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We present MIKO, a catalog-to-cosmology pipeline for general flat-sky field-level inference, which
provides access to cosmological information beyond the two-point statistics. In the context of weak lensing,
we identify several new field-level analysis systematics (such as aliasing, Fourier mode-coupling, and
density-induced shape noise), quantify their impact on cosmological constraints, and correct the biases to a
percent level. Next, we find that model misspecification can lead to both absolute bias and incorrect
uncertainty quantification for the inferred cosmological parameters in realistic simulations. The Gaussian
map prior infers unbiased cosmological parameters, regardless of the true data distribution, but it yields
overconfident uncertainties. The log-normal map prior quantifies the uncertainties accurately, although it
requires careful calibration of the shift parameters for unbiased cosmological parameters. We demonstrate
systematics control down to the 2% level for both models, making them suitable for ongoing weak lensing
surveys.
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I. INTRODUCTION

A cosmological field-level inference (FLI) compares the
field-level observables (such as galaxy density [1–7],
cosmic shear [8–12], or cosmic microwave background
(CMB) maps [7,13,14]) directly to theoretical predictions
or simulations. It treats the map pixels and cosmological
parameters as random variables to be jointly modeled, with
map-making and cosmological parameter inference being
carried out simultaneously in a Bayesian manner.
Compared to traditional two-point analyses, FLI has

several advantages:
(i) In principle, it utilizes all the N-point statistics in the

data, so there is minimal information loss.
(ii) It is built around a conceptually simple forward

model which easily extends to new physics and
systematics.

(iii) It combines the map-making and parameter infer-
ence into a single step, enabling joint inference of
multiple surveys on the map level.

(iv) It avoids the needs the compute complex high-
dimensional covariance matrices.

Previous works [12,15,16] have shown that FLI can
achieve superior cosmological constraints compared to
two-point analyses. The goal of this work is to establish
FLI methods with rigorously demonstrated systematics
control at least at the level needed for current imaging
surveys.

Pðc; sjdÞ ∝ Gðd − s; 0; NÞ × PðsjcÞ × priorðcÞ: ð1Þ

Here, the set of cosmological and astrophysical parameters
are denoted c; the map pixel values (the signal, s; the data
pixel values d; and Gðx; μ; NÞ is a Gaussian distribution of
x with mean μ and variance N. We will treat the noise as
uncorrelated so that the matrix N is diagonal (in the case of
lensing, related to the shape noise). The second probability
on the right encodes two broad areas of complexity. First,
even in the simplest case, where the observations are on the
largest of scales so the fundamental fields are Gaussian,
care needs to be taken to convert the true field to s, the field
that will be compared to the data [17]. We call this set of
issues analysis systematics, and present our treatment of
them in Sec. V below. Second, most observations are not
sampling purely Gaussian fields, so understanding the
distribution from which the true fields are drawn is para-
mount. We call this uncertainty model misspecification and
discuss this in Sec. VI below. This paper aims to make two
main points:
(1) We have developed a pipeline to analyze weak

lensing data in the flat sky case1 that includes and

*junzhez@andrew.cmu.edu

1The flat sky case has the advantage of requiring less
computational resources and also applicable to deep surveys
that cover only a fraction of the sky. Indeed, we will test our
methods on realistic mocks that simulate the Hyper Suprime-Cam
SSP Survey [18] year-3 shape catalog [19], and the pipeline
developed here may be applicable to the Roman Space Telescope
[20], current baseline wide-field imaging survey will cover about
4% of the sky.
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quantifies analysis systematics such as pixelization
effects, boundary conditions, and general issues
that arise when moving between real and Fourier
space.

(2) In weak lensing, the choice of a Gaussian prior for
PðsjcÞ leads to unbiased means on the extracted
parameters but incorrect error bars. Meanwhile,
using a log-normal prior for PðsjcÞ leads to correct
errors bar but the means of the extracted parameters
are very sensitive to the exact parametrization of the
log-normal distribution.

Looking forward (Sec. IV), we will constrain the tomo-
graphic power spectrum amplitudes Ai, which is similar to a
tomographically decomposed version of S8 in standard
cosmological analyses. The HSC Year 3 real [21] and
Fourier [22] space shear analyses both yield an approx-
imately 4.1% constraints on S8 (0.769

þ0.031
−0.034 and 0.776

þ0.032
−0.033

respectively). This translates to approximately an 8% con-
straint on Ai. Since we typically require the systematic
uncertainty to be under 1=4 of the total error budget, we set a
target of 2% for the absolute bias induced by systematic
effects. Given the above numbered points, we chart out a
pathway for analyses that overcomes these difficulties at this
target 2% level.
This paper is organized as follows. We briefly review the

basics of weak lensing in Sec. II, describe the simulated
datasets in Sec. III and then give an overview of the
inference pipeline in Sec. IV. The first set of results is
presented in Sec. V, which deals with analysis systematics,
and the second in Sec. VI, where model misspecification is
discussed. We summarize and outlook in Sec. VII.

II. WEAK LENSING BASICS

A. Weak lensing maps

As the light from distant galaxies travels toward us, it is
deflected by the intervening matter overdensity perturba-
tion δm. Consider a line-of-sight (LOS) in the θ direction
and a light source at comoving distance χ. The light source,
although emitted at the true position α, is observed at β due
to gravitational lensing. In the weak lensing regime, the
effect of this distortion is approximately linear

∂β
∂α

����
θ;χ

¼
�
1−κðθ;χÞ−γ1ðθ;χÞ −γ2ðθ;χÞ

−γ2ðθ;χÞ 1−κðθ;χÞþγ1ðθ;χÞ

�
;

ð2Þ

where κðθ; χÞ and γðθ; χÞ ¼ γ1ðθ; χÞ þ iγ2ðθ; χÞ are called
the convergence and the shear maps [23].
In a tomographic weak-lensing survey, we categorize the

source galaxies into redshift bins with normalized galaxy
density distributions ngal;iðzÞ. We are interested in the line-
of-sight (LOS)-averaged convergence map, which, for a
spatially flat universe, is related to thematter overdensity via

κiðθÞ ¼
Z

χ�

0

dχWiðχÞδmðχθ; χÞ; ð3Þ

WiðχÞ¼
3

2
H2

0Ωmð1þzðχÞÞ
Z

χ�

χ
dχ0ngal;iðχ0Þ

χðχ0−χÞ
χ0

; ð4Þ

whereH0 is the Hubble constant,Ωm ¼ 8πGρm=ð3H2
0Þ, ρm

is the matter density, and χ� is the comoving horizon.

