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We investigate inflationary particle production associated with a spectator ultralight scalar field, which has
recently been proposed as a plausible dark matter candidate. In this framework, we select the Starobinsky
potential to drive the inflationary epoch, also discussing the case of a nonminimally coupled inflaton field
fueled by a quartic symmetry-breaking potential. We focus on particle production arising from spacetime
perturbations, which are induced by inflaton fluctuations during the quasi–de Sitter stage of inflation. In
particular, we construct the first-order Lagrangian describing interaction between inhomogeneities and the
spectator field, quantifying superhorizon particle production during slow-roll. We then compare this
mechanism with gravitational particle production associated with an instantaneous transition from inflation to
the radiation dominated era. We show that the number of particles obtained from perturbations is typically
non-negligible, and it is significantly enhanced on super-Hubble scales by the nonadiabatic inflationary
expansion. Possible implications for primordial entanglement generation are also debated.
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I. INTRODUCTION

Dark matter (DM) is undoubtedly a key ingredient to
explain the cosmological large-scale dynamics and cluster-
ing [1]. Its nature, however, remains mysterious: we are still
lacking any conclusive experiment able to unambiguously
identify its properties, with slight agreement among the
plethora of theoretical proposals [2].
Within this scenario, recent efforts in the search for

weakly interacting massive particles from a few up to
100 GeV have unfortunately proved unsuccessful [3–6].
Thus, this lack of evidence has also revived the interest in
ultralight DM candidates such as axions [7–12], axionlike
particles [13–15], “fuzzy” DM models [16–19], and so on.
In this respect, several treatments have been proposed to

explain the origin of DM particles. Among them, gravi-
tational particle production (GPP) represents a plausible
and widely investigated approach [20–23] as it creates
particles directly from vacuum fluctuations and does not

require any coupling between DM and generic quantum
fields.1 For this reason, GPP of DM has been studied in
various cosmological contexts, with particular interest on
inflationary [24–28] and reheating [29–31] phases.
Gravitational production of ultralight particles has

recently been discussed in Ref. [32], focusing on the
dynamics of a spectator scalar field in the transition
between inflation and the radiation dominated era.
There, assuming an instantaneous transition, and thus
neglecting the details of reheating, a significant particle
production may take place for super-Hubble wavelength
modes after inflation, if the field starts from the Bunch-
Davies vacuum [33–35] and it is minimally coupled to
spacetime curvature. Specifically, the matching conditions
between the two epochs provide the Bogoliubov coeffi-
cients from which one obtains the number density of
produced particles, compatible with a cold ultralight DM
candidate.2
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1Indeed, the energy for particle creation is directly obtained
from the universe expansion, taking into account only Einstein’s
field equations.

2GPP turns out to be more efficient during the nonadiabatic
regime of inflationary expansion, modeled by an exact de Sitter
phase. Adiabaticity is gradually recovered during the radiation
era, so that a proper definition of particle states is again possible
before matter-radiation equality.
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This approach, however, neglects the slow-roll of the
inflaton field and the dynamics of its quantum fluctuations,
which represent the fundamental seeds for structure for-
mation in our universe [36–39]. In fact, inflationary
fluctuations induce perturbations on the de Sitter dynamics
of background, and the presence of inhomogeneities, by
virtue of expansion, may result in the production of addi-
tional “geometric” particles, due to purely gravitational
effects [40,41]. In Ref. [42], it was argued that DM could be
reinterpreted as geometric quasiparticles, in the attempt of
solving the cosmological constant problem [43], extending
a mechanism of direct cancellation between fields [44,45].
Thus, at least two more points require additional inves-

tigations: First, how the nonminimal coupling acts on the
inflationary dynamics and particle production (see, e.g.,
Refs. [46,47]), and, second, whether gravitational produc-
tion furnishes stable particles, or more broadly, stable
quasiparticles, since their dynamics at the end of the
slow-roll regime can be altered by possible couplings of
the inflaton to other quantum fields, as expected in the
standard picture of reheating [48–50].
For the above reasons, we here aim to generalize infla-

tionary geometric production to the case of a spectator
scalar field. Assuming a quasi–de Sitter background
evolution to properly account for the slow-roll of the
inflaton, we show how spacetime perturbations generated
by inflaton fluctuations couple to the energy-momentum
tensor of a given spectator field, leading to particle creation
during the slow-roll regime. We focus in particular on the
Starobinsky model of inflation [51–53], also discussing the
case of a nonminimally coupled inflaton field driven by a
quartic potential [54,55]. We single out these paradigms
since both of the above models are among the best options
to describe inflation, as certified by the Planck satellite
measurements [56].
We observe that the number of created particles depends

