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We investigate the scalar induced gravitational waves (SIGWs) in metric teleparallel gravity with the
Nieh-Yan (NY) term, which results in parity violation during the radiation-dominated era. By solving the
equations of motion of linear scalar perturbations from both the metric and the tetrad fields, we obtain
the corresponding analytic expressions. Then, we calculate the SIGWs in metric teleparallel gravity with
the NY term and evaluate the energy density of SIGWs with a monochromatic power spectrum numerically.
We find that the spectrum of the energy density of SIGWs in metric teleparallel gravity with the NY term is
significantly different from that in general relativity (GR), which makes metric teleparallel gravity

distinguishable from GR.
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I. INTRODUCTION

Gravitational waves (GWs) play an important role in
exploring the early universe. The successful detection of
GWs generated from the merger of compact objects by the
Laser Interferometer Gravitational-Wave Observatory
(LIGO) scientific collaboration and the Virgo collaboration
[1-10] opens a new window to probe the nature of gravity
in the strong gravitational field and nonlinear regime. It also
marks the dawn of multimessenger astronomy. The scalar
induced gravitational waves (SIGWs) originated during the
early universe due to the nonlinear interaction between
scalar and tensor perturbation, which contribute to the
stochastic gravitational wave background, have attracted
much attention recently [11-32]. The frequency of SIGWs
varies widely, and SIGWs can be detected by space-based
GW detectors like the Laser Interferometer Space Antenna
(LISA) [33,34], Taiji [35], TianQin [36,37], the Deci-hertz
Interferometer Gravitational-Wave Observatory (DECIGO)
[38], as well as by the pulsar timing array (PTA) [39-42]
and the Square Kilometer Array [43]. The recent stochastic
GW signal captured by PTA [44-50] can also be explained
with SIGWs [51-61].

The gravity theory with parity-violating (PV) terms
attracted significant attention recently [62-78]. On the
one hand, the violation of parity symmetry in a weak
interaction [79,80] prompts the investigation of whether
such parity violation occurs in gravitational interaction.
On the other hand, the recent studies on galaxy trispec-
trum and the cross-correlation of the E and B mode
polarization of the cosmic microwave background

“Contact author: gaoxian@mail.sysu.edu.cn

2470-0010/2024/110(2)/023537(20)

023537-1

(CMB) [81-84] have hinted at the existence of parity
violation in our universe. The PV scalar trispectrum was
also studied in [85-89].

The simplest PV term in the Riemannian geometry is
the Chern-Simons (CS) term, which is quadratic in the
Riemann tensor. CS gravity was initially proposed in
four-dimensional spacetime in [90], and has since been
extensively studied in cosmology, GWs, and primordial
non-Gaussianity [91-102]. Recently, the SIGWs in CS
gravity have also been studied [103,104]. However, CS
gravity suffers from Ostrogradsky instability [105] and
propagates ghost modes [101,102] due to the presence of
higher-derivative field equations. As a result, it can only
be treated as a low-energy effective theory. To cure this
issue, CS gravity was generalized to ghost-free PV
gravity [105].

Considering gravity theory beyond Riemann geometry,
various gravity theories based on teleparallel geometry
have been proposed [106—127]. Interestingly, the sym-
metric teleparallel gravity with the method of spatially
covariant gravity was also studied [128] recently. Within
the framework of metric teleparallel gravity, similar to the
CS gravity, the simplest PV term is 7'y, 7 Arv [129], where
T 4, represents the torsion tensor and TAmw = ghvpoTA pol2
is the dual of the torsion tensor. This term is a generali-
zation of the Nieh-Yan (NY) term, initially proposed in
Riemann-Cartan geometry [130,131], and the thermal
Nieh-Yan anomaly in Weyl superfluids was also studied
[132]. The simplest metric teleparallel gravity with the
PV term was constructed by adding the NY term to
the metric teleparallel equivalent Einstein-Hilbert action.
Furthermore, the linear cosmological perturbations in this
theory have also been investigated [129,133—-135].
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Unlike CS gravity, the equations of motion (EOMs) in
the above-mentioned gravity model do not involve higher-
order derivatives, and thus the Ostrogradsky instability is
effectively avoided. In this paper, we concentrate on the
nonlinear perturbation in metric teleparallel gravity with
the NY term, specifically investigating the behavior of
the SIGWs. However, when the perturbations beyond linear
order are taken into account, inconsistencies may arise in
the simplest PV metric teleparallel gravity mentioned
above. This situation is similar to what we encountered
in symmetric teleparallel gravity with the PV term when
calculating SIGWs [136]. Briefly, the theory contains
extra scalar degrees of freedom due to the PV term,
which, however, do not manifest themselves at the linear
order around a homogeneous and isotropic background.
This is reminiscent of the so-called strong coupling
problem in the study of Horava gravity [137-141] and
f(T) gravity [142-147].

In this paper, we will demonstrate that the simplest
metric teleparallel gravity with the NY term also suffers
from such a strong coupling problem. Specifically, the
scalar perturbations arising from the tetrads do not possess
their own linear EOMs, while appearing in the EOM of the
SIGWs. To avoid this problem, we replace the metric
teleparallel equivalent Einstein-Hilbert action with a gen-
eral linear combination of quadratic monomials of the
torsion tensor. We then derive the EOMs governing the
perturbations originating from the tetrads and determine
their solutions during the radiation-dominated era. Utilizing
these results, we calculate the contribution of both the NY
term and the scalar perturbations in the tetrads to the energy
density of SIGWs in our model, respectively.

This paper is organized as follows. In Sec. II, we briefly
introduce the metric teleparallel gravity with the NY term.
In Sec. III, we give the EOMs for both the background
evolution and the linear scalar perturbations, and we then
solve these EOMs during the radiation-dominated era. In
Sec. IV, we derive the EOM of SIGWs and calculate the
power spectra of the SIGWs. To analyze the feature of
SIGWs, we compute the energy density of SIGWs with the
monochromatic power spectrum of primordial curvature
perturbation. Our results are summarized in Sec. V. The
analytic expressions of the integral kernel are included in
the Appendix.

