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Light-ring bifurcations that can occur for prolate non-Kerr compact objects can leave an indelible
signature on supermassive black hole shadows as a fractal sequence of eyebrow-like formations. These
fractal features are the result of two properties of these spacetimes. The first is that they allow for multiple
escapes for the photons (throats in the effective potential of photon geodesic motion). The second is that
photon geodesics can resonate between different generalized light rings related to the escapes, called
fundamental photon orbits, that lead photons to alternate between the different exits—toward either the
compact object or infinity. The resulting fractal structures of the shadow seem to be a generic feature of
prolate non-Kerr objects that may be observable in (accretion disk)-illuminated compact objects, especially
along equatorial lines of sight, but the best orientation depends on the specific parameters. Such fractal
features, if observed in the shadows of singular supermassive black holes at the centers of galaxies, would
be smoking-gun signals of non-Kerr compact objects.
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I. INTRODUCTION

The recently published images of the supermassive
black holes (SMBH) in M87 and Sgr A* using very long
baseline interferometry (VLBI) [1–13] have opened up
new paths in probing the spacetimes of black holes (BHs)
and testing the theory of general relativity (GR). With the
shadow of a BH and the light rings of various orders
containing a wealth of information, relevant not only for
BH imaging but also for gravitational waves and BH
perturbations, much work has been done on light-ring
computations within GR, as well as in settings beyond GR
and for non-BH compact objects [14–47].
The shadows are characterized by a central brightness

depression surrounded by a bright ring created by the
photons emitted by the accreting matter. The radiation
emitted in the vicinity of the compact object illuminates
the space, gets scattered, and propagates from the deep
gravitational field of the compact object to an observer at
infinity. This leaves an imprint of the strong-field regime on
the resulting images. Even though the bright ring that
surrounds the shadow provides a way to test the metric,
used as a proxy tomeasure the shadow’s size, the image itself
also folds in the distribution and emission characteristics of

the accreting matter and its geometric configuration.
Therefore, one has to go beyond the shadow’s pure features
and calculate shadow images using different accretion disk
models and their resulting illumination backgrounds in order
to provide a more realistic description.
The study of the properties of the null geodesics

threading spacetime is important in analyzing the gravita-
tional lensing effects that take place and shape the observed
shadow. The no-hair theorem states that all black holes are
described by the Kerr metric and are uniquely defined by
their mass and spin (for astrophysical black holes, charge is
not deemed important), but evidence that astrophysical
black hole candidates are actually Kerr black holes is still
not conclusive. In order to test the nature of these compact
objects, a framework for quantifying the deviations from
the Kerr metric is required. Alternative models to Kerr
black holes exist both within GR and beyond it [15,48–55].
It is therefore important to test for the “Kerr-ness” of such
astrophysical objects, in order to both identify the nature of
these dark objects and test the predictions of GR in the
strong-field regime [56–58].
An important aspect of non-Kerr spacetimes is that they

can generally describe compact objects that, even when
they lack an event horizon, possess characteristics that
make them appear similar to BHs. These objects are termed
black hole mimickers. Such compact objects alternative to
Kerr BHs can be ultracompact objects (UCOs) like grav-
astars, boson stars, and other matter configurations with
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exotic equations of state, such as anisotropic pressure, or
non-GR objects like BHs and compact objects in scalar-
tensor theories and fðRÞ gravity [50,52,59–62]. In these
cases, one would have to construct specific models and
study their properties on a case-by-case basis.
An alternative avenue for describing non-Kerr compact

objects has also been developed in the literature. There has
been a lot of work on constructing spacetimes that are not
particular solutions of a particular theory and do not
correspond to a particular mass/energy distribution. They
are instead agnostic parametric deviations from the Kerr
spacetime, with a number of free parameters selected to
quantify (Kerr spacetime) deviations in a manner the user
prefers [63–73]. Such spacetimes can have their parameters
adjusted to approximate known solutions in alternative
theories of gravity, or simply behave as stand-alone generic
spacetimes with such versatility that they are a useful tool
for testing the Kerr hypothesis.
The spacetimes that we are investigating here are non-

Kerr—i.e., they can be considered as deviations from a Kerr
spacetime. They are also nonintegrable—namely, the equa-
tions of motion do not admit a full set of constants of
motion and cannot be cast in a separable form. As such,
particle motion in these spacetimes may exhibit chaotic
behavior that can lead to interesting phenomenology, such
as fractal structures in the shadow that the object casts
[28,30,33,74–78], or other chaotic behavior in both their
null or timelike geodesics [79–85].
In previouswork, these fractal structures have beenmainly

found in cases where the Hamiltonian system can take the
form of a closed system—i.e., the separatrix that marks the
allowed region of motion for light rays can form a pocket
where light rays get trapped for long periods of time. These
pocket formations, while providing a suitable lab to study the
chaotic motion of geodesics, are usually not accessible from
spatial infinity, meaning that the quest to find any observa-
tional signatures is rather challenging [81,82,84,86–89]. In
cases where the connection of the pocket with infinity is
possible—i.e., a light ray can reach an observer after its
chaotic motion—interesting features emerge on the shadow
of the object in the form of cusps, eyebrows, and eyelashes
[30,33,74,76]. It is worth mentioning that similar features
have been observed in rotating non-Kerr BHs regularized by
quantum gravity effects [55,90].
In this work, we will further explore the conditions under

which one can have such fractal features in the shadows of
compact objects against an illumination background. We do
so by focusing on spacetimes and parameters that leave the
systems open (i.e., without forming pockets), and the
photons can therefore escape from the scattering region
to infinity or onto the compact object via one or more
escapes. These systems are open Hamiltonian systems,
and we will show that they can still form fractal features
in their shadows that are essentially caused by the
presence of multiple escapes caused by the bifurcation

of the equatorial photon orbit to multiple off-equatorial
photon orbits. Such fractal structures are smoking-gun
signals of non-Kerr compact objects and a solid indicator
of their non-Kerr nature.
In Sec. II, we present the formulation used to solve the

photon geodesics and also present the spacetimes that we
use, which are typical and general examples of the space-
times that possess the properties we are interested in. In
Sec. III, we present the properties that photon orbits have in
the spacetimes we investigate and give the results of our
analysis of the corresponding mathematical shadows and
their fractal structure. Finally, in Sec. IV, we apply our
results in an astrophysical situation, where an accretion
disk illuminates a compact object and we observe its
shadow. We finish with our conclusions and aims of future
work in Sec. V.
In what follows, we use units with G ¼ c ¼ 1.