on the mass of the spectator field and on the details of its
coupling to the background. In particular, the presence of a
small but still non-negligible coupling to the scalar curva-
ture of spacetime is able to produce a significant number
of particles for super-Hubble modes.3 Low-momentum
enhancement of particle production is a peculiar trait of
bosonic fields, and it is similarly found in unperturbed GPP
scenarios. However, the presence of inhomogeneities allows
for mode mixing in particle production,4 with the Hubble
radius emerging as the natural separation scale for modes
during inflation. Consequently, motivated by these facts, we

investigate particle production across the Hubble horizon,
showing that a perturbative treatment is possible for super-
Hubble modes that crossed the horizon well before the end
of inflation. Since this approach was recently employed to
study the entropy of cosmological perturbations [59–62],
we accordingly work out the inclusion of geometric and
perturbative effects in primordial particle creation mecha-
nisms, showing that this is not only required for computing
the correct abundance of DM candidates, but it may also
shed further light on the quantum properties and entropy
associated with the created particles. Physical consequences
of our approach are promising, confirming that the nature of
DM may arise from a spectator field, subdominant through-
out the inflationary evolution.
The work is organized as follows. In Sec. II, we discuss

the features of the spectator DM field, computing the
Bogoliubov coefficients related to GPP. In Sec. III, we
focus on the geometric contribution to gravitational pro-
duction. In Sec. IV, we analyze the main consequences of
our results throughout inflationary stages, whereas in
Sec. V we emphasize the main results inferred from our
findings, highlighting possible quantum signatures, detect-
able at late times. Conclusions and perspectives are
reported in Sec. VI.

II. SPECTATOR FIELD DYNAMICS

We assume that, besides the inflaton, a subdominant field
is present throughout the inflationary phase, with no
interaction with the inflaton itself. Consequently, we
exclusively consider gravitational interactions, disregard-
ing potential couplings to other quantum fields both during
inflation and the subsequent radiation era.
In this respect, we consider the Lagrangian density for

the spectator, φ, with mass m,

LS ¼
1

2
½gμνφ;μφ;ν − ðm2 þ ξφRÞφ2�; ð1Þ

where, as above stated, the only interaction is with the
background; i.e., we include a nonminimal coupling
between the curvature and φ, while the subscript “S”
indicates the nature of φ.
Further, in Eq. (1), g is the spacetime metric determinant,

while ξφ describes the coupling strength between the
spectator field and the Ricci background scalar, R.
To claim that φ represents a spectator field, we require

that its energy density is sufficiently small not to affect the
inflationary dynamics. Accordingly, its evolution during the
slow-roll phase is solely determined by the background
potential driving inflation. To this end, we now describe the
inflaton dynamics, and then select the corresponding infla-
tionary potentials in fulfillment of the most recent develop-
ments provided by the Planck satellite measurements [56].

3Geometric production is typically enhanced when dealing with
large-field inflationary scenarios. In the case of small-field
inflation (e.g., hilltop models [57]), perturbations associated with
inflaton fluctuations are necessarily smaller, thus resulting in a
much lower number of produced particles (see, e.g., Ref. [58]).

4On the other hand, nonperturbative GPP only results in particle
pairs with equal and opposite momenta, since the total momentum
is necessarily conserved in homogeneous spacetimes [23].
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A. Setting up the inflationary scenario

During inflation, the background evolution is governed
by the inflaton field, ϕ, which we assume to be of scalar
nature. The corresponding Lagrangian density reads

LI ¼
1

2
gμνϕ;μϕ;ν − VðϕÞ; ð2Þ

where the potential VðϕÞ dominates over the other species
and the subscript I denotes the inflationary epoch.
The inflationary standard paradigm predicts the seeds for

gravitational small perturbations, induced by perturbing the
inflaton through the standard ansatz [36,37]

ϕðx; τÞ ¼ ϕ0ðτÞ þ δϕðx; τÞ; ð3Þ

where the homogeneous background term, ϕ0, is distinct
from its corresponding quantum fluctuations, denoted by
δϕ, depending on the position and conformal time,
τ ¼ R

dt=aðtÞ, with t the measurable cosmic time.
The inflaton background field, hereafter denoted by ϕ

instead of ϕ0, for simplicity, speeds the universe up by
virtue of a quasi–de Sitter phase, yielding the unperturbed
metric tensor,

gμν ¼ a2ðτÞημν; ð4Þ

where ημν is the Minkowski metric tensor and we
assume [32]

aðτÞ ¼ −
1

HIðτ − 2τRÞ1þϵ : ð5Þ

At this stage, Eq. (5) deserves some additional comments.
Particularly, the time τR describes the transition to the
radiation dominated era, while HI provides the Hubble
parameter during inflation, up to corrections of first order.
Moreover, ϵ represents slight deviations from a purely de
Sitter phase. By calculating the slow-roll parameter, we can
precisely identify it with the latter.
As stated above, the presence of inflaton fluctuations

induces perturbations on the background spacetime, lead-
ing to the perturbed metric tensor

gμν ¼ a2ðτÞðημν þ hμνÞ; jhμνj ≪ 1: ð6Þ

Selecting now the longitudinal, or conformal, Newtonian
gauge [38], it can be shown that scalar perturbations
associated with ϕ become particularly simple,

hμν ¼ diagð2Ψ; 2Ψ; 2Ψ; 2ΨÞ; ð7Þ

where the perturbation potential Ψ satisfies [39]