II. THE METRIC TELEPARALLEL GRAVITY
WITH THE NIEH-YAN TERM

In this section, we review the metric teleparallel gravity.
In this paper, we use the following conventions: the flat
space metric is 7,z = diag(+1,—1,—1,—1), and lowercase
Latin letters (i, j,...) denote purely spatial indices, while
capital Latin letters (A, B, ...) and Greek alphabet letters
(v, ...) are used for Lorentz indices and spacetime
indices, respectively. The metric tensor is produced by
the tetrads eA” and their inverses e4*,

G = nABeAﬂer and gv = HABeAﬂeBD’ (1)

where these tetrads satisfy e,*e?, = 6%, and e,/ e?, = &,.
In metric teleparallel geometry, the curvature vanishes,

R°,, =0,JI°,-01°,, +17,I%, -1°,I%,=0. (2)

Hp

The gravitational effects are described in terms of the
torsion tensor, which is defined by the antisymmetric part
of the affine connection

T/};w = F/};w - Fpuw (3)

where the affine connection in the Weitzenbock gauge
is [148]

IV, =es0,e",. (4)
Considering the following action:
S:S!]+SNy+Sm, (5)

where S, is the gravitational action
! 4
Sy = 3 d*xeT, (6)
with e = det(e?,) = /=7,
1 vra
T= ESO/‘ e, (7)
and the superpotential S, is [149]

Sa”y = tlTa#D + IZTWa 4 + 135aU4TV]’ (8)

where T# = T%, and 14, t,, and t; are three constants.
The PV term in action (5) is

Sny = /dﬁe@ﬁl\w, 9)
where
Ly = Tan T = &Ry (10)
is the NY term,
T = groTA )2 (11)

is the dual of the torsion tensor, and T4, = e 17,
ere = etre [ /=g is the Levi-Civita tensor, with *7° the
antisymmetric symbol. The NY term is a topological
term and was first proposed in Riemann-Cartan geo-
metry [130,131]. In the framework of teleparallelism,
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ie., R,,, =0, the NY term coupled to a scalar field
was extended to metric teleparallel geometry and added
to the metric teleparallel equivalent Einstein-Hilbert
Lagrangian [129].

The last term in Eq. (5) effectively describes the matter
filled in the universe,

1
Sy = / d*x\/=g [E V,0V+6 — V(H)} : (12)
In conclusion, the action we consider in this paper is

1 q(@
S = /d4xe |:§—[|— + %TAIWTA”U}

/ d4x\/_{ OV — V(G)] (13)

Note that if we choose the parameters to be

t] :1/4, [2:1/2, t3:—1, (14)

then the first term in action (5) becomes the teleparallel
equivalent Einstein-Hilbert Lagrangian up to a surface term

1 1
T=-1T, —|—4T”"”T +2T’“’PT

pou =—-R-2V,TH,

(15)

where R is the Ricci scalar corresponding to the Levi-Civita

connection and V is the metric-compatible covariant
derivative. Linear cosmological perturbations, including
linear gravitational waves, were studied [110,134,150] with
the parameter set (14). However, this model suffers from
the strong coupling problem beyond linear orders, which
we will show in the next section. Nevertheless, this problem
can be avoided by choosing a suitable parameter set instead
of (14).

III. THE BACKGROUND AND LINEAR
SCALAR PERTURBATION

In this section, we calculate the evolution of the back-
ground and linear cosmological scalar perturbations. To
this end, we first provide the perturbed tetrads and metric
up to cubic order.

A. The tetrads and the corresponding metric

We consider the background spacetime to be a spatially
flat Friedmann-Robertson-Walker universe. The back-
ground tetrads can be parametrized as

et, = diag(a,a,a,a). (16)

By substituting the tetrads into (1), we obtain the back-
ground metric

ds? = a*(dr? — §5;;dx'dx). (17)

The parametrization for the linearly perturbed tetrad field
is [144,151]

o =a(l+¢), = ao;p, ety = ad“o,y,

et = ad | (1 - )5,]+aaE+e,,ka’%+ hijl. (18)

where we consider only the linear scalar and tensor per-
turbations. Substituting the parametrized tetrads into (1),
we obtain the perturbed metric up to linear order,

goi = —a*9;B,
8;; +20,0,E + hyj], (19)

goo = a*(1+2¢),
9ij = —a*[(1-2y)

where B =y — . From the expressions of the linearly
perturbed metric, we can observe that in the Newtonian
gauge, where B =0 and E = 0, the scalar perturbations
from tetrads satisfy y = f and E =0. We will use the
Newtonian gauge for the remainder of this paper.

In a given coordinate system, we can always write the
tetrad field as e*, = @*,¢*,, and thus use the exponential
expansion [146,152]

y 1
e, = expl®u) =&, + de¥, + §5e”ﬂ($e/’”
1
+ 6561//)56‘06560” +e (20)

where e’ is the perturbation of e”, and e, = e, et
Then the perturbed tetrad field up to the cubic order is'

1 1 .
ey = a[l +¢+§¢2 —I—Ed,»yd’y—l- B

h d’ydj;/], (21)

1 ) 1 .
e’ —a{@}’-l— (b —w)oy §€ijka’/wk7+zhija]7

1 .
+ E(¢ —2y)h;d'y —

1 )
D (esijh's + Gijhli)a’/ka] )

2ll 71 5111 ﬁ e ak a al’

1 , 1 .
+ E (¢ - 2W)hzja]}/ - E (ekljhki - €ijkhk1)a]ﬂ.alj/:| N

(23)

'For our purpose of calculating SIGWs, we only keep cubic
terms that contain two scalar modes and one tensor mode for
notational simplicity.
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. 1 1
e = ad | (1 —y)8;; + ;0" i—|—2h,j+25,jy/
1
+ 5 0,70,y — €;;xpo" A — (5,161/16 A—0;40;)

1 1 1 1
—2hlll[/ ,[hjkdl—felklhkalJrSh ]’l

+ 1 hijll/2 1 (eiklhkj - jklhki)l//al/1

1
+ D (hj0;y0"y + hy0jy0%y)

