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We analyze theories that do not have a de Sitter vacuum and cannot lead to slow-roll quintessence, but
which nevertheless support a transient era of accelerated cosmological expansion due to interactions
between a scalar ϕ and either a hidden sector thermal bath, which evolves as dark radiation, or an extremely
light component of dark matter. We show that simple models can explain the present-day dark energy of the
Universe consistently with current observations. This is possible both when ϕ’s potential has a hilltop form
and when it has a steep exponential runaway, as might naturally arise from string theory. We also discuss a
related theory of multifield quintessence, in which ϕ is coupled to a sector that sources a subdominant
component of dark energy, which overcomes many of the challenges of slow-roll quintessence.
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I. INTRODUCTION

There is convincing evidence that the current energy
budget of the Universe is dominated by a component, dark
energy, which at redshift z≲ 1 has equation of state w≲
−0.85 [1,2]. Uncovering the nature of dark energy is one of
the foremost problems in cosmology and, given that the
vacuum energy density is sensitive to the details of physics
at high energy scales, also fundamental particle physics [3].
Dark energy could simply be a cosmological constant

that sources a de Sitter (dS) vacuum. However, indications
are that dS vacua are at best difficult to obtain from string
theory in the regimes that current techniques can access, see
e.g. [4]. Moreover, it is unclear what the measurable
observables of a theory of quantum gravity with never-
ending accelerated expansion might be [5–7], e.g. an S
matrix cannot be defined (such problems are especially
sharp in asymptotic dS [8]). Motivated by these issues, it
has been conjectured that no metastable dS vacua exist
anywhere in the string landscape [9]. On the observational
side, although cosmic microwave background (CMB) data
generally show no evidence for physics beyond Lambda
cold dark matter (ΛCDM), intriguingly, baryon acoustic
oscillation (BAO), SNIa, and other non-CMB data might

hint towards favoring dynamical dark energy models over a
cosmological constant (see e.g. [10–16]). Alternative pos-
sible sources of dark energy are therefore worth consider-
ing. The most studied of these is quintessence, which itself
is not without challenges: The original quintessence
tracking solutions of a single scalar field with a steep
exponential or polynomial potential [17–19] are now in
tension with observations for typical potentials1 [20,22–24]
and they anyway require extra model building if eternal
acceleration is to be avoided. A scalar field with a
sufficiently flat potential can lead to an era of slow-roll
quintessence that is compatible with current data [22–24],
but suitable potentials do not appear straightforward to
realize within string theory in the absence of tuned initial
conditions or super-Planckian field displacements [25].
In this paper we argue that there are other options to

account for dark energy, in particular in extensions of the
Standard Model of particle physics that contain dark
sectors (i.e. sets of new particles that have sizable inter-
actions among themselves but tiny couplings to visible
matter) and ultralight fields that are weakly coupled to
everything. Such modifications of the Standard Model are
plausible given that they seem to commonly arise in string
theory compactifications [26–30]. Theories of multifield
quintessence, which can alleviate some of the challenges of
the single field version, fall into this general framework and
have been studied extensively, see e.g. [31–38].
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1For example, [20] constrains the inverse power in the
polynomial potential V ∼ ϕ−α to be α < 0.28 (2σ limit) with
TTþ lowPþ lensingþ BAO and [21] finds that the exponential
coefficient in V ∼ e−λϕ must be λ≲ 0.54 (2σ limit) using
SNþ CMBþ BAOþ H0.
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The main focus of our work is on scenarios that, unlike
quintessence, do not rely on Hubble friction to sustain dark
energy. In particular, we consider the possibility that
interactions between a scalar and a field that either behaves
as a component of dark matter or dark radiation can result
in a transient era of dark energy domination, despite the
Lagrangian potential having no stationary point that would
correspond to a metastable dS vacuum. Both cases essen-
tially consist of a moderately supercooled phase transition
[39] currently taking place in a hidden sector. For com-
pleteness, we also consider the possibility of interactions
between a scalar and a second field that itself acts as a
quintessence field and provides a subdominant contribution
to dark energy (this scenario is a version of multifield
quintessence that, to our knowledge, has not been studied
before).
We stress that we build on previous work that has

proposed these types of theories to explain accelerated
expansion in various contexts. We discuss this literature in
detail as we go along, but (among other important works)
we note that the dark matter assisted scenario is analogous
to new old inflation [40–44], see also [45] for analysis of
the same theory in the context of late-time dark energy
(couplings between a quintessence field and dark matter
have also been considered extensively in other settings, e.g.
[46–49]). Meanwhile, the dark radiation assisted scenario is
closely connected to thermal inflation [50,51] (and related
ideas have been proposed to resolve the Hubble tension
[52]), and a theory related to the quintessence assisted
scenario has been considered in [53].

