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Cosmic string networks are the best motivated relics of cosmological phase transitions, being
unavoidable in many physically plausible extensions of the Standard Model. Most studies, including
those providing constraints from and forecasts of their observational signals, rely on assumptions of
featureless networks, neglecting the additional degrees of freedom on the string worldsheet, e.g., charges
and currents, which are all but unavoidable in physically realistic models. An extension of the canonical
velocity-dependent one-scale model, accounting for all such possible degrees of freedom, has been recently
developed. Here we improve its physical interpretation by studying and classifying its possible asymptotic
scaling solutions, and in particular how they are affected by the expansion of the Universe and the available
energy loss or transfer mechanisms. We find three classes of solutions. For sufficiently fast expansion rates
the charges and currents decay and one asymptotes to the Nambu-Goto case, while for slower expansion
rates they can dominate the network dynamics. In between the two there is a third regime in which the
network, including its charge and current, reaches full scaling. Under specific but plausible assumptions,
this intermediate regime corresponds to the matter-dominated era. Our results agree with, and significantly
extend, those of previous studies.
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I. INTRODUCTION

Cosmic strings are the most ubiquitous and interesting
consequence of phase transitions in the early universe,
arising naturally, through the Kibble mechanism [1], in
both grand unified theories and superstring inspired
inflation models. In the latter case, fundamental super-
strings produced in the very early universe may have
stretched to macroscopic scales, in which case they are
known as cosmic superstrings [2]. Understanding their
dynamics, evolution, and cosmological consequences is
an essential part of any credible attempt to understand
fundamental cosmology [3,4]. While a fully quantitative
study of cosmic superstrings is currently not possible, one
can study general current-carrying string networks, which
provide useful proxies for them. Such a study requires a
combination of analytic modeling and numerical simula-
tion (including robust statistical tools for postprocessing
these simulations); the present work addresses the former.

Analytic modeling of cosmic defect networks relies on
developing a thermodynamics-type description which cap-
tures the dynamics of the system’s relevant macroscopic
quantities. This idea was first implemented by Kibble [5],
who introduced a model of string networks with a single
macroscopic correlation length. The current state of the art
is the velocity-dependent one-scale (VOS) model [6–8]. It
provides quantitative dynamical equations for both a char-
acteristic length scale and the root mean square (RMS)
velocity of the network, and has been fully calibrated
against state-of-the-art field theory simulations [9,10].
A further degree of complexity stems from the fact that,

in physically realistic models, one fully expects the string
worldsheets to contain additional degrees of freedom, e.g.,
generic charges and currents, and even to be superconduct-
ing [11]. An extension of the VOS model, the charge-
velocity-dependent one-scale (CVOS) model, able to
describe such generic charges and currents on the string
worldsheet, has recently been developed [12,13]; previously
developed models for the wiggly [14–16] and chiral [17]
cases can be readily obtained as suitable limits of this
general model.
Both the VOS and CVOS models include several

phenomenological free parameters, which ideally should
be measured from numerical simulations, and this has been
done for plain strings and also, to a lesser extent, for wiggly
strings. However, currently this is not yet possible for
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generic current-carrying strings, despite steady progress
toward this goal [18–22]. In the present work, therefore, we
study and classify all possible asymptotic scaling solutions
of the CVOS model, in particular considering how they
depend on the expansion rate of the universe and other
physical mechanisms impacting the network dynamics. We
will focus on the physical scaling solutions, by which we
mean those that could be cosmologically relevant, at least
for some ranges (or specific values), of the model’s
phenomenological parameters. This is to be contrasted to
other mathematical solutions, which are asymptotic solu-
tions of the CVOS equations but are not physically relevant,
e.g., because they would imply a network of strings moving
at the speed of light.
Our work follows in the footsteps of earlier analyses

for the specific cases of chiral strings [17] and wiggly
strings [15,16]. Some solutions for the radiation and matter
eras, and under the assumption of a linearized version of the
CVOSmodel, have also been discussed in [23]. Our present
analysis is a generalization of the earlier ones, recovering
several of their results and finding analogous solutions in
several cases (although our assumptions on the model’s
phenomenological parameters are sometimes different), but
we also find new solutions, e.g., for nonchiral networks.
Interestingly, we show that the fact that scaling solutions
can be divided into three classes, primarily determined by
the cosmological expansion rate, already noticed in the two
particular cases, still applies in the general case. For a
sufficiently damped network (due to a fast enough expan-
sion rate) the charges and currents decay and the network
evolves toward the plain Nambu-Goto case. Conversely, for
sufficiently slow expansion rates the charge and current can
dominate the network dynamics, preventing the linear
scaling behavior typical of plain networks. Last but not
least, in between these two regimes, and for one specific
expansion rate, there is a third regime in which the network
is in full scaling—in other words, the canonical linear
scaling regime also includes the charge and current. The
exact value of this threshold expansion rate depends on the
values of the model parameters, but under some assump-
tions it can occur at the matter-dominated era. Our results
agree with, and significantly extend, those of previous
studies.
The structure of the rest of the paper is as follows. In

Sec. II we provide a brief introduction to the CVOS model,
mainly for the purposes of making the present work self-
contained and introducing the relevant quantities, as well as
describing the assumptions made in our analysis. Solutions
in Minkowski spacetime are described in Sec. III. Our main
results are in Secs. IV and V, which discuss the possible
asymptotic scaling solutions in expanding universes, with-
out and with losses respectively, and the conditions under
which each of them may occur. A broader discussion of
these solutions and our conclusions are then presented in
Sec. VI, including a comparison with earlier results on

chiral and wiggly strings. Finally, we note that in the present
work we only address the case of unbiased networks (a term
to be defined in the next section); the case of biased
networks will be discussed in a follow-up work.

II. THE CVOS MODEL

The canonical VOS model is clearly insufficient to
accurately model the evolution of cosmic string networks
possessing additional degrees of freedom on the string
worldsheet, either in the form of small scale structure
(commonly known as wiggles) or, as in our present case, in
the form of more generic charges and currents. One of its
physical assumptions is that a single length scale describes
both the network correlation length and the network
energy, but this can no longer hold in such situations:
the additional degrees of freedom can themselves contrib-
ute to the energy balance [24]. The VOS equations must
therefore be generalized.
A common approach is to keep the definition of the

correlation length scale, ξ, as the typical string separation,
and hence related to the so-called bare string energy, while
defining an additional length scale, L, which relates to the
total energy of the network. (In the case of featureless
Nambu-Goto strings the two will coincide.) This has been
explored in some detail for the wiggly case [14,16], while
the current carrying case has been much less explored, and
only in the chiral limit [25]. More recently the CVOS
model, able to self-consistently describe generic charges
and currents, has been developed [12]. In what follows we
provide a brief introduction to the model, focusing on the
aspects that are directly relevant to our subsequent dis-
cussion. We refer the reader to the original work for more
detailed derivations and also for a discussion of the model’s
underlying assumptions.