1 (h,-jc)kﬂa’% - hklakw%,-j)] . (24)
The inverse tetrad field e4# can be obtained with the
relation e #e?, = &,

1 1 1 . o
e00=;{1—¢+§¢2+§5i}’517 —h 07’&]}’]’ (25)

12
1 1 1
ey = - [ oy + = (¢ w)oly — 7€ k0 20ly +7 hiio;y

1 ’ 1, o
=15 (@ =200y + 5 (€l + e ,h’l)a/,wky] :

(26)
o 1 1 k
€a” = ;5 -0y + 5 (¢ w)oiy + 5 €th0 A0y + 7 h’/&]}/

1 . 1 .
- E (¢ - 2W)h¢jaj}’ - E (lejh? + e,kjhf)()//laly] s

(27)

) 1 1
€' = 25’15# Kl +y+ 51;/2) 81— €A — L

1 1
2070y — €)1y A — 5 (0,20"25,; — 0,20,2)

1
€klmhk 6’"/1 - —€ jmhlka /1 + hlkhk

l//h/l +4

2
1
2
1 1 . "

2 — (hjx0;y 0"y + hy0y9%y)

—h
jllI/ 12

1
+ 2 (eximh®; + €jimh* ) yo™ A
1

12

(h;10A0% — hkmauam/wj,)} . (28)

[

The corresponding perturbed metric up to the cubic
order is

1 .
goo = @* |1+ 2¢ +2¢* — —h a’y()fy], (29)

1 . )
= hijdy +yh;;dy

goi = a* {(4’ + )0y 5

1 1 :
+ g <€kilhkj - 5 €jklhki> 6’7/01/1} . (30)

and

gij = =@ [(1 =29 +2y%)8;; + hyj — 2yh;;

1 1
) (exith®; + €exjih*;)0'A + Ehkihkj

1
+ <€,~,khk oA+ A hyd*yo;y +i < j>
2 2 k 1 k1Al

1 1
~ 3 hd“404 ~ > h,-kauajz)] . (31)

With the relation ¢’g,, = &, the inverse metric is

1 1 .
00 [1 —2¢) + 2¢* +3 h; 0’}/0’4, (32)

. 1 ) 1 .. ..
¢ = P [((ﬁ +y)d'y —5hVoy —whVoyy
! i pk ! e ) diyal A 33
+ 3\ & =5 yo4|, (33)

. 1
gl = - {(1 2y + 2928 — W — 2k
1 .
=~ € khh + €] k]’lZJ akﬂ + = hklh]k 2l//2hl]
2 2
kj [ 1 ik
+ €lkh l//aj.—6h 0k7/6’7+1<—>]
2 ij k 1 ij k 13l
+ (51704304 + 5 8 hyy 002
1 ik i 1 ik j
— S0~ S 02 ) | (34)

We also have

e=\/—_g=a4(1+¢—3w+%¢2—3¢w

9 1 .
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B. The background equations of motion
and linear scalar perturbations

Expanding action (5) to linear order, we obtain

s = /d*%)cdra2 {—%Cﬂ'{z(ﬁ = <% (@) + an)(ﬁ
9 3 5o
CiHw =5 ((0) —2aV)y
2 2
_3C Hy — a2Vy50 + 59’9’] , (36)

where C; = 2t 4+ t, + 3#; and the prime represents the
derivative with respect to conformal time 7.

Varying the above action with respect to scalar pertur-
bations, we obtain the background EOMs as follows:

e =Lor ey, (37)

2 2
C\(H?> +2H') = (0)* = 24°V, (38)
0" +2HO + a*Vy = 0. (39)

It is obvious that when ¢, = 1/4, t, = 1/2, and t; = —1,
yielding C; = -2, we recover the results of general
relativity (GR).

The quadratic action is

1 1 1 . 3
Sg‘? = / d3xd1a2 |:§ (59/)2 - 5 a2V99592 - a2V050(¢ - 31//) - <¢ + 31//)59/9/ - 501590159 + Ecl (l//l)z

1 1 . . .
+ (02 + ) (B0 H + () = 2a2V) + 30, Hoby' + 9C, Hypy' =3 C20,00'h = Cx0,yr0' -+ 2130,y0'

. 1 ] ‘
— Copd*y — 29, HE0 ) — 2gp0wd*A + C,0'poy’ — Eczaiy’a'y' + EczaZmZy + C40,4'0' 2 — C40% 202 |, (40)

where Cy =2t 4ty + 13, C3 =2t + t, + 215, C4 =21, — 1,
gp = dg/d@, and 0? represents d'0;.

Then the EOMs for scalar perturbations can be obtained
by varying the above quadratic action with respect to the
corresponding scalar perturbations

3CH(Y + Hp) — 2607y + Co0* (p — 7))
=—(0)¢ + 500 + a*V 480, (41)

3C, H2(3y — 2¢) — 2150% + 2C30%y — Crd?y/'

=3CH' By + ¢) —=3CHQ2y' + ¢') = 3Cy"
— 2y 024 — 3600 + 3a2Vyd0 + 9(0)y =0,  (42)

Cay — t3p = go0'A, (43)
80" + 2HSO — 02660 + a*V 4980 — O (¢ + 3y') + 2a2V g
= —2g,Hd*A, (44)

9o(HE0 + O'yw) = Cu(A" +2HA — 022),  (45)

(M + ¢ + 2Hy +y') = (/" + 2HY — Py). (C; #0).
(46)

From the above EOMs, we can see that if we choose the
parameter set defined in (14), which corresponds to the
teleparallel equivalent of GR with C, = C4 = 0, the EOM
for the scalar perturbation y disappears. However, y exists
in the EOM of SIGWs, which leads to a strong coupling

[

problem. Note that even if we choose the parameter set
as (14), the linear perturbation A from tetrads exists in
the EOMs (43) and (44), resulting in the EOMs of the
perturbations from the metric and scalar field being differ-
ent from those in GR. Obviously, the extra scalar degrees of
freedom exist in this model, whose nature and characteri-
zation need to be further studied, and we will leave this to
our future work.