II. HAMILTONIAN FORMALISM AND
NON-KERR SPACETIMES

For a stationary and axisymmetric spacetime, the metric
takes the general form [91]

ds2 ¼ gttdt2 þ grrdr2 þ gθθdθ2 þ gtϕdtdϕþ gϕϕdϕ2: ð1Þ

The two Killing vector fields admitted by this spacetime are
associated with two conserved quantities, the energy E and
the angular momentum L, both normalized per unit mass:

E ¼ −ξαuα ¼ −
�
gtt

dt
dλ

þ gtϕ
dϕ
dλ

�
; ð2Þ

L ¼ ηαuα ¼ gtϕ
dt
dλ

þ gϕϕ
dϕ
dλ

; ð3Þ

where λ is an affine parameter that parametrizes the
geodesic. The equations of motion are derived from the
Lagrangian

L ¼ 1

2
gαbẋαẋb ð4Þ

and correspond to the equations that govern geodesic
motion in this spacetime. One can then define the asso-
ciated generalized momenta as

pα ¼
∂L
∂ẋα

ð5Þ

and express the Hamiltonian as

H ¼ 1

m

X
pαẋα − L ¼ −Eṫþ Lϕ̇þ grrṙ2 þ gθθθ̇

2 − L:

ð6Þ

KOSTAROS, PAPADOPOULOS, and PAPPAS PHYS. REV. D 110, 024001 (2024)

024001-2



In this context, pr ¼ grrṙ and pθ ¼ gθθθ̇ represent the
momenta in the radial and poloidal directions, respectively.
Solving Eqs. (2) and (3) for ṫ and ϕ̇ and replacing these
values in the previous expression, we get the Hamiltonian
in the form

H ¼ 1

2

�
grrṙ2 þ gθθθ̇

2 −
L2gtt þ 2ELgtϕ þ E2gϕϕ

D

�

¼ 1

2

�
p2
r

grr
þ p2

θ

gθθ
−
L2gtt þ 2ELgtϕ þ E2gϕϕ

D

�
; ð7Þ

where we have defined D ¼ g2tϕ − gttgϕϕ, which also
defines the Killing horizon. The above Hamiltonian is
expressed in terms of the effective potential

Veff ¼ −
L2gtt þ 2ELgtϕ þ E2gϕϕ

D
: ð8Þ

The contour defined by Veff ¼ 0 marks the region of
allowed motion, signifying a boundary of zero velocity.
The respective conditions for massive and massless par-
ticles are H ¼ −1=2 and H ¼ 0. Finally, Hamilton’s
canonical equations yield the equations of motion

ẋα ¼ ∂H
∂pα

; ṗα ¼ −
∂H
∂xα

; ð9Þ

where the dot refers to differentiation with respect to the
affine parameter. These equations written explicitly take
the form

ṙ ¼ pr

grr
; ṗr ¼ −

∂H
∂r

;

θ̇ ¼ pθ

gθθ
; ṗθ ¼ −

∂H
∂θ

;

ṫ ¼ Egϕϕ þ Lgtϕ
D

; ṗt ¼ 0;

ϕ̇ ¼ −
Lgtt þ Egtϕ

D
; ṗϕ ¼ 0: ð10Þ

In our analysis, we will either use the momenta pr, pθ, or
alternatively the velocities ur ¼ ṙ, uθ ¼ θ̇. For photon
geodesics, one defines the two impact parameters

b≡ −
pϕ

pt
¼ L

E
and α ¼ pθ

pt
: ð11Þ

It is important to emphasize that this is the conventional
definition of the orbital angular momentum impact param-
eter, where positive values of b refer to corotating orbits. In
scenarios where one wants to visualize the shadow of a
compact object, a variant of this definition is utilized—i.e.,
b ¼ pϕ=pt—which is the opposite of the conventional

definition. This adjustment accounts for photons being
emitted near the compact object and reaching the image
plane of a distant observer, which is the reversed situation
to the usual case, where one emits photons toward the
compact object. We will use the appropriate definition
depending on the context.
Having put forward the setup for calculating null

trajectories, we proceed to briefly present the spacetimes
that we will use in our analysis.

A. HT

The Hartle-Thorne (HT) spacetime in our analysis serves
as a model for the external region of a rotating compact
object. Proposed by Hartle and Thorne [92,93], this
framework was designed to provide both the internal
and external structure of compact, slowly rotating fluid
configurations. One starts from a static configuration and
introduces rotational effects as perturbations, using the rate
of rotation as the expansion parameter. The spacetime is
then described by the line element [93],

ds2 ¼ −eνð1þ 2hÞdt2 þ eλ
�
1þ 2μ

r − 2m

�
dr2

þ r2ð1þ 2kÞfdθ2 þ sin2 θ½dϕ − ðΩ − ωÞdt�2g
þOðΩ3Þ; ð12Þ

where Ω is the stellar angular velocity. The metric poten-
tials hðr; θÞ, μðr; θÞ, kðr; θÞ, and ωðr; θÞ are expanded in
terms of Legendre polynomials:

hðr; θÞ ¼ h0ðrÞ þ h2ðrÞP2;

μðr; θÞ ¼ μ0ðrÞ þ μ2ðrÞP2;

kðr; θÞ ¼ k2ðrÞP2; ωðr; θÞ ¼ ω1ðrÞP0
1: ð13Þ

For the exterior of the compact object, the HT metric is
parametrized in terms of the nonrotating massM; theOðΩÞ
angular momentum J and the spin parameter χ ¼ J=M2;
the quadrupole moment Q ¼ χ2M3ð1 − δqÞ in terms of δq,
which is the deviation from the Kerr quadrupole, δm, that is
the OðΩ2Þ correction in the mass; and x ¼ r=M, the
reduced radial coordinate [94]:

m ¼ M; eν ¼ e−λ ¼ 1 −
2

x
; ω1 ¼ Ω −

2χ

Mx3
;

μ0
M

¼ χ2
�
δm −

1

x3

�
; h0 ¼

χ2

x − 2

�
1

x3
− δm

�
; ð14Þ

h2 ¼
5

16
χ2δq

�
1 −

2

x

��
3x2 log

�
1 −

2

x

�
þ 2

x
ð1 − 1=xÞ
ð1 − 2=xÞ2

× ð3x2 − 6x − 2Þ
�
þ χ2

x3

�
1þ 1

x

�
; ð15Þ
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k2 ¼ −
χ2

x3

�
1þ 2

x

�
−
5

8
χ2δq

�
3ð1þ xÞ − 2

x

− 3

�
1 −

x2

2

�
log

�
1 −

2

x

��
; ð16Þ

μ2
M

¼ −
5

16
χ2δqx

�
1−

2

x

�
2
�
3x2 log

�
1−

2

x

�

þ 2

x
ð1− 1=xÞ
ð1− 2=xÞ2 ð3x

2 − 6x− 2Þ
�
−
χ2

x2

�
1−

7

x
þ 10

x2

�
:

ð17Þ

To get the final form of the metric, we redefine M as the
spin-modified stellar mass—i.e., the corrected total mass,
which amounts to setting δm ¼ 0 in the above equations.
One may use the HT metric as it is given here at the
specified Ω order, to describe the exterior of a compact
object where both the spin parameter χ and the quadrupole
deviation δq can be considered as free parameters of the
spacetime together with the mass M. When calculating
shadows, we will assume that the HT compact objects have
a surface at a radius that encloses all possible pathologies of
the spacetime and does not interfere with the region where
photons are allowed to move.