A. CVOS dynamical equations

To describe charges and currents on the string worldsheet
one may start with the action [12]

S ¼ −μ0
Z

fðκÞ ffiffiffiffiffiffi
−γ

p
dσ2 ð1Þ

where μ0 has units of mass squared, and the generic
function fðκÞ depends on the so-called state parameter κ
defined from a scalar field, φ, as

κ ¼ q2 − j2 ¼ 1

a2x02 ðε2φ̇2 − φ02Þ ð2Þ

where the microscopic charge q2 and current j2 have been
implicitly defined, a and ε are the scale factor and
coordinate energy per unit length respectively, and the
last equality highlights the fact that the chiral limit studied
in [17] corresponds to the limit κ → 0. It is also convenient
to introduce the dimensionless variables [26]
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Ũ ≡ f − 2q2
df
dκ

; ð3aÞ

T̃ ≡ f þ 2j2
df
dκ

; ð3bÞ

Φ≡ −2qj
df
dκ

; ð3cÞ

whose dimensional counterparts are the energy per unit
length, the string tension, and the scalar field representing
the current.
It follows that the total energy of the network is

E¼ aμ0

Z
Ũεdσ ¼ aμ0

Z
fεdσ−aμ0

Z
2q2

df
dκ

εdσ; ð4Þ

the first term is the bare string energy as defined in the
canonical VOS model (henceforth denoted E0), which
motivates the definition of the macroscopic ratio of the
total and bare energies,

E
E0

¼ hfi − 2

�
q2

df
dκ

�
¼ F − 2Q2F0; ð5Þ

where capital letters should be understood as the expected
value of their microscopic counterparts and the variables
have been assumed to be uncorrelated to obtain the last
equality. Finally, one may rewrite the energy relation above
in comoving units and also make explicit the relation
between the comoving length scale, Lc, and its correlation
length counterpart by defining

ξc ¼ Lc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F − 2Q2F0

p
¼ WLc; ð6Þ

where the last relation defines the convenient function W.
Note that this function is the square root of the ratio of the
total and bare energies, and therefore it is always larger than
(or at most equal to) unity.
Under these assumptions, one can start with the micro-

scopic equations of motion and derive the following
averaged macroscopic equations [12]:

L̇c ¼ HLc

�
v2 − ð1 − v2ÞQ

2 þ J2

W2
F0
�
; ð7aÞ

v̇ ¼ ð1 − v2Þ
�

kv
WLc

�
1þ 2

Q2 þ J2

W2
F0
��

− ð1 − v2Þ
�
2vH

�
1þQ2 þ J2

W2
F0
��

; ð7bÞ

ðJ2Þ̇ ¼ 2J2
�
vkv
LcW

−H
�
; ð7cÞ

ðQ2Þ̇ ¼ 2Q2
F0 þ 2J2F00

F0 þ 2Q2F00

�
vkv
LcW

−H
�
; ð7dÞ

ξ̇c ¼ Hξcv2 þ
Q2 þ J2

W2
ðHξcv2 − vkvÞF0; ð7eÞ

here dots denote derivatives with respect to conformal time
and kv is the usual momentum parameter [7]. Note that the
last equation is not independent from the others.
However, these equations do not include additional

energy loss mechanisms (apart from the cosmological
expansion, which is accounted for by the comoving
Hubble parameter H). Such loss mechanisms include not
only losses due to loop production but also possible charge
and/or current losses (which are different nonlinear proc-
esses and can occur at different rates), and also bias
parameters, describing e.g., whether a region with a high
charge or current is more or less likely to be part of loop
production events. Naturally these require phenomenologi-
cal modeling, which is described in detail in [12,13,23].
Here we simply state the outcome of this analysis, which is
the addition of the following terms to the previous equations

L̇c ¼ …þ g
W

c̃
2
v; ð8aÞ

ðJ2Þ̇ ¼ …þ ρc̃
v
Lc

ðg − 1ÞW
F0 − 2Q2F00 ; ð8bÞ

ðQ2Þ̇ ¼ …þ ð1 − ρÞc̃ v
Lc

ðg − 1ÞW
F0 þ 2Q2F00 ; ð8cÞ

ξ̇c ¼ …þ c̃
2
v; ð8dÞ

while the velocity equation is unchanged. Here c̃ is the usual
loop chopping efficiency (which already exists in the
canonical VOS model, cf. [6]) and is expected to be a
constant, while g and ρ are bias parameters and are not
necessarily constants. The first of these encodes possible
overall biases of the additional degrees of freedom with
respect to the bare string, and should be g ¼ 1 in the
unbiased case. The second parameter, which is only relevant
if g ≠ 1, describes biases between charge and current, and
should be ρ ¼ 1=2 in the unbiased case.
Regarding the g bias function, a detailed analysis in [13]

suggests that it is expected to have the following generic
form

g ¼ 1 − gQ
F0 þ 2Q2F00

F − 2Q2F0 Q
2 − gJ

F0 − 2Q2F00

F − 2Q2F0 J
2; ð9Þ

where gQ and gJ are dimensionless constants describing
how much timelike and spacelike components of the
network’s current are lost due to loops production.
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For future reference we note that this form makes it clear
that solutions with decaying charge and current will asymp-
totically have g ¼ 1, while for constant charge and/or
current solutions one may still expect constant, but not
necessarily unity, values for g. Finally, its asymptotic value
for growing charges and/or currents depends on the nature of
the microscopic model. Since in these cases, as we show in
what follows, we must have F0 ≠ 0, one may distinguish
between models where F00 ¼ 0 and models where F00 ≠ 0.
In the first case, it follows that

g ¼ 1þ gQ
2
þ gJ

2

J2

Q2
; ð10Þ

implying that if both charge and current exhibit the same
behavior, this is still a constant. On the other hand, ifF00 ≠ 0,
it follows that

g ¼ 1þ ðgQQ2 − gJJ2Þ
F00

F0 ; ð11Þ

and now the bias function exhibits a dependency on the
charge and current values, which would only vanish if they
both exhibit similar behavior and

gQ
gJ

¼ J2

Q2
; ð12Þ

in which case we find g ¼ 1 once again. In any other case, g
will have an implicit time dependency. In the following
sections of the present work we only discuss unbiased
solutions, i.e., those with g ¼ 1; the biased solutions will be
discussed in a subsequent work.