B. Weak lensing statistics

The n-point correlation functions of the convergence
field carry significant cosmological information. The two-
point cross-power spectrum between redshift bins i and j is
given by (under Limber’s approximation [24])

CijðlÞ ¼
Z

χ�

0

dχ
WiðχÞWjðχÞ

χ
Pδ

�
k ¼ l

χ
; χ

�
; ð5Þ

where Pδðk; χÞ is the 3-dimensional matter power spec-
trum. In practice, we compute Eq. (5) using CAMB [25].
If the convergence field were completely Gaussian, then

Eq. (5) would contain all the information. In reality,
however, small-scale structure formation leads to non-
Gaussianity characterized by extended voids and density
peaks that contains important cosmological information
[26,27]. For example, Fig. 1 shows three examples of
convergence fields generated with models (Gaussian, log-
normal, and realistic N-body ray-tracing simulation).
Although these fields all share the same power spectrum,
they are visibly different, each with its own one-point PDF
and higher-order statistics. In this work, we model the field-
level statistics to extract information not captured by the
standard two-point analyses.
One of the most studied models of the convergence PDF

is the log-normal distribution [9,28–30]. Let κG be a zero-
mean Gaussian (transfer) field. The associated zero-mean
log-normal field is defined by applying a transformation
across the entire Gaussian field,

κ ¼ LðκG; aÞ ¼ aðeκG−σG2=2 − 1Þ; ð6Þ

where a is the shift parameter and σG is the standard
deviation of the transfer map. The log-normal field is fully
characterized by its variance σ2 and shift parameter, giving
it one more degree of freedom than the Gaussian field. The
shift parameter a is particularly interesting, as it corre-
sponds to the minimum value of the log-normal distribu-
tion. Alternatively, a can be reparametrized in terms of the
skewness s [30] by

a ¼ σ

s
ð1þ yðsÞ þ y−1ðsÞÞ; ð7Þ

yðsÞ ¼
�
2þ s2 þ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ s2

p

2

�1=3

; ð8Þ
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s ¼ hðκ=σÞ3i; ð9Þ

which we find to be a more robust measurement on real
simulations. The assumption about a is very important and
we will discuss it in Sec. VI A 3.
Finally, we will need to relate the two-point correlation

function of the transfer field to that of the log-normal field.
This is given by

ξGijðθÞ ¼ log

�
ξijðθÞ
aiaj

þ 1

�
: ð10Þ

The two-point correlation function is related to the power
spectrum by the classic Hankel transform

ξijðθÞ ¼ H−1½CijðlÞ�ðθÞ ð11Þ

¼ 2π

Z
dθθCijðlÞJ0ðlθÞ; ð12Þ

where J0 is the Bessel function of the first kind.

C. Weak lensing observables

A weak lensing survey measures the shapes of galaxies
to infer the convergence and/or the shear [31]. For a galaxy
with observed complex shear γo,

γo ¼ γ þ γI þ γn: ð13Þ

The first term on the right hand side is the lensing shear,
γI is the coherent distortion of galaxy shape due to intrinsic
alignment (IA) [32,33], and γn is the galaxy shape noise
caused by random intrinsic galaxy shape and image noise.
In this study, we leave γI ¼ 0 and model γn as a zero-mean
Gaussian random variable with standard deviation γrms.

Additionally, higher-order differences between reduced
shear and shear [34] are not considered in our analysis.

III. SIMULATIONS AND DATASETS

We model our analysis after the HSC Year 3 survey
specifications [19,35]. We use three sets of independent
simulations to test our analysis pipeline across the entire
galaxy catalog to cosmological constraints process. In this
section, we discuss the process of converting galaxy catalog
to the observed pixelized shear maps γobsi . We will show in
Sec. V that this procedure introduces significant statistical
artefacts in γobsi that must be reflected in our forward model
for unbiased cosmological constraints.
The first simulation comes from Takahashi et al. [36],

where the authors perform multiple-lens plane ray-tracing
on high-resolution N-body simulation. This simulation uses
the WMAP 9 years result [37] as its fiducial cosmology,
which we also adopt through out our work. The Takahashi
simulation has been extensively tested and used in HSC to
derive covariance of 2-point summary statics [38]. It
provides independent full sky realizations of κðθ; χÞ and
γðθ; χÞ at the 38 comoving radial shells. These maps are
provided in HEALPIX, format [39,40] with a resolution of
NSIDE ¼ 8192. We use the radial shells to construct the 4
tomographic κiðθÞ and γiðθÞ maps using the HSC Year 3
redshift distribution (Fig. 2). Next, we locate rectangular
patches of side lengths ðLx; LyÞ ¼ ð8°; 5°Þ and the patches
are separated by at least 8° to avoid spatial correlations.
We generate galaxies with tomographic effective number
density ρi with true κ and γ values according to their
positions.
We set ρi to be 36.1, 52.0, 39.6, and 20.6 arcmin−2 for

the four redshift bins, corresponding to 10 times the HSC
Year 3 W12H field specification (explained below). Then,
we add Gaussian shape noise to individual galaxies

FIG. 1. Examples of Gaussian, log-normal, and Takahashi fields. All three fields have the same two-point statistics (modeled after the
first redshift bin Sec. III) but a visibly different field-level appearance. Their one-point PDFs are shown in the right plot, where we see
that the log-normal field has a stronger cut-off at small κ compared to the others. We limit the maximum color map scale to κ ¼ 0.06 to
emphasize the visual distinction between the fields.
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according to Eq. (13) with γrms ¼ 0.26 [41]. We construct
the pixelized maps κtruei and γtruei using the noiseless catalog,
and construct γobsi using the noisy catalog. In both cases, the
pixels have size Δ ¼ 30.
The choice of ρi merits a few comments. For a pixel p,

the effective shape noise has variance

NiðpÞ ¼
γ2rms

ρiðpÞΔ2
: ð14Þ

We are mostly interested in the bias of modeling choices
and the robustness of our posterior estimation in the
presence of noise and cosmic variance. Thus, given a finite
computational resource, we want to reduce the statistical
uncertainty and perform as many independent HSC-like
experiments as possible. We achieve this goal by setting ρi
to 10 times the fiducial HSC number density [19] to reduce
the effective shape noise.
Due to simulation artefacts [36], the Takahashi conver-

gence maps does not recover the theoretical power spec-
trum [Eq. (5)] with the precision required for this work.
Therefore, we need calibrate the theory when performing
inference on the Takahashi mocks. The exact procedure is
detailed in the Appendix. The calibrated theoretical
power spectrum agrees with the simulation within 1%
for l < 24000 for all redshift bins.
The second and third sets of simulations are conceptually

similar. Using the same WMAP9 cosmology, we make full
sky log-normal and Gaussian realizations of convergence
and shear at resolution of NSIDE ¼ 8192, and then
construct shear catalogs and flat sky maps as before. We
generate the log-normal maps using FLASK [30]. For these
maps, we observe a larger-than-1% surplus of power above
l ¼ 5000. Therefore, we only use l ≤ 5000 for both the
log-normal maps and the log-normal theory power in the
analyses.

