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We consider the implications of a scalar field interacting with the dark matter fluid on the energy spectrum
of primordial gravitational waves. We choose an interaction type which, before a critical matter density ρcm,
during the reheating era or early radiation domination era, the scalar field loses energy, transferring it to the
darkmatter fluid, while after the critical matter density ρcm the darkmatter fluid loses energy, transferring it to
the scalar field. The scalar field is assumed to have an exponential potential and at the critical matter density
with ρm ∼ ρcm, at which point, the interaction between the scalar and the dark matter fluid is switched off, we
demand that the effective equation of state of the scalar field is described by a matter dominated era. This is
crucial since it affects the behavior of the trajectories and the fixed points of the two-dimensional dynamical
system composed by the dark matter fluid and the scalar field. Specifically, the phase space contains two
stable dark matter dominated final attractors and two unstable stiff era dominated fixed points. Thus, there
exists the remarkable possibility that the Universe might feel the passing of the scalar field through the
unstable kinetic dominated fixed points, during the reheating era, with the total equation of state parameter of
the Universe being deformed to be larger than w ¼ 1=3. This deformation of the total equation of state
parameter during the reheating era can potentially have significant effects on the energy spectrum of
primordial gravitational waves. The model we use also contains an FðRÞ gravity that controls in a dominant
way inflation and the late-time acceleration, in a phenomenologically viable way.
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I. INTRODUCTION

The foundation of all sciences, physics, is currently at a
turning point in its development. The most fundamental
aspects of physics related to the behavior of theUniverse at its
early times is now realistically put to the test. The Large
Hadron Collider (LHC) in CERN has only provided concrete
information on the existence of one Higgs particle, with a low
mass, which puts supersymmetric scenarios into question.
Apart from that, currently the center-of-mass energy at the
LHCexceeds15TeV, and nonewphysics has emerged to date
from the LHC. Thus, the burden of explaining themicrocosm
falls to the observations coming from the sky. And now that
the oxymoron picture emerges in physics, the large scale
evolution of the Universe can be used to reveal the most
fundamental physics of the cosmos, the particle physics
perspective of the microcosm. One of the most elegant and
theoretically consistent theoretical constructions in particle
cosmology is the inflationary era proposal [1–4], which as a
theory solves many shortcomings of the standard big bang
cosmology. Inflation will be tested by the stage 4 cosmic

microwave background (CMB) experiments [5,6] and also
from future gravitational wave experiments [7–15]. In the
stage 4 CMB experiments, the B modes in the CMB
polarization modes will be probed directly, while in the
future gravitational wave experiments, primordial tensor
modes will be probed, which are believed to form a sto-
chastic background with small or negligible anisotropies.
Encouraging data for the existence of a stochastic gravita-
tional wave background were provided by the NANOGrav
and PTA Collaborations in June 29, 2023 [16–19], which
renders this date a monumental date for fundamental physics
and large scale astrophysics. After the announcement of the
existence of a stochastic gravitational wave background,
many works emerged that tried to explain the signal from
the cosmological perspective; see, for example, [20–66] and
also [67–73], as well as [24,25,74,75]. The existence of a
stochastic gravitational wave background cannot be
explained by standard single field and conformally related
theories by themselves. What is needed to explain the current
and future stochastic gravitational wave backgrounds in an
abnormal reheating era and beyond, with a broken power law,
combined [20,21,76,77] with low-reheating temperatures
[20,21,76,77] and a blue-tilted inflationary spectrum [78–88].*voikonomou@gapps.auth.gr, v.k.oikonomou1979@gmail.com

PHYSICAL REVIEW D 110, 023535 (2024)

2470-0010=2024=110(2)=023535(14) 023535-1 © 2024 American Physical Society

https://orcid.org/0000-0003-0125-4160
https://ror.org/02j61yw88
https://ror.org/0242cby63
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.110.023535&domain=pdf&date_stamp=2024-07-23
https://doi.org/10.1103/PhysRevD.110.023535
https://doi.org/10.1103/PhysRevD.110.023535
https://doi.org/10.1103/PhysRevD.110.023535
https://doi.org/10.1103/PhysRevD.110.023535


However, it is possible that the Universe during reheating
and the subsequent radiation domination era may have
disturbances in the total effective equation of state (EOS)
parameter, like stiff eras, for example, which may cause
deformations of the radiation dominated EOS to be larger
than w ¼ 1=3 in the range w ¼ ð1=3; 1Þ. This stiff era
assumption has also been studied in the literature, see
Refs. [89–99]. In this line of research in this paper we
provide a fundamental mechanism of how EOS deforma-
tions can occur during the radiation domination era, well
before the big bang nucleosynthesis (BBN) and the matter-
radiation equality. Specifically, we shall focus on modes
with wave numbers k ¼ 1010–1013 Mpc−1, which corre-
spond to the early radiation or even reheating era. The
model is based on the existence of a scalar field in the
presence of matter and radiation fluids and in the presence
of an FðRÞ gravity [100–106]. More importantly, we
assume the existence of a nontrivial interaction between
the scalar and matter fluids, which before a critical matter
density ρcm, during the radiation domination era, acts in such
a way that the scalar field fluid loses energy and transfers it
to the matter fluid, when ρm ∼ ρcm the interaction is zero,
and when ρm > ρcm the interaction flips its sign and the dark
matter fluid loses its energy and transfers it to the scalar
field. Such interacting fluid models in cosmology have
thoroughly been investigated in the literature; see, for
example, [107–116] and references therein. By construc-
tion, the FðRÞ gravity dominates the evolution during the
inflationary era and during the dark energy era. In between,
the evolution is dominated by radiation and after the critical
matter density era ρcm, by the scalar field and dark matter
fluids competing with the radiation fluid as the Universe
evolves. We form the two-dimensional subspace of the
phase space of the cosmological system under study,
composed by the scalar field and dark matter fluids and
we calculate the fixed points. As we show, under certain
assumptions, exactly at the critical matter density ρcm, there
exist two dark stable dark matter attractors in the phase
space and two kination fixed points that are unstable. As we
show, there exist trajectories in the phase space that end up
to the final dark matter attractors, but before that, these pass
through the stiff era fixed points of the cosmological
system. Thus, an exciting possibility emerges: that the
Universe experienced EOS deformations before the BBN
era (or simply the total EOS during radiation might be
larger than w ¼ 1=3), in which it stayed for a short time.
After that, the scalar field reached the dark matter attractors,
and thus the Universe returned to the radiation domination
evolution again. Accordingly we calculate the energy
spectrum of primordial gravitational waves including the
short EOS deformations effects, and we show that the
predicted signal can be detectable from the future LISA,
SKA, BBO, and DECIGO experiments, but not from the
Einstein Telescope. Also we briefly discuss the issues that
may arise with the EOS deformations, related to the

