due to unmodeled eccentricity.
Since the source frame NS mass is obtained from the tidal
deformability, the systematic bias on tidal deformability
propagates to the source frame NS mass. The plot shows
the systematic errors due to source frame and detector
frame NS mass as a function of initial eccentricity e
(defined at a reference frequency of 10 Hz). The redshift
bias shows an opposite trend due to source frame and
detector frame mass. The combined effect of systematic
errors is negative and indicates redshift being underesti-
mated when ignoring eccentricity. The shaded region
shows 1o statistical width around the true value of red-
shift. The combined systematic error crosses the statistical
errors at ey ~ 1073, The plot is discussed in further detail
in Sec. IV B.

The rest of the paper is organized as follows. In Sec. II,
we describe the frequency-domain waveform model used
in the study. Section III explains the Fisher information
matrix framework to calculate the statistical errors and
Cutler-Vallisneri formalism [141] to calculate the system-
atic errors. Section IV discusses the implications of biased
tidal deformability for NS EOS and redshift measurement
through the Love siren technique. In Sec. V, we show
how the biased tidal deformability can lead to a false
deviation of the Kerr nature of BBHs. The conclusion of the
study is described in Sec. VI. Throughout the paper we
use G =c¢ = 1.
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(a) Solid lines show the decay of eccentricity following Eq. (1) as a function of frequency for different mass binaries. Dashed

lines represent the sensitivity curves for CE and ET. The BNS system retains a higher value of eccentricity at a given frequency
compared to BBHs. (b) The deviation of biased redshift (z;,) (due to neglecting eccentricity) from its true value as a function of initial
eccentricity e (defined at 10 Hz) for a BNS in CE. We consider an equal mass BNS (1.4 + 1.4)M, with dimensionless spins magnitude
212 = 0.05 located at 100 Mpc. The shaded region indicates the 1o statistical width around the true value of redshift. The systematic
error in A biases the source frame NS mass (for a given EOS), which propagates to redshift inference through the Love siren technique.
The pink curve shows the combined z;, due to biased source frame mass m, and detector frame mass mge.. The plot is discussed in detail

in Sec. IV B.

II. WAVEFORM MODEL

The frequency-domain GW strain in stationary phase
approximation (SPA) [142] can be written as

h(f) = A(f)e™V) = Af-7/6eM0), (3)
where
. 5/6
A=t M 4)

V30r¥3 dp

Here M = (m,m,)>/> /M"'/? is the chirp mass, M = m, + m,
is the total mass of the source, m; and m, are the masses of
primary and secondary component of the binary, and d; is the
luminosity distance to the source. Note that M and M are
the detector frame chirp and the total mass of the binary. The
detector frame chirp and total mass are related to the source
frame chirp mass (M) and total mass (M,) as

M = (14 )M, M = (1+z)M,, (5)
where z is the redshift to the source. Considering flat
Lambda-CDM cosmology, d; and z are related by

d <z):<1+z)/z d7
L HO 0 \/QM(1+Z/>3+QA’

(6)

where the cosmological parameters are ), = 0.3065, Q, =
0.6935, and h = 0.6790 with Hy, = 100h (km/s)/Mpc [143].

In PN approximation, which is valid in the weak-field
and small-velocity regime [139], the SPA phase ¥(f) in
Eq. (3) can be expanded as a series in powers of orbital
velocity parameter v:

3 i inci
W) = ot 21+ o (14 AW 4 AR

AT+ AV, )