B. JP

The Johannsen-Psaltis (JP) metric [66] is a spacetime
designed to deviate from the Kerr metric in a nonlinear
manner through a set of free parameters. For our analysis,
we will use a special case of this deformed Kerr spacetime
with the deformation given specifically by the function

hðr; θÞ ¼ ϵ3
M3r
Σ2

; ð18Þ

where ϵ3, the only available deformation parameter in this
case, is a constant. It is important to note that different
parametrizations of the deformation function can lead to
different physical predictions. It is convenient to express
the JP metric in terms of the Kerr one as [94]

gJPtt ¼ ð1þ hÞgKtt ; gJPtϕ ¼ ð1þ hÞgKtϕ;

gJPrr ¼ gKrrð1þ hÞ
�
1þ h

a2sin2 θ
Δ

�−1
;

gJPθθ ¼ gKθθ; gJPϕϕ ¼ gKϕϕ þ ha2
�
1þ 2Mr

Σ

�
sin4 θ; ð19Þ

where

Σ¼ r2þa2 cosθ2; Δ¼ r2−2mrþa2; a¼ χM; ð20Þ

and for ϵ3 ⟶ 0 we get the Kerr metric. The ϵ3 parameter
can be considered as a parameter that drives the

deformation of the mass quadrupole of the spacetime at
the leading order.

C. MP dihole

The Majumdar-Papapetrou spacetime is a static solution
discovered in 1947 by Majumdar and Papapetrou inde-
pendently [95,96]. In cylindrical coordinates, ft; ρ;ϕ; zg,
its geometry is described by the line element [44]

ds2 ¼ −
dt2

U2
þU2ðdρ2 þ ρ2dϕþ dz2Þ; ð21Þ

whereUðρ; zÞ is a function that satisfies Laplace’s equation
∇2U ¼ 0 on a three-dimensional auxiliary Euclidean
space. We will focus on the case where this spacetime
describes two equal-mass extremal Reissner-Nordström
(RN) black holes in static equilibrium. In this case
Uðρ; zÞ has the form

Uðρ;zÞ¼ 1þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðz− zþÞ2

p þ Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðz− z−Þ2

p : ð22Þ

The two equal-mass RN black holes are located at
z� ¼ �d=2, where d is their coordinate distance. Their
center of mass is at the origin of the coordinate system,
and their event horizons are around their positions at
ð0; 0; z�Þ [74]. This system clearly describes a prolate
configuration, which is nonrotating, though. It is therefore
qualitatively different from the other two with respect to
aspects other than its prolateness. We thus include the
dihole in our analysis as a model that serves to broaden our
investigation of the feature of fractal shadows.

III. FPOS, EXIT BASINS, AND SHADOWS

We will now proceed by first providing some useful
definitions regarding the properties of photon orbits and the
tools we will be using to analyze them, and we will then
continue with the analysis for each of the spacetimes we
presented.

A. Properties and description of photon orbits

1. Fundamental photon orbits

In stationary and axisymmetric spacetimes, there can
exist photon orbits that neither fall into the BH or the
surface of an ultracompact object (UCO), nor escape to
infinity. These bound photon orbits, which have been
named fundamental photon orbits (FPOs), are a generali-
zation of light rings (LRs), and they are important to the
understanding of shadows of more general spacetimes than
Kerr. These orbits are formally defined following Ref. [42]:
Definition.Let sðλÞ∶R ⟶ M be an affinely parame-

trized null geodesic. sðλÞ is a FPO if it is restricted to a
compact spatial region and there is a value T > 0 for which
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sðλÞ ¼ sðλþ TÞ; ∀ λ∈R, up to isometries, and they are
categorized as Xnr�

ns , where X ¼ fO;Cg, and nr; ns ∈N0:
(1) ClassO (open) if they reach the boundary, or classC

(closed) if they do not (form a loop onto them-
selves).

(2) Subclassþ if even under Z2, or subclass− if odd
under Z2.

(3) They intersect the equatorial plane ðθ ¼ π=2Þ at nr
distinct r values (subclassnr).

(4) Orbits on the equatorial plane (LRs) have nr ¼ 0.
(5) Subclassns for ns self-intersection points.

In simple terms, this definition essentially identifies the
orbits that trap photons in bound periodic trajectories as
FPOs and then characterizes their different possible mor-
phologies. In what follows, we will identify such FPOs in
the cases that we will work on, but we will not go into more
details about these orbits.
Equatorial light rings (which in this scheme are des-

ignated as O0þ
0 ) can be simpler to analyze, since the

problem becomes effectively one-dimensional, and the
effective potential is Veff ¼ Veffðr; bÞ. This simplification
reduces the problem of finding FPOs to the standard
conditions for circular geodesics—i.e., Veffðr0; b0Þ ¼ 0
and Veff;rðr0; b0Þ ¼ 0—from which one can derive equa-
tions for both the radius of a photon ring and the impact
parameter b [94]. More general LRs can be identified using
the h� potentials [97] defined as

h� ≡ −gtϕ �
ffiffiffiffi
D

p

gtt
: ð23Þ

A LR is either an extremum or a saddle point of the
potentials h� at fixed ðr; θÞ. These points correspond to
specific values of the b-impact parameter, which, when
perturbed, give rise to an escape channel in the phase space.
Such an escape channel is defined by the neighboring
contours of h� to the contour of the saddle point, as we will
see in specific examples in the following subsections.
These contours are almost parallel to each other and on
either side of the saddle, forming a throat. In these throats,
periodic unstable orbits form that bounce between the
contours that define the throat, forming FPOs. In non-Kerr
spacetimes, it is furthermore possible for generic periodic
unstable orbits to form that bounce around inside the region
of allowed motion, moving between FPOs, and in this
sense, these FPOs are dynamically connected [74].
Additional FPOs that are not saddle points or extrema of
the h� functions can also exist in nonseparable spacetimes
[42]. These are found numerically through trial and error,
by searching for orbits that spend a lot of coordinate time at
specific locations on the ðr; θÞ plane.