abundances of the light elements and the sound speed of
the CMB modes at the last scattering surface.

II. SCALAR FIELD–DARK MATTER FLUID
INTERACTIONS AND THE POSSIBILITY OF

TOTAL EOS DEFORMATIONS

A. General theoretical framework

The theoretical framework we shall consider in this
section consists of an FðRÞ gravity theory in the presence
of a scalar field with exponential potential and in the
presence of a dark matter fluid and a radiation perfect fluid.
We also consider a nontrivial interaction between the dark
matter fluid and the scalar field, which as will be proven,
plays an important role for the analysis that will follow. The
gravitational action of the model that we shall consider is

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
FðRÞ−1

2
∂
μϕ∂μϕ−VðϕÞþLm

�
; ð1Þ

with κ2 ¼ 1
8πG ¼ 1

M2
p
, while G denotes as usual Newton’s

gravitational constant, and Mp stands for the reduced
Planck mass. The term Lm contains the matter fluids
present and, specifically, the dark matter and radiation
fluid. Since we will assume that the dark matter fluid
interacts with the scalar field, only the radiation fluid is
considered to be a perfect fluid. Regarding the FðRÞ
gravity, it will be assumed to have the following form:

FðRÞ ¼ Rþ 1

M2
R2 − γΛ

�
R

3m2
s

�
δ

: ð2Þ

The R2-term of the above FðRÞ gravity will control the
early-time evolution, while the last term will dominate the
late-time evolution synergistically with the matter fluids.

Note that ms in Eq. (2) is equal to m2
s ¼ κ2ρð0Þm

3
, and the

parameter δ is assumed to be positive, and specifically
δ ¼ 1=100, while γ ¼ 1=0.5 and Λ is the cosmological
constant at present day. Finally the R2-term related param-
eter M is chosen to be M ¼ 1.5 × 10−5ðN

50
Þ−1Mp on a pure

early-time phenomenological basis [117], where N denotes
the e-foldings number. Regarding the scalar field potential
VðϕÞ, it is assumed to have the following exponential form:

VðϕÞ ¼ V0 e−λϕκ; ð3Þ

where the parameter V0 is assumed to be quite smaller than
R2=M2, that is, V0 ≪ R2

M2, without loss of generality, and
recall κ ¼ 1=Mp. With the assumption of a flat Friedmann-
Robertson-Walker (FRW) geometric background,

ds2 ¼ −dt2 þ aðtÞ2
X

i¼1;2;3

ðdxiÞ2; ð4Þ
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the variation of the gravitational action with respect to the
metric and the scalar field yields the following field equations:

3H2FR¼
RFR−F

2
−3HḞRþκ2

�
ρrþρmþ

1

2
ϕ̇2þVðϕÞ

�
;

−2ḢF¼ κ2ϕ̇2þ F̈R−HḞRþ
4κ2

3
ρr; ð5Þ

ϕ̈þ 3Hϕ̇þ V 0ðϕÞ ¼ Q

ϕ̇
; ð6Þ

with FR ¼ ∂F
∂R, and the “dot” indicates differentiation with

respect to the cosmic time t, while the “prime” denotes
differentiationwith respect toϕ.AlsoQ is the interaction term
between the matter fluid and the scalar field. Recall that the
dark matter fluid and the scalar field are not perfect fluids,
since they are assumed to interact nontrivially, and in order to
see this explicitly let us rewrite the field equations in the
Einstein-Hilbert form in a FRW metric, as follows:

3H2 ¼ κ2ρtot;

−2Ḣ ¼ κ2ðρtot þ PtotÞ; ð7Þ

with ρtot ¼ ρϕ þ ρG þ ρr þ ρm denoting the total energy
density composed by all the cosmological fluids present,
and Ptot ¼ Pr þ Pϕ þ PG is the total pressure. The cosmo-
logical fluids present are the dark matter fluid with energy
density ρm and zero pressure, the scalar field fluid, with its
energy density ρϕ and pressure Pϕ being equal to

ρϕ ¼ ϕ̇2

2
þ VðϕÞ; Pϕ ¼ ϕ̇2

2
− VðϕÞ; ð8Þ

the radiation fluid with energy density ρr and pressure
Pr ¼ ρr

3
, and the effective geometric fluid with its energy

density ρG and pressure PG being equal to

ρG ¼ FRR − F
2

þ 3H2ð1 − FRÞ − 3HḞR; ð9Þ

PG ¼ F̈R −HḞR þ 2ḢðFR − 1Þ − ρG: ð10Þ

Note that the geometric fluid quantifies the overall effect of
the FðRÞ gravity. The geometric and radiation fluids are
perfect fluids, however, the dark matter fluid and the scalar
field are not, and this can be seen by the continuity equations

ρ̇m þ 3HðρmÞ ¼ −Q;

ρ̇ϕ þ 3Hðρϕ þ PϕÞ ¼ Q;

ρ̇r þ 3Hðρr þ PrÞ ¼ 0;