C. The evolution of background and linear scalar
perturbations during the radiation-dominated era

During the radiation-dominated era, the equation of state
is P/p = 1/3, with
(@)
24*

24

_ 9/ 2
P ( )—V, p= +V, (47)
being the pressure and energy density of the background
universe. We also have 6P/8p = 1/3, where

Sp = —a20 (¢80 — 50') + V50,
SP = —V 460 + a=20'(50' — ¢0') (48)
are the perturbations of the energy density and pressure.
Combining the above two equations (47) and the first

two equations for the background evolution (37) and (38),
we obtain

1 1
H==, ¢ =x\/-20-. (49)
T T
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From the above equation, we can see that the evolution of
the Hubble parameter is independent of C;.

Obviously, for any choice of parameters ¢, t,, and 5, the
EOM s for the linear scalar perturbations, (41)—(46), are very
difficult to solve analytically. This poses significant chal-
lenges for us in analyzing the behavior of SIGWs in our
model. In this paper, we primarily focus on the contributions
from the PV term and the perturbations from the tetrads,
denoted as A and y, to SIGWs. We expect the background
evolution to be the same as that of GR, implying the selection
of C; = 2t; + t, + 3t3 = —2. Furthermore, we aim to min-
imize the differences between the scalar perturbations from
the metric in GR and teleparallel gravity with the NY term.
In the case of GR, ¢ =y without consideration of aniso-
tropic stress. We maintain this assumption in our model,
setting ¢ = . Additionally, in (45), H50 + 0w = R is the
gauge-invariant curvature perturbation. As introduced in
Sec. II, the curvature vanishes in teleparallel gravity, so
we set C4, = 0 to ensure R = 0.

With the above assumptions, C; = -2, C, =0, and
¢ =y, the EOMs for the linear perturbations (41)—(46)
reduce to

W'+ 3Hy' + (H? + 2H )y = =H(y' + Hy) + Cé*y,

(50)
Cow = 9502, (51)
HSO + Oy = 0. (52)

2QHy +y') = (v' + 2Hy' = 0%7). (C, £ 0).  (53)
with

- 2t3 —Cz

t=75

(54)

Here, Eq. (50) is derived by combining Eqgs. (41)—(43)
and (48).

1 .
T/(x) = pcme (2

Note that in the case of GR, C = 1/3, we obtain the
solution easily,

C2 - 0, (55)

which results in the disappearance of EOM for y (53),
giving rise to the strong coupling problem. Thus, we
require C # 1/3 to avoid the strong coupling problem.
Besides, C relates to the propagating speed of perturbation
yw, we assume C is a real number, and C < 1.

For late convenience to calculate the SIGWs, we split the
perturbations into the primordial perturbation and the
transfer functions as follows:

ko) = SCRIT, (), (56)
o) = 2E0) LT, (). (57)

where ( is the primordial curvature perturbation generated
during the inflationary era and x = kz. It is worth noting
that we assume R = 0 in teleparallel gravity. However,
teleparallel gravity can only be viewed as a low-energy
theory. During inflation, gravity may be described by
another UV-complete theory. Thus, we expect { to be
nonzero, resulting in observable effects in the CMB.
Recalling the evolution of the conformal Hubble param-
eter, the EOMs for the transfer functions can be written as

T3 (x) + ; T3 (x) + €T, (x) = 0, (58)

T () + 250 +T,(0) = 275 (0) 4T, (), (59)

where “x” represents the derivative with respect to the
argument. Then we can solve the above EOMs easily,

3 (sin (xV/C)

T'I/(x) = XZC X\/E

— cos (x\/E)), (60)

C3/2¢ xsin(x) + C¥?c,xsin(x) 4+ 2C%% ¢, x cos(x)

— iC¥2¢yx cos(x) 4+ 3(C + 1)x cos(x)[Ci(x 4+ VCx) — Ci(x — v/Cx)]
+ 3(C + 1)xsin(x)[Si(v/Cx + x) — Si(x — v/Cx)] — 6sin (v/Cx)}, (61)

where

Si(x) = / gy Y,
0 y

Ci(x) = — / " dycoys’y (62)

are sine integral and cosine integral, respectively.

If we choose the parameter set (14), then C = 1/3, and
the transfer function 7', is the same as that in GR. However,
from EOM (52), the fluctuation of the scalar field 66 still
differs from that in GR. There are two integral constants, ¢
and ¢,, in the transfer function 7,. We expect that T, is a
real function and finite as x — 0. Then, we can obtain
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o = 4@3/2 (6\/_+3( +C)log<:lﬁ)>, (63)
cr = a:3/2 <6\/_ +3(1 +C)log(%>>. (64)

By substituting ¢; and ¢, into Eq. (61), the transfer function 7', becomes

1
T,(x) = 20322

+ 3(C + 1)xcos(x)[Ci(x + v/Cx)

{xcos(x) [M: +3(1+C)log G_—ﬁﬂ — 65sin (v/Cx)

++/C
— Ci(x — VCx)]

+3(C + 1)xsin(x)[Si(x + v/Cx) — Si(x — V/Cx)] } (65)

It seems that T, is singular when C — 1 due to the
logarithmic divergence. In fact, in the limit C — 1, we have

T,(x)|co :j—z[—xcosx( —1-Ci(2x) + log(2x))

+ sinx(xSi(2x) — 1)], (66)

where E, is the Euler Gamma constant.

Recalling the assumptions we made above, C; = —2 and
C4 =0, only f; is a free parameter; the others can be
expressed as

41 + 2 2
t, = 2t, 1y =— , C,==(4 -1
2 1 3 3 3( 1 )
4
C3:§(f1—1), C:§(811+1) (67)
1 1

+ G300y — Eczaﬂ'aﬂﬁ -

1 1 1 1 1
- 59/01}’0159 - ECZH(),}/@,}/ - ZCzai}’aj}’” + gcl szl}/a,y - gcl’H’d,yd,y -

and
LV = e |- %csakaizalgb + %Csakai/wlw
- % 960/ 9200, — C40°2' 0 0yy
= % 999" 0,700 — iggelakyalai}’ . (72)

where Cs = 2t + 1, = 4t.