2. Exit basins

A set of light rays that enter the scattering region may
remain confined in it through different resonances with the

dynamically connected FPOs [97]. When the system is an
open Hamiltonian system, there exists more than one
escape from the scattering region, and in order to better
understand the system’s dynamics we construct exit basins
in the phase space. An exit basin is a subset of the state
space, such that all the initial conditions that lie in it escape
through the same exit. To draw an exit basin diagram, we
integrate the equations of motion for a fine grid of initial
conditions and color-code our data based on the escape
through which the light rays either plunge into the compact
object or reach infinity. The exit basins can be either wide
and well defined, or elongated with a more complicated
structure that may also be self-similar [98].

3. Shadows and self-similarity

The shadows that compact objects cast can also be
viewed as exit basins, since they are the set of all initial
conditions on the observer’s image plane that, when traced
backwards in time, lead to the surface of the object through
the escapes of the open Hamiltonian system [74]. The
bright boundary that defines the shadow of a BH (or a BH
mimicker compact object) as seen by a distant observer is
essentially an image of the unstable photon orbits—i.e., the
BH’s photon spheres or FPOs, from which photons margin-
ally escape to infinity. For the spacetimes that we will
investigate that are non-Kerr and nonseparable, we have to
use numerical ray-tracing methods. The simplest setup that
will give the shadow is one where we assume a uniformly
lit BH or compact object, where the light source is
essentially a spherical screen surrounding the object and
the observer that emits isotropically with uniform bright-
ness. Each light ray that connects the observer to a point of
the light source will correspond to a bright spot on the
observer’s field of view, while those that do not will
correspond to dark spots. The boundary between the bright
and dark spots will thus define the photon spheres [99] in
the observer’s image plane, which is essentially the shadow.
This setup is of little astrophysical interest, since it only
provides the mathematical shape of the shadow, but it is,
however, the textbook way of understanding key features of
gravitational lensing [22,31,32,39,42,74,75,97,99,100].
A structure can be characterized as self-similar when it

can be broken down into arbitrarily smaller pieces that
replicate the entire structure. One way to measure the
degree of complexity in such fractal structures is through
their dimension. For our work, we are particularly inter-
ested in the box-counting dimension, which is related to the
self-similarity dimension. The structure is initially put onto
a grid of mesh size s, and the number of grid boxes that
contain a part of the structure are counted to be NðsÞ. We
then continuously decrease the size of s and keep counting
the number NðsÞ to make a log/log diagram of the N versus
s. The slope D of the resulting line is the box-counting
dimension Ds [101]. The box-counting method can be
applied considering any part of the fractal structure, or it
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can be applied considering just its boundary. In the first
case, we are interested in measuring how much space the
structure takes up at different scales, and we will use this
implementation to calculate the dimension of the exit basin
diagrams. In the second case, we are interested in under-
standing the complexity of a specific boundary, and we will
use it to find the dimension of a shadow’s boundary. The
most well-known example of this approach with respect to
fractals is the coastline paradox—i.e., the observation that a
coastline does not have a well-defined length due to having
additional structure as one goes to smaller scales [102].
Now that we have described the subjects of our inves-

tigation and the tools that we use to explore their properties,
we proceed to the application to the specific spacetimes
introduced in the previous section.

B. HT

Glampedakis and Pappas [94] showed that the HT
spacetime possesses photon orbits and light rings with
unique properties which can diverge distinctly from those
seen in a Kerr BH. When the quadrupole deviation
parameter δq assumes specific positive values, which
correspond to having a prolate compact object, and the
spin parameter exceeds a critical value χcðδqÞ that is
different for different δq’s, the Kerr-like corotating equa-
torial light ring bifurcates into two nonequatorial rings.
For a relatively narrow range of the spin parameter χ,

these two off-equatorial light rings coexist with the equa-
torial one and can trap photon orbits through the formation
of a pocket. This phenomenon is consistently observed in
the HT metric and extends to higher-order expansions, at
least toOðΩ3Þ. A previous work, [33], investigated how the
photon orbits’ properties change by the formation of this
pocket and by the transition from an open Hamiltonian
system with three escapes to a system disconnected from
the compact object with only one escape to infinity (a
pocket with a narrow throat).
As the parameters change, further moving the system

away from the light-ring bifurcation, the equatorial corotat-
ing light ring vanishes, and the off-equatorial rings move
to higher latitudes, and the system becomes an open
Hamiltonian one.
In this paper, we focus on this open HT setup that can

exist for a wider range of parameters and is a more general
case of open Hamiltonian systems in GR. For the results
presented here, we set the spin parameter to χ ¼ 0.35, the
quadrupole deviation parameter to δq ¼ 1, and the mass of
the compact object toM ¼ 1 (which sets the length scale of
the system to 1 unit of length). For these parameters, the
spacetime does not admit an equatorial Kerr-like LR, and
we now only have two nonequatorial LRs. The potential
hþ, where the two unstable LRs appear as saddle points,
and the separatrix for an impact parameter b ¼ 4.08M
along with the FPOs admitted in this setup are shown in

Fig. 1. The system is open with three escapes—two throats
that connect it to the surface of the compact object, and one
connecting it to infinity. In Fig. 1, in the right panel, we can
see three FPOs. The two curves on the two escape throats,
in purple and green, constitute one FPO of type O0−

0 . Here,
O indicates that the orbit reaches the boundary of the
separatrix,O0 indicates that there is no intersection with the
equatorial plane, O0− indicates that it is odd under Z2, and
O0−

0 indicates that there are no self-intersection points. The
other two curves, the orange and the black that form on the
side of the escape to infinity, each constitute one FPO of
type O1þ

0 . In this case, O indicates that the orbit reaches the
boundary of the separatrix, O1 indicates that there is one
intersection with the equatorial plane, O1þ indicates that it
is even under Z2, and O1þ

0 indicates that it has no self-
intersection points. We will not continue with the detailed
description of the FPOs beyond this point.
For spacetimes with potential configurations like the

ones we investigate—i.e., where multiple FPOs may
exist—it is possible for photons to resonate with each
FPO individually, or in principle any combination thereof.
This practically means that a photon orbit can get trapped
near an FPO for a long period of time, or it may alternate
between more than one FPO, being trapped initially near
one and then moving to being trapped near another, and so
on. There can exist a hierarchy of resonances where a
photon that is more “excited” in the context of the
resonance can resonate more times with different FPOs
[33,97]. This is the case for photons (red) with different
α-impact parameters that we follow in Fig. 2. The FPOs are
dynamically connected—i.e., the light rays can transition
between the vicinity of one FPO and the vicinity of another
FPO in a manner sensitive to the initial conditions.