ρ̇G þ 3HðρG þ PGÞ ¼ 0: ð11Þ

However, although the dark matter and scalar field fluids
interact and are not perfect fluids, the total cosmological fluid

is conserved and is a perfect fluid, which has the following
continuity equation:

ρ̇tot þ 3Hðρtot þ PtotÞ ¼ 0 ð12Þ

and can be obtained by simply adding the distinct continuity
equations, and observe that the interaction terms cancel. The
specific formof the interaction termQ and the energy transfer
between the dark matter fluid and the scalar field fluid is of
great importance for the rest of the article, so let us specify the
interaction termat this point anddiscuss the specific features it
implies for the evolution of theUniverse. The interaction term
will be assumed to have the following form:

Q ¼
ffiffiffi
2

3

r
κβρmϕ̇ tanh

�
ρm
ξρcm

− 1

�
; ð13Þ

with β some positive number and ρcm is a critical specific
matter energy density which we assume to have some value
well below the value of the matter energy density at matter-
radiation equality, at an era belonging to some point well
before theBBNera, during the radiation domination era.Note

that the term ∼
ffiffi
2
3

q
κβρmϕ̇ has a phenomenological basis for

scalar-tensor theories [118]. The behavior of the term
∼ tanh ðρmρcm − 1Þ is as follows:

tanh

�
ρm
ρcm

− 1

�
¼
8<
:

−1; when ρm ≪ ρcm

0; when ρm ∼ ρcm

1; when ρm ≫ ρcm

: ð14Þ

Thus the interaction term Q behaves as follows:

Q ¼

8>>><
>>>:

−
ffiffi
2
3

q
κβρmϕ̇; when ρm ≪ ρcm

0; when ρm ∼ ρcmffiffi
2
3

q
κβρmϕ̇; when ρm ≫ ρcm

: ð15Þ

Sowhen ρm ≪ ρcm primordially, the scalar field fluid loses its
energy and transfers it to the dark matter fluid which gains
energy and this behavior continues during the radiation
domination erawhen ρm ∼ ρcm, where the interaction between
the dark matter fluid and the scalar field fluid switches off.
After that era, the matter fluid gains energy from the scalar
field. Hence, it is apparent that the scalar field loses energy
primordially and transfers it to the dark matter fluid.

B. Dynamics of the Universe during the inflationary era

Now, before we focus on the two-dimensional subsystem
composed by the dark matter fluid and the scalar field,
which will dominate the evolution during the end of the
radiation domination era and specifically some time earlier
than the matter-radiation equality and well beyond that,
until the dark energy era commences, let us focus on the
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dynamical evolution of the Universe at early and late times.
We start off with early times, where as we will show, the R2

gravity dominates the evolution. We assume an intermedi-
ate inflationary scaleHI ¼ 1013 GeV, and we also take into
account the Planck value of the Hubble rate at present day
H0, which is [119]

H0 ¼ 67.4� 0.5
km

sec×Mpc
; ð16Þ

so H0 ¼ 67.4 km=sec=Mpc, which expressed in natural
units is H0 ¼ 1.37187 × 10−33 eV, therefore h ≃ 0.67.
Furthermore, according to the latest Planck data, h-scaled
dark matter energy density Ωch2 is

Ωch2 ¼ 0.12� 0.001: ð17Þ

In order to have a quantitative idea of the order of
magnitude of the various terms appearing in the field
equations during the inflationary era, let us use the above
values in the various terms in the field equations. For the
FðRÞ gravity of Eq. (2), the field equations (5) become

3H2

�
1þ 2

M2
R − δγ

�
R

3m2
s

�
δ−1
�

¼ R2

2M
þ ðγ − γδÞ

�
R

3m2
s

�
δ

2

− 3HṘ

�
2

M2
− γδðδ − 1Þ

�
R

3m2
s

�
δ−2
�

þ κ2
�
ρr þ ρm þ 1

2
κ2ϕ̇2 þ VðϕÞ

�
: ð18Þ

Using the values of the free parameters quoted below
Eq. (2), which yield a viable dark energy era [120], we shall
compare the various terms in (18) in order to find the
dominant terms. Using the inflationary slow-roll
assumption Ḣ ≪ H2, the Ricci scalar during inflation is
approximately R ≃ 12H2, hence for H ¼ HI ∼ 1013 GeV,
the curvature scalar becomes approximately R ∼ 1.2×
1045 eV2. During inflation, we also have R2=M2 ∼
Oð1.55 × 1045Þ, ∼ð R

3m2
s
Þδ ∼Oð10Þ, and ∼ð R

3m2
s
Þδ−1 ∼

Oð10−111Þ eV2, while ∼ð R
3m2

s
Þδ−2 ∼Oð10−223Þ eV2. Also,

since V0 ≪ R2=M2, the potential term is negligible com-
pared to the R2 term. Furthermore, since primordially the
scalar field loses its energy and transfers it to the dark
matter fluid, as it can be seen from Eqs. (12) and (15), the
kinetic energy term for the scalar field can also be
neglected. In addition, the dark matter fluid energy density
redshifts as ∼a−3, while the radiation fluid redshifts as

∼a−4 and, since during inflation a ∼ e
R

tf
ti

Hdt ¼ eN and the
inflationary era lasts for around N ∼ 60 e-foldings, the
matter and radiation energy densities are also negligible in

the field equations. Thus, only the R2 gravity terms prevail
and, therefore, the field equations become

3H2

�
1þ 2

M2
R
�

¼ R2

2M
−
6HṘ
M2

; ð19Þ

or equivalently,

3Ḧ − 3
Ḣ2

H
þ 2M2H

6
¼ −9HḢ; ð20Þ

which when solved yield an approximate quasi–de Sitter
evolution,

HðtÞ ¼ H0 −
M2

36
t: ð21Þ

The phenomenology of the Jordan frame vacuum R2 model
with the quasi–de Sitter evolution produces a viable infla-
tionary era, compatible with the latest Planck data [119],
since the spectral index as a function of the e-foldings
number is ns ∼ 1 − 2

