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Different computational techniques for cosmological phase transition parameters can impact the
gravitational wave (GW) spectra predicted in a given particle physics model. To scrutinize the importance
of this effect, we perform large-scale parameter scans of the dynamical real-singlet extended Standard
Model using three perturbative approximations for the effective potential; the MS and on shell schemes at
leading order, and three-dimensional thermal effective theory (3D EFT) at next-to-leading order. While
predictions of GW amplitudes are typically unreliable in the absence of higher-order corrections, we show
that the reconstructed model parameter spaces are robust up to a few percent in uncertainty. While 3D EFT
is accurate from one-loop order, theoretical uncertainties of reconstructed model parameters, using four-
dimensional standard techniques, remain dominant over the experimental ones even for signals merely
strong enough to claim a detection by LISA.
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I. INTRODUCTION

Recent strong indication for a stochastic gravitational
wave (GW) background by pulsar timing array collabora-
tions [1–7] is a milestone in deciphering the history of
the early Universe. One of the prominent early Universe
scenarios that produce a stochastic GW background and
remains a viable source behind the recent observations is a
first-order phase transition (PT) [8–10]. The main motiva-
tion for such a signal, however, is associated with (electro-
weak) symmetry breaking which proceeds by a first-order
PT in numerous extensions beyond the Standard Model
(SM) and would lead to the production of a GW back-
ground in the mHz regime accessible to future experiments
such as the upcoming LISA [11–13].
Reliable descriptions of first-order PTs including the

nucleating bubbles, hydro- and thermodynamics require

nonperturbative analyses [14–17]. Such computations are
expensive and scans of multidimensional parameter spaces
untenable, which motivates using perturbation theory when
possible. Concerning thermodynamics, recent progress
involving high-temperature effective field theory (EFT)
[18,19] allows us to fully describe PTs that exhibit a scale
hierarchy [20]. While this description is by now state of the
art, practical applications still rely on four-dimensional
(4D), incomplete thermally resummed effective potentials
[21–24]. In this article, we quantify the theoretical uncer-
tainties remaining in perturbative computations of the PT
equilibrium thermodynamics.
Inverting a measured GW spectrum to determine the

underlying quantum theory Lagrangian is known as the
GW inverse problem [11,12,25–29]. Its theoretical chal-
lenge during the GW signal reconstruction is to discern the
most reliable approach to PT thermodynamics since pre-
dictions from different levels of computational diligence
can be ambiguous in the reconstructed parameter space
[30,31]. In fact, some approaches can even predict incon-
sistent parameter spaces [32]. Ensuring theoretical robust-
ness affects all phenomenological analyses that investigate
the impact of new states beyond the SM (BSM) during the
electroweak PT on GW signals through a perturbative
effective potential. For such BSM theories to predict a
GW signal detectable by upcoming experiments, their new
states need to be dynamical in the infrared (IR) to modify
the low-energy behavior of the SM [33,34].
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This article addresses the problem of such ambiguous
predictions by performing a large-scale scan of a minimal
BSM scalar extension with more than one light scalar in
the IR; this scan is the first to use the 3D EFT of [35,36].
In a proof-of-principle analysis, we employ different
perturbative approaches to the effective potential, to
demonstrate that the theoretical uncertainties still domi-
nate over the experimental ones by contrasting recon-
structed parameter spaces from the different approaches.
We show that in three-dimensional (3D) thermal EFT,
the perturbative series converges quickly and already at
next-to-leading order (NLO), predictions are unambigu-
ous and robust. Common but perturbatively inconsistent
4D approaches at incomplete leading-order (LO) [37]
yield errors in the reconstructed parameters of Oð1%Þ.
However, such errors would still dominate over the
experimental uncertainties on the parameters if the
signal was detected with a signal-to-noise ratio (SNR) of
SNR ≃ 10 by LISA.
Section II reviews the resummation methods used in our

analysis. Section III introduces the thermal parameters
that are used in Sec. IV to determine GW signals. After
comparing the impact of different resummation methods on
model parameter predictions and estimating sources of
theoretical uncertainty, we conclude in Sec. V.

II. COMPARING RESUMMATION METHODS

By minimally extending the SM with one neutral scalar
(xSM) [33,35–42], we discuss different levels of diligence
in computing the corresponding thermal potentials and
their influence on phenomenological predictions.
We study the Z2-symmetric potential for the xSM

V0ðΦ; SÞ ¼ μ2hΦ†Φþ λðΦ†ΦÞ2

þ 1

2
μ2sS2 þ

λs
4
S4 þ λhs

2
S2Φ†Φ; ð1Þ

where the tree-level scalar mass matrix is diagonal
and μ2h < 0 at zero temperature. The field Φ ¼
ðGþ; 1ffiffi

2
p ðvþ hþ iG0ÞÞT is the SUð2ÞL SM Higgs doublet

with vacuum expectation value (VEV) v0 ≃ 246 GeV,
S ¼ ðxþ sÞ is the gauge singlet, odd under a parity
Z2-symmetry, and G�, G are the would-be Goldstones
fields. The tree-level potential

V0ðϕÞ¼
1

2
μ2hv

2þ1

4
λv4þ1

2
μ2sx2þ

1

4
λsx4þ

1

4
λhsv2x2; ð2Þ

with ϕ ¼ ðv; xÞ depends on the homogeneous background
fields v and x. The SUð2ÞL and Uð1ÞY gauge field, would-
be Goldstone, and physical scalar eigenstate masses read,

m2
h ¼ μ2h þ 3λv2 þ 1

2
λhsx2; m2

G ¼ m2
h − 2λv2; ð3Þ

m2
s ¼ μ2s þ 3λsx2 þ

1

2
λhsv2; m2

W ¼ 1

4
g2v2; ð4Þ

m2
Z ¼ 1

4
ðg2 þ g02Þv2; ð5Þ

where g is the SUð2ÞL and g0 the Uð1ÞY gauge coupling.
All approaches employ Landau gauge (ξ ¼ 0) motivated by
the arguments in [36]. In this gauge, ghosts and scalars
decouple as well as kinetic mixing between scalar and
vector fields is removed [43]. The xSM gives rise to two-
step PTs from symmetric to singlet to vacuum Higgs
minimum viz.