B. Scaling solutions

The CVOS model equations provide an analytic and
quantitative macroscopic description of the network evo-
lution, but they are still a formidable problem to solve
analytically and further simplifications or assumptions are
needed in order to gain useful physical insight on the
model behavior. An alternative would be to explore the
model numerically, and some examples of this can be found
in [13,23]. We leave such an exploration for future work,
and in what follows our approach is to look for asymptotic
scaling solutions of power law form. Specifically, we define

Lc ¼ L0τ
α; ð13aÞ

v ¼ v0τβ; ð13bÞ

J2 ¼ J20τ
γ; ð13cÞ

Q2 ¼ Q2
0τ

δ; ð13dÞ

ξc ¼ ξ0τ
ε; ð13eÞ

W ¼ W0τ
ζ ¼ ξ0

L0

τε−α; ð13fÞ

where the physical solutions must be such that β ≤ 0 and
α ≤ 1. Clearly this is a simplifying assumption, although it
is amply justified by previous experience of analytic
modeling (and also of high-resolution numerical simulation)
of cosmic string networks. It is especially so if the scale
factor is also assumed to have a power law form. In terms of
conformal time, τ,

a ¼ a0τλ; H ¼ a0

a
¼ λ

τ
; ð14Þ

or equivalently in terms of physical time, t,

aðtÞ ∝ t
λ

1þλ: ð15Þ

This assumption is manifestly convenient numerically, but
also reasonable in the real universe, e.g., λ ¼ 1 corresponds
to the radiation era and λ ¼ 2 to the matter era.
It should be clear that this description in terms of

conformal time and comoving length scales can be easily
reinterpreted as a function of cosmic time and physical
lengths. Any quantity that is scaling with respect to
conformal time as a power law of exponent ζ will scale
as a function of cosmic time as a power law with exponent
ζ=ð1þ λÞ, while if a comoving length scales as τκ its
physical counterpart will scale as τκþλ. In particular, and
combining both of these results, it should be noted that
linearly scaling comoving distances with respect to con-
formal time are fully equivalent to linearly scaling physical
quantities with respect to cosmic time. In other words, the
presence or absence of the usual linear scaling solution will
be clear in either description.
By assuming these power law solutions, the CVOS

equations take the following generic form:

α ¼ λ
	
v20τ

2β − CvKτ2ðα−εÞþη

þ gc̃

2

v0
ξ0

τ1þβ−ε; ð16aÞ

β ¼ Cv

�
kv
v0ξ0

τ1−β−εð1þ 2Kτ2ðα−εÞþηÞ
�

− Cv½2λð1þKτ2ðα−εÞþηÞ�; ð16bÞ

γ ¼ 2

�
v0kv
ξ0

τ1þβ−ε − λ

�

− ρc̃
v0
ξ0

ξ20
J20L

2
0

1 − g
F0 − 2Q2

0τ
δF00 τ

1þβþε−2α−γ; ð16cÞ
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δ¼ 2
F0 þ 2J20τ

γF00

F0 þ 2Q2
0τ

δF00

�
v0kv
ξ0

τ1þβ−ε− λ

�

− ð1− ρÞc̃ v0
ξ0

ξ20
Q2

0L
2
0

1− g
F0 þ 2Q2

0τ
δF00 τ

1þβþε−2α−δ; ð16dÞ

ε ¼ λv20τ
2βð1þKτ2ðα−εÞþηÞ

−
v0kv
ξ0

Kτ2ðα−εÞþηþ1þβ−ε þ c̃
2

v0
ξ0

τ1þβ−ε; ð16eÞ

where for subsequent convenience the following additional
quantities have been defined:

K ¼ L2
0J

2
0

ξ20
F0: ð17aÞ

J 2
0 ¼

8>><
>>:

Q2
0 þ J20; if δ ¼ γ

J20; if δ < γ

Q2
0; if δ > γ

; ð17bÞ

η ¼
�
γ; if δ ≤ γ

δ; if δ > γ
; ð17cÞ

Cv ¼ 1 − v2: ð17dÞ

Note that the last of these definitions is reasonable since for
β ¼ 0, 1 − v20 is a constant, and for β < 0, 1 − v20t

2β ∼ 1,
which is also constant. Along the same lines, we note that
the momentum parameter kv is velocity dependent [7], but
it will also be a constant in both of these cases. Finally, it
has been assumed that all the prefactor parameters in
Eq. (13) are nonzero.
A preliminary inspection of the different equations

readily identifies some of the parameters which play a
central role in the analysis to come. Most notably, the
factor 2ðα − εÞ þ η appears associated with F0 and is
closely related to Eq. (6), which in terms of the power
law defined above yields

ξ20
L2
0

τ2ðε−αÞ ¼ F − 2Q2
0τ

δF0: ð18Þ

This is relevant since the presence of F (which is not
expected to vanish) on the right-hand side provides a
constraint on the relation between the three exponents. In
particular, for decaying or constant charge solutions
(δ ≤ 0) both length scales must evolve with a similar rate,
α ¼ ε. This is of course expected, as in that case the ratio
of total and bare string energies should be a constant
(which will be unity in the Nambu-Goto limit). On the
other hand, growing charge cases are only possible if the
overall characteristic length grows slower than the corre-
lation length, again as it should be. In any case, it is not

possible to have solutions where α > ε, unless a rather
unphysical behavior is prescribed where F ¼ 0.
It should be mentioned that one may find various

mathematical solutions to the evolution equations that are
not physical for different reasons. Specifically, we can
straightforwardly identify three such physical restrictions.
First, the correlation length cannot scale faster than t (or the
comoving correlation length faster than τ), since physically
that would violate causality. (At a phenomenological level,
that could be interpreted as the network decaying and
disappearing.) Second, the network RMS velocity must be
smaller than the speed of light, which in our units
corresponds to v < 1. And third, in an expanding universe,
the momentum parameter is expected to be nonzero—
although, conversely, it is expected to vanish in Minkowski
spacetime. Our analysis, reported in the following sections,
will focus on the physical solutions, but we will also briefly
discuss the Minkowski spacetime as a starting point.
Solutions with v ¼ 1 can be found in [27].