Ψ0 þHΨ ¼ ϵH2
δϕ

ϕ0 ; ð8Þ

with H ¼ a0=a and the prime denoting the derivative with
respect to conformal time.
Before studying spacetime perturbations for some spe-

cific models of inflation and computing the corresponding
particle production, we briefly discuss the evolution of the
spectator field, focusing on

(i) its dynamics during the slow-roll regime, and
(ii) the subsequent transition of this field to the radia-

tion era.
We emphasize that, by assuming an instantaneous

transition to the radiation era, we are neglecting the effects
of reheating on GPP. Nevertheless, we will see that super-
Hubble modes feature very slow dynamics at the end of
inflation, so they are typically unaffected by the micro-
physical processes of thermalization that should take place
after the slow-roll regime [32]. It is clear, however, that this
picture induces an approximation that may overestimate the
production itself. A more comprehensive analysis needs to
take into account more refined matching conditions and the
effects of backreaction, which will both be subjects of
future investigations. For the moment, we focus on the
slow-roll dynamics of the spectator field and the transition
occurring between inflation and radiation epochs.

B. Spectator field dynamics during inflation

Following standard approaches [21,32], we consider the
conformally rescaled spectator field,

χðx; τÞ ¼ aðτÞφðx; τÞ; ð9Þ

quantized by

χ̂ðx; τÞ ¼ 1

ð2πÞ3=2
Z

d3k½âkgkðτÞe−ik·x þ â†kg
�
kðτÞeik·x�;

ð10Þ

where we introduce the comoving momentum, k, and the
field modes, gkðτÞ, satisfying the differential equation

g00kðτÞ þ
�
k2 þm2a2 −

a00

a
ð1 − 6ξÞ

�
gkðτÞ ¼ 0: ð11Þ

Defining now

gkðτÞ ¼
(
g<k ðτÞ for τ < τR;

g>k ðτÞ for τ > τR;
ð12Þ

we recall the ansatz of Eq. (5) to obtain the mode evolution
during inflation, namely
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d2

dη2
g<k þ

�
k2−

1

η2

�
ð1− 6ξÞð2þ 3ϵÞ−m2

H2
I

��
g<k ¼ 0; ð13Þ

where η ¼ τ − 2τR. Notice that we exploit the fact
that a00=a ≃ ð2þ 3ϵÞ=η2, since ϵ ≪ 1 throughout the
slow-roll phase.
The solutions of Eq. (13) can be expressed in the form

g<k ðηÞ ¼
ffiffiffiffiffiffi
−η

p ½c1ðkÞHð1Þ
ν ð−kηÞ þ c2ðkÞHð2Þ

ν ð−kηÞ�; ð14Þ

where Hð1Þ
ν and Hð2Þ

ν are Hankel functions and

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
þ ð1 − 6ξÞð2þ 3ϵÞ − m2

H2
I

s
: ð15Þ

The integration constants, c1ðkÞ and c2ðkÞ, are determined
by choosing the in vacuum state for the field. A common
ansatz consists in employing the Bunch-Davies vacuum
state [33–35] that requires the asymptotic condition

gkðηÞ ⟶
η→−∞

e−ikηffiffiffiffiffi
2k

p : ð16Þ

This choice implies c1ðkÞ ¼
ffiffiffi
π

p
eiðνþ1

2
Þπ
2=2 and c2ðkÞ ¼ 0,

so the rescaled field modes take the form

g<k ðηÞ ¼
ffiffiffiffiffiffiffiffiffi−πηp
2

eiðνþ1
2
Þπ
2Hð1Þ

ν ð−kηÞ: ð17Þ

Exploiting the asymptotic behavior of Hankel functions,
one can show that on super-Hubble scales, k ≪ aHI , the
original field modes are nearly frozen, while they oscillate
on sub-Hubble scales, k ≫ aHI [39,58].

C. The spectator field transition to radiation era

At τ ¼ τR, we assume an instantaneous transition from
inflation to the radiation dominated phase, whose dynamics
is still described by the metric tensor of Eq. (4), with
aðτÞ ¼ HRτ.
From the continuity of the scale factor at τR, we have5

1

HIðτRÞ1þϵ ¼ HRτR ð18Þ

that, under the assumption ϵ ≪ 1, gives

τR ≃
1ffiffiffiffiffiffiffiffiffiffiffiffi

HIHR
p : ð19Þ

As a first estimate [32], we assume HR ¼ H0

ffiffiffiffiffiffi
ΩR

p
≃

10−35 eV, where H0 ≃ 2.1h × 10−42 GeV is the present
value of the Hubble parameter [39] and ΩR ≃ 4.15 ×
10−5h−2 is the present radiation energy density, with
h ≃ 70 (see, e.g., [64]). Moreover, the parameter HI is
obtained by fixing the energy scales of inflation.6