1
t3H6,-y6jd) + ZCza,}/ajgb, + Czaﬂ// ]l,l/ + ECZH(),}/()]W -

IV. THE SCALAR INDUCED
GRAVITATIONAL WAVES

In this section, we first derive the EOMs for SIGWs, and
then we calculate the power spectrum and the energy density
of SIGWs. Expanding action (5) to cubic order, we obtain

Sew = S(TZT) + S(TST) (68)

where

s@) = / d3xdr— [Cs (1" — 90" hiT) + gl e hidi /)

(69)
and
s = / dxdra®(Ly; + L5V ), (70)
with
1 , y 1

1
1 (5Cs + t3)y' 0,0y

1 |
ZCZ()iaﬂ/azy +— (@) o0y  (71)

6

A. The EOM for SIGWs

Varying the cubic action for SIGWs (68) with respective

to h;; s the EOM for SIGWs is

(h” + 2HR; - V2hy)
1
+ ggl(elkialhkj + €lkjalhki> = Tlmijslmv (73)

where
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1

T ””l-j is the projection tensor.
We decompose £;; into circularly polarized modes as

> [, 09

A=R.L

/’ll‘j(x, T) =

where the circular polarization tensors are defined as

. 1 X
p§ = ﬁ(efj + leij)’ PiLj = \/i(e;; - leij)- (76)
The plus and cross polarization tensors can be expressed as
+ 1 aa
€ij = ﬁ (eie; —€€;),
1 _
e = 7 (e;€; +ee;), (77)

where e;(k) and e;(k) are two basis vectors which are
orthogonal to each other and perpendicular to the
wave vector k, i.e., satisfying k-e=k-eé =e-e=0
and |e| = |e| = 1.

The projection tensor extracts the transverse and trace-
free part of the source, of which the definition is

&P .
T (x.7) = Z /(271)3/2 ™ plp "5y (k. 7).
A=R.L

(78)

where §;; is the Fourier transformation of the source s;;.
With the above settings, we can now rewrite the EOM for
SIGWs in Fourier space as

(-G =305t )
where u* = ah” and
o = k2<1 —%) (R = 1,75 = —1), (80)
here Mpy = ¢'/Cs, the source
Sf = pAijiij(k,'r). (81)

The source S,/j can be divided into four parts,

PCI) PC2) (PVI1) (PV2)

S = SAPC | gA(PC2) | APV | gA(PV2) - (82)

where S;:(PCI) and SQ(PVU do not contain the contribution
from y, representing the parity-conserved and parity-
violating parts, respectively, while S;‘(Pcz) and SQ(PVZ)
represent the parts that contain the contribution from y,

d*k’ .
SQ(PCI) = /me/k;k}g(k’)g“(k — k') feci(u, v, x).

A(PC2)

A3k ,
Sk - / 32 pAl/k;'k}ak/)év(k — k') fpca(u, v, x),

(27)

&K y
SQ(PV” B / (27)3/? pA’/k;k}g(k’)é’(k — K)oy (k. u. v, x).

where u = k'/k, v = |k — k'|/k, and

.. 1 )
PR, = EkfzsinZ(&)eM ‘) (84)

siv2) / (205;’/2 PAIKKL ) (k= K) v (ko u, 0, %), ®3)
[
frea(u,v,x) = _; 4r13— 1 T3 ()T, (0x) + 16;13- 12
< T )Ty () + 2L

with 9 being the angle between k' and k and ¢ being
the azimuthal angle of k’. The function fpc;(u,v,x),
feca(u, v,x), fay;(u, v, x), and fay,(u, v, x) are defined as

2 |4t + 8 2
fecr(u,v,x) = —= l Tx,/(”x)Ty/(Ux) -4 -1)
9 3 3
uk .
X ﬁTW(ux)TW(vx) +u< v, (85)

1 H
x T, (vx) —5(41‘1 - I)ET;(ux)Ty(wc)
1 v
—6(4t1 - I)ETJ,(MX)T;*(UX)
1 v
—6(4t, - I)ET},(ux)Ty(vx) +u< v,

(86)
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21k C5 (u
fovi(u,v,x) = §M—PVCT§ (Z T, (ux)T, (vx) + u < v>,
(87)
2/1AMPV uk
fova(u.v,x) = 0 % Cs [%H T, (ux)T,(vx)
1
+ ﬁTy(ux)Ty(vx) +u< v} . (88)

We have used the equations for the background and linear
perturbations to simplify the above expressions.

Equation (79) can be solved by the method of Green’s
function,

W) =~ [ 4G @S, (69

where Green’s function G{(z,7) satisfies the equation

"

GV (1.7) + <w§ - %) Gi(1.7) = 8(r—7). (90)

The coupling function g characterizes the deviation of
Green’s function from standard GR. For an arbitrary form
of g, w, defined in Eq. (80) is a complex function of both
the wave number k and the conformal time z. Consequently,
it is challenging to solve Eq. (90) and obtain the expression
for Green’s function analytically. On the one hand, for our
purpose of studying the contributions from the scalar
perturbations to the SIGWs, we assume that the change
in Green’s function is as minimal as possible relative to that
in GR. On the other hand, since w, is associated with the
propagation speed of the GWs, we assume that w, is
approximately time-independent and depends only on the
wave number during the generation of SIGWs. We will
consider an exponential form of the coupling function

9(0) = goe™. (O1)

which renders w, independent of time and allows us to
obtain an analytical solution to Eq. (90).

Recalling the background equations (49), the solution for
the scalar field is found to be

9 = 2ﬂ IH(T/T()) + 60, (92)
where 6, is the value of 6 at 7, and f§ = +1, corresponding

to @ = £2/1, respectively. Substituting Egs. (91) and (92)
into the coupling function g, we obtain

af)
g = 29T (93)

From Eq. (93), it is evident that if we set 2af — 1 = 0, then
¢ becomes a constant. Consequently, Mpy defined above
becomes

9% e(190

Cstp '

MPV = (94)

which is independent of time, as is w,. With these
assumptions, we can analytically solve Eq. (90) to obtain
the expression for Green’s function,

sinfwy (7 — 7)]

GA(r,7) = 0z - 1), (95)

@4

where O is the Heaviside step function.