For all three simulations, we use 4 independent full-
sky simulations to generate 80 nonoverlapping flat-sky
patches.

IV. INFERENCE FRAMEWORK

Our inference framework MIKO, graphically illustrated in
Fig. 3, is a hierarchical Bayesian network that forward
models from the cosmological parameter to the observed
noisy fields. We focus on the lensing convergence and
shear fields in this work, but the framework is set up to
include galaxy density and CMB fields as well [7]. The
weak lensing pipeline includes two models; the first
generates the observable fields using a Gaussian map prior,
and the second uses a log-normal prior.

MIKO has four main components. Starting from the top of
the flow chart, we first draw cosmological parameters c and

FIG. 2. The normalized PDF of the tomographic redshift
distributions of the HSC Year 3 galaxy shape catalog [35].

FIG. 3. This flow chart describes MIKO’s weak lensing field
level forward model and inference pipeline (Sec. IV). The
pipeline has four steps (from top to bottom): generating latent
parameters, forward modeling the noiseless fields, computing the
likelihood given the data, and sampling. In the chart, diamonds
represent sampled parameters, squares the model-relevant func-
tions, and the hexagon the observed data vector.
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the latent tomographic map parameters xi from their prior
distributions. For the Gaussian model, we set the free
cosmological parameters to be the amplitudes of the
tomographic power spectra,

Cij ⟶ AiAjCij: ð15Þ

where Cij is the power spectrum at the fiducial cosmology
calibrated to the simulations2 (Sec. III). Inference of Ai is a
powerful test of the ΛCDM model. Consider the redshift-
modulated growth function AðzÞDðzÞ. In this context, Ai
can be thought of as AðzÞ integrated over the tomographic
window function WiðzÞ. Thus, a detection of Ai ≠ 1
implies that the growth history near the redshift interval
of bin i deviates from the ΛCDM model. Through out this
study, we use a broad and uniform prior on Ai over the
interval [0.5, 1.5]. For the log-normal model, the free
parameters are both Ai and the shift parameters ai. The
prior on ai is more complicated and we will delay its
discussion until Sec. VI. The latent map parameters xi
represent the field-level degrees of freedom and are drawn
from the unit normal distribution.
Next, we use the cosmological parameters and survey

and analysis specifications to define a forward model,
which transforms xi to noiseless and pixelized tomographic
convergence and shear maps κpixi and γpixi on one (or more)
flat sky patch(es). It is important to note that the process of
generating κpixi and γpixi includes not only the cosmological
model but also the survey and analysis-specific systematics
model. The process of going from xi to γpix is explained in
detail in Sec. V). We then compare the noiseless γpixi to the
data γobsi and build the Bayesian posterior function given by

logPðfγpixi ðc;xiÞgjfγobsi gÞ

¼ −
X
i

ðγobsi − γpixi ðc;xiÞÞ2
2N

þ log priorðfγpixi ðc;xiÞgÞ;

ð16Þ

where N is the shape noise variance map given by Eq. (14).
We implement all computations using differentiable pro-
gramming in JAX.
In the last step, we connect this differentiable posterior

function to the NUMPYRO [42] implementation of the
Hamiltonian Monte Carlo No-U-Turn sampler (HMC
NUTS) [43–45] to efficiently sample from the high-
dimensional joint posterior space of both the cosmological
and the map parameters. The result of the inference is
comprised of the posterior samples of the cosmological
parameters c and the maps κpix and γpix. We could also

obtain samples of the continuous fields (without the
pixelization effect) if desired.
We perform consistency checks on both models. This is

done by first using the model to generate noisy shear maps
and using the same model to infer Ai from it. We use 10
chains for each experiment for all the main analyses in this
paper. Each chain is initialized at the maximum a posterior
estimate calculated with a stochastic variational inference
procedure parametrized with the δ-distributions. We then
run approximately 500 warm-up NUTS steps followed by
100 sample collection NUTS steps. We use a target
probability of 0.7 and a maximum tree depth of 9 for
our NUTS sampler. We also check the chain convergence
for the posterior samples.

V. FORWARD MODELING AND ANALYSIS
SYSTEMATICS

The first main result of this study is to present a catalog-
to-cosmology pipeline and demonstrate that we can control
the systematic uncertainty on Ai to be within 2% (a target
motivated by our arguments in Sec. I). We begin this
section by laying out the algorithm that generates the maps.
We then identify and catalog the systematics that signifi-
cantly bias the cosmological results and provide the
appropriate remedies. This section is a detailed view of
the “forward model” box in Fig. 3.

A. Map making

Let us first consider generating a set of correlated
tomographic convergence maps with Gaussian priors.
To do this, we first generate independent standard normal
variables (which we shall call the latent map parameters)
x̃iðlÞ on the Fourier grid. Next, we transform these
latent parameters to the Fourier space convergence maps
κ̃iðlÞ by (we will denote all Fourier space quantities
using ·̃)

κ̃iðlÞ ¼ LijðlÞx̃jðlÞ; ð17Þ

where LijðlÞ is the Cholesky decomposition of
AiAjCijðlÞ. In the trivial example with one tomographic
bin and the amplitude fixed to its fiducial value (A ¼ 1),
this would simply mean multiplying xðlÞ by ffiffiffiffiffiffiffiffiffiffi

CðlÞp
, the

RMS of the kappa map.
Now let us discuss the log-normal forward model.