During the radiation era, from Eq. (11) we can write

d2

dτ2
g>k þ ½k2 þm2H2

Rτ
2�g>k ¼ 0; ð20Þ

which is solved in terms of parabolic cylinder functions.
The general solution of Eq. (20) can be expressed in
the form

g>k ðτÞ ¼ αkfkðτÞ þ βkf�kðτÞ; ð21Þ

where αk and βk are known as Bogoliubov coefficients. The
modes fkðτÞ satisfy Eq. (20) with asymptotic boundary
condition

fkðτÞ ⟶
τ→þ∞

e−i
R

τ
ωkðτ0Þdτ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωkðτÞ
p ; ð22Þ

where ωkðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2H2

Rτ
2

p
. To properly define the

notion of particle and vacuum state during the radiation
phase, the adiabatic condition

ω0
kðτÞ

ω2
kðτÞ

≪ 1 ð23Þ

should be satisfied [21]. An upper bound to this ratio is
given by modes with negligible momentum, for which the
adiabatic approximation gives

aðτÞ ≫
ffiffiffiffiffiffiffiffiffiffiffiffiffi
HR=m

p
: ð24Þ

It can be shown that this condition is verified well before
matter-radiation equality, even in the case of ultralight DM
candidates with m ≪ 1 eV [65].
Accordingly, we can properly associate out particle

states to the modes fkðτÞ, which are normalized via the
Wronskian condition

f0kðτÞf�kðτÞ − fkðτÞf0�k ðτÞ ¼ −i: ð25Þ

Spectator field modes also require proper matching con-
ditions at τ ¼ τR, to ensure continuity of the field energy

5We neglect the dynamics of perturbations at the end of slow-
roll, which in principle may affect the matching conditions.
However, the presence of backreaction mechanisms at the end of
inflation is expected to reduce the net number of inhomogeneities
(see, e.g., [63]).

6The assumption of instantaneous reheating implies that HR
will not affect the geometric mechanism of particle production
presented in the next section, once the total number of infla-
tionary e-foldings is fixed. However, the inflaton decay during
reheating is expected to alter the dynamics of perturbations and
field modes, especially for sub-Hubble ones [32].
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density at the transition [32]. Thus, imposing

g<k ðτRÞ ¼ g>k ðτRÞ;
d
dτ

g<k ðτÞ
���
τR
¼ d

dτ
g>k ðτÞ

���
τR
; ð26Þ

and exploiting Eq. (25), one obtains the Bogoliubov
coefficients associated with this transition, namely

αk ¼ i½g0<k ðτRÞf�kðτRÞ − g<k ðτRÞf0�k ðτRÞ�; ð27Þ

βk ¼ −i½g0<k ðτRÞfkðτRÞ − g<k ðτRÞf0kðτRÞ�: ð28Þ

This implies that the field expansion at τ > τR can be
written as

χ̂ðx; τÞ ¼ 1

ð2πÞ3=2
Z

d3k½âkg>k ðτÞe−ik·x þ â†kg
�>
k ðτÞeik·x�

¼ 1

ð2πÞ3=2
Z

d3k½b̂kfkðτÞe−ik·x þ b̂†kf
�
kðτÞeik·x�;

ð29Þ

where we introduced b̂k ¼ αkâk þ β�kâ
†
−k.

D. Producing particles from the spectator field

By virtue of the above results, we can now identify b̂k
and b̂†k as the ladder operators corresponding to out particle
states, obeying canonical quantization conditions. Since in
and out vacua are different in general, due to the back-
ground expansion, a certain number of particles is produced
via the GPP mechanism.
In the Heisenberg picture, the final comoving number

density of spectator field particles reads

Nð0Þ
k ≡ 1

a2ðτRÞ
h0jb̂†kb̂kj0i ¼

jβkj2
a2ðτRÞ

; ð30Þ

where j0i is the initial Bunch-Davies vacuum state,
satisfying the condition, âkj0i ¼ 0, ∀k.
Thus, Eq. (30) implies that the initial vacuum state of the

field is no longer seen as a vacuum in the out region. Hence,
we can interpret Nð0Þ

k as the number density of particles
asymptotically produced from cosmic expansion, i.e., in
terms of a gravitational production obtained from vacuum.
Defining now the quantities,

Rk ¼
23=4

jαj1=4

������
Γ
�
3
4
− i jαj

2

	
Γ
�
1
4
− i jαj

2

	
������
1=2

; ð31Þ

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2πjαj

p
− e−πjαj; ð32Þ

α ¼ −
k2

2mHR
; ð33Þ

it can be shown that, in the limit of minimal coupling ξ ¼ 0,
the number density of gravitationally produced particles for
super-Hubble modes kτR ≪ 1 reads [32,65]