ð0; 0Þ⟶step1 ð0; xÞ⟶step2 ðv0; 0Þ: ð6Þ

This article focuses on step2 as the source of GWs.
For our GW signal analysis, we list the different

approaches to construct the effective potential, Veffðϕ; TÞ,
at finite temperature. This potential is prone to collective IR
sensitivities [44] that render perturbation theory slowly
convergent and can be treated by various forms of resum-
mation. This article compares different forms of resumma-
tion bearing in mind, that a significant mismatch among
them is related to the failure of perturbation theory when
misidentifying corrections as higher order in the underlying
strict EFT power counting [20,45]. As an example, at finite
temperature the complete LO requires two-loop thermal
mass effects [37].
Such collective IR effects modify the vacuum masses

by thermal corrections. At one-loop level, the effective
masses are

μ2h;3 ¼ μ2h þ T2

�
3g2

16
þ g02

16
þ λ

2
þ y2t

4
þ λhs

24

�
; ð7Þ

μ2s;3 ¼ μ2s þ T2

�
1

4
λs þ

1

6
λhs

�
; ð8Þ

m2
D ¼ g2T2

3

�
5

2
þ Nc þ 1

4
nf

�
; ð9Þ

where nf ¼ 3 is the number of fermion families,Nc ¼ 3 the
number of colors, and yt the SM top Yukawa coupling.
Subscripts indicate that thermal corrections are an inher-
ently soft 3D effect, and mD is the SUð2ÞL Debye mass—
the thermal mass of longitudinal gauge bosons. Two-loop
corrections are obtained via [35,36,46]. In our analysis,
we adopt the power counting of [36],

μh; μs ∼ gT; λ; λs; λhs ∼ g2; yt; g0; gs ∼ g; ð10Þ

where gs is the QCD coupling.
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A. Four dimensions: MS scheme

This scheme uses dimensional regularization with μ̄ being
a MS renormalization group (RG) scale. After renormaliza-
tion, physical quantities should be μ̄-independent order
by order. In the imaginary time formalism and at one-loop
level, the effective potential, V1, consists of corrections from
the vacuum and thermal medium [22],

V1ðϕ; TÞ ¼
X
i

ni J4ðm2
i ðϕ; TÞ; TÞ; ð11Þ

J4ðm2; TÞ ¼ 1

2

XZ
P
lnðP2 þm2Þ

¼ JCWðm2Þ þ JT;BðFÞðm2Þ: ð12Þ

Here, JCW is the Coleman-Weinberg contribution [47,48]
and JT;BðFÞ the thermal bosonic (fermionic) contribution.
The sum-integral

PR
P ¼ T

P
pn

R
p contains a sum over pn

Matsubara modes,
R
p ¼ μ2ϵ

R ddp
ð2πÞd, and d ¼ 3 − 2ϵ. The

numbers of degrees of freedom, ni, are d-dependent and
positive (negative) for bosons (fermions). Since the thermal
integrals JT;BðFÞ are finite in the ultraviolet (UV), they are
evaluated directly.
Relevant parameters of the theory are RG-evolved to the

4D RG-scale μ̄ ¼ v0 at one-loop level. In this scheme,
vacuum renormalization is achieved by the renormalization
condition,

∂vV0 ¼ 0; ∂
2
vV0 ¼ M2

h; ð13Þ

where capital masses indicate pole masses, e.g. Mh is the
Higgs pole mass. For the Z2-symmetric xSMmh ¼ Mh and
ms ¼ Ms. At the electroweak (EW) scale with a minimum
at the field values ϕ ¼ ðv0; 0Þ, the zero-temperature Higgs
mass is reproduced at μ̄ ¼ v0. Higher corrections are
included by introducing an additional set of counterterms
that tune model parameters such that the tree-level vacuum
structure of Eq. (13) of the potential is preserved when
V0 → Veff . See Appendix B 1 for details. This scheme is
conventionally dubbed MS scheme [21] but not to be
confused with the original MS scheme where counterterms
only remove UV divergences; cf. Sec. II C.
Without RG improvement, the PT parameters depend on

μ̄ through higher-order effects. In practice, this dependence
appears to be small for the fixed μ̄ ¼ v0 but becomes
relevant when considering a thermal scale μ̄ ∼ T; see
Sec. IV for details. The remaining scale dependence is
related to the implicit running of the model parameters in
the thermal, effective, parameters, e.g. Eqs. (7)–(9). The
corresponding μ̄-dependent logarithms are counterfeit by
RG improvement contained in the two-loop thermal masses
of the 3D EFT [37]; cf. Sec. II C.

In all our comparisons, we report the model parameters
at the input scale, the Z-boson mass, MZ, such that in all
plots below e.g. λhs ¼ λhsðμ̄ ¼ MZÞ.

B. Four dimensions: On shell scheme

The on shell scheme [49,50] computes the one-loop
vacuum correction of the effective potential (11) by
installing a cutoff regularization for the radial integration
with a UV cutoff, Λ. The potential then directly depends
on Λ via [51]

JCWðm2;ΛÞ ¼ 1

2

Z
Λ

P
lnðP2 þm2Þ; ð14Þ

where
R
P ¼ R

d4P
ð2πÞ4 and UV divergences are regulated via

counterterms. The tree-level VEV and mass eigenstates
from Eq. (13) are preserved at one-loop level by imposing
for scalar masses to not change with respect to their tree-
level values. This is achieved by relating Λ2 → m2

0i, where
m0i is the mass of particle i at the EW vacuum. As typically
done in this simple approximation, we ignore the running
of all coupling constants.
In both the on shell and MS scheme (cf. Sec. II A), we

implement IR resummation by the truncated full dressing
approach [52,53]. This procedure replaces the vacuum by
one-loop thermally corrected masses in the tree-level field-
dependent masses as m2

i → m2
i;3 ¼ m2

i jμi→μi;3
.

C. Dimensional reduction and 3D EFT expansion

The finite-temperature scale hierarchy separates hard,
soft, and ultrasoft scales, viz.