Recall that y = ™2

(my+my)*
v = (zMf)'/3. The term 1, is a kinematical quantity closely

related to the time of arrival of the signal at the detector and

¢. denotes a constant phase. The term AP represents

the circular point particle contribution to the phase and
was recently extended till 4.5PN in [144]. We incorporate
terms up to 4.5PN order in our analysis which can be
written as

is the symmetric mass ratio and

9
Alpg%gf\lc(f) = z (v +di v In v+ gppoFine),  (8)
=0

where ¢, are the PN coefficients which are the functions
of source properties such as masses, spins, and tidal
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deformability. ¢b;; and ¢, are the PN coefficients which
appear with the In and In? terms with ¢, being nonzero only
fork =35, 6, 8,9 and ¢, for k = 8. The exact expressions
for the PN coefficients can be found in [144,145]. The

spin contribution to the circular part A¥{Pe" can be found
in [145-148]. The eccentricity corrections up to 3PN order
AWSE are taken from the TaylorF2Ece waveform model given

in Eq. (6.26) of [140] and can be written as

2355 , (1) 19/3
AN = ~Tag2 @ <?>

| (299076223 18766963 \
81976608 ' 2927736 )"
(2833197 N, 2819123
1008~ 36 )"0 T 282600 *
377
+727TU(3)+"'+O(U6>:|, (9)

where ¢, is the value of eccentricity at a reference fre-
quency f, and vy = (7Mf,)'/3. The waveform incorporates
leading-order eccentricity corrections [~O(e3)] in the GW
phasing and is valid for eccentricities <0.2. The waveform
model does not account for the eccentric corrections to the
GW amplitude. Since GW detectors are much more sensitive
to the GW phase than the amplitude, small eccentricity
corrections to the amplitude will be less important than the
GW phase. The waveform model accounts for the dominant
second harmonic of the GW signal and ignores the eccen-
tricity-induced higher harmonics that are expected to be
subdominant for small eccentricities. The spins of the two
black holes are assumed to be aligned with the orbital angular
momentum of the binary (nonprecessing).

The leading-order tidal contribution appears at SPN
order [60,78,79,149] and is of the form

, 39 - 6595 ~ 3115 -
AV = - Ao + vlz(—éA ——A>, (10)

where A is the reduced dimensionless tidal deformability
parameter. The parameter A can be written in terms of the
individual dimensionless tidal deformability parameters

21,22:

.8 A oa
A:B (1+Tn =31 (4 + 1)

—VT=4(1+ 9 - 1) =4)|. (1)

We consider equal mass binaries with /AI] = ;12 = ;1, 1.e.,
A — 1 and SA — 0. This leads to the reduction in the
number of parameters to be estimated [60]. The contribu-
tion of SA (compared to the A) is small and can be

neglected. Although the tidal contribution to phase has
been calculated to even higher PN orders [150], Eq. (10) is
sufficient for the present context as the aim is to compute
the systematic error due to eccentricity on tidal deform-
ability given that the eccentricity is a low-frequency effect.

III. ERROR ANALYSIS

In addition to the statistical errors due to detector noise,
mismodeling in the waveform model will introduce sys-
tematic errors in the estimated parameters. If systematic
errors are within the statistical uncertainty, it might be safe
to ignore these errors. However, if systematic errors exceed
statistical errors, it becomes crucial to understand the extent
to which these errors can impact the parameter inference.

We use the Fisher information matrix framework
to calculate the statistical errors on binary parameters
[151-153]. The Fisher matrix framework is an approxi-
mation that is valid in the high SNR limit. In our study, we
ensure that we are in a high-SNR regime where Fisher
matrix estimates are reasonably accurate. For stationary,
Gaussian noise, and in the large SNR limit, the probability
distribution of the waveform parameters @, given the data
d(t), can be approximated as

p(Old) « p(0)exp |3 Tus(0, - 0,)(0,~0)| . (12)

where pY(@) is the prior probability of the parameters 6.
The 6, are the “best-fit” values that maximize the Gaussian

likelihood. In the absence of any bias, 9(1 represents the
“true” values of the source parameters. The Fisher matrix
I',;, is defined as

fuo T 4 B,
r,=2 / 7 df, (13)
b flow Sl’l (f )
where * denotes complex conjugation, “,” denotes the

partial derivative with respect to parameter 6, i(f) is the
Fourier transform of A(z), and S,(f) is the noise power
spectral density (PSD) of the detector. The SNR p for a
signal h(r) is defined as