The constant Mpy defined in Eq. (94) has the dimension
of energy, which can be interpreted as the characteristic
energy scale of parity violation in our model. Therefore,
it is of interest to estimate Mpy based on current obser-
vations. The recent observations from GW170817 [153]
and GRB170817A [154] constrain the propagating speed
of GWs to be

—3x 1075 < gy =1 <7 x 10718, (96)

Using the definition of w, in Eq. (80), we have

[N AAMPV 1/2 AAMPV
= =(1-— ~]1 -
Cov = < k ) w97
which means
M
% < 14x1071. (98)

Therefore, the typical energy scale of parity violation is
much smaller than the wave numbers that we are inter-
ested in.

Besides, the constraint on the parity-violating energy
scale Mpy from the GW events of binary black hole
mergers in the LIGO-Virgo catalogs GWTC-1 and
GWTC-2 is Mpy < 6.4 x 107 Gev at 90% confidence
level [107], which corresponds to Mpy ~ O(1073) Mpc~'.
Since SIGWs are generated on small scales where
k> 1 Mpc™!, this also implies Mpy/k < 1.

From Eq. (87), it might appear that the term ffy, o
(k/Mpy)C3/Cs could be very large and potentially violate
perturbation theory. However, we will show that this term is
negligible.

The dimensions of scalar perturbations y and A are
[w] = k% and [A] = k~!, while the coefficient [C,] = k.
Furthermore, according to (18), we have y ~ kA. Taking
into account relation (51), we find that
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C, kA
k=—~1, 99
909 v (59)
which implies
0 M
CZNQGTN%C5 < CS (100)

Recalling the relation C, = 2/3(C5 — 1), we have Cs5 ~ 1.
Consequently, the coefficient in Eq. (87) can be esti-
mated as

kK G5 M
_Nﬂcs

— 101

Considering the above analysis, we can conclude that the
contribution from the PV term to SIGWs is negligible.

B. The power spectrum of SIGWs

The solutions of the circularly polarized modes can be
written as

hi(z) :i/ & pAi«fk’.k’-C(k’)g“(k—k’)iIA(k u,v,Xx) (102)
k CS (2”)3/2 i k2 s by Uy ’
where
Ak, u, v, x) / dx Y kGA (7,7) Y (fpci(u, v, X) + foy:(k,u,v,%))
i=12
= Z ek u, v, x) + Iy (k,u, v, x)), (103)
i=12
I
with With the definition of 732 (106) and the solution
© _a(?) of SIGZWS, we can obtain the power spectra of the
Ipc; (k. u, v, x) —/) dja—r)ka (7.7)fpci(u, v, X) SIGWs
104
(104) Pk, x) = 2/ / T (u, v) I (u, v, x)?
and C -
< () X Pg(uk)Pg(vk)), (107)
Iy (k,u, v, x) = —/ dx ——= kG (2, 7) foy;(u, v, X).
o alr)
where
(105)
The analytic expressions for Iy, and If, can be found in the 4u? = (1 4 u? = v*)*]?
A A J(u,v) = (108)
Appendix. The remaining parts, /5, and Ipy,, cannot be duw

calculated analytically, so we will compute them numerically.
The power spectra of the SIGWs 772‘ are defined by

2
(hhg) —216—363(k+k’)5Ac73A( ). (106)
|
Qgw(k,x) = <)Z73Akx—
A=R.L

14+u D ———y
/ du/ doJ (u,v) 1A (k, u, v, x)? Py (uk) Py (vk),
3C - ot

and P, is the power spectrum of primordial curvature
perturbation.
The fractional energy density of the SIGWs is

)C

2, 77 (k, x)

(109)

*We have assumed that ¢ is Gaussian to derive Eq. (107). For the non-Gaussian contributions, please refer to Refs. [89,155-158] and

references therein.
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10791

Qawh?
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U €= 10-5 LISA
—== Cy=-107"
...... P
15
T 1073 1072
f/Hz
FIG. 1. The energy density of SIGWs from GR (dotted line)

and our model (solid and dashed lines). The peak scale is
k, = 10'> Mpc™", which corresponds to the maximum sensitiv-
ity of TianQin and LISA. The amplitude of the power spectrum is
fixed to be A, = 1072

where the overline represents the time average and
Ak, u,v,x)> = I (k, u, v, x)°x>.

The GWs behave as free radiation, thus the fractional
energy density of the SIGWs at the present time Qgw o can
be expressed as [16]

Qcw (k) = Qaw (k. > 0)Q,, (110)
where Q,,~9 x 107> is the current fractional energy
density of the radiation [159].

To analyze the behavior of SIGWs in our model, in the
following part of this section, we compute the energy
density of SIGWs with a concrete power spectrum of
primordial curvature perturbations. Considering the SIGWs
induced by the monochromatic power spectrum,

Py (k) = Acd(In(k/k,)), (111)
then we obtain the energy density of SIGWs at the present
time,

1 ~ - -
Qawo(k) = 3—029r.0A§k_2j(k_1, k)
5
X Z (kL x = 00)20(2 - k),
A=RL

(112)

where k = k/ k,. We perform numerical calculations to
determine the energy density of SIGWs, and the result is
shown in Fig. 1.

Recalling the discussion in Sec. III, the energy density of
SIGWs may exhibit discrepancies between PV metric
teleparallel gravity and GR. This discrepancy arises from
the extra scalar perturbation in tetrads y, as well as the
distinct evolution of scalar perturbation from metric y and

the fluctuation of the scalar field 60, which deviate from
their counterparts in GR. From Fig. 1, as expected, it is
evident that the spectrum of the energy density of SIGWs
differs significantly between GR and our model. For the
SIGWs from GR, there is a divergence at k=2 / V/3 due to
the resonant amplification [11,15]. In contrast, the energy
density of SIGWs in our model is regular across all
frequencies. This feature makes metric teleparallel gravity
distinguishable from GR.