πT ≫ gT ≫ g2T; ð15Þ

and the dynamics of the PTs is driven by IR effects. By
recasting theories in the EFT picture of dimensional
reduction [18,19,54], it becomes evident that for modes
that are deeper in the IR, the perturbative series converges
increasingly slowly [44]. This is the case for transitioning
Lorentz scalars, such as the Higgs or the light singlet scalar
of the xSM. The validity of perturbation theory can then
be extended by integrating out heavy degrees of freedom
which eliminates hierarchy-induced large logarithms via
RG equations. The final theory is the 3D bosonic IR sector
of the parent theory.
This theory, the softer 3D EFT, is structurally identical

to the conventional ultrasoft EFT [54] but is valid for
transitions between the soft and ultrasoft scale, gT ≫
jpj ≫ g2T, where mD ≫ mA ∼mϕ. Here, mA are the
spatial gauge boson and mD the Debye masses. After
dimensional reduction, we utilize the effective potential
up to two-loop order with NLO matching of the 3D EFT.
Here, LO (NLO) matching refers to the matching of one-
loop (two-loop) thermal masses and tree-level (one-loop)
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couplings. This EFT construction is obtained by in-house
FORM [55] software, by DRalgo [46,56], and by previous
calculations of the EFT [35,36].1 All barred and subscripted
quantities are understood in the 3D EFT (e.g., μh → μ̄h;3)
with ϕ̄ ∼ ϕT−1

2.
Up to two-loop order, the 3D effective potential is

Veff;3 ¼ V0;3 þ V1;3 þ V2;3; ð16Þ

V1;3 ¼
X
i

niJ3ðm̄2
i ðϕ; TÞÞ; ð17Þ

where d ¼ 3 − 2ϵ, V0;3ðϕ; TÞ is the three-dimensional
version of the tree-level potential (2) [36], and the degrees
of freedom, ni, are d-dependent. The corresponding mass
eigenvalues m̄i of the dynamical fields i∈ fW;Z;G; h; sg
in the 3D EFT take the same structure as for Eqs. (3)–(5).
At one-loop level, in V1;3, the integrals are UV-finite and
three-dimensional,

J3ðm2Þ ¼ 1

2

Z
p
lnðp2 þm2Þ ¼d¼3−2ϵ −

1

12π
½m2�32: ð18Þ

The two-loop contributions, V2;3, to the potential (16),
as well as the two-loop 3D EFT matching relations are
directly adopted from [36] and can also be taken from
DRalgo [46]. The parameters of this final 3D EFT are
evolved to the 3D RG scale, μ̄3D, which is set to μ̄3D ¼ T
in our analysis below.
Due to the Z2-symmetry of the potential (1) in the xSM,

a tree-level barrier appears to be absent even at the softer
scale in general. If this potential gives rise to a first-order
transition, then the perturbative expansion is expected
to converge slower since the expansion around the mini-
mum receives radiative corrections already at LO. As a
result, the effective potential exhibits known pathologies
such as imaginary parts [57], IR divergences related to
Goldstone modes [20,30,58], as well as gauge dependence
[59].2 In perturbation theory, such pathologies can be
consistently treated in a strict EFT expansion [20,60,61].
In a practical approach to the problem, we focus on a

direct minimization at the softer scale [30],3 and on two-
step transitions of the form Eq. (6); see Refs. [62,63] for
nonperturbative analyses. For light singlet scalar masses
and since perturbatively the barrier vanishes in singlet-
direction, we assume for step1 in Eq. (6) to be of second
order [62]. Then the second transition step, step2 in
Eq. (6), again features a tree-level barrier through a

spontaneously broken Z2-symmetry [36,37] where hSi ≠ 0.
Consequently, the transition is rendered strong with the
advantage of avoiding difficulties related to radiatively
induced transitions at the softer scale [37].
Since the 3D EFT is constructed in the high-temperature

expansion m=T ≪ 1, we inspect only temperature regions
where the high-temperature assumption holds and effects of
the scalar masses are small compared to the temperature.
Especially, by retaining explicit terms of J3ðm2

X0
Þ in a soft-

scale EFT for (adjoint) temporal scalars X0 ∈ fA0; B0; C0g,
we confirm that m2

D ≫ h3v2 effects are small for our
analysis at the softer-scale EFT. Here, h3 is the coupling
between Lorentz and temporal scalars X0 [20,54,64]. Given
the maximal ratio ϕ=T ∼Oð1Þ we encountered, and after
both expanding and explicitly keeping J3-functions, we
identify soft effects to modify the predicted parameter
space of Sec. IV by Oð0.1%Þ. This analysis is reported in a
second xSM scan in Appendix D.
For the 3D EFT, we relate MS- with physical parameters

using the one-loop improved vacuum renormalization of
Appendix B 2 and [36]. This procedure has the advantage,
that the minimization condition (13) is only needed at tree-
level and momentum corrections are consistently included.
Corrections to the tree-level relations are then contained in
vacuum pole mass renormalization at higher orders.

III. FIRST-ORDER PHASE TRANSITIONS

Cosmological first-order PTs occur via nucleating true-
vacuum bubbles which expand in a space filled with false
vacuum. At finite temperature, the probability per unit time
and volume of jumping from a metastable to a state of lower
energy, has the semiclassical approximation [65–69]

ΓðTÞ ¼ Adyn × Astate−S3=T; ð19Þ

where the prefactor factorizes into Adyn, a dynamical and
Astat, a statistical contribution at all orders [70]. Focusing
only on equilibrium thermodynamic contributions, we use
the standard approximation [67,68],

Astat ≈ T3

�
S3
2πT

�3
2

; Adyn ≈ T; ð20Þ

which suppresses effects of inhomogeneous contributions
to the functional determinant of the fluctuation operator
of Astat. Such effects are formally of higher order but can
dominate the exponent [30,71,72] in extreme cases.
We justify the choice in Eq. (20) since the absence of
both higher-order effects and a self-consistent bounce
solution [73] are systematic errors to all schemes of
Sec. II. The Euclidean action, S3, of the critical bubble
or bounce for Oð3Þ-symmetric thermal systems, is then
computed atOðℏ1Þ for the one-loop andOðℏ2Þ for the two-
loop softer EFT, bearing in mind that this systematically

1The updated [36], installs the correct scaling x3 ∼ x03 ∼
ffiffiffiffi
T

p
.

2For the potential, we verified that gauge dependence is a
minor effect compared to incomplete resummation.