N and the predicted tensor-to-scalar
ratio is r ∼ 12

N2. It is worth discussing how the FðRÞ gravity
inflationary phenomenology is obtained, since we will also
need the exact value of the tensor spectral index in order to
calculate the energy spectrum of primordial gravitational
waves. Assuming that the slow-roll conditions apply during
the inflationary era,

Ḧ ≪ HḢ;
Ḣ
H2

≪ 1; ð22Þ

the dynamical evolution of inflation for a general FðRÞ
gravity is quantified by the slow-roll indices ϵ1, ϵ2, ϵ3, ϵ4,
which are [100,106,121]

ϵ1¼−
Ḣ
H2

; ϵ2¼0; ϵ3¼
ḞR

2HFR
; ϵ4¼

F̈R

HḞR
; ð23Þ

and the spectral index of primordial scalar perturbations and
the tensor-to-scalar ratio are written as follows [100,121]:

ns ¼ 1 −
4ϵ1 − 2ϵ3 þ 2ϵ4

1 − ϵ1
; r ¼ 48

ϵ23
ð1þ ϵ3Þ2

: ð24Þ

Using the Raychaudhuri equation for FðRÞ gravity, we
obtain

ϵ1 ¼ −ϵ3ð1 − ϵ4Þ: ð25Þ

Therefore, we have approximately

ns ≃ 1 − 6ϵ1 − 2ϵ4; ð26Þ

and also
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r ≃ 48ϵ21: ð27Þ

Also considering ϵ4 ¼ F̈R
HḞR

, we get

ϵ4 ¼
F̈R

HḞR
¼

d
dt ðFRRṘÞ
HFRRṘ

¼ FRRRṘ2 þ FRR
dðṘÞ
dt

HFRRṘ
; ð28Þ

and due to the fact that

Ṙ ¼ 24ḢH þ 6Ḧ ≃ 24HḢ ¼ −24H3ϵ1; ð29Þ

combined with Eq. (28) we get

ϵ4 ≃ −
24FRRRH2

FRR
ϵ1 − 3ϵ1 þ

ϵ̇1
Hϵ1

: ð30Þ

By using,

ϵ̇1 ¼ −
ḦH2 − 2Ḣ2H

H4
¼ −

Ḧ
H2

þ 2Ḣ2

H3
≃ 2Hϵ21; ð31Þ

ϵ4 becomes

ϵ4 ≃ −
24FRRRH2

FRR
ϵ1 − ϵ1: ð32Þ

The tensor spectral index is equal to [100,121,122]

nT ≃ −2ðϵ1 þ ϵ3Þ; ð33Þ

hence by using Eq. (32), we get

nT ≃ −2
ϵ21

1þ ϵ1
≃ −2ϵ21: ð34Þ

For the case at hand, which is the R2 model, we get

nT ≃ −
1

2N2
; ð35Þ

therefore for N ∼ 60 we get nT ¼ −0.000138889,
ns ≃ 0.963, and finally r ≃ 0.0033, which shall be used in
the analysis of the energy spectrum of primordial gravita-
tional waves in the next section.

C. Postinflationary evolution of the Universe and the
phase space of the scalar–dark matter fluid subsystem

After the inflationary era and during reheating and
thereafter, the FðRÞ gravity terms cease to dominate the
evolution, and the radiation fluid, the matter fluid, and the
scalar field fluid start to control the evolution. In the way
we chose the interaction between the matter and the scalar
field fluids, the scalar field fluid loses its energy primor-
dially which transfers it to the matter fluid, thus the
radiation and the dark matter fluid control the evolution

up to the point that the interaction between the scalar and
dark matter fluid flips its sign, see Eq. (13). This sign flip
occurs during the radiation domination era, and well as
before the matter-radiation equality; note that, at the critical
matter density ρcm, the interaction switches off. Apparently,
the two-dimensional system composed of the scalar field
and matter fluids controls the evolution after the critical
matter density ρcm, competing with the radiation fluid. Thus,
in this section we shall analyze the two-dimensional scalar
field–matter fluid phase space in order to reveal the
possible dynamical evolution of the Universe after the
critical density ρcm. As we show, essentially, there might be
deformations in the total EOS parameter during the
radiation domination era, caused by the matter–scalar field
interactions. As we already mentioned, we shall focus on
quintessence type potentials for the scalar field, of the form
given in Eq. (3). We shall study the matter fluid–scalar field
fluid two-dimensional phase space and its dynamics. A
crucial assumption for our analysis is that, at the moment
when the interaction between the scalar field and the dark
matter fluid is switched off, at the critical matter density ρcm,
the scalar field has a constant EOS parameter and satisfies

ϕ̇2 ¼ βVðϕÞ; ð36Þ
thus,

ϕ̈ ¼ βV 0

2
: ð37Þ

Therefore, the field equation of the scalar field with no
interaction between the scalar and matter fluid,

ϕ̈þ 3Hϕ̇þ V 0 ¼ 0; ð38Þ

yields �
β þ 2

2

�
2

ðV 0Þ2 ¼ 9H2ϕ̇2; ð39Þ

which yields

V ¼ V0e
−
ffiffiffiffiffi
6β
βþ2

p
κϕ: ð40Þ

Thus, by comparing Eqs. (3) and (40) we obtain

λ ¼
ffiffiffiffiffiffiffiffiffiffiffi
6β

β þ 2

s
: ð41Þ

Now the EOS parameter of the scalar field is defined to be

wϕ ¼
ϕ̇2

2
− V

ϕ̇2

2
þ V

: ð42Þ

Thus, at the critical matter density ρcm where Eq. (36) holds
true, the scalar field EOS becomes
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wϕ ¼ β − 2