B Fup ﬁ(f)|2
f‘fawxmdﬂ (14)

where fi,, and f,, are the lower and upper cutoff
frequencies that depend on the detector sensitivity and
properties of the source. The covariance matrix X,, is
obtained by taking the inverse of the Fisher matrix and 1o
statistical error for each parameter (o,) is given by the
square root of the diagonal components of the covariance
matrix,

_ 711
Zab - Fab’

60 = \/Zaa (15)
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The parameters of the quasicircular waveform model for
aligned spins are 6, = (., o, In M, In 1, x1, 42, A). 15
are the dimensionless spin magnitudes along the orbital
angular momentum. Constraining the luminosity distance
is not a point of concern in this work. The parameter A can
be taken as a single parameter which, if included in
the parameter space, will decouple from the rest of the
Fisher matrix [154]. Hence, A is excluded from the
parameter set. We impose Gaussian priors which are
added to the diagonal terms of the Fisher matrix as
1/(86,)2, 6, = m. 8y, = 6> = 1,8A = 5000.

The systematic error is defined as the difference between
the true value of the parameter ! and the best-fit value of
the parameter 6, (the peak of the recovered Gaussian
probability distribution),

AD, =0T -0, (16)

which can be computed using the Cutler-Vallisneri formal-
ism [141]. The formalism assumes a true waveform model
which describes the true physical system and an approxi-
mate waveform model which is used to model the system.
If the approximate waveform /,p is represented by the
approximate amplitude A,p and approximate phase W up,

ilAP = Appe’tar, (17)

and the true waveform 7 differs from /15p in amplitude and
phase by AA and AY, respectively,

hr = [Asp + AA]eFarta¥], (18)
then the systematic error can be approximated as [51,63]
AO* = TP [(AA + iAppAWP) e |0, hap],  (19)

where X, is the covariance matrix which is calculated
using the approximate waveform. In our work, /15p repre-
sents the quasicircular waveform model and AY = AY,..
We do not account for the eccentricity corrections to the
amplitude, i.e., A4 = 0 which are expected to be small for
small eccentricities.

We also study the effect of measuring eccentricity along
with other binary parameters. In particular, we examine the
effect of including eccentricity in the waveform model on
the measurement of the tidal deformability parameter A.
For this, we include e, in the parameter space 6, =
(ter o In M, Inn, y1. 42, A, ey) and calculate the statistical
errors.

For CE and ET, we use fj,, = 5 and 1 Hz, respectively,
and the f, is computed as the frequency corresponding to
the innermost stable circular orbit (ISCO) for the remnant
Kerr BH. The full expression for Kerr ISCO can be found in

Appendix C of [51]. For BNS, we restrict f,, = 1500 Hz
for CE and ET. The noise PSD for CE is taken from
Eq. (3.7) of [155]. For ET, the noise PSD is taken from
[156]. Additionally, to account for the triangular shape of
ET, we include a factor of \/§ /2 in the amplitude of the
waveform.

IV. ERROR ESTIMATION OF TIDAL
DEFORMABILITY FOR BINARY NEUTRON STAR

We compare the statistical and systematic error
(due to eccentricity) on A for an equal mass BNS system
(my,my) = (1.4,1.4)M located at a distance of 100 Mpc
(z = 0.022255). The spins for both NSs are assumed to be
aligned with the orbital angular momentum having dimen-
sionless spin magnitudes y; = y, = 0.05. We choose two
values of tidal deformability parameter A = 200 and 500.
The system has SNR ~ 508 and ~181 in CE and ET,
respectively. It is possible to measure smaller eccentricity
with the 3G detectors owing to their improved sensitivity,
especially at lower frequencies. CE and ET, at their design
sensitivity, can resolve the typical BBH’s eccentricity e ~
5x 1073 and ~1073 at 10 Hz GW frequency, respectively
[50,52]. For BNS, even smaller eccentricity can be mea-
sured since it spends more GW cycles in the detector band.