3Taking the absolute magnitude of the squared masses or
omitting the imaginary part of the potential differs numerically.
In practice, we discard the imaginary part if numerically ImVeff <
ReVeff at the minima [21].
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discards real-time physics encoded in Adyn and field-
dependent gradient terms in the effective action; see
Ref. [74] for out-of-equilibrium effects and [72,75,76]
for approaches using nucleation EFT.
From the rate (19), we compute the temperature scales

of the transition. At the nucleation temperature, Tn, the
tunneling rate per horizon volume becomes relevant4

Z
tn

tc

dt
ΓðtÞ
HðtÞ3 ¼

Z
Tc

Tn

dT
ΓðTÞ
HðtÞ4T ¼ 1: ð21Þ

The integration is bounded by the critical temperature, Tc,
where the two-phase minima become degenerate.
Conversely, tc and tn are the times related to Tc and Tn,
respectively. The Hubble rate is defined as

H2ðTÞ ¼ ρtot
3M2

Pl

; ρtot ¼ ρr þ ΔVeffðTÞ; ð22Þ

with MPl ¼ 2.4 × 1018 GeV the reduced Planck mass,
ρr ¼ π2

30
g�ðTÞT4 the radiation energy density of relativistic

species, and g�ðTÞ the number of radiative degrees of
freedom [77]. Differences between the metastable (þ)
and stable (−) phase are henceforth denoted as ΔX ¼
XðþÞ − Xð−Þ for e.g. X ¼ Veff .
To estimate the time of bubble collisions, we employ the

percolation temperature Tp. It is defined by requiring the
probability, that a point in space remains in the false
vacuum, to be PðTpÞ ¼ e−IðTpÞ ≃ 71% [78]:

IðTpÞ ¼
4π

3

Z
Tc

Tp

dT 0 ΓðT 0Þ
HðT 0Þ

rðT; T 0Þ3
T 04 ¼ 0.34: ð23Þ

The comoving radius of a bubble nucleated at time t0 and
propagated until t with velocity vw is rðt; t0Þ ¼ R

t
t0 dt̃

vwðt̃Þ
aðt̃Þ ,

and we require a shrinking volume in the false vacuum, viz.
dIðTÞ
d lnT < −3. After the PT, the false vacuum energy is
retransferred to the thermal bath that is reheated to
T� ¼ Tp½1þ αðTpÞ�1=4 [78]. The strength of a cosmologi-
cal PT [12,79] and its inverse time duration are approxi-
mated as

α≡ 1

ρr

�
ΔVeff −

1

4

dΔVeff

d lnT

�����
T¼Tp

; ð24Þ

β

H
≡ d

d lnT

�
S3
T

�����
T¼Tp

: ð25Þ

The trace of the energy-momentum tensor for α is taken
in the relativistic plasma limit and in practice receives
further corrections if the speed of sound differs from
c2s ¼ 1=3 [80,81]. When using the 3D approach, in both
Eqs. (24) and (25) one can naturally use the 3D potential,
viz. Veff;4 ≃ TVeff;3.
The thermodynamic parameters required to compute the

GW spectra are T�, αðTpÞ, βðTpÞ, the speed of sound cs and
the bubble wall velocity vw. The latter is particularly
challenging to compute as it requires an out-of-equilibrium
computation [82–96]. It has been shown [91,97] that
whenever the properties of the wall can be extracted with
the semiclassical approximation [85,86], the associated GW
signals are too weak to be observed by the future experi-
ments. For very strong transitions with α ≈ 0.1, the semi-
classical approximation fails and the bubbles are expected to
run away with ultrarelativistic velocities. Since we are
interested in strong transitions that allow for a reasonable
reconstruction, we henceforth assume vw ¼ 1; see Ref. [94]
for a more careful evaluation of vw in the xSM.
To obtain the thermodynamic parameters, we use a

modified version of CosmoTransitions [98] that takes as an
input the effective potential Veffðϕ; TÞ for the different
schemes.5

IV. IMPACT ON THE GW SIGNALS

By focussing on two-step transitions (6), from symmetric
to singlet to vacuum Higgs minimum, we inspect GWs
sourced by sound waves in the plasma [11,12]. Transitions
in the xSM are never significantly supercooled [78] and we
can refrain from including GWs sourced by relativistic fluid
motion or bubble collisions [100–104]. For them to be
relevant much stronger transitions are required. We neglect
possible contributions from turbulence [12] since despite
significant progress to understand that source [105–107],
its overall amplitude remains uncertain. The spectrum
produced by sound waves in the plasma also evolved in
recent years [108–113], predicting a modified spectral
shape depending on the wall velocity. In the xSM, sound
wave modifications are less important since mostly tran-
sitions with vw ≈ 1 predict observable signals [91,97,114].
Thus, we can use the results of lattice simulations for the
shape of the signal [79,115,116].
The sound wave spectrum, its shape, and peak frequency

can be expressed as

ΩGWðfÞh2 ¼ 4.13 × 10−7ðR�H�Þ
�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2τswH�

p
�

×

�
κswα

1þ α

�
2
�
100

g�

�1
3

SswðfÞ; ð26Þ

4To convert temporal to temperature integration aðTÞ ¼ 1=T,
dt ¼ −aðTÞ=HðTÞdT, and aðtÞ is the Friedmann-Lemaître-
Robertson-Walker metric scale factor.

5Our PYTHON software DRansitions [99] implements
a generic potential in the softer 3D EFT of the xSM using
DRalgo [46,56].
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SswðfÞ ¼
�
f
fp

�
3
�
4

7
þ 3

7

�
f
fp

�
2
�
−7
2

; ð27Þ

fp ¼ fsw ¼ 2.6 × 10−5 HzðR�H�Þ−1

×

�
T�

100 GeV

��
g�
100

�1
6

; ð28Þ

with efficiency factor κsw. The average bubble radius
normalized to the horizon size reads [12],

H�R� ≈ ð8πÞ13 maxfvw; csg
�
β

H

�
−1
; ð29Þ

where for strong transitions vw > cs. The sound wave
period normalized to the Hubble rate is approximated
as [34,78,79,100,117]

τswH� ¼
H�R�
Ūf

; Ūf ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

α

1þ α
κsw

r
; ð30Þ

with the root-mean-square of the fluid velocity Ūf.
To predict the experimental accessibility of the xSM, we

scan a large section of its parameter space by varying6

λhs ∈ ½0.1; 1.2�, mh
2
< ms < 130 GeV, and λs ∈ f0.1; 1.0g.