It is difficult to completely analyze the behavior of the
spectrum of the energy density of SIGWs due to the
absence of analytic expressions for /4. We only consider
the analytic part of I, especially the contribution from
I3, which is analytic. From the expression (A11) in the
Appendix, the possible divergence in I, comes from a
logarithmic term, log |w — +/C(u -+ v)|, which is similar to
GR. In the case of SIGWs induced by the monochromatic
power spectrum, the term in [4-, that contains this
logarithmic divergence is given by

35 <91}(8(5t1 + 1)(8t; 4+ 1) = 3(14¢, + 1)k?)

Ife; D=
T (8t +1)°

8(16¢ +5 -
- W) log(| — 9% + 326, +4).  (113)
For convenience of discussion, we have approximated
w = w;/k ~ 1, taking into account the observational con-
straints on the propagating speed of GWs (96) and (97).
The above expression vanishes even when —9k> + 32, +
4 = 0; thus I{-, does not contribute a divergent term.

V. CONCLUSION

SIGWs are a useful tool to test gravitational theory and
probe the early universe. In this paper, we calculate the
SIGWs from metric teleparallel gravity with the NY term in
teleparallel geometry. By replacing the teleparallel equiv-
alent Einstein-Hilbert Lagrangian with the general torsion
scalar T, Eq. (7), the strong coupling problem was avoided
effectively only if C, # 0.

In the context of teleparallelism, we assumed C4 = O to
maintain vanishing curvature perturbation. Furthermore,
we aimed to minimize deviations in the background
evolution and the scalar perturbation from the metric
compared to those in GR, so that we can focus on the
contribution from scalar perturbations in the tetrad field and
the PV source. With this consideration, we solved EOMs
for the background and the linear scalar perturbations
during the radiation-dominated era and obtained the ana-
lytic solutions. We had chosen the coupling function of the
PV term to be the exponential form, which ensures that the
speed of SIGWs is independent of time. We further derived
the analytical expression for Green’s function of the tensor
perturbations. With these analytic solutions, we calculated

023537-11



FENGGE ZHANG, JIA-XI FENG, and XIAN GAO

PHYS. REV. D 110, 023537 (2024)

the power spectrum and the energy density of SIGWs.
Then, we evaluated numerically the energy density of
SIGWs with a monochromatic power spectrum of the
primordial curvature perturbation. Considering the obser-
vational constraints on the propagating speeds of the GWs,
we conclude that the effect of the PV term on the SIGWs is
negligible. Nevertheless, the spectrum of the energy density
of SIGWs in our model still differs from that in GR.
Crucially, there is no divergence in the energy density of
SIGWs in our model, which makes teleparallel gravity
distinguishable from GR.

J

I’i‘(u, b x) = sin(wx)

wx

I (u, v, x) +
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APPENDIX: THE INTEGRAL KERNEL

In this appendix, we derive the integral kernel /-, and
I4y,. With Green’s function (90) and the definition of /4,
we can express the integral kernel as follows;

MI?C(M, v, %), (A1)

wx

where the subscripts “s” and “c” stand for contributions involving the sine and cosine functions, respectively, and

w = w,/k. We also write

14, (10, v.%) = T4, (1 0.) = T4, (.0, 0).

I?c(”’ U’x) = I‘?c(u’ U’x) _I?c(u’ v, O)’

where 74 and 79, are defined by

(A2)

4 (u,v,y) = —/dycoswyf(u, v,Y)y,

IA

After lengthy calculations, we obtain the kernel of PC part

:Z-A 9 9 = —~—3 a2 2 1
PCls(u v y) 9([:31431}3))4

te(u,v,y) = /dy sinwyf(u,v,y)y.

(A3)

[6C (141, + 1)uvy? cos(wy) cos(v/Cuy) cos(v/Cvy) + VCoy (=21, (9Cy? (u® — v?)

— Tw2y? 4 42) +9Cy% (12 — u?) + w2y? — 6) cos(wy) sin(v/Cuy) cos(v/Cvy) + v Cuy(2t; (9Cy*(u? — v?)
+T(W?y2 = 6)) +9Cy2(u? — 12) + w?y? — 6) cos(wy) cos(v/Cuy) sin(v/Cvy)

+ (21, (9Cy2 (42 + v?) = Twry? + 42) + y2(9C (u? + v*) — w?) 4 6) cos(wy) sin(v/Cuy) sin(v/Cvy)
—2C(141; + 1)uvwy? sin(wy) cos(v/Cuy) cos(vVCuvy) + 2v/C(14t; + 1)vwy? sin(wy) sin(v/Cuy)

x cos(VCuvy) + 2V C (141, + 1)uwy? sin(wy) cos(VCuy) sin(v/Cvy) + wy(=2 — 11C (12 + v?)y?

+ w2y? =21, (14 + 23C(u? 4 v2)y? — Tw?y?)) sin(wy) sin(v/Cuy) sin(v/Coy)]

1
T 36C3 U303

[B)(Ci(Asy) + Ci(A4y) — Ci(|Az]y) - Ci(A;y)) + B>(Ci(Asy) — Ci(Aqy) + Ci(|A,]y)

—Ci(Ay)) + B3(Ci(|A,|y) — Ci(A,y) — Ci(A;y) + Ci(Asy))]. (A4)
where
Al =w4+VC(u+v), Ay=w—-VClu+v), Ay=w+VClu-v), Ay=w—-VClu—v), (A5)
and
By = 9C?(2t; + 1)(u® — v*)? + 12C(5¢; + D)w?(u® + v?) — (144, + 1w, (A6)

023537-12



SCALAR INDUCED GRAVITATIONAL WAVES IN METRIC ...

PHYS. REV. D 110, 023537 (2024)

We also get

Iiécu(”’ v,y) =

Bz = 40:3/2(5 + 16[1)M3W, B3 = 40:3/2(5 + 16t1)U3W.