FIG. 1. Left: the potential function hþ for the HT spacetime.
The two nonequatorial LRs appear as saddle points that are in low
latitudes due to the small value of the spin parameter, χ ¼ 0.35.
Right: the separatrix for an impact parameter b ¼ 4.08M and the
FPOs admitted. The blue line marks the forbidden region for
photon motion, the lime line marks the horizon, and the magenta
line marks the surface that we set for the compact object at
r ¼ 2.092M.
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The exit basin diagrams for the HT spacetime with the
aforementioned parameters—i.e., χ ¼ 0.35, δq ¼ 1, and
b ¼ 4.08M—are presented in Fig. 3. We color-code the
initial conditions as red when the light rays escape to
infinity, purple when they fall into the compact object

through the upper throat, and cyan when they fall through
the lower one. The exit basins are self-similar with formed
eyebrows on top of eyebrows, each corresponding to a
different kind of resonance. The light rays essentially get
temporarily trapped in the vicinity of different combina-
tions of FPOs, or they resonate for larger time intervals with
one of the FPOs in a particular combination. The bounda-
ries of the basins are well defined and lack the highly
fractalized structure found when a “pocket” feature is
present [33,74]. To quantify the degree of self-similarity
of the exit basin diagram, we use the box-counting method
and calculate its fractal dimension Ds. We find the
dimension to be Ds ¼ 1.680514 with a goodness-of-fit
value R2 ¼ 0.99811, suggesting that as we zoom in, details
will consistently emerge, keeping the complexity high.
This behavior is a result of the observed behavior of photon
orbits resonating with FPOs. As the parameters change,
the photon orbits shift between different combinations of
resonances in a way sensitive to the initial conditions, thus
changing exits, which in turn shows in the exit basin
diagram as a fractal structure.
We can expect the shadow to also have regions with self-

similar structures for the same reason we observed self-
similar structures in the exit basins. To calculate the
shadow, we start by setting up a grid of initial conditions
N ×M, where N and M correspond to the number of
different values for our two impact parameters b and α,
respectively. We assume the observer to be on the equa-
torial plane θ0 ¼ π=2 and at a distance r0 ¼ 100M, and we
numerically integrate backwards the geodesic equations for
every fb; αg. If the light ray falls into the object, we assign
a dark pixel to it. If the light ray reaches our illuminating
screen at infinity, we assign a bright pixel to it with the
following color code for its origin: green when sinϕ > 0,
θ > π=2; pink when sinϕ < 0, θ > π=2; blue when
sinϕ > 0, θ < π=2; and yellow when sinϕ < 0, θ < π=2.
The shadow is presented in Fig. 4, with the resolution of

each image being 384 × 384. The overall circular shadow
exhibits “eyebrow” features—i.e., arc-shaped shadows
whose formation can be understood if we consider the
shape of the separatrix (Fig. 1) and the behavior of the exit
basins (Fig. 3).
To make this clearer, we can use the same color code as

we did for the exit basin diagram to paint the shadow, where
purple (cyan) pixels correspond to light rays that reach the
object’s surface through the upper (lower) throat and red
pixels correspond to rays that escape to infinity. This is
shown in Fig. 5. One can see that the “eyebrows” are
separated by red regions of photons that escape to infinity,
while the “eyebrows” themselves are of consecutive exit
color, as the photons first resonate with one combination of
FPOs that eventually leads to one of the escapes, and then
resonate to a different combination of FPOs that leads to a
different escape, and so on, cycling between the escapes.

FIG. 2. Top: two photons launched with impact parameters
α ≈ 1.2910M (left) and α ≈ 1.3120M (right). They both resonate
with one of the O1þ

0 FPOs. Bottom: two photons launched with
impact parameters α ≈ 0.442034M, but with a difference in their
7th decimal. They both resonate with two FPOs, but the first one
fails to resonate with both distinct orbits of O0−

0 .

FIG. 3. Exit basin diagrams for the HT spacetime discussed.
Purple (cyan) basins correspond to light rays that fall into the
object through the upper (lower) escape, and red basins to rays
that escape to infinity. The diagram is self-similar with a fractal
dimension Ds ¼ 1.680514.
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We can now find the fractal dimension of the shadow by
using the box-counting method. We work on the sets of
Fig. 4 but abandon the background color map, so we
consider all light as white. For every grid size, we count
the number of boxes that contain neighboring black and
white pixels—i.e., the boundary of the shadow. We find the
dimension to be Ds ¼ 1.78308 with a goodness of fit
R2 ¼ 0.99974, suggesting that the boundary of the shadow
is also self-similar across all scales [101,102].

C. JP

Similarly to the HT metric, for positive values of the
deformation parameter ϵ3 > 0—i.e., prolate deformation of
the compact object—and above a certain spin threshold a�,
the Kerr-like prograde LR of the JP spacetime bifurcates into
a pair of nonequatorial and symmetric LRs (O0þ

0 ⟶ O0−
0 ).

For ϵ3 in the range 0.1≲ ϵ3 ≲ 10, the spin parameter
for which the bifurcation takes place lies in the range
0.95≳ a=M ≳ 0.4 and is a function of the deformation
parameter, a� ¼ a�ðϵ3Þ [94].
The key difference from the HT spacetime is that in the

JP case, there is no simultaneous presence of all three LRs;
therefore, the formation of a pocket is not possible for JP.
The potential function hþ for the JP spacetime, with
parameters M ¼ 1 unit of length, a ¼ 0.85M, and
ϵ3 ¼ 1, and the separatrix for an impact parameter
b ¼ 1.90M along with the FPOs are shown in Fig. 6.
The two unstable LRs appear as saddle points, which in this
case are in higher latitudes compared to the HT case.
The various light rays that resonate with the dynamically

connected FPOs are shown in Fig. 7. The exit basin
diagrams for the JP spacetime with the same parameters
are presented in Fig. 8. Similarly to the HT spacetime
(Fig. 3), the basins are self-similar with a fractal dimension
Ds ¼ 1.80807 and a goodness of fit R2 ¼ 0.99937.
The shadow of the JP compact object for an observer

located at θ0 ¼ π=2 is presented in Fig. 9. Self-similar fractal
eyebrows are once again formed due to the type of reso-
nances we discussed in the HT case, as well. Using the box-
counting method on Fig. 9, we find the fractal dimension of
the shadow’s boundary to beDs ¼ 1.76592with a goodness
of fit R2 ¼ 0.99955. The JP shadow also maintains its self-
similar structure on all scales.
Lastly, in Fig. 10, we color-code the parts of the shadow

corresponding to the various exits and demonstrate how the
fractal eyebrow forms by the resonant orbits shifting from
one exit toward the central object to the other exit toward

FIG. 4. Shadow of the HT compact object discussed. The
shadow has self-similar fractal eyebrows that correspond to
different resonances of the light rays with the FPOs.