β þ 2
: ð43Þ

The crucial assumption we shall make is that the EOS
parameter for the scalar field at critical matter density ρcm is
equal to zero, that is,

wϕ ¼ 0; at matter-radiation equality: ð44Þ

Thus, in view of Eq. (43), we get β ¼ 2, and also due to
Eq. (41) we get that λ ¼ ffiffiffi

3
p

, that is,

β ¼ 2; λ ¼
ffiffiffi
3

p
: ð45Þ

This is crucial for the dynamical system analysis that
follows. Now let us construct the autonomous dynamical
system for the scalar field–matter fluid two-dimensional
subsystem that controls the dynamics near the critical
matter density ρcm and thereafter. In the literature, such
scalar field–fluid systems have been studied in the
literature with [108] and without interaction [107].
The Friedmann equation for the scalar field–matter
fluid two-dimensional subsystem that dominates the
evolution is

3H2 ¼ κ2ρm þ κ2ϕ̇2

2
þ V; ð46Þ

which can be rewritten as

Ωm þΩϕ ¼ 1; ð47Þ

where

Ωϕ ¼ κ2ρϕ
3H2

; Ωm ¼ κ2ρm
3H2

: ð48Þ

The total EOS parameter wtot is equal to

wtot ¼
Pϕ

ρϕ þ ρm
¼ wϕΩϕ; ð49Þ

and the total energy satisfies the continuity equation

ρ̇tot þ 3Hð1þ wtotÞρtot ¼ 0; ð50Þ

while the interacting scalar-dark matter fluids have the
following continuity equations:

ρ̇m þ 3Hρm ¼ −Q;

ρ̇ϕ þ 3Hðρϕ þ PϕÞ ¼ Q; ð51Þ
with Q being defined in Eq. (13). We introduce the
dimensionless variables

x ¼ κ2ϕ̇2

6H2
; y ¼ κ2V

3H2
; ð52Þ

and using these we have

wϕ ¼ x2 − y2

x2 þ y2
; Ωϕ ¼ x2 þ y2 ≤ 1; ð53Þ

while the Raychaudhuri equation is written as

−2Ḣ ¼ 3H2ð1þ x2 − y2Þ: ð54Þ

Using the field equations, the continuity equations (51),
and the variables (52), we can form the following two-
dimensional fully autonomous dynamical system [108]:

dx
dN

¼ −3xþ λ
ffiffiffi
6

p

2
y2 þ 3x

2
ð1þ x2 − y2Þ þ βð1 − x2 − y2Þ;

dx
dN

¼ −
λ
ffiffiffi
6

p

2
xyþ 3y

2
ð1þ x2 − y2Þ; ð55Þ

where instead of the cosmic time, we used the e-foldings
number N as a dynamical variable. Recall that, in our case,
the parameters β and λ are fixed by our assumptions to
have the values appearing in Eq. (45). The dynamical
system (55) is autonomous and can easily be studied. First
let us present the fixed points of this dynamical system
expressed in terms of general values of β and λ and then
we specify for the values appearing in Eq. (45). The fixed
points of the dynamical system (55) for general λ and β are
given in Table I, while for the values of β and λ specified in
Eq. (45), the fixed points are given in Table II.
Now let us address the stability of the fixed points

appearing in Table II. The eigenvalues of the Jacobian
matrix are given in Table III. As it can be seen, only the

TABLE I. Fixed points of the dynamical system (55) for
general values of β and λ.

Name of
fixed point Fixed point values for general β and λ

P�
1 ðx�; y�Þ ¼ ð−1; 0Þ

P�
2 ðx�; y�Þ ¼ ð1; 0Þ

P�
3 ðx�; y�Þ ¼ ð2β

3
; 0Þ

P�
4 ðx�; y�Þ ¼

�
λffiffi
6

p ;−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βλ2−12β−

ffiffi
6

p
λ3þ6

ffiffi
6

p
λ

p ffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
λ−2β

p
�

P�
5 ðx�; y�Þ ¼

�
λffiffi
6

p ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βλ2−12β−

ffiffi
6

p
λ3þ6

ffiffi
6

p
λ

p ffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
λ−2β

p
�

P�
6

ðx�; y�Þ ¼
 
− 3

2β−
ffiffi
6

p
λ
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6λ2

2β−
ffiffi
6

p
λ
− 2
ffiffi
6

p
βλ

2β−
ffiffi
6

p
λ
− 18

2β−
ffiffi
6

p
λ
−4βþ ffiffi

6
p

λ

q
ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
λ−2β

p
!

P�
7

ðx�; y�Þ ¼
 
− 3

2β−
ffiffi
6

p
λ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6λ2

2β−
ffiffi
6

p
λ
− 2
ffiffi
6

p
βλ

2β−
ffiffi
6

p
λ
− 18

2β−
ffiffi
6

p
λ
−4βþ ffiffi

6
p

λ

q
ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

p
λ−2β

p
!
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fixed points P�
4 and P�

5 are stable, but let us comment that
not all the fixed points are physically acceptable satisfying
the Friedmann constraint. In Table IV we gather the values
of the physical parameters at the fixed points, and as it can
be seen, the fixed points P�

3, P
�
6, and P�

7 are unphysical. So
let us focus on the four other physical points, which
describe interesting physical evolution dynamics.
Specifically, fixed points P�

4 and P�
5 describe stable dark

matter dominated attractors, while the fixed points P�
1 and

P�
2 describe unstable kination attractors, as it can be seen in

Table IV. The fixed points P�
4 and P�

5 are not identical, but
describe the same dark matter dominated physics, and the
same applies for the fixed points P�

1 and P
�
2 which describe

the same kination domination physics. Thus, the phase
space of the dynamical system (55) is deemed quite
intriguing from a physical point of view. As it seems,
the scalar field takes the energy from the matter perfect
fluid and can lead the dynamical system eventually to stable
dark matter attractors generated by the scalar field itself.
But more remarkable and of profound physical importance
is that the dynamical system may be attracted to kination
dominated fixed points, which due to the fact that these are
unstable, the dynamical system is eventually repelled from
the kination fixed points and finally ends up to the stable
dark matter attractors. Thus, the dynamical system even-
tually is described by a matter dominated era controlled by
the scalar field, during the radiation domination era, so the
total EOS of the radiation domination era is disturbed and
thus can be larger than w ¼ 1=3 and closer to the stiff
evolution value w ¼ 1. This behavior may continue until
matter dominates and, after that, the FðRÞ gravity terms
start to dominate the late-time dynamics and generate the
dark energy era. Hence, there is an obvious probability that
there might exist a set of initial conditions in the Universe
that may lead to a scalar field kination era, and thus
deformations of the radiation domination era, well before
the BBN era. This probability must be examined numeri-
cally by solving the dynamical system using various sets of
initial conditions, and if our predictions are correct, before
the final dark matter attractors are reached, the dynamical
system composed of the scalar field and the dark matter
fluid may pass from the kinetic dominated fixed points. Let
us first show numerically that the dynamical system ends
up to the stable dark matter attractors. We solve the
dynamical system (55) numerically for various initial
conditions and we present the behavior of the trajectories
ðxðNÞ; yðNÞÞ in the phase space as a function of the
e-foldings in Fig. 1. The blue dashed curves represent
xðNÞ, while the red thick curves represent the trajectories
yðNÞ. The green lines indicate the values 1=

ffiffiffi
2

p
and

−1=
ffiffiffi
2

p
. As it can be seen, the stable dark matter attractors

P�
4 and P�

5 are reached quite fast in the phase space.
However, the plots in Fig. 1 do not allow us to see explicitly
whether the kinetic dominated fixed points P�

1 and P�
2 are

reached in the phase, so we will use a parametric plot in the

TABLE II. Fixed points of the dynamical system (55) for β ¼ 2

and λ ¼ ffiffiffi
3

p
.

Name of fixed
point

Fixed point values for β ¼ 2

and λ ¼ ffiffiffi
3

p

P�
1 ðx�; y�Þ ¼ ð−1; 0Þ

P�
2 ðx�; y�Þ ¼ ð1; 0Þ

P�
3 ðx�; y�Þ ¼ ð4

3
; 0Þ

P�
4 ðx�; y�Þ ¼ ð 1ffiffi

2
p ;− 1ffiffi

2
p Þ

P�
5 ðx�; y�Þ ¼ ð 1ffiffi

2
p ; 1ffiffi

2
p Þ

P�
6 ðx�; y�Þ ¼ ð6þ 9ffiffi

2
p ;−ð2þ 3ffiffi

2
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − 12

ffiffiffi
2

pp
Þ

P�
7 ðx�; y�Þ ¼ ð6þ 9ffiffi

2
p ; ð2þ 3ffiffi

2
p Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − 12

ffiffiffi
2

pp
Þ

TABLE III. Eigenvalues of the Jacobian matrix for the dynami-
cal system (55) for β ¼ 2 and λ ¼ ffiffiffi

3
p

.

Name of fixed point Eigenvalues Stability

P�
1 ð−1; 1

2
ð−3Þð ffiffiffi

2
p

− 2ÞÞ Unstable

P�
2 ð7; 3

2
ð ffiffiffi

2
p þ 2ÞÞ Unstable

P�
3 ð1

6
ð25 − 12

ffiffiffi
2

p Þ; 7
6
Þ Unstable

P�
4 ð−2 ffiffiffi

2
p

;− 3
2
Þ Stable

P�
5 ð−2 ffiffiffi

2
p

;− 3
2
Þ Stable

P�
6 ð47.5601;−24.3322Þ Unstable

P�
7 ð47.5601;−24.3322Þ Unstable

TABLE IV. Values of the physical parameters for the fixed points of the dynamical system (55) for β ¼ 2 and
λ ¼ ffiffiffi

3
p

.

Name of fixed point wtot Ωϕ wϕ Ωm Stability

P�
1 1 1 1 0 Unstable

P�
2 1 1 1 0 Unstable

P�
3 1.77778 1.77 1 −0.33 Unstable

P�
4 0 1 0 0 Stable

P�
5 0 1 0 0 Stable

P�
6 16.4853 289.25 0.0569932 −288.25 Unstable

P�
7 16.4853 289.25 0.0569932 −288.25 Unstable
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plane xðNÞ-yðNÞ to see whether there exist initial con-
ditions in the phase space that generate trajectories that pass
through the kination fixed points P�

1 and P
�
2 before they end

up to the stable dark matter attractors P�
4 and P�

5. In Fig. 2
we present the trajectories of the dynamical system (55) in
the xðNÞ-yðNÞ plane for various initial conditions. As it can

be seen, there exist various trajectories in the phase space,
but the most interesting for our scenario are the magenta
dashed one and the blue thick curves, which both pass
through the unstable fixed point P�

2 before ending to the
stable dark matter attractors P�

4 and P�
5, respectively.

Apparently, our theoretical prediction that the dynamical
system composed by the matter and scalar field fluids may
experience a short stiff evolution after the critical matter
density ρcm, during the radiation domination era, before the
BBN, is a probably realistic scenario, which may have
profound observational implications, regarding gravita-
tional wave physics. This is the subject of the next section.
Let us recapitulate at this point our findings. We initially

assumed a nontrivial interaction between the matter–scalar
field fluids, which after critical matter density ρcm, reached
during the radiation domination era by the dark matter
fluid, makes the scalar field fluid gain energy from the dark
matter fluid. Since these two fluids dominate the evolution
during the radiation domination era, we studied the two-
dimensional phase space formed by these two fluids. We
demonstrated that there exist two stable dark matter
dominated fixed points and two unstable kination domi-
nated fixed points, all realized by the scalar field. We
analyzed the trajectories in the phase space and showed that

FIG. 1. Trajectories xðNÞ (blue dashed curve) and yðNÞ (red thick curve) in the phase space of the dynamical system (55) for various
initial conditions. The green lines indicate the values 1=

ffiffiffi
2

p
and −1=

ffiffiffi
2

p
. As it can be seen, the stable dark matter attractors P�

4 and P
�
5 are

reached quite fast in the phase space.