III. SOLUTIONS WITHOUT EXPANSION

The simplest case which can be analyzed leads to the
solutions in Minkowski spacetime. In this branch of
solutions, one may set the momentum parameter and the
expansion rate to null values (kv ¼ 0, λ ¼ 0), reducing the
equations to

α ¼ ε ¼ c̃
2

v0
ξ0

τ1þβ−ε; ð19aÞ

β ¼ γ ¼ δ ¼ 0: ð19bÞ

It should be clear that without any loss mechanism (c̃ ¼ 0),
every single quantity of interest will be remaining constant
and the only possible solution is given by

Lc ¼ L0; ð20aÞ

ξc ¼ ξ0; ð20bÞ

J2 ¼ J20; ð20cÞ

Q2 ¼ Q2
0; ð20dÞ

v ¼ v0; ð20eÞ

which is a manifestation of energy conservation.
On the other hand, allowing for nonvanishing energy

loss parameters, one finds the solution

Lc ¼ L0τ; ð21aÞ
ξc ¼ ξ0τ; ð21bÞ

J2 ¼ J20; ð21cÞ
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Q2 ¼ Q2
0; ð21dÞ

v ¼ v0; ð21eÞ

subject to the constraint

c̃ ¼ 2ξ0
v0

: ð22Þ

We are not aware of any reliable Minkowski space
simulations of current-carrying string networks (which
may be more challenging than expanding universe ones,
given the absence of mechanisms damping the radiation in
the simulation box), but it would be particularly interesting
to numerically confirm this solution.

IV. COSMOLOGICAL SOLUTIONS WITHOUT
ENERGY LOSS MECHANISMS

We start once more by considering the case without
energy losses (other than the obvious one due to the
cosmological expansion), which we obtain by simply
setting c̃ ¼ 0. While this assumption is not expected to
be fully realistic, it has the advantage of providing initial
insight into the possible scaling solutions (with considerably
simpler CVOS equations), which also provide a benchmark
against which the solutions with energy losses (to be
addressed in the next section) can be compared. Indeed,
it will be seen that the general solutions are all extensions of
the ones discussed herein.
From the equation for the current, one can see that in the

absence of energy loss mechanisms any physical solution in
an expanding universe must be such that ε ≥ 1þ β. If one
assumes ε > 1þ β, then only decaying current solutions are
possible, but further exploration quickly shows that there are
no consistent solutions in such a branch (i.e., solutions
which would satisfy all equations). On the other hand, if the
sub-branch with ε ¼ 1þ β ≤ 1 is assumed, the CVOS
equations simplify to

α ¼ λ
	
v20τ

2β − CKτ2ðα−εÞþη


; ð23aÞ

β ¼ Cvkv
v0ξ0

τ−2β
�
1þ 2Kτ2ðα−εÞþη




− 2Cvλ
�
1þKτ2ðα−εÞþη



; ð23bÞ

γ ¼ 2

�
v0kv
ξ0

− λ

�
; ð23cÞ

δ ¼ 2
F0 þ 2J20τ

γF00

F0 þ 2Q2
0τ

δF00

�
v0kv
ξ0

− λ

�
; ð23dÞ

ε ¼ λv20τ
2β
�
1þKτ2ðα−εÞþη




−
v0kv
ξ0

Kτ2ðα−εÞþη: ð23eÞ

From a physical point of view, we note that the linear bare
energy scaling with constant velocity that constitutes the
canonical Nambu-Goto network evolution is a possible
solution—recall that this solution can occur, for some
expansion rates, even without loop production [8,15].
It is also clear that under the assumptions of this sub-

branch the quantity Kτ2ðα−εÞþη plays a central role. In
particular, its value is completely fixed at −1=2 for
decaying velocity solutions. In that case, the only consis-
tent solution, for an expansion rate of λ ¼ 2=3 is

Lc ¼ L0τ
1=3; ð24aÞ

ξc ¼ ξ0τ
1=3; ð24bÞ

J2 ¼ J20; ð24cÞ

Q2 ¼ Q2
0; ð24dÞ

v ¼ v0τ−1=3; ð24eÞ

subject to the constraints

K ¼ −
1

2
; ð25aÞ

λ ¼ v0kv
ξ0

¼ 2

3
: ð25bÞ

Although this charge/current dominated solution is obtained
here for a single expansion rate (which in physical time is
a ∝ t2=5, slower than in the radiation era), it is actually
compatible with the slow expansion rate branch identified
by [17], in the particular case where their phenomenological
parameter s is set to s ¼ 0. Although this may not be clear
at first sight, it should be noted that for s ¼ 0 one of
the constraints of the work by [17] fixes the charge value
at Q0 ¼ 1 and the velocity equation is asymptotically
reduced to

v̇ ¼ −
1 − v2

2
ð2HvÞ ≈ −Hv ð26Þ

implying that, for power law solutions, one has

v0βtβ−1 ¼ −λv0tβ−1 ⟶ λ ¼ −β: ð27Þ

While this relation is similar to the one just identified,
although expressed with respect to the cosmic time, it
should be further noted that another constraint identified
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by [17] is β ¼ 1 − α ¼ 1–3λ=2, which when combined
with the condition above yields

λ ¼ 3λ

2
− 1 ⟶ λ ¼ 2

5
ð28Þ

and a single expansion rate is allowed. Finally, one notes
that an expansion rate of 2=5 when expressed with respect
to cosmic time is equivalent to an expansion rate of

λt ¼
λτ

λτ þ 1
¼ 2

5
⟶ λτ ¼

2

3
ð29Þ

which is exactly the same as in Eq. (25). It is interesting to
note that, in clear contrast with the results from [17], there
seems to be no solution for a wide range of expansion rates
below the critical value. Since in [17] the term para-
metrized by s is a cross-term, this may suggest that our
assumption of a fully separable model has an impact on the
allowed solutions. Finally, note that the earlier work only
addressed the chiral limit, but in our solution above one
does not require that Q2