For the log-normal maps, we first need to compute the
power spectrum of the Gaussian transfer map, this is
given by

CG
ij ¼ H

�
log

�
H−1½AiAjCij�

aiaj
þ 1

��
ð18Þ

where H½·� is the Hankel transform.
2In real observations, we can simply set Cij to the prediction of

the fiducial cosmology.
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We then generate a Gaussian transfer map just as we did
in the Gaussian model, Fourier transform it into the real
space, and apply the log-normal transformation in Eq. (6) to
obtain the log-normal map.
For both the Gaussian and the log-normal model, once

we obtain the κi, we compute the shear maps using the
Kaiser-Squire relationship [46], which is most easily
expressed in the Fourier space by

γ̃1ðlÞ ¼ K1ðκ̃Þ ¼
l2
x − l2

y

jlj2 κ̃ðlÞ ð19Þ

γ̃2ðlÞ ¼ K2ðκ̃Þ ¼
2lxly

jlj2 κ̃ðlÞ ð20Þ

B. Smoothing and aliasing

The process of pixelizing galaxy catalogs into shear
maps (Sec. III) introduces field-level statistical artifacts—
smoothing and aliasing—in γobs. Both effects introduce
corrections to C that are on the same order as C itself
on small scales. For example, Fig. 4 shows that the full-
sky theory C (blue) and the distribution of κtrue for
Gaussian mocks (gray) differ by as much as 80%. An
unbiased forward model should generate κpix such that
hCðκpixÞi ¼ hCðκtrueÞi. Neglecting the pixelization effect
significantly biases the cosmological results. To the best of
our knowledge, this is the first precise quantification and
correction of the aliasing effect in the context of field-level
cosmology.
Let us start by drawing a large number of galaxies from a

continuous and noiseless convergence field κ. Mathe-
matically, the process of map-making (Sec. III) is equivalent
to first smooth κ with a pixel kernel and then sampling it at
the center of each pixel (Fig. 5). Both effects are most easily
described in the Fourier space. Smoothing is described by

κ̃smooth ¼ sinc

�
lxΔ
2π

�
sinc

�
lyΔ
2π

�
κ̃; ð21Þ

Meanwhile, the innocent-looking sampling procedure not
only discretizes the Fourier space but also aliases κ. The net
effect increases the small-scale (near theNyquist frequency of
the observedmap, lN ¼ π=Δ) power of the pixelizedmap by
an order of unity and breaks the statistical isotropy of κ. More
precisely, pixelizing the continuous field κ means [47,48]

FIG. 4. The impact of smoothing and aliasing on C is presented
in terms of the fractional difference relative to hCðκtrueÞi, with the
gray region representing the 1σ spread of CðκtrueÞ. The full-sky
power spectrum is shown in blue. hCðκpixÞi, generated by a
forward model that accounts for smoothing but not aliasing, is
shown in red. When both effects are included in the forward
model (with aliasing parameter r ¼ 1.6), hCðκpixÞi is depicted in
purple. Error bars indicate the standard error of the mean.
Neglecting either the smoothing or aliasing effects, or both, in
the forward model results in an order-of-unity bias on C.

FIG. 5. Illustration of the mathematical operations implied by the map-making process (Sec. III). Plot (1) shows a continuous field.
During map-making, the field is first smoothed with a pixel kernel (2). The smoothed field is then sampled at the pixel centers, indicated
by white dots in (3). The values at these pixel centers constitute the pixelized map seen in (4). Both the smoothing and sampling
processes introduce significant statistical artifacts into the pixelized maps, which must be accounted for in the forward model.
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κ̃aliasðlÞ ¼ ðШ̃ � κ̃ÞðlÞ þ
X

ðk1;k2Þ≠ð0;0Þ
ðШ̃ � κ̃Þðlx − k1lN;ly − k2lNÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aliases

; ð22Þ

CaliasðlÞ ¼ CðlÞ þ
X

ðk1;k2Þ≠ð0;0Þ
Cijðlx − k1lN;ly − k2lNÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aliases

: ð23Þ

We define * as the (Fourier space) convolution and the
Kronecker comb function as

ШðθÞ ¼
X

nx;ny ∈Z

δKðθx − nxΔÞδKðθy − nyΔÞ; ð24Þ

where δKðxÞ ¼ 1 when x ¼ 0 and 0 otherwise.
In short, Eq. (22) tells us that each mode of κ̃aliasðlÞ is a

superposition of κ̃ðlÞ and its “aliases” at higher frequen-
cies. Equation (23) tells us that the power spectrum of the
pixelized map acquires a two-dimensional l dependence
and is no longer isotropic. Furthermore, CaliasðlÞ is also the
superposition of CðlÞ and its aliases. One immediate
consequence is that, around the Nyquist frequency, Calias

is at least 100% higher than C. Although Eq. (22) suggests
that accounting for infinitely many aliases at increasingly
larger l’s is necessary to fully capture aliasing, in practice,
aliases above

ffiffiffi
2

p
rlN with r ¼ 1.6 are sufficiently sup-

pressed by the smoothing kernel.
We implement Eqs. (21) and (22) in MIKO to model the

pixelization effect. The results are demonstrated in Fig. 4
for the Gaussian model. If we only include smoothing (red)
in the forward model, the hCðκpixÞi is two times lower near
lN, as expected. When both smoothing and aliasing are
included (purple), the model generates κpix’s that align with
κtrue on the two-point level across all scales. This behavior
is consistently observed across all the cross-power spectra
and is also confirmed for the log-normal model.
We now test the bias introduced by the pixelization effect

on the cosmological parameters Ai. We setup three different
Gaussian models. Each model includes the smoothing
correction but differs in the aliasing parameter r, set at 1
(no aliasing correction), 1.3, and 1.6 respectively. We run
each model on 80 HSC-like experiments, using Gaussian
mocks. The results are presented in Fig. 6. Neglecting
aliasing in the forward model biases Ai higher. The
direction of the bias is expected since aliasing amplifies
the small-scale power in γobs which can only be compen-
sated by increasing Ai. Neglecting aliasing leads to a 2.5%
absolute bias on the cosmological parameters exceeding
our error budget. However, setting r ¼ 1.6 is generally

sufficient to model the aliasing effect. We will use r ≥ 1.6
for all the following analyses.

C. Boundary conditions

We use the Kaiser-Squire relationship Eqs. (19) and (20)
to transform κ into γ in the forward model. The Kaiser-
Squire relationship is exact on an infinite plane. However,
our forward model is defined on a finite grid which has a
periodic boundary condition inherited from the fast Fourier
transform. This mismatch introduces field-level errors
around the edges of the maps as shown in Fig. 7. We
can alleviate this bias by generating maps larger than the
survey footprint and defining the likelihood on the inner
regions. More specifically, we test how different amounts
of margins, measured by the fractional length of the short
side of the map, affect the final cosmological para-
meter constraints. The result is shown in Fig. 8. We find
that the boundary condition mismatch drives Ai higher.
Furthermore, a 80% margin is sufficient to reduce the bias

FIG. 6. The absolute bias of Ai measured by applying the
Gaussian model to Gaussian mocks. Each color corresponds to a
Gaussian model with a different aliasing parameter r. Each data
point represents the average inferred Ai over 80 independent
HSC-like experiments, with the error bars denoting the standard
error of the mean. The experiment is set with an 80% margin (see
Sec. V C and Fig. 8). The gray region indicates the 2%
systematics control target.
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below 0.5%. We will use this choice of margin for all the
following analyses.