9C 3 13y*
+ VCuy(=21; (9Cy*(u? — v*) — Tw?y? + 42)

+9Cy2(v? — u?) + w2y? — 6) sin(wy) sin(v/Cuy) cos(v/Cuy)
+ VCuy (26, (9Cy*(u? — v?) + T(w)* - 6))

+ 9Cy?(u® — v2) + w?y? — 6) sin(wy) cos(v/Cuy) sin(v/Cuy)
+ (261 (9Cy? (u? + v?) — Tw?y* 4 42)

+ y2(9C(u? + v2) — w?) + 6) cos(wy) sin(v/Cuy) sin(v/Cuy)
+ 2C(141, + 1)uvwy? cos(wy) cos(v/Cuy) cos(v/Coy)

+ 2/C(141, + 1)vwy? cos(wy) sin(v/Cuy) cos(v/Coy)

+ 2v/C (141, + 1)uwy? cos(wy) cos(v/Cuy) sin(v/Coy)
+wy(2 + 11C(u* + v?)y? — w?y?

+ 21, (14 4 23C (12 + v2)y? — Tw?y?)) cos(wy) sin(v/Cuy) sin(v/Cuy)]

- m [B1(Si(A1y) + Si(A2y) — Si(Asy) — Si(As))

— B,(Si(A3zy) + Si(A,y) — Si(Ay) — Si(A4y))
+ B3(Si(Ay) + Si(Asy) — Ci(Asy) — Ci(A4y))].

! 7 [6C (141, + 1)uvy? sin(wy) cos(v/Cuy) cos(vCoy)

We have the following limit:

and

thus

We also have

and

Thc (U, v,x > 00) =0

9C(2t; + 1)(u? + v?) + (141, + 1)w?
9C*u*v?

IléCls(u’ v,x = 0) =—

1 AA, AyAs ALA,
——— | Byl — By log| ——| — B3 1 ,
* 36C3M3U3 ( 1108 A3A4 2 Og‘A1A4 3708 A1A3
9C(2t; + 1) (u? + v*) + (141, + 1)w?
Ipey (,v,x > o0) = Yo
1 AjA AyA AA
—ﬁ(Bllogg—leogg—Bﬂog’ 2 4).
36C u’v A3A4 A1A4 A1A3
B, — B, — B;
Tpcre(, v,x > 00) = Wﬂ(a(—/‘z)
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I?cu(”v v,0) = 0;
thus

B,-B,—B;

36C3u3 3 76(-4y).

IéC]c(u’ v, X = 00) =

As for the PV part, we have the following expressions:

PG u+tow

Mpy Cs 12C3 13 v3y*

— 2Cuwwy? sin(wy) cos (v/Cuy) cos (v/Cuy)

+ 2+/Cowy? sin(wy) sin (v/Cuy) cos (v/Cvy)

+ 2v/Cuwy? sin(wy) sin (V/Cuvy) cos (v/Cuy)

+ VCuy(3Cy2 (v? — u?) + w2y* — 6) cos(wy) sin (vV/Cuy) cos (v/Cvy)

+ VCuy(3Cy2(u® — v*) + w2y? — 6) cos(wy) cos (v/Cuy) sin (v/Cvy)

+ (3Cy*(u? + v?) — w2y? 4 6) cos(wy) sin (v/Cuy) sin (v/Coy)

+ wy(w?y? — 5Cy2(u® 4 %) — 2) sin(wy) sin (v/Cuy) sin (v Coy)]

kG utw
Mpy Cs5 48C3 1?03

— Dy(Ci(A3y) + Ci(|Az]y) — Ci(Ay) — Ci(Ayy))

Ty (u,v,y) = 6Cuvy? cos(wy) cos (vVCuy) cos (vCvy)

[D1(Ci(A1y) + Ci(|A2]y) — Ci(A3y) — Ci(A4y))

— D5(Ci(|Azy) + Ci(Agy) — Ci(A,y) — Ci(A3y)) |
where
Dy =3C*(u? = v?)* 4+ 6Cw?(u? + v?) — wh, D, = 8C2ulw, D; = 8C /3w
We have the following limits:

Ilévu(“’ v,x = 00) =0

and
Mk C3 (u+ v)(3C(u? + v?) +w?)
74 .0, 0) = 2
PVls(u v,y — ) MPVCS 12@21421}2
Mk C3 AA AA A,A
- -2 M;r§3 llogl—z—Dzlogﬁ—Dﬂog 204 ,
MPV CS 48@ u-v A3A4 A1A4 A1A3
thus
Mk C3 (u+ v)(3C(u* + v?) +w?)
Iév”(u’ VX = o) = _MPVC_S 12C2u% 2
Mk C3 A A A,A A,A
=2 u3+213 1 log 12—D210g 23—D310g 274
MPV CS 48@ u-v A3A4 A1A4 A1A3
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We also have

Mk Gy u+vw
Mpy Cs 12C3u303

Iévn(“’ v,y) =

B 6Cuvy? cos(wy) cos (v/Cuy) cos (VCuvy)

— 2Cuwwy? sin(wy) cos (vVCuy) cos (v Cuy)

+ 2v/Cuwy? sin(wy) sin (v/Cuy) cos (v/Cvy)

+ 21/Cuwy? sin(wy) sin (v/Cwy) cos (vVCuy)

+ VCoy(3Cy2(v? — u?) + wry? — 6) cos(wy) sin (v/Cuy) cos (v Cuy)
+ VCuy(3Cy2(u® — v2) + wry? — 6) cos(wy) cos (v/Cuy) sin (v/Coy)
+ (3Cy*(u? + v?) — w2y? 4 6) cos(wy) sin (v/Cuy) sin (v/Coy)

+ wy(w?y? = 5Cy2(u? + v?) — 2) sin(wy) sin (v/Cuy) sin (VCuy)]

MG utw
Mpy Cs 48C3 u? 3

[D(Si(Ay) + Si(A,y) — Si(Azy) — Si(Asy))

+ D, (Si(Ay) — Si(Ayy) — Si(Asy) + Si(A4y))

+ D5(Si(A1y) = Si(Azy) + Si(Asy) = Si(Agy)) |- (A20)

We have the following limits:

Mk C u+v
Tpyie(u,v,x = 0) = " Mpy Cs 18C 00 (D) = Dy = D3)70(-A,) (A21)
and
Toyic(u,v.x = 0) =0, (A22)
thus
MkC u+tw
IéVlc(u’ v, X = OO) = _MPVC_548C3M3’U3 (Dl - D2 - D3)”®<_A2)' (A23)
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