FIG. 5. Shadow of the HT compact object discussed. The light
rays are color-coded as purple (cyan) if they fall into the surface
of the object through the upper (lower) exit, and red if they reach
infinity.

FIG. 6. Left: the potential function hþ for the JP spacetime with
parameters a ¼ 0.85M, ϵ3 ¼ 1, and M ¼ 1. Right: the separatrix
for an impact parameter b ¼ 1.90M and the FPOs admitted. The
lime line marks the horizon.
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the central object, and then to the exit toward infinity, and
repeating the cycle, as in the HT case.

D. Majumdar-Papapetrou dihole

The MP dihole is another example of a spacetime
describing a prolate configuration. The difference with
the previous two cases is that this spacetime is not rotating;
therefore, it is symmetric with respect to the axis of
symmetry of the dihole. The MP spacetime admits a pocket
feature for a specific range for the coordinate separation
parameter d. This pocket, just as in the HT spacetime, acts

as a randomizing region that leads to rich phenomenology
for null geodesics [74]. We focus on the case where the
system is an open Hamiltonian one—that is, for a sepa-
ration parameter d ¼ 2M (Fig. 11)—where we do not have
the formation of a pocket. We set the two masses at M ¼ 1
units of length, and the two BHs are located at zþ ¼ M and
z− ¼ −M. The potential function hþ and the separatrix for
an impact parameter b ¼ 4M along with the FPOs are
shown in Fig. 11. Light rays that are launched with different

FIG. 7. Top: two photons launched with impact parameters
α ≈ 2.8819M (left) and α ≈ 0.01786M (right). They both reso-
nate with the O1þ

0 FPO. Bottom: two photons launched with
impact parameters α ≈ 2.144632M, but with a difference in their
7th decimal. The first one resonates with two FPOs, while the
second one resonates with all three.

FIG. 8. Exit basin diagrams for the JP spacetime discussed. The
diagram is self-similar with a fractal dimension Ds ¼ 1.80807.

FIG. 9. Shadow of the JP compact object discussed. The
shadow has self-similar fractal eyebrows that correspond to
different resonances of the light rays with the FPOs.

FIG. 10. Shadow of the JP compact object, The light rays are
color-coded as purple (cyan) if they fall into the surface of the
object through the upper (lower) exit, and red if they reach
infinity.
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α-impact parameters and resonate with different combina-
tions of the FPOs are shown in Fig. 12.
The exit basins for b ¼ 4M and d ¼ 2M highly resemble

those of the HT spacetime and are presented in Fig. 13.
Similarly to the HT and JP spacetimes (Figs. 3 and 8), the
basins are self-similar. We find the fractal dimension to be
Ds ¼ 1.81397 with a goodness of fit R2 ¼ 0.99951. The
shadowof aMPdiholewith the same parameters is presented
in Fig. 14. It shares the same qualitative features with the HT
and JP cases, with the shadow being surrounded by self-
similar eyebrow features. Since in this case, the space
between the two BHs is available to photons, the shadow
is split into two halves symmetric with respect to the

FIG. 11. Left: the potential function hþ for the MP spacetime
with parameters M ¼ 1. Right: the separatrix for an impact
parameter b ¼ 4M and the FPOs admitted. The two BHs are
located at zþ ¼ M and z− ¼ −M.

FIG. 12. Top: two photons launched with impact parameters
α ≈ 5.194319M (left) and α ≈ 0.645129M (right). The first one
resonates with a O0−

0 and a O1þ
0 FPO, while the second resonates

with all three FPOs. Bottom: two photons launched with impact
parameters α ≈ 0.640M, but with a difference in their 4th
decimal. The first one resonates with two FPOs, while the
second one resonates with three.

FIG. 13. Exit basin diagrams for the MP spacetime discussed.
Purple (cyan) basins correspond to light rays that fall into the
object through the upper (lower) escape, and red basins to rays
that escape to infinity. The diagram is self-similar with a fractal
dimension Ds ¼ 1.81397.

FIG. 14. Shadow of the MP dihole discussed. The shadow has
self-similar fractal eyebrows that correspond to different reso-
nances of the light rays with the FPOs.
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equatorial plane. Implementing the box-counting method,
we find that the shadow has a fractal dimension Ds ¼
1.80970 with a goodness of fit R2 ¼ 0.99867.
As in the previous two cases, Fig. 15 demonstrates how

the eyebrow-like features form from the change of photon
orbits between different FPO resonances and escapes.

E. Fractal shadows with eyebrow-like formations

At this point, we can briefly summarize our results. In all
three spacetime cases we investigated, we have assumed
configurations with prolate structure. The spacetime around
these objects is therefore also prolate with a positive
quadrupole deformation from the quadrupole of a Kerr
BH (the Kerr quadrupole is Q ¼ −χ2M3, with the negative
sign characterizing oblate objects). This allows for the
bifurcation of the equatorial light ring and the formation of
two off-equatorial light rings that form two exits toward the
central object that photons can follow.
These spacetimes admit several FPOs associated with the

different exits of the open Hamiltonian system, and general
photon orbits can resonate with these FPOs. As a photon
orbit shifts through the parameter space, it can change from
one resonance to another, cycling between different com-
binations of FPOs that result in the photons exiting from
different exits. This causes the formation of fractal struc-
tures in the shadow of the compact objects, such as the

eyebrow-like formations we can see in Fig. 16. It is worth
noting that such prolate configurations may also arise in
scenarios inspired by quantum gravity and result in similar
shadow structures [55,90].

IV. ACCRETION-ILLUMINATED SHADOWS

The discussion thus far has been on the properties of the
“mathematical” shadows of the non-Kerr spacetimes. We
will now consider a more astrophysically relevant scenario,
where the compact object is illuminated by the accreting
matter that surrounds it. For a non-Kerr spacetime, we will
use the JP spacetime, and we will compare the shadows
between Kerr and non-Kerr objects.
In this case, instead of an isotropically illuminated

object, an unrealizable illumination background for com-
pact objects in nature, the compact object will be illumi-
nated by the emission of a disk (torus)-like structure around
it. We will assume a torus located at a radial distance
between r ¼ 700M and r ¼ 1000M from the central
object. In astrophysical situations, such a disk would be
located between the outer edge of the inner accretion disk
and the inner edge of the broad line region (BLR) of a
SMBH at the center of a galaxy, a transitional zone that may
contribute significantly to the formation of broad emission
lines (BELs) [103].
Such a disk, being located far from the SMBH, leaves

the strongly lensed region free from any emission con-
tamination and has longer dynamical timescales yielding
slower emission variability, making it easier to discern any
features of interest. In short, this compact-object illumi-
nation scenario is better suited for observing the finer
features of the shadow that are of interest to us, bypassing
some of the complications that astrophysics could bring
[20,21,104–106]. In this case, these features are the fractal
structures of the shadow, while in other cases they could
be the higher-order light rings [107]. Furthermore, we
assume that the emission from the disk is monochromatic
emission at some rest-frame frequency ν0 (for the astro-
physical possibility of this scenario, see [108,109]).
In cylindrical coordinates (ϖ; θ; z), we will assume a

torus with the boundaries 700M < ϖ < 1000M and
−85M < z < 85M. We will also assume a density profile,
which also serves as our local rest-frame emissivity j0, that
follows a simple j0 ∼ r−2 power law and a velocity profile
for the fluid that follows

vϕ ¼
� ffiffiffiffiffi

M
p

ðr sin θÞ3=2 þ a
ffiffiffiffiffi
M

p
�
; ð24Þ

which describes an almost Keplerian disk.
In order to produce the image of the BH, we will have to

integrate the radiative transfer equations. The Lorentz-
invariant intensity Iν ¼ Iν=ν3 of every light ray can be
calculated through the radiative transfer equation [110–112],