0 ¼ J20; instead it is required that

J20 ¼ −
F
2F0 ; ð30Þ

to the extent that F and F0 encode information on the
microphysics of the specific particle physics model under
consideration (recall that they are macroscopic averages of
microscopic quantities), this is an interesting expression,
because it directly relates the allowed value of the scaling
current with the model’s microphysics.
Let us now consider the sub-branch of solutions with a

constant velocity. First, it should be noted that all such
solutions must have a comoving correlation length which
scales linearly with conformal time (or equivalently, as
mentioned before, a physical correlation length which
scales linearly with physical time). Here there are four
possible solutions to consider.
One such solution, valid for expansion rates such that

v20 ¼ 1=λ, is found in the particular case where F0 ¼ 0 and
is given by

Lc ¼ L0τ; ð31aÞ

ξc ¼ ξ0τ; ð31bÞ

J2 ¼ J20τ
4−2λ; ð31cÞ

Q2 ¼ Q2
0τ

4−2λ; ð31dÞ

v ¼ v0; ð31eÞ

subject to the constraints

F0 ¼ 0; ð32aÞ

λ ¼ 1

v20
> 1; ð32bÞ

v0kv
ξ0

¼ 2; ð32cÞ

Q2
0 ¼ J20; ð32dÞ

with the caveat that last of the constraints is not applicable
for λ ¼ 2, or equivalently γ ¼ δ ¼ 0. It should be noted that
the above constraints imply that there is a strict lower
bound for λ, specifically λ > 1, and hence this solution is
not possible in the radiation era, but it would be possible in
the matter era—and in this particular case there is no
requirement of equal charge and current. For expansion
rates between radiation and matter domination, 1 < λ < 2,
one would have a growing charge and current. However, a
bound λ ≥ 2 is physically more plausible, since it ensures
v20 ≤ 1=2. In such a case the matter era is the slowest
allowed possible expansion rate, and exhibits a fully scaling
(but not necessarily chiral) network, while for any larger
ones we will have a decaying charge and current, and the
network evolves toward the featureless Nambu-Goto case.
Still within the sub-branch where F0 ¼ 0, there is

another possible solution which can only occur for fast
expansion rates,

Lc ¼ L0τ; ð33aÞ

ξc ¼ ξ0τ; ð33bÞ

J2 ¼ J20τ
4−2λ; ð33cÞ

Q2 ¼ Q2
0; ð33dÞ

v ¼ v0; ð33eÞ

subject to the constraints

F0 ¼ 0; ð34aÞ

λ ¼ 1

v20
> 2; ð34bÞ

v0kv
ξ0

¼ 2: ð34cÞ

This solution therefore cannot occur in the radiation or the
matter era, so it is of limited cosmological significance, but
it could be tested in numerical simulations. Moreover, the
fact that the current decays while the charge is allowed to
persist is somewhat counterintuitive. Physically one expects
that currents should be less sensitive to the damping caused
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by expansion than charges, and therefore one could also
expect that electric and magnetic strings may occur for slow
and fast expansion rates respectively—and indeed there is
some support for this expectation coming from numerical
simulations.
Figure 1 depicts the network evolution for different

expansion rates and F0 ¼ 0, showing that the above
asymptotic solutions can be dynamically obtained from
the CVOS model equations. In the first three of the
simulated cases (shown in blue, red, and green) the initial
network charge and current were taken to be 0.2 and 0.1,
respectively, and the constant charge solution is found. In
the fourth (purple) case the initial charge and current were
both assumed to be 0.1, and in this case the network
evolves toward the decaying charge and current sub-
branch. It should be noted that although the first (blue)
case started with a charge to current ratio of 2, the
asymptotic solution (shown with a dashed line) has equal
charge and current, while the same does not happen for the
second (red) case. This can be easily understood by noting
that the growing current sub-branch is only possible if
Q0 ¼ J0, and so the network finds its way into this state.
Last but not least, we remark that the blue case, with
λ ¼ 3=2, has an asymptotic velocity v20 > 1=2, confirming
our previous statement that a bound λ ≥ 2 is physically
more plausible in this branch of solutions.
Leaving the cases where F0 ¼ 0 and assuming instead

that F0 ≠ 0, one can find two additional solutions. First,
there is one which is very similar to that given by Eq. (31),
having the form

Lc ¼ L0τ; ð35aÞ

ξc ¼ ξ0τ; ð35bÞ

J2 ¼ J20τ
4−2λ; ð35cÞ

Q2 ¼ Q2
0τ

4−2λ; ð35dÞ

v ¼ v0; ð35eÞ

subject to the constraints

λ ¼ 1

v20
> 2; ð36aÞ

v0kv
ξ0

¼ 2: ð36bÞ

As in the previous solution, given by Eqs. (33)–(34), this
asymptotically Nambu-Goto one is not possible in the
radiation or matter eras. Here, however, the chiral condition
does not have to hold and arbitrary current and charge
values are possible. Comparing both solutions, it can be
seen that fast expansion rates associated with decaying
charges and currents are asymptotically equivalent to the
canonical Nambu-Goto case, but only the chiral limit is
allowed when F0 ¼ 0. Again. this highlights the relevance
of the microphysics of the network in its cosmological
dynamics.

FIG. 1. Network evolution as obtained by numerically solving the CVOS equations without loss mechanisms and assuming F0 ¼ 0,
for different initial conditions and expansion rates. The four cases correspond to the following initial conditions: (blue) λ ¼ 3=2,
Qi ¼ 2Ji ¼ 0.2; (red) λ ¼ 2, Qi ¼ 2Ji ¼ 0.2; (green) λ ¼ 3, Qi ¼ 2Ji ¼ 0.2; (purple) λ ¼ 3, Qi ¼ Ji ¼ 0.1.
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Finally, a constant charge and current solution is also
found with arbitrary values of current and charge,

Lc ¼ L0τ; ð37aÞ

ξc ¼ ξ0τ; ð37bÞ

J2 ¼ J20; ð37cÞ

Q2 ¼ Q2
0; ð37dÞ

v ¼ v0; ð37eÞ

subject to the constraints

λ ¼ 2; ð38aÞ

v0kv
ξ0

¼ 2; ð38bÞ

v20 ¼
1þ 2K
2þ 2K

¼ 1 −
1

2þ 2K
: ð38cÞ

Here, again, the full scaling solution can only occur in the
matter-dominated era. There is no chirality requirement, but
there is instead a constraint on the velocity which is set by
K, which in turn depends on F0, and thus we again see the
string microphysics impact. Note that the physically
expected 0 ≤ v20 ≤ 1=2 corresponds to −1=2 ≤ K ≤ 0.

It is also worthy of note that both of these F0 ≠ 0
solutions are similar to the ones obtained in [15,17]. Once
more, numerical examples starting from arbitrary initial
conditions and different expansion rates are presented in
Fig. 2. For the lowest expansion rate, the decaying velocity
solution from Eq. (24) is obtained.