D. Fourier mode coupling

As pointed out by Xavier et al. [30] and Tessore et al.
[49], the log-normal model transformation is not local in
Fourier space and strongly couples the small-scale modes.
A finite Fourier grid implies a strict band-limit and there-
fore changes the expected behavior of the transformation.
To faithfully simulate a log-normal map up to lmax, we

need to generate a Gaussian transfer map up to lG > lmax.
For example, lG > 4lmax is required for percent-level
accuracy when simulating full-sky log-normal maps using
FLASK (as is done for our log-normal mocks Sec. III). The
iterative correction method proposed by Tessore et al. [49]
can, in theory, produce logarithmic normal maps with
accurate power spectra with lG ≈ lmax. We, however,
did not achieve the same success when applying the same
idea to the flat sky case, potentially due to the boundary
condition and the nonisotropy of the Fourier grid.
Nevertheless, we found an empirical solution to reduce

this error. In Fig. 9, we plot the scale-dependent error of the
log-normalCðκÞ relative to the inputC as a function oflG. If
we setlG to themaximumaliasing scale

ffiffiffi
2

p
rlN (blue),CðκÞ

starts to deviate from the input beyond lN (vertical line). To
obtain the correctCðκÞ beyond lN, we find it useful to force
κG to be isotropic by removing powers beyond rlN (red). If
we impose an even stricter scale-cut, the log-normal maps
exhibit lower band power below lN. Regardless of lG, the
log-normal maps still have a deficit of large-scale power.
This appears to be a consequence of the small survey
footprint or the periodic boundary effect, and this error is
reduced when generating larger maps. For the log-normal
model, since the Fourier mode coupling issues that we have
discussed so far interact together, it is difficult to quantify
each error separately. However, looking ahead,wewill show
that using lG ¼ rlN with r ¼ 1.9 enables us to control the
systematic bias for the log-normal model to 2%.

E. Number density-induced shape noise

Finally, we observe another novel source of error that
impacts FLI–the finite galaxy density can induce a shape

FIG. 7. The Kaiser-Squire reconstruction error of a (Gaussian)
shear field assuming periodic boundary condition. We define the
reconstruction error as ϵ ¼ ðK1κ − γ1Þ=Δγ , where K1 is the
Kaiser-Squire operator that transforms κ to γ1 assuming a
nonperiodic boundary at spatial infinity. Δγ is the standard
deviation of the shear field. We observe the most error along
the boundaries.

FIG. 8. The absolute bias of Ai measured by applying the
Gaussian model to Gaussian mocks. Each color corresponds to a
Gaussian model with a different margin size (as a fraction of the
length of the short side of the patch). Each data point represents
the average inferred Ai over 80 independent HSC-like experi-
ments, with the error bars denoting the standard error of the mean.
The experiment is set with r ¼ 1.6 (see Sec. V B and Fig. 6). The
purple points corresponds to the same purple points in Fig. 6. The
gray region indicates the 2% systematics control target.

FIG. 9. The impact of the Gaussian transfer map scale-cut, lG,
on the recovered C is presented in terms of the fractional
difference relative to the input C. The error bars represent the
standard error of the mean. The vertical line denotes the Nyquist
frequency, lN, of γobs. Setting lG ¼ rlN (red) recovers the input
C with the highest accuracy. The observed residual additive bias
is related to the limited sky coverage of the patch.
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noise-like error on the pixelized maps even when no shape
noise is introduced. When we average the galaxy shapes
within a pixel, the distribution of random galaxy positions
samples the inhomogeneous shear field, leading to stat-
istical fluctuation of the pixel value. Formally, for a pixel p
centered at θp, we expect the galaxy’s true shape to differ
from γðθpÞ by

Δγ ≈
∂γ

∂θ
ðθpÞΔθ ¼ lγΔθ: ð25Þ

This term behaves like a white noise that only appears in
the autospectra of γpix. Therefore, we call this the number
density-induced shape noise, or density shot noise in short.
The impact of density shot noise is characterized in Fig. 10,
where we see that it impacts the small scale autopower
spectrum by about 20% near the pixel resolution scales. We
did not observe this noise in the cross-spectra. To correct
for this systematics, we first measure the power spectrum of
this density-induced shape noise term (Cdsn

ii ) directly from
mock catalogs for each redshift bin i (as shown in Fig. 10).
Then, when we generate convergence maps following
Eq. (17) (for the Gaussian model) and (18) (for the log-
normal model), we can simply change the cosmological
power spectrum Cii via

Cii → Cii þ Cdsn
ii : ð26Þ

In this way, the shear maps (γpixi ) generated by the forward
model automatically include the density shot noise. The
expression ðγobsi − γpixi ðc;xiÞÞ2=2N in Eq. (16) still accu-
rately describes the regular shape noise model and does not
require additional modification.

VI. MODEL MISSPECIFICATION

We have demonstrated that by accounting for various
analysis systematics—including aliasing, boundary effects,
mode coupling, and density-induced shape noise—we can
obtain unbiased cosmological constraints from observed
pixelized shear maps. A remaining modeling uncertainty is
the field-level prior on the convergence field. It is antici-
pated that this uncertainty could potentially induce an
absolute bias on the inferred parameters as well as affect
the uncertainty quantification. In this section, we test both
the Gaussian and the log-normal models using Gaussian,
log-normal, and Takahashi mocks.
As we have shown above, a significant difference exists

between the realistic observed shear maps and the maps
generated by the forward model (which we shall call
pipeline mocks). Previous works [8,9] have demonstrated
that it is possible to use the forward model to analyze the
pipeline mocks and correctly recover the cosmological
parameters. Here, we follow Fiedorowicz et al. [10] and
go one step further toward realism by using MIKO to analyze
the raw mocks themselves. A further feature of this analysis
is that, to the best of our knowledge, this is the first study of
its kind to extract cosmological parameters (here the Ai)
using realistic mocks and taking into account the range of
analysis systematics that must be considered for real data
analysis.

A. Impact on cosmological parameters

1. The Gaussian model

First, we run the Gaussian model on all three sets of
mocks. For each model-data pair, we perform 80 HSC-like
experiments on independent patches, utilizing analysis
systematics models recommended by Sec. V. For each
experiment, we obtain the joint posterior distribution of Ai
along with the map parameters. For instance, the constraint
on Ai for a single Takahashi patch is depicted as the red
contour in Fig. 11. The Ai’s are uncorrelated in the
Gaussian model, consistent with the findings in Zhou
and Dodelson [7]. There is considerable cosmic variance
within a 40 deg2 patch. To determine whether the pipeline
has an absolute bias on Ai, we compute hAii − 1 over
independent experiments and present the results in the top
panel of Fig. 12. The top part of the top panel shows that the
Gaussian model does not exhibit absolute bias for all
simulated datasets, regardless of whether the data is
simulated with a Gaussian model or not.