We restrict the physical masses mh and ms from Eq. (4) for
both scalars to be dynamical in the IR. Figure 1 shows the
predicted GW abundance as a function of the scalar mass
and Higgs-scalar coupling for fixed scalar self-coupling
λs ¼ 1.7 The different regions are obtained by computing
the xSM effective potential in the MS scheme, the on shell
scheme and the 3D EFT.
For the 3D EFT approach, the EFT is constructed via

dimensional reduction at LO (3D@LO) and NLO
(3D@NLO) while the 3D effective potential is computed
at one- (Veff@LO) and two-loop (Veff@NLO) levels;
see Table I for nomenclature. The minimal approach
using (3D@NLO Veff@LO) was proposed in [126]. The
RG-scale is fixed to μ̄ ¼ v0 for the MS scheme and μ̄ ¼ T̄
for the 3D EFT where T̄ ¼ 4πe−γT and γ is the Euler-
Mascheroni constant. The 3D EFT RG scale is set to
μ̄3D ¼ T.

The (3D@NLO) methods are the most stable and their
predictions change little when using NLO corrections to the
effective potential. Since the MS scheme and the (3D@LO)
results are identical in the high-temperature limit, their
results are naturally closest with the difference rooted
in using the conventional scale μ̄ ¼ v0 in the MS scheme
instead of a scale more natural to a thermal transition
μ̄ ¼ T̄. Finally, the relatively large differences in signal
amplitudes, ΩGWh2, between the various methods convert
to relatively small differences of the corresponding model
parameters. Predictions of ðms; λhsÞ amount to uncertainties
of at most 10% in extreme cases. However, the parameter
space predicting a strong two-step transition is often narrow

FIG. 1. Regions in the xSM parameter space predicting GW
abundances above ΩGWh2 ¼ 10−11 (solid) and ΩGWh2 ¼ 10−12

(dashed) for two-step transitions where only the second step
sources a strong first-order PT. Results are displayed as functions
of the physical broken phase mass ms and portal coupling λhs at
fixed scalar self coupling λs ¼ 1. The input scale μ̄ ¼ MZ. The
effective potential was computed in the on shell (blue), and MS
(orange) schemes at one-loop, and the 3D EFT at LO using one-
loop potential (green) and NLO using both one- (red) and two-
loop (purple) effective potentials with 4D RG-scales μ̄ ¼ v0 for
MS- and μ̄ ¼ T̄ ¼ 4πe−γT for 3D approaches. In regions
above each respective area, the EW minimum and the initial
one become degenerate and percolation fails. For even larger λhs,
the EW minimum is not global at zero temperature. Such models
are excluded.

TABLE I. Different levels of diligence in the 3D EFT approach
for different orders of EFT matching using high-temperature
dimensional reduction and loop orders of the effective potential
Veff . The MS-approach is identical to (3D@LO Veff@LO) at high
temperatures.

EFT matching 1-loop Veff 2-loop Veff

LO 3D@LO Veff@LO
NLO 3D@NLO Veff@LO 3D@NLO Veff@NLO

6In the simplest Z2-symmetric incarnation of the xSM, direct
detection experiments exclude most of the parameter space due to
an overabundance of the scalar dark matter (DM) [118] while the
transition parameters might be modified due to the presence of
domain walls [119–122]. To evade these issues, we assume
minimal modifications; new particles in the dark sector destabi-
lize the scalar DM [123,124] and a small Z2-breaking term
erases the domain walls [125]. Neither of these would impact our
main results.

7Varying λs shifts the observable parameter space, since for
different λs, the hyperplane in the ðms; λhs; λs;fixedÞ-space changes
(cf. Appendix C). The main results remain unchanged.
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and shifts of a few percent can become qualitatively
important. They can even change the nature of the
transition entirely.
To inspect the impact of resummation methods of the

potential on reconstructing sources behind future observed
signals with LISA [111,127–129], we perform Fisher
matrix analyses [130]. The matrix elements for the two
spectral parameters, the peak amplitude and frequency,
θi ∈ fΩsw; fswg, read

Γij ¼ T
Z

df
ΩtotðfÞ2

∂ΩtotðfÞ
∂θi

∂ΩtotðfÞ
∂θj

; ð31Þ

where the mission operation time T ¼ 4 yr and the
variance of parameters σ2i ¼ Γ−1

ii . By including only the
instrumental noise (see e.g. [127])

ΩtotðfÞ ¼ ΩGWðfÞ þ ΩinstrðfÞ; ð32Þ

we neglect astrophysical noise sources of binary white
dwarfs [131,132] and the black hole population currently
probed by LIGO-Virgo-KAGRA [133]. Including the
latter would effectively reduce the sensitivity of the
experiment such that a stronger spectrum would be
necessary to reproduce benchmarks with the same rela-
tive uncertainty on the parameters of the spectrum. Our
results would otherwise remain unchanged. The Fisher
matrix approach we follow, is a simplification and a
more accurate reconstruction would require a Markov
Chain Monte Carlo fit. However, the methods will
agree provided the errors on the reconstruction are
smaller than about 10% which is exactly the accuracy
we find in our benchmark. For details on the state-of-the-
art reconstruction of phase transition parameters with
LISA see Ref. [24], which also provides a comparison of
the two methods and a discussion of the exact impact of
the inclusion of foregrounds.8