V. UNBIASED SOLUTIONS WITH ENERGY
LOSS MECHANISMS

We now discuss the possible solutions when energy loss
mechanisms are allowed, by setting c̃ ≠ 0. Following the
earlier discussion, we also set g ¼ 1; these solutions
should also be interpreted as applying to any networks
with charge loss mechanisms in which the charge and
current decay away. (Nevertheless, we will present a
thorough discussion of the biased solutions in a subsequent
work.) Setting g ¼ 1 also has the consequence of keeping
the velocity, charge, and current equations the same as
before, while the one for the comoving length scale Lc and
correlation length now read

α ¼ λ½v20τ2β − CvKτ2ðα−εÞþη� þ c̃
2

v0
ξ0

τ1þβ−ε; ð39aÞ

ε ¼ λv20τ
2βð1þKτ2ðα−εÞþηÞ

−
v0kv
ξ0

Kτ2ðα−εÞþηþ1þβ−ε þ c̃
2

v0
ξ0

τ1þβ−ε: ð39bÞ

One immediately clear point is that imposing 1þ β −
ε < 0 will reduce the system of equations to the case in the

FIG. 2. Network evolution as obtained by numerically solving the CVOS equations without loss mechanisms and considering F0 ≠ 0,
for different initial conditions and expansion rates. The three cases correspond to the following initial conditions: (blue) λ ¼ 2=3,
Qi ¼ 2Ji ¼ 0.2; (red) λ ¼ 2, Qi ¼ 2Ji ¼ 0.2; (green) λ ¼ 3, Qi ¼ 2Ji ¼ 0.2.
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previous section, where no physical solutions were found.
This leaves us with the option of 1þ β ¼ ε, for which the
CVOS equations become

α ¼ λ½v20τ2β − CvKτ2ðα−εÞþη� þ c̃
2

v0
ξ0

; ð40aÞ

β ¼ Cvkv
v0ξ0

τ−2βð1þ 2Kτ2ðα−εÞþηÞ

− 2Cvλð1þKτ2ðα−εÞþηÞ; ð40bÞ

γ ¼ 2

�
v0kv
ξ0

− λ

�
; ð40cÞ

δ ¼ 2
F0 þ 2J20τ

γF00

F0 þ 2Q2
0τ

δF00

�
v0kv
ξ0

− λ

�
; ð40dÞ

ε ¼ λv20τ
2βð1þKτ2ðα−εÞþηÞ

−
v0kv
ξ0

Kτ2ðα−εÞþη þ c̃
2

v0
ξ0

: ð40eÞ

Moreover, it can be easily seen that decaying velocity
solutions are only possible if Kτ2ðα−εÞþη ¼ − 1

2
, which is

the same condition as before. This is fully expected, since
this constraint is obtained from the velocity equation alone,
which is unaffected. Proceeding analogously to the no
losses cases, one can conclude that the only possible
decaying velocity solution is

Lc ¼ L0τ
1−λ; ð41aÞ

ξc ¼ ξ0τ
1−λ; ð41bÞ

J2 ¼ J20; ð41cÞ

Q2 ¼ Q2
0; ð41dÞ

v ¼ v0τ−λ; ð41eÞ

subject to the constraints

K ¼ −
1

2
; ð42aÞ

λ ¼ 2

3
−
c̃
3

v0
ξ0

¼ 2

3þ c̃=kv
: ð42bÞ

This is a generalization of the solution given by
Eqs. (24)–(25), to which it reduces for c̃ ¼ 0. The addition
of the energy losses to the damping caused by expansion
implies that the single expansion rate for which this solution
is allowed becomes slower than the previously found
λ ¼ 2=3. If one wants to express the corresponding expan-
sion rate power law with respect to cosmic time we find

λt ¼
λτ

λτ þ 1
¼ 2

5þ c̃=kv
ð43Þ

which is the same as the one found by [17] in the
limit s → 0.
Moving to the constant velocity solutions, one finds once

more that they can only occur with linear scaling of the
characteristic lengths. There are two solutions, which can
easily be seen to be the natural extension of Eqs. (31)–(32)
and Eqs. (33)–(34), respectively. The first of these solutions
now has the form

Lc ¼ L0τ; ð44aÞ
ξc ¼ ξ0τ; ð44bÞ

J2 ¼ J20τ
4λv2

0
−2λ; ð44cÞ

Q2 ¼ Q2
0τ

4λv2
0
−2λ; ð44dÞ

v ¼ v0; ð44eÞ

subject to the constraints

F0 ¼ 0; ð45aÞ

λ ¼ 1=v20
1þ c̃=kv

; ð45bÞ

kv
ξ0

¼ 2λv0; ð45cÞ

Q2
0 ¼ J20; ð45dÞ

with the caveat that the last constraint is not applicable for
γ ¼ δ ¼ 0. Here one can easily identify a critical velocity
which dictates the fate of current and charges at v2c ¼ 1=2;
the corresponding critical expansion rate is

λc ¼
2

1þ c̃=kv
; ð46Þ

again, the energy losses push this critical expansion rate
below the matter-dominated era.
One the other hand, the constant charge solution is now

Lc ¼ L0τ; ð47aÞ

ξc ¼ ξ0τ; ð47bÞ

J2 ¼ J20τ
4λv2

0
−2λ; ð47cÞ

Q2 ¼ Q2
0; ð47dÞ

v ¼ v0; ð47eÞ
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subject to the constraints

F0 ¼ 0; ð48aÞ

λ ¼ 1=v20
1þ c̃=kv

>
2

1þ c̃=kv
; ð48bÞ

kv
ξ0

¼ 2λv0; ð48cÞ

v20 <
1

2
; ð48dÞ

this is only compatible with decaying currents, or v0 < vc.
The relation between the asymptotic velocity and the
expansion rate presented in both of these solutions can
be inverted to yield

v20 ¼
kv

λðkv þ c̃Þ ; ð49Þ

which manifestly reduces to the no loss cases for c̃ ¼ 0.
As before, a numerical analysis of the evolution gov-

erned by the full set of equations is presented in Fig. 3,
where in all cases we have used the same initial conditions
as in Fig. 1, but we have further assumed that c̃ ¼ 0.23, a
value in agreement with the most recent numerical simu-
lations [9]. As was the case for Fig. 1, notice that for too
slow expansion rates one would get RMS velocities larger
than 1=

ffiffiffi
2

p
.