FIG. 10. The impact of number density-induced shape noise on
C is presented in terms of the fractional difference relative to
hCðκtrueÞi where the number density-induced shape noise is
removed (achieved by creating maps using ρi and γ2rms at ten
times the fiducial value). The high density case is represented in
blue, and its 1σ spread is shown in gray (as in Fig. 4). hCðκtrueÞi
calculated with fiducial values for ρi and γrms is shown in red. The
error bars denote the standard error of the mean.
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To assess the impact of model misspecification on our
uncertainty estimates, let us consider the one-dimensional
marginal posterior distribution of a particular Ai. Ideally,
x% (the observed probability) of all the experiments should
find Ai ¼ 1 contained within the x% (the expected prob-
ability) credible interval. The observed probability as a
function of the expected probability is called the P-P plot. It
is shown in the lower part of the top panel of Fig. 12, after
adjusting for mean absolute bias to concentrate on the error
bars. Perfect uncertainty prediction would align the P-P
curves with the line y ¼ x. This alignment occurs only
without model misspecification. For instance, applying the
Gaussian model to log-normal or Takahashi mocks results
in overly optimistic uncertainty estimates for all Ai values,
particularly for log-normal mocks where the truth is
included within the one standard deviation interval less
than 20% of the time. This is consistent with the obser-
vation of Boruah et al. [9], although the extent to which the
Gaussian model underestimates the uncertainty is much
more severe in our case. The bottom line is that assuming a
Gaussian prior leads to an unbiased estimate of the

cosmological parameters but a biased estimate of the errors
on those parameters.

2. The “unreasonable” effectiveness of the Gaussian
priors

Whydoes theGaussianmap prior not induce any absolute
bias on Ai when it is applied to clearly non-Gaussian fields?
The answer lies in the PDF of κ̃ in Fourier space. In Fig. 13,
we plot the PDFs of κ̃true for Gaussian, log-normal, and
Takahashi mocks at three different l values. Interestingly,
for all mocks and across all ranges of l, the PDF of κ̃true is
consistent with a Gaussian distribution. Similar phenomena
have previously been observed in three-dimensional simu-
lations, for example, by Matsubara [50] and Qin et al. [51].
Motivated by these observations, we can express the PDFs
of non-Gaussian (priorNG) and Gaussian (priorG) conver-
gence fields as follows (ignoring aliasing and other analysis
systematics for simplicity)

priorNGðκ̃Þ ¼ priorGðκ̃Þ½1þ δðκ̃Þ�: ð27Þ

FIG. 11. The joint posterior distribution of Ai inferred from a 40 deg2 Takahashi patch using the Gaussian (red) and the log-normal
(blue) models. The log-normal model employs an informative prior on ai that is jointly sampled (not shown here) with Ai. Compared to
the Gaussian model, the log-normal model exhibits larger uncertainties and a stronger correlation between the Ai’s. The contours show
the 1σ and 2σ level sets.
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In the absence of model misspecification, the likelihood
analyses should yield unbiased ANG

i , where

hANG
i i ¼

Z
dγobs

Z
dκ̃AiPðγobsjκ̃; AiÞpriorNGðκ̃Þ ð28Þ

¼
Z

dγobs
Z

dκ̃AiPðγobsjκ̃; AiÞpriorGðκ̃Þ½1þ δðκ̃Þ�

ð29Þ

¼ hAG
i i þ correction½δ� ð30Þ

Therefore, as long as the perturbation δ is small, hAG
i i ¼

hANG
i i is unbiased.
The second question pertains to why the Gaussian model

fails to predict the correct uncertainty of Ai. To address this,
we first examine the correlation between Cðl1Þ and Cðl2Þ
across the Gaussian model, the log-normal model, and the
Takahashi mocks, as illustrated in Fig. 14. As expected, the
Gaussian model assumes there is no correlation between
the power of two different l modes. Nonetheless, corre-
lations are evident in both the log-normal simulations and
the realistic Takahashi mocks. Consequently, the Gaussian

FIG. 12. The top panel displays the results of the Gaussian model applied to Gaussian, log-normal, and Takahashi mocks. Within this
panel, the first row indicates the absolute bias of Ai, averaged over 80 independent HSC-like experiments. The gray area denotes the
systematic error control target of 2%. The second row presents the P-P plot for Ai (with the mean bias subtracted), where the x-axis
denotes the expected probability (Pexp) that a credible interval contains the true Ai, and the y-axis denotes the observed probability
(Pobs). The vertical dashed line indicates Pobs ¼ 68%, and the colored horizontal lines show where the P-P curves intersect with this line.
The Gaussian model demonstrates no absolute bias irrespective of model misspecification but exhibits overconfidence in the error bars
when applied to realistic data. The bottom panel illustrates the absolute bias and the P-P plot for Ai using the log-normal model, applied
to log-normal and Takahashi mocks. For the Takahashi mocks, three scenarios are tested with the log-normal model concerning the shift
parameters: (1) fixed at values measured from noiseless true mocks (fixed ai), (2) allowed to vary within a narrow and informative range,
and (3) allowed to vary within a broad and uninformative range. The log-normal model generally yields accurate uncertainties, yet the
absolute bias is highly sensitive to the choice of ai.

ACCURATE FIELD-LEVEL WEAK LENSING INFERENCE FOR … PHYS. REV. D 110, 023539 (2024)

023539-11



model presupposes that each l mode contributes inde-
pendently, while in actuality, the different l modes are
correlated and thus provide less information than assumed.
As a result, the Gaussian model reports a smaller error bar
on the inferred power spectrum amplitude Ai, an error
analogous to assuming a larger fsky than what is true in
reality. Another perspective on this issue is provided by
examining the cosmic variance predicted by the Gaussian,
log-normal, and Takahashi maps, as shown in Fig. 15. The
Gaussian model predicts smaller cosmic variance than the

other two models across all scales, which then translates to
the narrower uncertainty bounds on the estimated power
spectrum amplitude Ai.

3. The log-normal model

The log-normal model depends on both Ai and the shift
parameter ai. We first run the log-normal model on the 44
log-normal mocks fixing ai at the truth. The pipeline
recovers the correct Ai with an absolute bias within 2%3).
We also report excellent uncertainty quantification. This
result is shown in the bottom panel of Fig. 12 (column 1).

FIG. 13. Standardized one-point PDF of κ̃ðlÞ for Gaussian, log-normal, and Takahashi mocks at three distinct l values. Across all
mocks and l values, the distribution of κ̃ðlÞ remains consistently Gaussian, which elucidates the Gaussian model’s ability to infer
cosmological parameters without absolute bias, notwithstanding model misspecification.