Figure 2 shows the systematic and statistical errors in A
for CE (left) and ET (right). Solid (slanted) lines show
systematic errors. The systematic errors are compared with
the statistical errors without including eccentricity in the
parameter space (shown in dashed lines). As the eccen-
tricity increases, the systematic errors in A increase and
become comparable to the statistical errors. For CE, the
systematic error on A crosses the statistical errors at
ey~ 1073. The systematic biases become more severe
for ET where the crossover happens at even smaller
eccentricity ey ~ 3 x 107% Since the source enters earlier
in the ET band (at 1 Hz) compared to CE (at 5 Hz), it
spends more time in the ET band. Moreover, the source had
arelatively larger eccentricity when it entered the ET band.
Therefore systematic bias becomes dominant at a smaller
eccentricity for ET. Note that for A = 500, systematic
errors exceed statistical errors at a slightly smaller e
compared to A = 200. The insets in Fig. 2 show the sign
of the systematic errors on A on the linear scale.

We also quantify the impact of including eccentricity in
the waveform model on the statistical errors for A. These
are denoted by the dotted lines in Fig. 2. The statistical
errors for A increase slightly when eccentricity is incorpo-
rated in the waveform model. Statistical errors on A
increase by a factor of <2 for both CE and ET. This is
expected because measuring eccentricity along with other
binary parameters spreads the information present in the
signal among estimated parameters. The statistical error on
f\, when eccentricity is included in the waveform, has little
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FIG. 2. This figure shows the systematic (solid lines) and statistical errors on the tidal deformability parameter A as a function of initial
eccentricity e (at a reference frequency of 10 Hz) for equal mass (1.4 4+ 1.4)M g BNS. The left panel is for CE and the right panel is for
ET. The dashed (dotted) lines represent the statistical errors without (with) eccentricity included in the waveform model. The
dimensionless spins are y; , = 0.05. The source is located at a luminosity distance of 100 Mpc. The systematic errors exceed statistical
errors at ey ~ 1073 (~3 x 10™*) for CE (ET). The insets show the sign of the systematic error on a linear scale for A = 200. The inclusion
of eccentricity increases the statistical error by a factor of <2 for both CE and ET.

dependence on the value of ¢, and appears as an almost
straight line in the figure.

A. Implications of biased A for NS EOS

For a given EOS, the dimensionless tidal deformability 2
for a NS can be expressed as a function of the source frame
NS mass (m,) and can be obtained by solving the Tolman-
Oppenheimer-Volkoff equations [157,158]. For our pur-
pose, we use the polynomial fit for A in terms of m, given in
Eq. (2.9) of [73]. This fit assumes the MPA1 EOS and is
given as

logiod = F(m,) = —=1.21m?* + 7.80m> — 18.2m?2

+ 16.5m, — 1.46. (20)
For equal mass NSs, the individual tidal deformability of a
NS is equal to the reduced tidal deformability, i.e., A = A
Note that there are several EOSs for NS that have not been
ruled out. We take a sample case with the assumption of
MPAT1 being the true EOS. The calculation is simplified
due to the analytical relation of Eq. (20) and serves to show
our result regarding the deviation of the inferred EOS from
the true one.

For NS with mass m; = 1.4M 4, Eq. (20) predicts A=
528.28 which represents the true value of A. Systematic
bias on A and m, introduces a systematic shift in their
inferred value, i.e., A + AA and mg + Amy. The shift in the

value of A and m, can either be positive or negative
depending on the sign of the systematic bias, which in turn
depends on the correlation of A and m, with e,. The insets
in Fig. 2 show that the systematic errors on A are negative.
In other words, neglecting eccentricity underestimates
the value of A. This can be qualitatively understood by
looking at the number of GW cycles due to eccentricity and
tidal deformability. Increasing the magnitude of the tidal
deformability parameter leads to an increase in the number
of inspiral cycles, while the number of cycles decreases
with an increase in eccentricity [60]. An eccentric GW
signal has less number of cycles compared to a circular
signal, which is also the case for lower tidal deformability.
Thus, when a quasicircular template is used for analyzing
an eccentric signal, it underestimates the value of tidal
deformability.