Clearly, for equivalent expansion rates, the asymptotic
velocities obtained are lower than in the case of no charge
loss (or, in a different perspective, the expansion rate
compatible with a given network velocity is lower than
before). Figure 4 illustrates, for the matter-dominated era
(λ ¼ 2), the asymptotic velocities obtained for c̃∈ ½0; 2� as
well as the expected values as computed from Eq. (49) and
the no loss limit (v ¼ 1=

ffiffiffi
λ

p
). Additionally, the critical

expansion rate is now slower than the matter era, and
solutions in this epoch exhibit the same behavior of the
faster expansion ones from the no loss cases. The impact of
the momentum parameter kv on the value of the critical
expansion rate is also presented in Fig. 4.
If the solutions of Eqs. (31)–(32) and (33)–(34) are

generalized to Eqs. (44)–(45) and (47)–(48), the same can
be done for Eqs. (35)–(36) and (37)–(38). For the first of
these, the extended solution is

Lc ¼ L0τ; ð50aÞ

ξc ¼ ξ0τ; ð50bÞ

J2 ¼ J20τ
ð4v2

0
−2Þλ; ð50cÞ

Q2 ¼ Q2
0τ

ð4v2
0
−2Þλ; ð50dÞ

v ¼ v0 ð50eÞ

subject to the constraints

FIG. 3. Numerical evolution of networks analogous to those of Fig. 1 but including energy loss mechanisms, with c̃ ¼ 0.23. The four
cases correspond to the following initial conditions: (blue) λ ¼ 3=2, Qi ¼ 2Ji ¼ 0.2; (red) λ ¼ λc ¼ 1.67, Qi ¼ 2Ji ¼ 0.2; (green)
λ ¼ 2, Qi ¼ 2Ji ¼ 0.2; (purple) λ ¼ 2, Qi ¼ Ji ¼ 0.1.
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F0 ≠ 0; ð51aÞ

λ ¼ 1=v20
1þ c̃=kv

>
2

1þ c̃=kv
; ð51bÞ

v20 <
1

2
; ð51cÞ

while for the second solution the extended version is

Lc ¼ L0τ; ð52aÞ

ξc ¼ ξ0τ; ð52bÞ

J2 ¼ J20; ð52cÞ

Q2 ¼ Q2
0; ð52dÞ

v ¼ v0; ð52eÞ

subject to the constraints

FIG. 4. The impact of the energy loss parameter on the asymptotic velocity of the network (left panel) and the critical expansion rate as
a function of both the energy loss parameter and the momentum parameter (right).

FIG. 5. Numerical evolution of networks analogous to those of Fig. 2 but including energy loss mechanisms, with c̃ ¼ 0.23.
The three cases correspond to the following initial conditions: (blue) λ ¼ 0.38, Qi ¼ 2Ji ¼ 0.2; (red) λ ¼ λc ¼ 2, Qi ¼ 2Ji ¼ 0.2;
(green) λ ¼ 3, Qi ¼ 2Ji ¼ 0.2.
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λ ¼ 2 − c̃
v0
ξ0

¼ 2

1þ c̃=kv
; ð53aÞ

v20 ¼
1þ 2K
2þ 2K

: ð53bÞ

It may be seen that the critical velocity and expansion rate
are still the same. Again, the results of numerical integra-
tions of the CVOS model are shown for different expansion
rates in Fig. 5 for the cases described by Eqs. (41)–(42),
(50)–(51) and (52)–(53), considering the same initial con-
ditions as in the no loss case, and c̃ ¼ 0.23. By comparison
to the results presented in Fig. 2, one can easily see that the
asymptotic velocities are now found at lower values.

VI. DISCUSSION AND CONCLUSIONS

Having discussed the various expanding universe scal-
ing solutions in the previous two sections, and also the
Minkowski spacetime ones in Sec. III, some general
comments and lessons learned are pertinent.
When no energy loss mechanism were considered,

assuming F0 ≠ 0 leads to three distinct types of solutions,
which can be easily related to the ones identified by [15],
provided one makes the adequate associations between
charge and small-scale structure, and also to the ones
identified by [17] for the chiral limit, provided one takes
the limit s → 0 in these. This relation is detailed in Table I,
where the power law exponents taken from [15,17] were
converted to conformal time and comoving lengths. It is
interesting to note that the decaying velocity solution
obtained by [15], although associated with a slightly
different expansion rate, shows that the small scale structure
plays the role of the charge in our model. In particular, it
should be noted that while the small scale parameter, μ
(which physically corresponds to the renormalized mass per
unit length of the wiggly strings), evolves as 2 − 3λ, its
square would evolve as 4 − 6λ, which is exactly the same
dependence that we have found.

Remarkably, in all three physical scenarios one finds that
the matter-dominated epoch is particularly interesting, since
it is the only one allowing for a fully scaling network, with
linearly growing characteristic lengths and constant veloc-
ity, charge, and current. For slower expansion rates the
additional degrees of freedom on the string worldsheet
impact the dynamics and typically lead to decaying veloc-
ities, while for faster expansion rates they typically decay,
and the network evolves towards the Nambu-Goto limit.
Our analysis of the full CVOS model also identified a

possible fast expansion solution where the current decays
but the charge persists, whose physical relevance is not
entirely clear. Still, one can find subtle variations of the usual
solutions by making particular assumptions on the macro-
scopic average of the generating functionF and its derivative
F0. It is interesting to note that a generalization of the
decaying velocity solutions found by [17] is only found in
the general CVOS for a very particular expansion rate, lower
than the radiation epoch one. It should be noted that the
universe expansion plays an important role here, since in its
absence, and still assuming no additional energy loss
mechanism, one would only find frozen network solutions.
Once the network is allowed to lose energy, even the

Minkowski spacetime solutions exhibit some evolution. In
that case, and although charge, current and velocity are still
constant, the correlation length now grows in time, which is
the natural manifestation of a network losing energy. On the
other hand, the expanding universe solutions are a gener-
alized version of the ones previously identified. The most
distinct features here are the lower asymptotic velocities
that come with the increase of c̃ and the change of the
critical expansion rate, previously corresponding to the
matter epoch, to slower expansion rates. Such a behavior is
fully expected: once additional energy loss mechanisms are
available, less damping due to cosmological expansion is
needed.
Additionally, it should be noted that while these solutions

have been obtained for networks with no charge losses (by
setting g ¼ 1), we expect, based on previous work [13], that

TABLE I. Comparison of the solutions obtained in Sec. IV with those obtained by Oliveira et al. [17] and Almeida and Martins [15],
for the chiral and wiggly models, respectively, without energy loss mechanism. The power law exponents have been expressed with
respect to conformal time and comoving length scales.