Nð0Þ
k ¼ 1

4R2
kδ

4a2ðτRÞ
�
κ

�
R2
kδ

2
− 1

�
2

þ 1

κ

�
R2
kδ

2
þ 1

�
2
�
;

ð34Þ

where we introduced the additional parameter, δ≡ kτR.
It is quite convenient to quantify the rescaled number

density,

N̄ð0Þ
k ≡ Nð0Þ

k a2ðτRÞ; ð35Þ

drawn in Fig. 1, where we explore super-Hubble momenta
within the range k∈ ½10−5=τR; 10−4=τR�, by assuming
different values for HI.
We remark that the number density is strongly peaked at

low momentum, due to the bosonic nature of the spectator
field considered. At the same time, GPP is more efficient at
larger HI, since in this case there is more energy to be
converted into particles.
In the next section, we will include inflationary pertur-

bations in this framework, showing how the presence of
spacetime inhomogeneities is able to enhance the total
number of particles produced, also allowing for mode
mixing in particle creation.

III. GEOMETRIC CONTRIBUTION
TO PARTICLE CREATION

Particle production from spacetime perturbations repre-
sents an alternative mechanism to the widely studied GPP

FIG. 1. Rescaled number density N̄ð0Þ
k as a function of

the momentum k∈ ½10−5=τR; 10−4=τR�, for typical values of
the Hubble parameter during inflation. We set τR ≃ 2.05×
1015 GeV−1, m ¼ 10−14 GeV, and ξ ¼ 0. In case of bosonic
fields, GPP is generally more efficient for modes that are super-
Hubble at the end of inflation.
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approach [40,41]. In particular, during inflation the pres-
ence of inhomogeneities can be traced back to the quantum
fluctuations of the inflaton field, which are the fundamental
seeds for structure formation in our universe.
From Eq. (6), the first-order interaction Lagrangian

density describing the coupling between perturbations
and a given quantum field can be written in the form

LInt ¼ −
1

2

ffiffiffiffiffiffiffiffiffiffi
−gð0Þ

p
HμνTð0Þ

μν ; ð36Þ

where Tð0Þ
μν is the zero-order energy-momentum tensor for

the field, gð0Þ the determinant of the background unper-
turbed metric tensor, and Hμν ¼ a2ðτÞhμν. When dealing
with the spectator scalar field φ introduced in Sec. II, we
have [40]

Tð0Þ
μν ¼ ∂μφ∂νφ−

1

2
gð0Þμν ½gρσð0Þ∂ρφ∂σφ−m2φ2�

− ξ

�
∇μ∂ν − gð0Þμν ∇ρ∇ρ þRð0Þ

μν −
1

2
Rð0Þgð0Þμν

�
φ2: ð37Þ

Moving now to the interaction picture, it can be shown that
the first-order S matrix in Dyson’s expansion associated
with LInt reads Ŝ ≃ 1þ iT̂

R
d4xLInt.

Since both the field potential and the field-curvature
coupling term are quadratic in φ, particles are produced in
pairs at first perturbative order. We can write the corre-
sponding probability amplitude as [58]

Ck1;k2
≡ hk1;k2jŜj0i

¼ −
i

2ð2πÞ3
Z

d4x 2a2ðA0ðx; τÞ þ A1ðx; τÞ

þ A2ðx; τÞ þ A3ðx; τÞÞ; ð38Þ

where

A0ðx; τÞ ¼ 2Ψ
�
∂0φ

�
k1
∂0φ

�
k2
−
1

2
ðηρσ∂ρφ�

k1
∂σφ

�
k2
−m2a2φk1φk2Þ

− ξ

�
∂0∂0 −

a0

a
∂0 − ηρσ∂ρ∂σ − 3

�
a0

a

�
2
�
φ�
k1
φ�
k2

�
e−iðk1þk2Þ·x ð39Þ

and, similarly,

Aiðx; τÞ ¼ 2Ψ
�
∂iφ

�
k1
∂iφ

�
k2
þ 1

2
ðηρσ∂ρφ�

k1
∂σφ

�
k2
−m2a2φk1φk2Þ

− ξ

�
∂i∂i þ

3a0

a
∂0 þ

2a00

a
þ ηρσ∂ρ∂σ −

�
a0

a

�
2
�
φ�
k1
φ�
k2

�
e−iðk1þk2Þ·x; ð40Þ

for i ¼ 1, 2, 3. In Eqs. (39) and (40), we reintroduced the
original field modes during inflation,

φkðτÞ ¼
g<k ðτÞ
aðτÞ ; ð41Þ

in order to properly compute the number of spectator
particles produced. For each particle pair, the final state can
be written in the form

jΨi ¼ Ŝj0k1
; 0k2

i ¼ N
�
j0k1

; 0k2
i þ 1

2
Ck1;k2

j1k1
; 1k2

i
�
;

ð42Þ

where the normalization factor N is derived as usual from
the condition hΨjΨi ¼ 1.