FIG. 15. Shadow of the MP dihole discussed. The light rays are
color-coded as purple (cyan) if they fall into the surface of the object
through the upper (lower) exit, and red if they reach infinity.

FIG. 16. The shadows of a HT spacetime with δq ¼ 1 and
χ ¼ 0.6 (left) and a JP spacetime with a ¼ 0.85M and ϵ3 ¼ 1
(right). The shadows are clearly non-Kerr-like. In the HT case, the
shift from χ ¼ 0.35 to χ ¼ 0.6makes the eyebrow-like formation
even more visible.
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dIν

dλ
¼ γ−1

�
j0
ν30

�
; ð25Þ

where γ ¼ ν=ν0, with ν being the frequency and “0” denoting
quantities in the local rest frame. We have assumed zero
absorption for simplicity. At every point of the geodesic, this
is transformed to the specific intensity using

dIν ¼ dIνν
3
obs ¼ γ−1

�
j0
ν30

�
ν3obsdλ

¼ γ2 j0dλ; ð26Þ

which is the contribution to the intensity from a differential
segment of the geodesic dλ. Since we assume that the
emission in the emitter’s frame is given by the delta function
δðνem − ν0Þ, transforming the energy from the emitter’s
frame to the observer’s frame introduces an additional γ
factor. This transformation has to take place just before
outputting the results (at the observer’s screen), since the
intensity is affected by the act of going from the emission
frame to the observer’s frame [111]. In this way, for every
light ray we obtain a specific intensity distribution at the
observer.We use the specific intensity Iν at every point along
the geodesic, paired with its respective ν, to calculate direct
intensity images through

dI ¼ Iνdν ð27Þ

for every point on the observer’s screen.
We will focus here only on the optically thick case,

where emission comes from the torus’s surface alone, so the
analysis is greatly simplified, since for every light ray there
is intensity at only one frequency, since every point on the
observer’s screen is connected to only one fluid element on
the surface of the disk. We use three different compact
objects: a Kerr BH rotating at the Thorne limit with
a¼0.998M and M¼1 [113]; a Kerr BH with a¼0.85M
and M ¼ 1; and a non-Kerr JP object with a ¼ 0.85M,
ϵ3 ¼ 1, and M ¼ 1. The torus-like structure will be the
same for all three cases, and it will lie on the equatorial
plane of the compact object. The observer will be placed at
various angles with respect to the axis of rotation of the
compact object.
We show in Fig. 17 the direct-intensity images of the

torus at viewing angles θ0 ¼ 45°; 75°; 80° (left to right)
with a 600 × 600 resolution. At this scale, these images are
the same across all three spacetime setups. As the observ-
er’s viewing angle approaches the equatorial plane, the
visibility of the inner, more dense regions of the torus
increases. These regions are the brightest due to Doppler
beaming, since there is more material moving toward the
observer. In the images for the angles θ0 ¼ 75°; 80°, one
can also see the lensing effect of the compact object on the
appearance of the torus, where a small deformation appears
near the center (more visible for the 80° case).

We continue by zooming in on the central and strongly
lensed region, for which we present in Fig. 18 direct-
intensity images for the three spacetimes (left to right) at the
θ0 ¼ 45°; 75°; 80° viewing angles (top to bottom). There
are two characteristic rings in each image: the larger one
that is the lensed image of the torus, and a smaller one that
is the light ring around the object’s shadow. Both are
created by photons that leave the torus’s inner surface, get
lensed by the central object, and reach the observer’s
screen. The light rings in particular are formed by the
photons that orbit the central object several times.
The lensed images (larger ring) of the torus are the same

across the three spacetimes for all viewing angles. This is
due to the fact that the disk is relatively far from the object.
At such distance, the spacetimes are too similar (i.e.,
Schwarzschild-like) to produce any significant differences
in the structure of the disk. These spacetime-induced
differences in the disk structure are what would be visible

FIG. 17. Direct-intensity images of an optically thick torus
located at 700M < ϖ < 1000M and −85M < z < 85M, for the
viewing inclinations (from the rotation axis) θ0 ¼ 45°; 75°; 80°
(left to right).

FIG. 18. Direct-intensity images of the strongly lensed region
in the center of the optically thick torus discussed. The viewing
inclinations are again θ0 ¼ 45°; 75°; 80° (top to bottom) for three
spacetime setups: a Kerr BH with a ¼ 0.85M; a Kerr BH with
a ¼ 0.998M; and a JP object with a ¼ 0.85M, ϵ3 ¼ 1 (left
to right).
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in either the direct image or the larger lensed image of the
torus; therefore, these images cannot tell the spacetimes
apart. As the viewing inclination increases, the lensed
photons seem to be more influenced by the relativistic
beaming effect, since we observe an increased asymmetry
in the surface’s brightness. Additionally, the lensed torus
appears larger and elongated at larger angles, which would
make it brighter and easier to observe.
To examine the possible differences between the three

spacetimes we zoom in further to the light ring’s scale
where one approaches the mathematical shadow of the
object (this is a little smaller than the scale of the EHT
images [1,7]). We do this for a viewing angle of θ0 ¼ 80°,
and the resulting direct-intensity images of the three objects
are presented in Fig. 19. At this scale, there are visible
differences between the Kerr BHs and the JP object. In the
JP spacetime, the lensed torus exhibits a bifurcation-like
behavior, approaching both the shadow’s cusp and the top
eyebrow feature. The light ring gets disconnected, wrap-
ping itself around the bottom eyebrow feature in a clear
smoking-gun signal of a non-Kerr spacetime. We note
here that our analysis refers to stationary and isolated
compact objects.
This also demonstrates the advantage of the distant-disk