A. Setup

Throughout, we study a toy model that consists of two
interacting hidden sector scalar fields with a low-energy
effective Lagrangian

L ¼ 1

2
gμν∂μϕ∂νϕþ 1

2
gμν∂μψ∂νψ þ Vðϕ;ψÞ; ð1Þ

comprising canonical kinetic terms and a scalar potential of
the form

Vðϕ;ψÞ ¼ VðϕÞ þ 1

2
m2

ψψ
2 þ 1

2

m2
int

Λ2
ϕ2ψ2 þ λψ4: ð2Þ

The field ϕ will, eventually, source dark energy via its
potential VðϕÞ, which we take to have a hilltop or
exponential form

VhillðϕÞ≡ρde

��
ϕ

Λ

�
2

−1

�
2

; VexpðϕÞ≡ρdee−ϕ=Λ; ð3Þ

respectively. Note that our model thus has four additional
parameters compared to the ΛCDM model: Λ, mψ , mint,
and λ; plus the initial conditions for ϕ and ψ and their

respective velocities.2 The scale Λ associated with the field
range of ϕ is assumed to be ≲MPl where MPl ¼
ð8πGNÞ−1=2 is the reduced Planck mass. As a result, neither
VhillðϕÞ or VexpðϕÞ could lead to dark energy in isolation
without a fine-tuning of ϕ’s initial conditions. The typical
values of ψ ’s massmψ and the quartic couplingsm2

int=Λ2, λ,
and ρde=Λ4 vary between the different scenarios that we
consider, but mψ is always at least sub-eV and the quartic
couplings are all taken to be much smaller than 1. We
assume throughout that ϕ and ψ , as well as the Standard
Model particle content, are statistically spatially homo-
geneous and isotropic on cosmological scales, so the metric
is of the Friedmann-Lemaître-Roberston-Walker (FLRW)
form. We also fix that the contribution to the cosmological
constant sourced by the Standard Model and any additional
fields in the theory is zero (although a small negative
cosmological constant≪ ρde would not affect the dynamics
or our key conclusions).
Our assumed initial conditions with ϕ spatially homo-

geneous naturally arise from an earlier era of primordial
inflation provided that the Hubble parameter during infla-
tion HI ≪ Λ [such that the fluctuations in ϕ during
inflation, which have size of order HI=ð2πÞ are small
compared to the typical field range]. For the values of Λ
that we consider, not too far below MPl this condition is
easily satisfied (in fact, almost automatically given obser-
vational constraints onHI). Moreover, the initial velocity of
the zero momentum modes after inflation are ϕ̇ ∼H2

I ≪ Λ
in the regime of interest. This small initial kinetic energy
redshifts away fast ϕ̇2 ∝ a−6, such that at the late-times
when the dynamics we are interested in begin (not long
before dark energy domination) we can expect initial
conditions with ϕ̇ small. In the scenario that ψ acts as a
component of dark matter or dark energy, we can likewise
assume that ψ is initially spatially homogeneous and with
ψ̇ ≪ HMPl. Moreover, it is reasonable to expect that ψ
starts away from its potential: provided H2

IM
2
Pl ≫ m2

ψM2
Pl

there is no reason to think that ψ will be close to the
minimum of its potential (this is consistent with ψ being
spatially homogeneous after inflation because we assume
mψ ≪ MPl). In the case that ψ acts as a component of dark
radiation, an initial, close to spatially homogeneous,
thermal bath might be populated by the decay of the
inflaton. We do however note that in all the scenarios that
we consider, small isocurvature fluctuations in ϕ and ψ , as
well as the initially small adiabatic fluctuations in these
fields that are inevitably present, could lead to interesting
observational signals of our theories. We carry out an initial