The comoving number density associated with a geo-
metric production of particles can then be computed at first
and second perturbative orders, giving, respectively,

Nð1Þ
k ¼ jN j2δ3ðk1þk2ÞRe½Ck1;k2

ðαk1
βk1

þαk2
βk2

Þ�; ð43Þ

Nð2Þ
k1;k2

¼ jN j2jCk1;k2
j2ð1þ jβk1

j2 þ jβk2
j2Þ: ð44Þ

A. Amplitudes and orders of particle production

It is relevant to stress that probability amplitudes for pair
production are typically small in our perturbative approach.
We thus have jN j2 ≃ 1, and we can neglect the normali-
zation constant in the further computations. Analogously,
we emphasize that, when computing number densities in
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the interaction picture, the zero-order term of Eq. (30) also
acquires a normalization factor. Specifically, the final state
of the system is modified by the interaction itself, implying
that the contribution of Eqs. (43) and (44) with respect to
the background GPP term is always independent from the
normalization procedure.
In particular, we notice that the first-order term in

Eq. (43) involves the creation of particles with opposite
momenta, thus only increasing the total number of particle-
antiparticle pairs. For this reason, we will focus on the
second-order term, which instead introduces mode mixing
in particle production. In particular, we are interested in
superhorizon pair production, so we pick one mode on
super-Hubble scales and the other on sub-Hubble ones,
namely

aðτiÞHI < jk1j < aðτÞHI;

aðτÞHI < jk2j < aðτÞMpl; ð45Þ

where τi is the initial time for inflation and the ultraviolet
cutoff is given by the Planck mass Mpl. Moreover, we
assume that there are no super-Hubble modes at the
beginning of inflation.7

Exploiting the properties of Hankel functions, from
Eqs. (17) and (41), we can write [58]

φsuper
k ≃ eiðν−1

2
Þπ
22ðν−3

2
Þ ΓðνÞ
Γð3

2
Þ

HIffiffiffiffiffiffiffi
2k3

p
�

k
aHI

�3
2
−ν
; ð46Þ

φsub
k ≃

1ffiffiffiffiffi
2k

p eiðνþ1
2
Þπ
2eið−kτ−π

2
ν−π

4
Þ

a
: ð47Þ

In the following, we specify our calculations to some
relevant inflationary potentials, in order to compute the
number of geometric particles produced during the slow-
roll phase.

IV. THEORETICAL CONSEQUENCES OF
INFLATIONARY PARTICLE PRODUCTION

As above stated, our particle computation depends on the
underlying inflationary potential. Thus, to accurately com-
pute the production of geometric particles during the slow-
roll phase, it is mandatory to meticulously identify the most
promising approaches that agree with current observations.
The Planck satellite’s numerical findings suggest that two
categories of potentials remain viable, namely large- and
small-field potentials [56].
Even though appealing, the class of small-field potentials

is expected to provide a very small geometric particle
production across the Hubble horizon, being incompatible

with the possibility that DM can arise from perturbative
approaches (see, e.g., [42,58]).
In other words, inflationary particle production from

inhomogeneities is typically inefficient if the energy in the
inflaton field is not large enough. This implies that the
substantial energy released during inflation has the poten-
tial to be physically converted into particles.
In this respect, we focus on two main large-field infla-

tionary potentials:
(i) The Starobinsky potential [51] that is characterized

by the inclusion of the quadratic term R2 in the
Hilbert-Einstein action, currently representing the
leading candidate to describe inflation.

(ii) The nonminimally coupled fourth-order chaotic
potential. Here, the fourth-order potential alone is
unsuitable to describe inflation [56], albeit its
coupling with R quite evidently makes it a still
viable inflationary framework.

Below, we discuss the production of particles in both the
aforementioned schemes.

A. Particles produced from the Starobinsky potential

Here, the metric tensor can be conformally rescaled into
the Einstein frame, where the action takes the form of
Eq. (2), with corresponding potential [52,53]

VðϕÞ ¼ Λ4ð1 − e−
ffiffiffiffiffiffi
2=3

p
ϕ=MplÞ2; ð48Þ

and Λ4 describes the energy scales of inflation. Recalling
Eq. (3), the background dynamics of this effective field
during slow-roll is given by

3Hϕ0 ≃ −V;ϕa2; ð49Þ

where we have introduced the compact notation V;ϕ ≡
∂V=∂ϕ and the scale factor during inflation has been
defined in Eq. (5). The corresponding fluctuation modes
are described by [39]

δχ00k þ
�
k2 −

1

η2

�
2þ 9ϵ −

Vϕϕ

H2
I

��
δχk ¼ 0; ð50Þ

where the fluctuation field has been rescaled as usual by
δχk ¼ δϕka. This equation admits solutions in terms of
Hankel functions, provided the potential term is substituted
by its mean value during slow-roll [58].
Once the background and fluctuation dynamics are

obtained, the perturbation potential Ψ can be derived from
Eq. (8) and inserted into Eq. (36) after proper normaliza-
tion,8 to compute the number of spectator field particles

7This approach has been recently employed to compute the
entanglement entropy of cosmological perturbations across the
Hubble horizon (see, e.g., [61,62]).