As a representative benchmark point, we chose a spec-
trum with the abundance ΩGWh2 ¼ 5.2� 0.7 × 10−13 and
peak frequency fp ¼ 2.4� 0.4 × 10−3 Hz. The signal-to-
noise ratio observed by LISA would be SNR ¼ 10 and
render it one of the weakest signals where one can claim a
detection. Figure 2 shows the reconstructed parameter
space based on the various methods used for computing
the transition parameters. While (3D@NLO) predictions
converge at 2σ confidence limit (C.L.), the differences
between 4D and (3D@NLO) predictions do not overlap at
2σ C.L. Such a discrepancy indicates that theoretical
uncertainties in the computation of the potential are at
least of the same order as those stemming from the
reconstruction of the GW spectrum with LISA. For all
stronger and more easily observable spectra, the error from

the experimental reconstruction would be smaller indicat-
ing that theoretical errors in thermodynamic computations
of the potential would be the main source of uncertainty in
all observable spectra. Hence, state-of-the-art methods
(cf. e.g. [20,30,46,74,135]) need to be used to improve
our determination of the parameter space of the underlying
model any further in the future.
Another factor in carefully estimating theoretical uncer-

tainty is renormalization scale dependence. Since pertur-
bative approximations of the effective potential generally
depend on the employed 4D RG-scale, its variation can
impact the predicted parameter space of GW signals
detectable by LISA [30,37]. Such RG-scale variation serves
a proxy for quantifying the importance of absent higher-
order corrections. At finite temperature, the potential is
scale-dependent atOðg4T2Þ through the implicit running of
the thermal parameters Eqs. (7)–(9) [37].
Both 4D methods, the on shell scheme and the MS

scheme at μ̄ ∼ v0, effectively fix the scale and therefore lack
an estimate of their theoretical uncertainty. Their nearly
scale-invariant reconstructed parameter spaces should not
be mistaken for theoretical robustness. First, the on shell
scheme does not exhibit an explicit RG-scale dependence
since divergent integrals are regulated by a UV cutoff.
Since the cutoff is fixed at the pole masses of the respective
particles, phenomenological predictions are manifestly
μ̄-independent. This does not indicate the inclusion of
higher-order corrections that are theoretically relevant. At
the same time dimensional regularization has the advantage
of being manifestly Lorentz invariant which is absent in

FIG. 2. Parameter reconstruction with LISA of the benchmark
point spectrum defined by abundance ΩGWh2 ¼ 5.2 × 10−13 and
peak frequency fp ¼ 2.4 × 10−3 Hz. Using Fisher analysis, we
estimate the error associated with the reconstruction and indicate
uncertainties with central values at 1σ (68%, solid) and 2σ (95%,
dashed) confidence levels (CL). As in Fig. 1, the colored regions
indicate the method of resummation. With SNR ¼ 10, the chosen
benchmark corresponds to a barely detectable signal.

8The reconstruction also proves robust under a more general
noise model for LISA [134].
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cutoff regularization. Second, the MS scheme at μ̄ ∼ v0,
uses a nonthermal RG scale which renders it almost
insensitive to RG-scale variation. We explicitly verified,
that the remaining μ̄-variation via μ̄∈ f1=2; 1; 2g × v0
results in a Oð0.1%Þ shift of the parameter space.
To estimate the relevance of higher-order contributions,

however, we focus on the 3D EFT since it also contains
the MS scheme via (3D@LO Veff@LO), and impose two
different values of the 4D RG-scale

3DEFT∶ μ̄ ¼ f1=2; 4e−γg × πT; ð33Þ

where T̄ ¼ 4πe−γT is the weighted sum of a nonzero
bosonic Matsubara frequency that arise within logarithms
at one-loop order. By varying also the 3D RG scale, μ̄3D, we
observed a minuscule effect on the thermodynamic param-
eters well dominated by the 4D RG scale. See also Ref. [37]
for a similar discussion.
Using the 3D EFT approach, we restrict ourselves to a

comparison between (3D@LO Veff@LO) and (3D@NLO
Veff@LO), i.e. the one-loop effective potential with LO
(NLO) dimensional reduction. The reconstructed parameter
space predicting the GWabundanceΩGW > 10−12 is shown
in Fig. 3. For the parts of the parameter space where these
regions coincide, we show the ratio between the predicted
GW amplitudes,

ΔΩGW ¼ ΩGWðμ̄ ¼ 1
2
πTÞ

ΩGWðμ̄ ¼ T̄Þ : ð34Þ

The observable parameter space for the (3D@LO
Veff@LO) potential in the 3D EFT, is shifted by Oð1%Þ

depending on the singlet mass ms and exhibits deviations
up to ΔΩGW ∼Oð103Þ as previously predicted [30,37].
This is identical for the MS scheme at high temperatures.
The observed scale-dependence also increases logarith-
mically with ms through the implicit running of the
thermal parameters. Predictions from the (3D@NLO
Veff@LO) potential, remain mostly insensitive under
the RG-scale variation. They are more robust and the
μ̄-variation of Eq. (33) changes the amplitude by at most
ΔΩGW ≲Oð102Þ. As expected, utilizing two-loop thermal
masses, shifts the μ̄-dependence to higher orders [37] due
to parametric scale cancellation. This is true already at the
one-loop level for Veff [126].
Notably, large variations of the predicted signal corre-

spond to shifts at the Oð1%Þ level in the reconstructed
values of the parameters. We summarize our findings as
follows:

(i) In the MS scheme (3D@LO Veff@LO), the param-
eter space is displaced by Oð1%Þ when varying the
RG-scale μ̄;

(ii) The on shell scheme does not involve running
of couplings such that parameter spaces are fixed
and implicitly affected by missing higher-order
corrections;

(iii) In the 3D EFT, (3D@NLO Veff@LO), the parameter
space is displaced by Oð0.1%Þ when varying four-
dimensional RG-scale μ̄.

Theoretical uncertainty is also intrinsically linked with
residual gauge dependence [30]. In all approaches of
Sec. II, gauge dependence would only affect the effective
potential since the matching relations up to (3D@NLO) are
gauge invariant. Studying the dependence of our results
on different gauges [43] other than Landau gauge is
deferred to future work; cf. [32] for such a study for the

FIG. 3. Regions in the xSM parameter space predicting GW abundances ΩGW > 10−12 computed at LO (left) and NLO (right) in
dimensional reduction. To quantify the scale dependence of each method in both panels, we show results at the 4D RG scales
μ̄ ¼ f1

2
πT; T̄g. The ratio (34) of the resulting GW amplitudes at these scales is indicated by the heat map with ratios up to

ΔΩGW ∼Oð103Þ.
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thermodynamics in 4D approaches. Focusing on ξ ¼ 0 is
justifiable, since gauge dependence affects all stages of our
computation in a similar manner and can therefore be
treated as a systematic error of our analysis. Additionally,
we expect that strong transitions in the xSM are dominated
by the residual RG-scale dependence [136].