FIG. 14. The correlation between Cðl1Þ=hCðl1Þi and
Cðl2Þ=hCðl2Þi for Gaussian (blue), log-normal (red), and
Takahashi (gray) mocks. In this example, we have chosen l1 ¼
3340 and l2 ¼ 3370, and C to be the autopower spectrum of the
first redshift bin. The contours show the 0.3 and 0.8σ level sets.
The Gaussian model assumes no mode correlations. The log-
normal model assumes more mode correlation than the realistic
mocks.

FIG. 15. Normalized variance of the power spectrum for
Gaussian (blue), log-normal (red), and Takahashi (gray) mocks,
with C representing the autopower spectrum of the first redshift
bin. Notably, the Gaussian mocks exhibit smaller cosmic variance
relative to the Takahashi mocks, whereas the log-normal mocks
demonstrate greater cosmic variance in comparison.

3The slight positive bias is due to the deficit of large-scale
powers discussed in Sec. V D. This error can be alleviated by
using larger patches.
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Model misspecification also arises when applying the
log-normal model to the Takahashi mocks. Specifically,
since the Takahashi mocks do not adhere to a strict log-
normal distribution, as shown in Fig. 1, a definitive ground
truth for ai is absent. Previous studies have approached ai
in various ways: for instance, Alsing et al. [8] treated ai as
fixed parameters, whereas Boruah et al. [9] and
Fiedorowicz et al. [10] employed perturbation theory for
approximation. As we will show, the modeling of ai is
arguably the primary source of bias with the log-normal
model and warrants careful consideration.
In our first approach, we compute afiti by fitting the one-

point PDF to the noiseless Takahashi mocks using Eq. (7).
We then perform inference on the Takahashi mocks
assuming ai ¼ afiti . This method approximates a perfect
perturbation theory prediction for ai. The result is presented
in the bottom panel of Fig. 12 (column 2). Surprisingly,
even when using the optimally fitted afiti , the log-normal

model infers Ai with a significant negative bias. This bias is
most pronounced, reaching up to 10%, in the lowest
redshift bins where the convergence field exhibits the
highest non-Gaussianity. Consequently, we deduce that
merely employing the log-normal shift parameter that most
closely fits the PDF of the actual convergence field is not
only insufficient but also incorrect for acquiring unbiased
constraints on cosmological parameters.
In our second approach, we adopt an agnostic stance on

ai, treating it as a variable during sampling. Observing
that the likelihood analysis typically favors ai > afiti , we
implement a flat prior on ai in the range ½0.9afiti ; 1.3afiti �.
The joint posterior of Ai, as depicted in Fig. 11, reveals that
the uncertainties reported by the log-normal model are
larger—yet appear more realistic—than those by the
Gaussian model, with Ai exhibiting positive correlation.
Furthermore, the joint posterior of Ai and ai (Fig. 16)
indicates a positive correlation between them, with the

FIG. 16. The joint posterior distribution of Ai and ai, as inferred from a Takahashi patch using the log-normal model. We compare an
informative prior (red) and an uninformative prior (blue) on ai. For simplicity, only the first and the last redshift bins are shown. The
dashed lines across Ai represent Ai ¼ 1, and the dashed lines across ai represent afiti –the best-fit values from noiseless data. Three
important conclusions are (1) Ai and ai are positively correlated, (2) the log-normal model prefers ai much larger than afiti , and (3) the
informative prior truncates the distribution of ai. Therefore, when the prior is relaxed, Ai shifts to higher values. The contours show the
1σ and 2σ level sets.
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maximum likelihood estimate for ai substantially exceed-
ing afiti . This is consistent with the previous observation that
fixing ai to afiti induces a negative bias on Ai. Nonetheless,
Fig. 16 also illustrates that the prior range for ai truncates
the posterior distribution, hence we refer to this as the
informative prior model. Through 44 independent experi-
ments, we find that imposing an informative prior on ai can
significantly reduce the absolute bias on Ai to within 2%
while maintaining accurate uncertainty estimation for Ai.
The P-P curves in the bottom panel of Fig. 12 quantify the
extent to which the uncertainty estimation is accurate when
the log-normal prior is used.
Lastly, we impose a uniform and uninformative prior on

ai over the positive reals. We explicitly checks that the prior
does not truncate the posterior distribution. An example is
shown in Fig. 16. As the positive correlation between ai
and Ai suggest, this model creates a positive absolute bias
on Ai (bottom panel of Fig. 12, column 4). The bias is most
severe in the lowest redshift bin at the 4% level.
To summarize, the three choices for ai’s prior suggest

that, in order to obtain unbiased cosmological constraints
on real data using the log-normal model, we can neither use
ai directly measured from the noiseless mocks nor treat it as
a variable that is completely free. Otherwise, although we
obtain good uncertainty quantification, we risk significant
bias in cosmological parameters. The existence of the
absolute bias is not too surprising given that the log-normal
also misspecifies the field-level priors.

B. Map reconstructions

MIKO also provides the joint posterior distribution of all
the map pixels–ðκpixi Þs (the bottom diamond in the

flowchart Fig. 3), where s denotes the sample index. For
simplicity, let us focus specifically on one experiment on
the Takahashi mock, and on the reconstruction of the first
redshift bin convergence field. The results for both the
Gaussian and log-normal (informative prior) models are
summarized in Fig. 17.
Let us start with the first row. The first and second

columns depict the observed noisy shear field, γobs, and the
true convergence, κtrue, respectively. The final three col-
umns pertain exclusively to the log-normal model, illus-
trating the mean posterior map hκpixi, the standard
deviation map σ, and the signal-to-noise ratio map
(S/N). For these last three maps, we zoom in on a
1.5 deg×1.5 deg patch in the inset plots below. In these
insets, we also compare the log-normal results with those of
the Gaussian model.
Theoretically, we do not expect hκpixi to match κpix

exactly. Instead, hκpixi is roughly analogous to a Wiener-
filtered version of κpix. This filtering smooths the map on
small scales where shot noise dominates (see Zhou and
Dodelson [7] for a detailed discussion on the properties of
the posterior maps and the maps’ power spectra). Both the
Gaussian and the log-normal model recover the large-scale
features of the true convergence maps. The log-normal
model, however, resolves the density peaks much better
(insets in the second row). The adjacent histogram plot
further supports this claim—the log-normal model’s
PDFðhκpixiÞ agrees with PDFðκtrueÞ up to the highest κ
values. In contrast, the Gaussian model’s PDFðhκpixiÞ
decays much faster. On the other hand, the log-normal
model’s PDFðhκpixiÞ shows a hard cutoff in the low κ
region. The Gaussian model captures the voids much better