Section IV Oliveira et al. (chiral) Almeida and Martins (wiggly)

λ α β γ δ ε λ α β γ ε λ α β γ ε

Eqs. (24)–(25) 2
3

λ
2

−λ 4 − 6λ 4 − 6λ 1 − λ < 2 λ
2

λ−2
2

0 λ
2

< 1
2

λ
2

−λ 2 − 3λ 1 − λ

Eqs. (31)–(32) > 1 1 0 4 − 2λ 4 − 2λ 1 2 1 0 0 1 2 1 0 0 1
> 2 1 0 4 − 2λ 1 > 2 1 0 0 1

Eqs. (33)–(34) > 2 1 0 4 − 2λ 0 1 > 2 1 0 4 − 2λ 1 > 2 1 0 0 1

Eqs. (35)–(36) > 2 1 0 4 − 2λ 4 − 2λ 1 > 2 1 0 4 − 2λ 1 > 2 1 0 0 1

Eqs. (37)–(38) 2 1 0 0 0 1 2 1 0 0 1 2 1 0 0 1
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the decaying charge and current solutions are possible
solutions for all networks, since these are asymptotically
equivalent to a network with g ¼ 1. Once more, one can
easily relate these solutions to the ones obtained by [17,15],
with the appropriate adaptations, as summarized in Tables II
and III respectively. While the charge decay law of [17] may
not look the same as ours at first sight, referring back to the
specific form of the solutions it can be seen that

4λv20 − 2λ ¼ 4

1þ c̃=kv
− 2λ: ð54Þ

Finally, while we leave the full general model, including
biases between the bare string and the charge and current,
or between the charge and currents themselves, for sub-
sequent work, we can already anticipate the presence of
more complex solutions where, for appropriate choices of
parameters, the charge and/or current may actually exhibit
very distinct behaviors. These solutions will typically be
associated with more and more complex constraints on the
relations between the different model parameters. For a

nonexpanding universe, however, solutions under these
conditions are always associated with constant velocities,
but may exhibit constant or growing charges, but not
decaying ones, while still requiring F0 ≠ 0 and F00 ¼ 0.
As has been previously mentioned, a full comparison of

the CVOS model prediction with field theory network
simulations is not yet possible, although we expect it to be
possible in the near future, benefiting from the availability
of highly efficient and scalable GPU-based codes [28,29].
Such comparisons will confirm the existence (or otherwise)
of the scaling solutions predicted by the CVOS model and,
moreover, will also provide a possible way of measuring,
directly from the simulations, the various phenomenologi-
cal energy loss parameters, whose values impact the scaling
solutions.
One may ask, for example, whether the momentum

parameter, which we have assumed to only depend on
velocity, as is the case for standard Nambu-Goto strings,
should also depend on the charge and current. Another
possibility was already hidden in the comparisons with the
solutions studied by [17], where an additional model
parameter, s, was used to characterize a possible charge

TABLE II. Comparison of the solutions obtained in Sec. V with those obtained by Oliveira et al. [17] for the chiral limit model, with
energy loss mechanism. The power law exponents have been expressed with respect to conformal time and comoving distances.

Section V Oliveira et al. (chiral)

λ α β γ δ ε λ α β γ ε

Eqs. (41)–(42) 2
3þc̃=kv

1 − λ −λ 0 0 1 − λ < 2
1þc=kv

1þc̃=kv
2

λ 1þc̃=kv
2

λ − 1 0 1þc̃=kv
2

λ

Eqs. (44)–(45) 1=v2
0

1þc̃=kv
1 0 4λv20 − 2λ 4λv20 − 2λ 1 2

1þc=kv
1 0 0 1

> 2
1þc=kv

1 0 4
1þc=kv

− 2λ 1

Eqs. (47)–(48) > 2
1þc̃=kv

1 0 4λv20 − 2λ 0 1 > 2
1þc=kv

1 0 4
1þc=kv

− 2λ 1

Eqs. (50)–(51) > 2
1þc̃=kv

1 0 4λv20 − 2λ 4λv20 − 2λ 1 > 2
1þc=kv

1 0 4
1þc=kv

− 2λ 1

Eqs. (52)–(53) 2
1þc̃=kv

1 0 0 0 1 2
1þc=kv

1 0 0 1

TABLE III. Comparison of the solutions obtained in Sec. V with those obtained by Almeida and Martins [15] for the wiggly model,
with energy loss mechanism. The power law exponents have been expressed with respect to conformal time and comoving distances.

Section V Almeida and Martins (wiggly)

λ α β γ δ ε λ α β γ ε

Eqs. (41)–(42) 2
3þc̃=kv

1 − λ −λ 0 0 1 − λ < 1
2þceff=keff

ceff=keff
1þceff=keff

þ 1−ceff=keff
2þ2ceff=keff

λ −λ 2−ð3þceff=keff Þλ
1þceff=keff

1 − λ

Eqs. (44)–(45) 1=v2
0

1þc̃=kv
1 0 4λv20 − 2λ 4λv20 − 2λ 1 2

1þceff=keff
1 0 0 1

> 2
1þc=k

1 0 0 1

Eqs. (47)–(48) > 2
1þc̃=kv

1 0 4λv20 − 2λ 0 1 > 2
1þc=k

1 0 0 1

Eqs. (50)–(51) > 2
1þc̃=kv

1 0 4λv20 − 2λ 4λv20 − 2λ 1 > 2
1þc=k

1 0 0 1

Eqs. (52)–(53) 2
1þc̃=kv

1 0 0 0 1 2
1þceff=keff

1 0 0 1
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gradient—that possibility has not been considered in the
present work, since we have assumed a separable macro-
scopic model. Comparison with the results of [17] shows
that this assumption does impact the possible solutions; one
consequence of this is that this assumption can, at least in
principle, be tested in numerical simulations. Moreover,
numerically measuring the bias parameters, and their
possible dependencies on the charge and current, is
particularly important, since one has relatively little ab ini-
tio physical insight into their possible forms.
Finally, the full generality of the CVOSmodel is manifest

in the fact that the microphysics of the models under
consideration, which is encoded in the Lagrangian generat-
ing function fðκÞ, is propagated into the function F and its
derivatives. As we have shown, some of the possible scaling
solutions only occur for specific choices of this function,
e.g., F0 ¼ 0, so the model predicts (or at least allows) that
different current-carrying and superconducting cosmic
string networks have substantially different cosmological

evolutions. This encoding relies on an averaging process,
which in principle can also be tested against numerical
simulations. Ultimately, numerically calibrated CVOS mod-
els will enable robust predictions for the observational
consequences of these networks.
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