V. CONCLUSIONS

This article compares methods of thermal resummation
between the state-of-the-art 3D EFT and the 4D daisy
resummed potentials in cosmological PTs realized in the
simplest SM extension featuring a neutral scalar, the
xSM. We confirm that the amplitude of the predicted GW
signal can change between the methods by many orders
of magnitude. Conversely, we report that this theoretical
uncertainty corresponds to a small shift of Oð1%Þ for the
model parameters needed to realize the signal. Despite
the relatively small shifts, we find that for any signal
visible to LISA, these theoretical uncertainties would
exceed the experimental ones assuming a SNR ≃ 10
threshold corresponding to an observation. For stronger
signals, where experimental uncertainties would be sig-
nificantly reduced, a further theoretical effort is inevitable
to obtain more information on the underlying model
Lagrangian.
The perturbative expansion of state-of-the-art high-

precision 3D EFT approaches quickly converges with
the loop order. We show that once two-loop thermal
resummation (3D@NLO) is included, the predicted
parameter spaces become robust. Higher orders in
Matsubara zero-mode loops are compatible with leading
orders, thus forming the most promising route towards
robust predictions. For radiatively induced transitions,
higher orders of the 3D effective potential become
relevant again [36].
The differences between the perturbative approaches

can be traced back to missing higher-order corrections
to the effective potential in a strict EFT expansion [20].
The most severe deficiency is therefore imprinted on the
4D on shell and MS approaches, which lack higher-order
contributions in thermal resummation. A similar analysis
concerning residual gauge dependence is kept for
future work.
However, all approaches suffer from IR sensitivities

from the soft scale if the true transition is radiatively
induced at the softer scale. Then further degrees of
freedom such as spatial gauge fields need to be integrated
out to ensure a tree-level barrier at the softer-scale EFT.
This leads to a much more pronounced uncertainty in
classically scale-invariant models where the symmetry is
broken radiatively [64]. Since we focus on transitions that
are barrier-inducing at the softer scale, the impact of
thermal resummation can be analyzed without further

resummation in the 3D EFT [20]. Otherwise, there would
be a systematic error present from soft scale resummation
in the proof-of-principle analysis of this article. While
recent advancements in the bubble nucleation rate [70,72]
warrant to investigate the impact of these improvements,
multifield tunneling at the nucleation scale EFT [74] and
higher-order corrections to the nucleation rate [71]
remain theoretical and practical challenges.
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APPENDIX A: RENORMALIZATION GROUP
EVOLUTION

This section discusses the technical details for vacuum
renormalization and further determining the robustness of
the thermal effective potential for the various approaches
discussed in Sec. II.
Following [36,41,137] after proper rescaling of our

parameters and with t ¼ log μ̄2, the one-loop RG equations
are given by

∂tg21 ¼
g41

ð4πÞ2
�
1

6
þ 20

9
nf

�
; ðA1Þ

∂tg22 ¼
g42

ð4πÞ2
�
−
43

6
þ 4

3
nf

�
; ðA2Þ

∂tg23 ¼
g43

ð4πÞ2
�
−
11Nc

3
þ 4nf

3

�
; ðA3Þ

∂ty2t ¼
y2t

ð4πÞ2
�
2Ncþ3

2
y2t −6CFg23−

9

4
g22−

17

12
g21

�
; ðA4Þ
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∂tλ ¼
1

ð4πÞ2
�
12λ2 þ λ2hs

4
− λ

3

2
ð3g22 þ g21Þ þ

3

16
g41 þ

3

8
g22g

2
1

þ 9

16
g42 − Ncy4t þ 2Ncy2t λ

�
; ðA5Þ

∂tλhs ¼
λhs

ð4πÞ2
�
2λhs þ 3λs −

3

4
ð3g22 þ g21Þ þ Ncy2t þ 6λ

�
;

ðA6Þ

∂tλs ¼
1

ð4πÞ2 ðλ
2
hs þ 9λ2sÞ; ðA7Þ

∂tμ
2
h ¼

1

ð4πÞ2
�
μ2h

�
6λþ Ncy2t −

9

4
g22 −

3

4
g21

�
þ 1

2
λhsμ

2
s

�
;

ðA8Þ

∂tμ
2
s ¼

1

ð4πÞ2 ð2μ
2
hλhs þ 3μ2sλsÞ; ðA9Þ

∂tv ¼ 1

ð4πÞ2
1

2

�
Ncy2t −

9

4
g22 −

3

4
g21

�
; ðA10Þ

∂tx ¼ 0; ðA11Þ

where gi for i ¼ 1;…; 3 are the Uð1ÞY, SUð2ÞL, SUð3Þc
gauge couplings, respectively. Here, yt is the top Yukawa
coupling, μ2h < 0, nf ¼ 3 the number of fermion families,
Nc ¼ 3 the number of colors, and γv ¼ ∂tv the Higgs and
γx ¼ ∂tx singlet anomalous dimension.
In all our analyses, the input scale is μ̄ ¼ MZ and as

initial conditions, we impose

g1ðMZÞ ¼ 0.344; g2ðMZÞ ¼ 0.64;

g3ðMZÞ ¼ 1.22; ytðMZÞ ¼ 1; ðA12Þ

using the physically observed masses, the pole masses, at
their numerical values [138]

ðMt;MW;MZ;MhÞ
¼ ð172.69; 80.377; 91.1876; 125.25Þ GeV: ðA13Þ

APPENDIX B: RELATING MS PARAMETERS
TO PHYSICAL OBSERVABLES

During our analysis, we employed two different proce-
dures for vacuum renormalization.