8The amplitude of perturbations is typically fixed at horizon
crossing k ¼ aðτÞHI to a sufficiently small value, namely
jΦk¼aHI

j ≪ 1 (see, e.g., [66]).
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arising from perturbations. In Fig. 2, we show the ratio
Nð2Þ=Nð0Þ as function of the super-Hubble mode k1. In
particular, the probability amplitude for perturbative pro-
duction is evaluated in the range τ∈ ½0; τR�, in order to
exploit the simplified expression of Eq. (46) for the modes
under investigation.9 At the same time, we neglect pertur-
bative production during the radiation era, where the
contribution of inhomogeneities is expected to be much
smaller due to the presence of other quantum fields and
possible backreaction mechanisms.
From Eq. (37) and the mode solutions in Eqs. (46) and

(47), we also observe that, in the case of ultralight fields,
the dominant contribution to geometric particle production
typically arises from the field-curvature coupling term. As
shown in Fig. 3, a significant decrease of the number
density is evident only when the mass of the field is
comparable to HI , i.e., assuming ultraheavy DM candi-
dates. This confirms that number densities are typically
smaller for heavier DM candidates, if we assume purely
gravitational mechanisms of particle production.

B. Particles produced from a nonminimal fourth-order
chaotic potential

As an alternative scenario, we discuss a nonminimally
coupled inflaton field driven by a quartic symmetry-
breaking potential. This gives

VðϕÞ ¼ λ

4
ðϕ2 − v2Þ2 þ 1

2
ξϕRϕ2; ð51Þ

where v is the vacuum expectation value of the inflaton
field and λ a self-coupling constant. In the case of a positive
coupling constant, quartic chaotic inflation is not expected
to work, unless the inflaton coupling to curvature is
sufficiently small [54,55] (see also [68]). This model has
been recently considered for perturbative particle produc-
tion in inflationary scenarios [47,58], and it may also allow
one to identify the Standard Model Higgs field as the
inflaton [69–71].
Following the same steps of Sec. IVA, we can derive the

dynamics of the perturbation potential in this model and

FIG. 2. Ratio between the number density for “geometric”

particles Nð2Þ
k1;k2

and the unperturbed density Nð0Þ
k , assuming the

Starobinsky potential to drive inflation. The ratio is plotted as
function of the super-Hubble mode jk1j∈ ½10−5=τR; 10−4=τR�.
We set ξφ ¼ 10−4, ϵ ¼ 10−3, ϕðτiÞ ¼ 5Mpl, Λ4 ¼ 1064 GeV4,
and m ¼ 10−14 GeV.

FIG. 3. Ratio between the number density for “geometric”

particles Nð2Þ
k1;k2

and the unperturbed density Nð0Þ
k , assuming the

Starobinsky potential to drive inflation. The ratio is plotted as a
function of the super-Hubble mode jk1j∈ ½10−5=τR; 5 × 10−5=τR�,
for different values of the field mass m. We set ξφ ¼ 10−4,
ϵ ¼ 10−3, ϕðτiÞ ¼ 5Mpl, Λ4 ¼ 1064 GeV4, and jk2j ¼ 100=τR.

FIG. 4. Ratio between the number density for “geometric”

particles Nð2Þ
k1;k2

and the unperturbed density Nð0Þ
k , assuming a

quartic symmetry-breaking potential. The ratio is plotted as a
function of the super-Hubble mode jk1j∈ ½10−5=τR; 10−4=τR�.
We set ξφ¼ ξϕ¼10−4, ϵ ¼ 10−3, ϕðτiÞ ¼ 5Mpl, λ ¼ 2.9 × 10−15,
and m ¼ 10−14 GeV.

9As discussed elsewhere [58,67], bosonic particle production
from inhomogeneities is typically more efficient close to the
infrared cutoff, in analogy with nonperturbative GPP. For this
reason, perturbative production is negligible for spectator field
modes that leave the Hubble horizon after τ ¼ 0, i.e., modes with
jk1j > 1=ð2τRÞ.
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then compute the corresponding number densities of
particles arising from inhomogeneities. In Fig. 4 we show
again the number density of geometric particles produced at
second perturbative order, normalized with respect to the
nonperturbative GPP contribution.