The source frame mass m, is biased through the detector
frame mass mg. via the relation mg; = m,/(1 + z). The
systematic errors on mi, can be calculated as [64]

P p)
Am, = < s )Amdet+ <1> Az.
amdet aZ

We assume that there are no systematic errors on z
(Az =0). We also assume that the systematic error is
the same on both NSs in the binary, i.e., Amgy =
(1/2)AM. The systematic errors in M = Mny~3/3 can be
computed as

(21)
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FIG. 3. The blue curve shows the MPA1 EOS (with A = A) in
Eq. (20). The red dot represents the true value of A and m,.
Systematic biases in A and my, shift their inferred values
(A", m"®) from the true values (A™¢,m!™). The black dots
denote (/~\i“f, mi™) for different initial eccentricity e, defined at
10 Hz GW frequency. We consider an equal mass BNS (1.4 +
1.4)Mg with y;, = 0.05 at 100 Mpc in CE.

oM oM
AM=(—|A — | An. 22
(o (G)on e
Substituting the derivatives and simplifying we obtain
M 3
Amge = 5 [A(ln M) — 5 A(In ;7)} . (23)

The systematic errors A(In M) and A(Inz) are computed
using the Cutler-Vallisneri formalism. Substituting Anige in
Eq. (21), we obtain Am,. The inferred values of (A, m,) are
determined by adding the systematic error to the true values
of A and m,.

Figure 3 shows the shift in the inferred values of A and
my for different eccentricity values. The red dot denotes
the true value of A and m,. As the value of eccentricity
increases, the inferred values of A and m, (shown by black
dots) depart significantly from their true value, biasing
the EOS inference. Note that the statistical errors in A
and m, are small, thus we do not plot the statistical
error ellipse around the dots. At ey ~ 0.003, the inferred
values (A", mirt) differ significantly from the true values
([\true’ m;rue).

B. Implications of biased A for redshift inference
via Love siren method

This section analyzes the consequences of the biased A
estimate on the redshift inference via the Love siren method
[72-74,113,114]. Unlike the previous analysis, where
errors on redshift were neglected, we now calculate the

errors on redshift measurement using the Love siren
technique. The observations of GW signals provide the
detector frame mass my,, Which is related to the source
frame mass m, by the cosmological redshift

Myer = ms(l + Z)’ (24)

For a given EOS, tidal deformability can be expressed
entirely in terms of m,. Therefore, the measurement of tidal
deformability can be used to infer m, which then can be
used to infer the redshift z. A biased tidal deformability will
result in a biased value of my, leading to a biased z mea-
surement. Note that the accuracy with which the redshift
can be estimated from the tidal effects would depend upon
the EOS and the redshift [113]. Once again we consider a
(1.4,1.4)My BNS at 100 Mpc (z = 0.022255) with
212 = 0.05. From Eq. (20), 1 = A = 528.28.

The inferred redshift will be biased through m; due to
systematic bias in A according to Eq. (20) and through
systematic bias in mg.. Using Eq. (24), the systematic error
on z can be written as

0z 0z
Az = A Am,. 25
V4 (amdet> Myer + (amc) mg ( )

To quantify the individual effect of systematic errors due
to mgy, and m,, we consider three scenarios: (a) when
Amgy =0, ie., true detector frame mass is known,
(b) when Am, = 0, i.e., true source frame mass is known,
and (c) when both systematic biases on mg, and m, are
included. The Amy,, is calculated from Eq. (23) and Amy is
obtained from Eq. (20):

0 ~ 1 ~
Am, = (22 VAR = (—————)AR,  (26)
oA 2.30259AF
where F' = 0F /om,. We compare the systematic errors
with the lo statistical errors. The statistical errors on

redshift (6z) are computed via standard statistical error
propagation,

9z \ 2 0z \?
Zzz = 522 == (am > stmx + (amdet> Zmde«mde«
s

0z 0z
2 z . 27
" <amdet> <ams> Mt ( )