1. Vacuum renormalization through counterterms

For the vacuum renormalization in the 4D MS scheme,
the initial conditions for the parameters λ, μ2h, and μ2s are
obtained by requiring the tree-level potential, V0, to have a

minimum at the electroweak vacuum ϕ ¼ ðv0; 0Þ and to
yield the correct mass eigenvalues. These requirements,
give rise to the conditions,

∂V0

∂ϕi

����ϕ¼ðv0ξðv0Þ;0Þ
μ̄¼v0

¼ 0; ðB1Þ

∂
2V0

∂ϕ2
i

����ϕ¼ðv0ξðv0Þ;0Þ
μ̄¼v0

¼ M2
i ; ðB2Þ

where Mi are the pole masses with ϕi ¼ v, x, and the
off-diagonal Hessian derivative vanishes trivially when the
Z2-symmetry remains unbroken. The minimization con-
ditions thus read,

μ2hðv0Þ ¼ −
1

2

M2
h

ξðv0Þ2
; ðB3Þ

μ2sðv0Þ ¼ M2
s −

1

2
λhsðv0Þv20ξðv0Þ2; ðB4Þ

λðv0Þ ¼
1

2

M2
h

v20ξðv0Þ4
; ðB5Þ

where

ξðμ̄Þ ¼ exp

�Z
logðM2

ZÞ

logðμ̄2Þ
dt γvðtÞ

�
; ðB6Þ

encodes the solution of the Higgs field RG equation,
vðμ̄Þ ¼ ξðμ̄Þv. Since we fix Mh ¼ 125.25 GeV and
v0 ≃ 246 GeV, the only free parameters are the singlet
mass ms, its quartic self-interaction λs and the Higgs portal
coupling λhs which we fix at the input scale MZ.
At one-loop level, this procedure ensures that the

minimization conditions of Eqs. (B1) and (B2) are fulfilled
for V0 → Veff. By introducing counterterms [21], the model
parameters μ2h, μ

2
s , and λ are tuned accordingly and yield

one-loop improvements to the relations (B3)–(B5). The
counterterm potential has the following form:

VCT ¼ δμ2h
2

v2 þ δμ2s
2

x2 þ δλ

4
v4; ðB7Þ

where

δμ2h ¼ −
�
3

2

1

v0ξðv0Þ
∂v −

1

2
∂
2
v

�
VCW

����ϕ¼ðv0ξðv0Þ;0Þ
μ̄¼v0

;

δλ ¼ 1

2v30ξðv0Þ3
ð∂v − v0ξðv0Þ∂2vÞVCW

����ϕ¼ðv0ξðv0Þ;0Þ
μ̄¼v0

;

δμ2s ¼ −∂2xVCWjϕ¼ðv0ξðv0Þ;0Þ
μ̄¼v0

; ðB8Þ
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are obtained by the renormalization conditions and
VCWðϕÞ ¼

P
i niJCWðm2

i ðϕÞÞ is the vacuum contribution
in Eq. (11) or the Coleman-Weinberg potential.

2. One-loop corrected vacuum renormalization

In the 3D EFT, we use one-loop corrected vacuum values
for the above couplings, as described in Appendix A of [36]
and [54]. The xSM model parameters are fixed by the
following physical scheme:
In: Parameters Ms; λs; λhs, and pole masses at numerical

values Eq. (A13).
(i) Minimize the scalar potential at tree level

[cf. Eq. (B1)], with hSi ¼ 0 to determine the Higgs
VEV;

(ii) Solve the renormalized parameters at MS-scale
μ̄ ¼ MZ from the one-loop corrected relations [54]
(see Ref. [36] for the xSM, [30] for the SM, and
[139] for the two Higgs doublet model);

(iii) Run the parameters to the matching scale μ̄ ¼ XT
using one-loop β-functions (A1)–(A9). Here, X is a
constant typically varied to quantify the importance
of higher-order corrections.

Out: MS-parameters as function of physical parameters
and T.
By relating pole masses to physical two-point functions,

this scheme ensures that higher-order corrections in the
renormalization conditions are included and the momentum
dependence of the pole masses is respected.
The effective potential is not a physical quantity and

is independent of momentum. Momentum dependence
is necessary to physically fix the pole mass. Since
we evaluate the vacuum renormalization at MZ,
Appendix B 1 (cf. [30]) is a naive approximation of
the prescription in Appendix B 2 and reproduces the
renormalization condition of the Higgs sector. To also
relate parameters beyond μh and λ to physical observ-
ables, the full one-loop corrected vacuum renormalization
of Appendix B 2 is required [36].

APPENDIX C: IMPACT OF THE SCALAR
SELF-COUPLING λs

The main body discusses parameter space scans in
the ðms; λhs; λsÞ-hyperplane. The singlet quartic self-
coupling is fixed at λs ¼ 1. To demonstrate that these
results are qualitatively λs-independent, we display in
Fig. 4 the parameter spaces at fixed λs ¼ 0.1 in the on
shell scheme and the 3D EFT. For the 3D EFT analysis,
we again employ (3D@NLO Veff@LO), namely a
one-loop effective potential with NLO dimensional
reduction.

For both approximations, the detectable parameter
space moves towards smaller values of λhs. Due to the
decreasing mass range that produces observable GW
signals, the overall relevant parameter space shrinks. By
contrasting both approaches, a similar Oð1%Þ uncertainty
in the signal reconstruction is expected—similar to the
λs ¼ 1 case. Hence, we conclude that our results are
robust including variations of the quartic self-coupling of
the singlet scalar.

APPENDIX D: IMPACT OF SOFT-SCALE
EFFECTS ON 3D EFT

This section investigates the effects of missing higher-
order terms in the v=T and x=T expansions at the softer

FIG. 4. Comparison of the parameter space upon varying the
quartic singlet scalar self-coupling, λs ∈ f0.1; 1.0g, for the on
shell scheme and the 3D EFT approach at 4D RG scale μ̄ ¼ T̄
using (3D@NLO Veff@LO) in the EFT.
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scale by retaining the full soft dynamics of the 3D EFT at
one-loop level.
To this end, we use the soft potential at one-loop level

from [36] now also in the background of the (adjoint)
temporal gauge fields X0 ∈ fA0; B0; C0g. Due to an effec-
tive explicit center symmetry breaking during the EFT
construction, in the 3D EFT the only minimum that can be
resolved is hX0i ∼ 0 such that X0 backgrounds vanish
identically at the corresponding minimum [140].
By expanding the functions J3ðm2

X0
Þ for (adjoint)

temporal scalars X0 in terms of their mass eigenvalues,
we see that the ultrasoft matching relations contain

merely the first few terms in a h3v2

mD
expansion [54].

Here, h3 is the coupling between Lorentz and temporal
scalars X0 [20,54,64]. To include also effects of large
field values which is the case in strong transitions as
studied in this article one needs to monitor the effect of
these soft corrections. Here, we report that they are
subdominant to the two-loop contributions in resumma-
tion as seen in Fig. 5.
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