V. CONSEQUENCES AND PREDICTIONS
OF OUR SCENARIOS

We here discuss the main implications of our findings in
inflationary stages and possible signatures of our scenarios.
Particularly, let us first observe, from Figs. 2–4, that

perturbative particle production is non-negligible if the
super-Hubble mode k1 crossed the horizon well before
τ ¼ 0. Second, we also notice that, when approaching the
infrared cutoff jk1j ≃ aðτiÞHI , the contribution of inhomo-
geneities is typically larger. In particular, it can be shown
that a perturbative treatment is no longer possible at
sufficiently small jk1j, thus requiring a different technique
to evaluate the effects of inflaton fluctuations. The above
issue is also related to the normalization procedure for the
perturbation potential Ψ, whose amplitude is typically fixed
at horizon crossing [66]. Specifically, a correct normaliza-
tion procedure might depend upon modes in order to
guarantee that all the perturbation magnitudes appear the
same at the horizon crossing. Likely, this would imply that
to reformulate the correct vacuum, the Bunch-Davies choice
should be modified with a more refined approach.
Further, we notice that the contribution of inhomogene-

ities is typically enhanced in the case of larger field-
curvature coupling constants. In the limit of conformal
coupling, ξ ¼ 1=6, nonperturbative GPP results in negli-
gible densities [32], implying that geometric production
would become the dominant mechanism for primordial
particle creation. A similar result was obtained for the
gravitational production of massless fermions during pre-
heating [72], showing that metric perturbations may have
also played an important role at the end of inflation.
To summarize, particle production arising from inhomo-

geneities can significantly affect the total number density of
spectator field particles created up to the radiation era. For
this reason, if DM has been produced via purely gravita-
tional mechanisms, the presence of inhomogeneities should
be taken into account when computing the corresponding
particle abundance.
Last but not least, we also remark how spacetime

inhomogeneities are responsible for mode mixing in particle
production, which is not conversely found in unperturbed
GPP scenarios, where only particle-antiparticle pairs can be
generated, i.e., with opposite momenta. More specifically,
during inflation the Hubble horizon emerges as a natural
separation scale for modes, and superhorizon particle
production has been recently investigated for inflaton
fluctuations, showing that quantum entanglement can be
generated in this process [58].

Remarkably, since we focused on particle production
across the Hubble horizon, we conclude that plausible
detectable quantum “signatures” at late times can occur.
Indeed, DM is expected to weakly interact with Standard
Model fields, so that some entanglement entropy associated
with particle production may have survived after the
inflationary epoch. Hence, we emphasize that the role of
entanglement could help to understand the quantum proper-
ties of produced particles, thus opening new avenues in the
search for DM.

VI. FINAL OUTLOOKS AND PERSPECTIVES

In this work, we investigated the particle production
associated with a spectator scalar field, i.e., subdominant
with respect to the inflaton, during and after the slow-roll
regime. To show how particle production is influenced
by the universe expansion, we pictured an instantaneous
transition from inflation to the radiation dominated era,
neglecting the effects due to reheating in GPP regimes.
In particular, we focused on the contribution associated

with inhomogeneous particle production across the Hubble
horizon, which can be traced back to the fluctuations of the
inflaton field during slow-roll. We thus showed that the
number density of particles arising from perturbations is
typically non-negligible with respect to the widely studied
quantum GPP contribution, obtained from the unperturbed
universe expansion.
We quantified this outcome in the realms of large-field

inflation and, particularly, we focused on two among the
most consolidated paradigms describing the inflationary
speedup. Specifically, we worked out the Starobinsky and
the fourth-order nonminimally coupled potentials. The
former represents the most viable large-field model of
inflation, conformally equivalent to an extended theory of
gravity, whereas the latter is a suitable example of chaotic
inflation, overcoming the Planck satellite observational
constraints.
We discussed the physical results obtained and, particu-

larly, we showed that the number of particles obtained is
similar in both the aforementioned scenarios. We also
argued that geometric particle production across the hori-
zon is expected to be negligible in small-field approaches,
since in that case the energy in the inflaton field is
significantly smaller throughout the slow-roll regime.
In addition, we observed that the presence of inhomo-

geneities allows for mode mixing in particle production that
instead is not found in unperturbed GPP processes, where
the total momentum of created particles is necessarily
conserved. The presence of mode mixing may lead to
entanglement generation across the Hubble horizon, and
we argued that such quantum correlations could have
survived after the inflationary epoch due to the weakly
interacting nature of DM. The possibility of detecting such
particles through entanglement is also discussed above.
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At the same time, we noticed that a perturbative
approach to inhomogeneous particle production is not
always possible, since the magnitude of inflaton fluctua-
tions becomes typically large on super-Hubble scales. We
also pointed out that a more refined approach is needed for
the normalization of the perturbation potential, in order to
obtain correct amplitudes at horizon crossing for all the
modes involved.
As perspectives, further steps would include the effects

of reheating in geometric production. Although such
effects may be negligible at first sight, they may affect

the total number of produced particles via the dynamics
of preheating metric perturbations, especially for sub-
Hubble modes.
In addition, we intend to study the possible back-

reaction effects associated with the dynamics of pertur-
bations at the end of inflation and shed further light on a
more general nonperturbative approach to inhomogeneous
particle production.
Finally, we plan to extend our treatment to higher spin

spectator fields, starting from fermionic ones, with the aim
of evaluating other possible DM candidates.
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