FIG. 2. Trajectories in the xðNÞ-yðNÞ plane of the phase space
of the dynamical system (55) for various initial conditions. Note
the magenta dashed and the blue thick curves, which both pass
through the unstable fixed point P�

2 before ending to the stable
dark matter attractors P�

4 and P�
5, respectively.
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there exist trajectories that pass from the unstable kination
fixed point P�

2 before they end up to the dark matter fixed
points. Thus, it is possible that the total EOS of the
Universe during the radiation domination era might be
deformed and can actually be larger than w ¼ 1=3. This
scalar field originating EOS deformations of the radiation
domination era may have profound observational implica-
tions related to the energy spectrum of the primordial
gravitational waves. In the next section, we shall analyze
this possibility in some detail.

III. RADIATION DOMINATION EOS
DEFORMATIONS AND THE ENERGY SPECTRUM

OF PRIMORDIAL GRAVITATIONAL WAVES

After the poor findings in the Large Hadron Collider in
the post-Higgs discovery, the focus of theoretical physicists
has turned to the sky and specifically to CMB related and
gravitational waves related experiments. There is a large
stream of articles in the literature on primordial gravita-
tional waves; see, for example, Refs. [77,123–163] and the
recent review Ref. [164] and references therein. Regarding
the energy spectrum of the gravitational waves, taking into
account a standard radiation domination era followed by a
dark matter era, and the latter followed by a dark energy
era, this is equal to

ΩgwðfÞ ¼
k2

12H2
0

Δ2
hðkÞ; ð56Þ

with Δ2
hðkÞ being equal to

Δ2
hðkÞ ¼ ΔðpÞ

h ðkÞ2
�
Ωm

ΩΛ

�
2
�
g�ðT inÞ
g�0

��
g�s0

g�sðT inÞ
�

4=3

×

�
3j1ðkτ0Þ

kτ0

�2

T2
1ðxeqÞT2

2ðxRÞ; ð57Þ

and the oscillating term must be calculated for a Hubble

time. In addition, ΔðpÞ
h ðkÞ2 stands for the primordial tensor

power spectrum of the inflationary era, and it is equal to

ΔðpÞ
h ðkÞ2 ¼ ATðkrefÞ

�
k
kref

�
nT
: ð58Þ

The above must be calculated at the CMB pivot scale,
which we assume is kref ¼ 0.002 Mpc−1, and nT denotes
the tensor spectral index, while ATðkrefÞ stands for ampli-
tude of the tensor perturbations amplitude that can be
expressed in terms of the amplitude of the scalar perturba-
tions PζðkrefÞ in the following way:

ATðkrefÞ ¼ rPζðkrefÞ; ð59Þ

with r being the tensor-to-scalar ratio. Hence,

ΔðpÞ
h ðkÞ2 ¼ rPζðkrefÞ

�
k
kref

�
nT
: ð60Þ

Note that the transfer function T1ðxeqÞ in Eq. (57) directly
connects the energy spectrum at present day with the modes
k that reentered the Hubble horizon during the matter-
radiation equality, and this is equal to

T2
1ðxeqÞ ¼ ½1þ 1.57xeq þ 3.42x2eq�; ð61Þ

where xeq ¼ k=keq and keq ≡ aðteqÞHðteqÞ ¼ 7.1×
10−2Ωmh2Mpc−1. Furthermore, the other transfer function
T2ðxRÞ directly connects the energy spectrum of the
gravitational waves at present day to the one corresponding
to the era that the mode k reentered the Hubble horizon
during the reheating era and before it ended, therefore when
k > kR, and the transfer function is equal to

T2
2ðxRÞ ¼ ð1 − 0.22x1.5 þ 0.65x2Þ−1; ð62Þ

with xR ¼ k
kR
, while the reheating temperature wave number

kR is equal to

kR ≃ 1.7 × 1013 Mpc−1
�
g�sðTRÞ
106.75

�
1=6
�

TR

106 GeV

�
; ð63Þ

where TR stands for the reheating temperature. Note that for
the energy spectrum of the gravitational waves at present
day we took into account the overall damping effect in the
early Universe generated by the nonconstancy of the total
number of the relativistic degrees of freedom, in which case
the scale factor behaves as aðtÞ ∝ T−1 [165]. Hence, the
total damping factor due to this behaves as

�
g�ðT inÞ
g�0

��
g�s0

g�sðT inÞ
�

4=3
; ð64Þ

where T in denotes the temperature at the horizon reentry,

T in≃5.8×106GeV

�
g�sðT inÞ
106.75

�
−1=6

�
k

1014Mpc−1

�
: ð65Þ

Note that the reheating temperature is basically an
unknown free parameter in the above context.
Furthermore, g�ðT inðkÞÞ in Eq. (57) is equal to [166]

g�ðT inðkÞÞ ¼ g�0

0
B@Aþ tanh

h
−2.5 log10

�
k=2π

2.5×10−12 Hz

�i
Aþ 1

1
CA

×

0
B@Bþ tanh

h
−2 log10

�
k=2π

6×10−19 Hz

�i
Bþ 1

1
CA; ð66Þ
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where A and B are equal to

A ¼ −1 − 10.75=g�0
−1þ 10.75g�0

; ð67Þ

B ¼ −1 − gmax=10.75
−1þ gmax=10.75

; ð68Þ

with gmax ¼ 106.75 and g�0 ¼ 3.36. Moreover, g�0ðT inðkÞÞ
can be calculated by simply replacing g�0 ¼ 3.36 with
g�s ¼ 3.91 in Eqs. (66)–(68). As a final comment, for the
calculation of the energy spectrum of primordial gravita-
tional waves, we also took into account the damping factor
∼ðΩm=ΩΛÞ2 due to the present day acceleration of the
Universe.
In the previous section, we showed that it is possible for