The covariances %, ,, , X, m..» and X, ,, —are given by
the following relations:

omy\ 2
Zmm, = \ 5K ) FAA
dmd t 2 amd ¢ 2
Zmdelmdel = <0(ln/\e/l)) ZnmMmmt+ <a(ln ;) 2 nlny

amdet amdet
2 >
" (a<1nM>> (aan p)) S

(28a)

(28b)
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omy O g
z =(—= || |2
MM gey <a~ > (0(ln./\/l)> A ln M

om O0Mger
-~ P E—— Z~ .
- (aA> (a(ln n)) Adn

The covariance terms (X5 5, ...) can be read off from the
covariance matrix [described in Eq. (15)].

Figure 1(b) shows the biased redshift z;, due to m, and
Mgy The black horizontal line represents the true value of
the redshift. Systematic bias increases as the value of ¢
increases. The biases due to m, and my,, are of negative and
positive sign, respectively. The bias due to m, increases
more rapidly compared to mg,, bias. Therefore, the com-
bined systematic bias is negative. This means that an
unaccounted eccentricity will lead to the underestimation
of the redshift of the GW event. The shaded region in
Fig. 1(b) shows the lo statistical errors around the true
value of z. The combined systematic bias becomes com-
parable to the statistical errors at e, ~ 1073, Therefore, if a
BNS system with a small eccentricity (ey~ 1073) is
detected in 3G detectors, the unmodeled eccentricity will
significantly bias the redshift inference.

(28c¢)

V. ERROR ESTIMATION OF TIDAL
DEFORMABILITY FOR BINARY BLACK HOLE

In this section, we study the effect of neglecting
eccentricity on the test of Kerr nature of the BH. The tidal
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deformability is predicted to be zero for black holes in
GR [117-121]. On the other hand, exotic compact objects
can have nonzero tidal deformability [125-127]. The
measurement of tidal deformability for BHs can be con-
sidered a null test of the Kerr nature of BH; the biased value
of A will indicate a false detection of a non-BBH.

We consider three representative equal mass BBH
systems with total mass M = (10My,30My, 70M).
The dimensionless spin magnitudes are assumed to be
12 = 0.2. The luminosity distance to each source is fixed
at 500 Mpc. These systems (10Mg,30M,70M ) have
SNR ~ (313,778, 1550) and ~(112,276,535) in CE and
ET, respectively. For all BBH systems, we obtain statistical
and systematic errors around A = 0.

Figure 4 shows the statistical (dashed line) and system-
atic error (solid line) on A as a function of e, for CE (left)
and ET (right). Systematic errors increase as e, increases
and become comparable to the statistical errors. For lower
mass systems, the systematic error becomes dominant at a
lower value of ¢,. Note that the statistical errors on A are
smaller for higher mass systems since these systems have
larger SNR. Though statistical errors are similar for CE and
ET, systematic errors are larger for ET. This is due to the
longer inspiral of binary in the ET band. Since the binary
enters the ET band at 1 Hz and the CE band at 5 Hz, it
spends more GW cycles in the ET band. Moreover, the
binary had a larger eccentricity at 1 Hz when it entered
the ET band. Therefore, the systematic errors dominate the

—— Systematic
- = Statistical without eg
Statistical with eg

107 | L

0

—250

Systematic error

10!

100 1 ]
1074

FIG. 4. Systematic (solid lines) and statistical errors on the tidal deformability parameter A as a function of eccentricity e, (at a
reference frequency of 10 Hz) for CE (left) and ET (right). Different colors show binaries of different masses. We consider equal mass
BBHs with y; , = 0.2 at 500 Mpc. The dashed (dotted) lines represent the statistical errors without (with) eccentricity included in the
waveform model. For (5 4+ 5)M, the systematic error crosses over statistical error at ey ~ 3 X 1073 (~8 x 10~*) for CE (ET). The insets
show the sign of systematic errors in linear scale. The inclusion of eccentricity increases the statistical error by a factor of <2.
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statistical errors at a smaller eccentricity for ET. For 10M
in CE, systematic bias crosses the statistical error at
ep~3x 1073 while for ET the crossover happens at
eg~8x 1074

The dotted, horizontal lines in Fig. 4 show the statistical
errors on A when eccentricity is included in the waveform.
This leads to a slight increase in their magnitude by a factor
of <2. The statistical error on A, when eccentricity is
included in the waveform, shows little dependence on the
value of e, and appears almost as a straight line in the
figure.