illumination of the central object, since the spacetime-
related differences are easier to identify as compared to
illumination by disks close to the central object. In the latter
cases, the large “noise” of the accretion itself (due to, e.g.,
the inevitable stochasticity of emission caused by the local
excitation conditions, turbulent velocity fields, MHD
effects) can “mask” the interesting features we study here.
This is simply because such physical “noise” will be vastly
higher in the strongly turbulent, very hot, highly variable,
and highly ionized accretion disk close to the central object.
In the ranges of impact parameters and image resolution

we have studied thus far, we have merely captured the
lowest-order light ring, mainly produced by n ≲ 1 geo-
desics (where n is the number of windings a light ray does
around the central object). The light ring, though, is
created by a sequence of subrings made of photons that

perform an increasing number of windings. Each subring
of the set that constitutes the light ring is exponentially
narrower than the last, requiring exponentially finer
resolution in order to resolve the set [35]. To capture
the image of photons with more windings, we zoom in to
the ranges b∈ ½−1.8M;−2.8M� and α∈ ½−2.5M; 2.5M�
with a 300 × 300 resolution. The direct-intensity images
and the different orders of the geodesics that create them
are presented in Fig. 20. In the Kerr case, the subrings are
successive and nearly circular as they approach the BH’s
shadow. This circularity is clearly broken in the JP
spacetime, where the shadow of the object has a richer
structure. The n > 3 subrings are thinner, approaching the
main cusps and self-similar eyebrows of the JP object’s
mathematical shadow. In this work, we will not further
pursue these higher-order features, but these higher-order
rings are worth further study.
As a final note, we should mention that the images at the

scale of the light ring and the shadow show that there are
favorable observation angles where the disk illuminates the
features of interest. One could use cases like these, if they
present themselves, to better study the higher-order rings
and look for finer fractal features.

V. CONCLUSIONS AND FUTURE WORK

In this work, we studied the photon orbits of three non-
Kerr spacetimes: the slowly rotating Hartle and Thorne
spacetime, the deformed Kerr metric by Johannsen and
Psaltis, and the static Majumdar-Papapetrou dihole. We
focused on configurations of prolate compact objects that
form off-equatorial light rings and allow for three escapes
to the photon geodesics, leaving these spacetimes to be
open Hamiltonian systems. Each spacetime specifically
admits two nonequatorial light rings, which is a generic
feature, and multiple FPOs, whose number and formation
depend on the parameters of the configuration. These FPOs
are dynamically connected, and photons that are launched
from infinity can resonate with them either individually or
in any combination.

FIG. 19. Zoom-ins on the photon ring viewed at the observer’s
angle θ0 ¼ 80° for three different spacetimes: a Kerr BH with a
spin parameter a ¼ 0.85M, a Kerr BH with a spin parameter
a ¼ 0.998M, and a JP object with a ¼ 0.85M and ϵ3 ¼ 1 (left to
right). The impact parameter ranges are b∈ ½−4.5M; 7.5M� and
α∈ ½−5.5M; 5.5M�.

FIG. 20. Zoomed-in images of the prograde side of the Kerr
a ¼ 0.998M BH (left) and JP a ¼ 0.85M, ϵ3 ¼ 1 object (right)
and the orders of the geodesics that create them. The color code
up to n < 4 is as follows: red for [0, 1) windings; blue for [1, 2)
windings; green for [2, 3) windings; and orange for [3, 4)
windings.
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To further study these properties of the photon orbits, we
evaluated exit basin diagrams in every case. The exit basin
diagrams of each spacetime are self-similar and form
eyebrows on top of eyebrows that correspond to different
types of resonances of the photons with the FPOs. This
behavior is inherited by the respective mathematical shad-
ows which exhibit self-similar, fractal eyebrow features.
These fractal features are therefore demonstrated to be
products of the resonances and the multiple available
escapes between which photon orbits shift.
In order to apply our findings to a more realistic

astrophysical scenario and explore the phenomenology,
we carried out a comparative analysis between the shadows
of three objects illuminated by an accretion disk. The
three objects we compare are a non-Kerr Johannsen-Psaltis
object, considered as a typical example of the non-Kerr
objects we are interested in, and two Kerr BHs of different
spins. The illuminating torus is placed in the transitional
zone between the inner disk and the BLR and is assumed to
be optically thick.
The torus appears with three main images on the

observer’s screen. The first is a large direct image with
very little lensing taking place. The second is a strongly
lensed image coming from the compact object and is at a
scale comparable to but larger than the scale of the light
ring. Finally, the third main image is a very strongly lensed
image of the accretion disk that forms the light ring that
defines the edge of the shadow.
Both the direct images of the torus and the strongly

lensed images are the same across all spacetimes, showing
no obvious differences. This is mainly due to the fact that
the disk is relatively far from the compact object, in a region
where all spacetimes are quite similar. To identify possible
differences between the images of the three objects, one
needs to look at the third and very strongly lensed image
that resolves the scale of the light ring. At the inclination of
80 degrees, the emission from the disk illuminates the JP
spacetime’s fractal features, clearly showing it to be a non-
Kerr spacetime.
In this work, we have tried to broaden our scope of black

hole shadow analysis through the systematic exploration of
the dynamics of photon geodesics within both a math-
ematical and an astrophysical framework. The demonstra-
tion of the existence of self-similar structures across
different stationary and axisymmetric prolate non-Kerr

objects suggests a universal aspect to chaotic scattering
that goes beyond the existence of a dynamical pocket
[33,76,97,114] and possibly a universal aspect to the
formation of fractal structures in the shadow of these
objects. Furthermore, our astrophysical application indi-
cates that such structures in the image of the shadow can be
observable under favorable conditions (for the geometry of
the illuminating accretion disk and its relation to the
observer) with future instrument capabilities.
In a future direction for this work, we will perform a

more detailed investigation of how small prolate deviations
from Kerr can be identified by the formation of fractal
features in the shadows. The parameter space of different
spins and quadrupole deformations will be systematically
explored for the type and magnitude of effects that can be
produced and may be accessible with current and future
observational capabilities of instruments like the EHT
[115]. This at first may seem impossible given the
complications of the accretion disk physics and the
corresponding uncertainties of the radiation field illumi-
nating the central object. Nevertheless, given that the
expected phases of any symmetric object (like the shadow
of a not-too-rapidly-rotating Kerr SMBH) in Fourier
space (the measurement domain of interferometers) will
be zero, any deviation from symmetry, betraying a non-
Kerr fractal shadow, could be in principle detectable via
the detection of nonzero features in the phases, which are
the most emission-structure-sensitive measurables in
interferometric imaging. Higher resolution and denser
UV coverage would be necessary for approaching such a
goal, but future EHT capabilities (e.g., operation at
345 GHz, the addition of space-based baselines) do
aim toward such a direction [116,117].
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