the Universe to experience short deformations of its total
EOS parameter during the radiation domination era (can
also be during the reheating era). Thus, let us see how these
pre-BBN deformations can affect the energy spectrum of
primordial gravitational waves. We will assume that the
EOS deformations occur when wave numbers of the order
ks ∼ 1011 Mpc−1 reenter the Hubble horizon, so this era
corresponds to the reheating era or at some point during the
early radiation domination era. Since the scalar field stiff
attractors affect the total EOS during the reheating, we will
assume that the total background EOS parameter during
this era is w ¼ 0.8, or even larger, somewhere in the range
w ∼ ½1=3; 1�. The change of the background EOS parameter
for a dark matter dominated one, to the value w, has its

imprint on the energy spectrum of the gravitational waves,
since an overall multiplication factor of the form ∼ð kksÞrs is
included in the energy spectrum, where rs ¼ −2ð1−3w

1þ3wÞ
[90]. Therefore, the final expression for the total h2-scaled
energy spectrum of primordial gravitational waves finally
takes the form

h2ΩgwðfÞ ¼ SkðfÞ ×
k2

12H2
0

rPζðkrefÞ
�

k
kref

�
nT
�
Ωm

ΩΛ

�
2

×

�
g�ðT inÞ
g�0

��
g�s0

g�sðT inÞ
�

4=3
�
3j1ðkτ0Þ

kτ0

�2

× T2
1ðxeqÞT2

2ðxRÞ;

where SkðfÞ,

SkðfÞ ¼
�
k
ks

�
rs
; ð69Þ

and recall that kref is the CMB pivot scale kref ¼
0.002 Mpc−1 and nT stands for the tensor spectral index
of primordial tensor perturbations, while r denotes the
tensor-to-scalar ratio. It is important to note once more that
the reheating temperature is a free variable and it will play
an important role in the final form of the predicted energy
spectrum of primordial gravitational waves. Having all the
necessary information at hand, we now proceed to the
determination of the predicted energy spectrum of primor-
dial gravitational waves. In Fig. 3 we present the h2-scaled

FIG. 3. The h2-scaled gravitational wave energy spectrum for the R2 gravity driven inflationary era and EOS deformations of the
reheating era which make the total EOS parameter take values wtot > 1=3. We took wtot ¼ 0.8, which occurs when the modes with wave
number k ¼ 1011 Mpc−1 reenter the Hubble horizon. The blue curve corresponds to the reheating temperature TR ¼ 107 GeV, the red
curve to TR ¼ 1010 GeV, the magenta curve to TR ¼ 1011 GeV, and the pink curve to TR ¼ 1012 GeV.

V. K. OIKONOMOU PHYS. REV. D 110, 023535 (2024)

023535-10



gravitational wave energy spectrum for the model
under study, which contains a primordial R2 gravity driving
the inflationary era and the effects of EOS deformations
with wtot ¼ 0.8 of the reheating (or early radiation domi-
nation) era which occurs when the modes with wave
number k ¼ 1011 Mpc−1 reenter the Hubble horizon, for
four reheating temperatures: TR ¼ 107 (blue curve),
TR ¼ 1010 (red curve), TR ¼ 1011 (magenta curve), and
TR ¼ 1012 GeV (pink curve). For all the plots we used the
tensor spectral index and tensor-to-scalar ratio of the R2

model that we derived in the previous section. As it can be
seen, all the curves can be detected by the future DECIGO
and BBO experiments, but only the large reheating temper-
ature curve can be detected by the Einstein Telescope. This
result is deemed quite important since the energy spectrum
of the pure R2 gravity cannot be detected by any of the
future gravitational wave experiments. Thus, we demon-
strated that short EOS deformations occurring during the
reheating era can actually yield a detectable gravitational
wave energy spectrum.

IV. CONCLUDING REMARKS AND DISCUSSION

In this work we proposed a theoretical scenario in which
the Universe may pass through a brief reheating era
deformation well before the BBN era and well beyond
the matter-radiation equality. We used a model that is
composed of an FðRÞ gravity, the radiation perfect fluid,
and an interacting system of dark matter and scalar field
fluids. The model is constructed in such a way so that
primordially and at late times the FðRÞ gravity dominates
the evolution, thus producing the inflationary era and the
dark energy era. Whereas, inn between, the Universe is
dominated initially by the radiation fluid and, eventually,

after a critical matter density ρcm during the reheating era or
early radiation domination era, by the interacting dark
matter and scalar field fluids that dominate over the
radiation fluid or cause disturbance in its dominance over
the evolution of the Universe. The interaction between the
dark matter and scalar fluids acts in such a way so that, after
inflation, the scalar field fluid loses its energy and transfers
it to the dark matter fluid, and at the critical matter density
ρcm the interaction is switched off effectively; while after the
critical matter density ρcm, the interaction flips its sign and
the scalar field gains energy from the dark matter fluid. We
formed the two-dimensional subspace of the total cosmo-
logical phase space, composed by the dark matter and
scalar field fluids, and we constructed the autonomous
dynamical system that governs this phase space. We
calculated the fixed points and as we showed, there exist
two unstable stiff fixed points and two stable dark matter
attractors. As we showed numerically that there exist initial
conditions for which the trajectories in the phase space may
pass through one of the two kination fixed points, before
ending up to the stable dark matter attractors. This behavior
makes it possible for the Universe to experience short
deformations of its total EOS parameter, and we examined
the effects of such a short era on the energy spectrum of
primordial gravitational waves. As we showed, even with a
standard R2 inflationary era, the predicted energy spectrum
can be detected by the future DECIGO and BBO experi-
ments and in some cases by the Einstein Telescope.
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