The systematic bias can shift the value of A to the
positive or negative side depending upon the sign of the
systematic bias, which depends on the correlation of A
with ej. The insets in Fig. 4 show the sign of the systematic
bias in A on a linear scale. Systematic bias on A is negative,
meaning the neglect of eccentricity will mimic BBHs with
those classes of compact objects that have negative A.
Theoretically proposed exotic compact objects like grav-

astars [159] are known to exist with negative tidal deform-
ability [125,160].

VI. CONCLUSIONS

Third-generation (3G) GW detectors are expected to
observe a large number of BNSs along with BBHs. A
fraction of BNSs, depending on their formation scenarios,
can possess residual eccentricity while entering the fre-
quency band of 3G detectors: Cosmic Explorer and
Einstein Telescope. We studied the impact of unmodeled
eccentricity on the measurement of tidal deformability.
Since GW observations will yield extremely precise mea-
surements of tidal deformability, we find that even very
small eccentricity leads to the biased measurement of tidal
deformability parameter A. Since eccentricity and tidal
deformability affect the GW waveform at relatively lower
and higher post-Newtonian order, respectively, their meas-
urement is naively expected to have negligible effects on
each other. However, our study indicates that the precise
measurement of the tidal deformability in 3G detectors can
be biased even at a very small eccentricity. This is due to the
combined effect of overall improved sensitivity of 3G
detectors, longer GW signal in the detector band due to
enhanced sensitivity at lower frequencies, and the best
sensitivity at higher frequencies where tidal effects start
dominating.

Since a BNS system spends more GW cycles in the
frequency band of ET compared to CE, systematic bias
dominates the statistical errors at a smaller eccentricity for
ET. Systematic errors on A become greater than statistical
errors at ey ~ 3 x 107* (defined at 10 Hz GW frequency) in
ET, while for CE systematic errors cross statistical errors at

ep ~ 1073, Considering MPA1 as the true EOS for NSs, we
find that systematic errors in A significantly bias the EOS
inference at ey ~ 3 x 1073,

Additionally, we studied the bias introduced in redshift
estimation through the Love siren method. Systematic
errors in A propagate to the source frame NS mass. The
systematic errors on A (and hence on source frame mass)
and detector frame mass significantly bias the redshift
measurement leading to its underestimation. The combined
systematic errors in redshift become comparable to the
statistical errors at e, ~ 1073, Finally, we show that the
biased A for BBHs indicates a deviation from the Kerr
nature.

We also studied the impact of including eccentricity in
the waveform on A measurement. The measurement of
eccentricity along with other binary parameters is found to
have a mild effect, increasing the statistical errors on A by a
factor of <2.

The 3G detectors will be observing a large number of
GW signals from merging compact binaries, leading to
more precise measurements of binary parameters by
combining information from a large GW catalog. The
statistical errors decrease as ~1/ /N, where N is the
number of events. Thus, systematic errors can become
severe even at a smaller value of eccentricity. In conclusion,
our study highlights the need for incorporating eccentricity
in GW waveforms.

Note that our waveform model describes only the
inspiral of a binary system and neglects the merger-
ringdown part. Moreover, the spins are assumed to be
aligned with the orbital angular momentum (nonprecess-
ing). For BNSs, the merger-ringdown and spins are
expected to be small. Hence, these assumptions are likely
to have a negligible effect on our results. However,
including these effects in the waveform model would only
improve the measurement of tidal effects [89,161], making
the systematic errors an even more severe issue.
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