FIG. 17. Field-level reconstruction for the first redshift bin of a single Takahashi patch using the log-normal (with informative prior on
ai) and the Gaussian models. The first row, from left to right, are the observed noisy shear map γobs, the true convergence map κtrue, the
mean posterior map hκpixi (log-normal model), the standard deviation map σ (log-normal model), and the S/N map (log-normal model).
In the second row, the leftmost plot compares the histograms of κtrue with those of hκpixi for both Gaussian and log-normal models. The
three inset plots zoom in on 1.5 deg×1.5 deg region on the patch, contrasting the log-normal results (left) with the Gaussian results
(right).
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in comparison. This aligns with the findings of Fiedorowicz
et al. [10], who reported that the log-normal model is less
successful in reconstructing the correct void count distri-
bution at higher resolutions.
The log-normal and the Gaussian model also differ in

their prediction of the pixel-level uncertainty. (We show
the 1σ uncertainty for each pixel in the fourth column and
the comparison between the log-normal model and the
Gaussian model in the inset plots below.) The variance
predicted by the log-normal model shows a positive
correlation with the absolute pixel value, whereas the
Gaussian model predicts uniform uncertainty across all
pixels. In the rightmost column, we display the signal-to-
noise ratio (S/N). Interestingly, both models predict iden-
tical S/N for the peaks, yet the log-normal model yields a
higher S/N for the voids due to its nonuniform uncertainty
predictions.
For each κpix sample, we can compute its power

spectrum CðκpixÞ. As proved in Zhou and Dodelson [7],
in the absence of model misspecification, the distribution of
CðκpixÞ is expected to follow that of CðκtrueÞ. The distri-
bution ofCðκpixÞ for the log-normal model with informative
prior on ai is depicted in Fig. 18, where we indeed confirm
that CðκpixÞ recovers CðκtrueÞ within uncertainty.

VII. SUMMARY

We have presented a percent-level accurate field-level
cosmological analysis pipeline, MIKO, that infers the joint
posterior distribution of the cosmological parameters and
the tomographic convergence fields. We identified several
analysis systematics such as aliasing, boundary effect,
mode-coupling, and density-induced shape noise, many

of which have not been captured or modeled in previous
studies. We measured their impact on cosmological param-
eter constraints and proposed effective mitigation methods
that control the systematic uncertainty down to the 2%
level. We then explore the problem of model misspecifi-
cation (using wrong field-level priors) by testing the
Gaussian and log-normal forward models on three sets
of mock data (Gaussian, log-normal, and ray-tracing
simulations). The Gaussian model shows no absolute bias
in the Ai (the amplitude of the power spectrum in the ith

redshift bin) even with model misspecification, but yields
overconfident uncertainty on cosmological parameters. The
log-normal provides accurate uncertainty quantification,
but is sensitive to the choice of the shift parameters, ai. In
particular, the shift parameters fitted to the simulations can
incur 10% absolute bias on power spectrum amplitudes.
After accounting for analysis systematics (and calibrating
ai’s prior for the log-normal model), both models recover
Ai with an absolute bias less than 2%. Our result
demonstrates the accuracy and unbiased nature of this
field-level cosmological analysis framework, a prerequisite
for it to provide meaningful, tight cosmological parameter
constraints.
The model misspecification bias identified in this work

carries important practical implications for future research.
Given that the log-normal distribution results in prior-
dependent cosmological constraints, it is crucial to calibrate
priorðaiÞ before analyzing real data. We have demonstrated
the feasibility of constructing priorðaiÞ to infer unbiased
cosmology from mocks. Nonetheless, there is no assurance
that the same priorðaiÞ will work on real data distributions.
Future studies should examine the robustness of priorðaiÞ
across different simulations or investigate alternative one-
point distributions that both reflect the non-Gaussianity of
the field and remain unaffected by priors on nuisance
parameters. Given the similar cosmological constraining
powers derived from both the Gaussian and the log-normal
models, it currently seems more practical to utilize the
Gaussian model and calibrate the uncertainty estimates
based on independent mock datasets.
Many analysis systematics identified in this work are

applicable to general field-level inference problems involv-
ing pixelized maps. For instance, we can employ the same
aliasing correction when modeling the observed temper-
ature and polarization maps CMB at the field level.
Otherwise, we risk a positive absolute bias in the inferred
amplitude of the power spectrum. The error induced by
model misspecification is also not weak lensing-specific.
In the next step, we will implement galaxy intrinsic

alignment [32], redshift error [35], and point spread
function [52] systematics into MIKO and apply to the
HSC Year 3 data. Implementing efficient algorithms to
incorporate correlated pixel noise is also important [14].
Another direction is to leverage emulator-based models to
constrain more general cosmological parameters [53–55].

FIG. 18. Power spectra is presented in terms of the fractional
difference relative to hCðκpixÞi, where κpix are map samples
inferred from a single Takahashi patch using the log-normal
model with an informative prior on ai. The power spectrum
distribution of the sampled maps, CðκpixÞ, is depicted in orange,
while the distribution of the mock fields, CðκtrueÞ, is shown in
blue to indicate cosmic variance. The power spectrum of the true
noiseless field being inferred is shown in black. In this context, C
specifies the autopower spectrum of the first redshift bin. The
posterior samples are in agreement with κtrue at the two-point
level within the bounds of uncertainty.
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APPENDIX: CALIBRATION OF THE
TAKAHASHI SIMULATIONS’ POWER SPECTRA

The convergence and shear maps calculated from the
Takahashi simulations have a scale-dependent and redshift-
dependent bias on the two-point level when compared to
the theoretical prediction [Eq. (5)]. When we analyze the
Takahashi simulations, we need to correct our theoretical
model to match the simulation. At low redshift, the
dominating systematics is the discretization of the lens
plane. During ray tracing, the simulation assumes the light
rays are deflected by lens planes of finite thickness
ΔST ¼ 150h−1 Mpc. We therefore introduce a correction
in Eq. (5) by convolving the Pδðk; χÞ with a window
function [36]

Pδðk; χÞ ⟶ ΔST

Z
dkr
2π

Pδðk; χÞsinc2
�
krΔST

2

�
ðA1Þ

where kr is the radial wave vector. At high-l, the bias is
mostly due to the pixelization effect. This can be corrected
by [36]

CijðlÞ ⟶
CijðlÞ

1þ ðl=ð1.6 NSIDEÞÞ2 ðA2Þ

These two corrections reduce the bias below 5% for
l < 10000 as shown in orange in Fig. 19. Finally, we fit
a transfer function so that the bias falls below 1% for
l < 24000 for all redshift bins (shown in green).
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