2The several additional parameters will make it difficult to find
statistical preference for these scenarios in cosmological data,
however there may be other possible hints towards our models
such as evidence for ultralight dark matter or dark radiation or
further theoretical developments.
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analysis of the late-time evolution of these perturbations in
Appendix D leaving a full analysis to future work.
The point ϕ ¼ 0 is clearly special in the hilltop case,

being a maximum of ϕ’s potential energy functional when
ψ ¼ 0. Moreover, for both VhillðϕÞ and VeffðϕÞ, at ϕ ¼ 0
there is no contribution to ψ’s effective mass from ϕ. With
the hilltop potential the theory equation (1), Eq. (2) has a
global minimum at ϕ ¼ Λ and ψ ¼ 0 with vanishing
vacuum energy, while in the case of the exponential
potential there is a runaway towards vanishing vacuum
energy ϕ → ∞ with ψ ¼ 0. We note that the scalar
potential Vðϕ;ψÞ does not have any de Sitter vacuum,
and as we will discuss, depending on the values of its
parameters, it can be consistent with recent swampland
conjectures.
Despite its simplicity, the model described above is

sufficient to exhibit all the dynamics we are interested in:
Depending on the values of the Lagrangian parameters and
the initial conditions, ψ can provide a subdominant con-
tribution to dark matter, dark radiation or, if it acts as a
slow-rolling quintessence field, dark energy. We will show
that in each regime the background energy in ψ can
temporarily provide an effective stabilizing mass term
for ϕ via the quartic ϕ − ψ interaction in Eq. (1), trapping
ϕ at a field value much smaller than Λ where it sources a
nonvanishing potential energy and leads to a transient era of
dark energy [justifying our choice of notation, “ρde,” in
Eq. (3)]. We explore the cosmological dynamics, con-
straints and signatures of such theories, including how the
necessary field values can automatically arise at early
cosmological times and how a graceful exit from the era
of accelerated expansion occurs.
Our work is structured as follows. In Secs. II–IV we

consider the dark matter, dark radiation and quintessence
assisted scenarios in turn. Subsequently, in Secs. V and VI
we make some general comments on fine-tuning and the
relation with swampland conjectures. We end in Sec. VII
with a comparison of the three scenarios and a discussion of
observational prospects and directions for future work.
Appendices A–C provide additional details on each of the
scenarios, referred to in the main text, and in Appendix D
we present out preliminary analysis of the evolution of
cosmological perturbations.

II. DARK MATTER ASSISTED DARK ENERGY

In this section we consider the part of parameter space in
which the mass of ψ is greater than today’s Hubble
parameter, mψ ≳H0, where the subscript 0 denotes quan-
tities evaluated today, and we assume λ ≪ m2

ψ=M2
Pl in

Eq. (2) so ψ’s quartic self-interaction can be neglected.
Moreover, we suppose that both ψ and ϕ are initially
homogeneous and isotropic with ϕ̇ ¼ ψ̇ ¼ 0 (where a dot
denotes a derivative with respect to cosmic time), for
instance due to an earlier epoch of primordial inflation,

and that ψ starts away from the minimum of its potential
with initial value ψ i ≠ 0. With these assumptions, in a
FLRW background ψ classically oscillates with frequency
mψ and amplitude falling as a−3=2, where a is the scale
factor. Such a field can be interpreted as a collection of
coherent scalar particles, with energy density redshifting as
matter [54]. We anticipate that, if the oscillations are
sufficiently fast, we can replace ψ2 in Eq. (2) by its time
averaged value hψ2i, trapping ϕ until the amplitude of ψ ’s
oscillations decreases enough. We have checked numeri-
cally that the trapping of ϕ in a dS minimum turns out to be
fairly independent of the initial conditions for ϕ, ϕ̇, and ψ̇ ,
requiring only that ψ starts sufficiently far away from its
minimum, and that ϕ̇ ≪ HΛ and ψ̇ ≪ HMPl when the
dynamics begin.
This idea, with ϕ’s potential taking the hilltop form, has

previously been considered as possible explanation for
early Universe cosmic inflation and the late-time accel-
erated expansion, in scenarios named locked inflation
[40,41] and locked dark energy [45]. We now extend these
studies in the context of dark energy. We start with the
relatively tractable case of a hilltop potential before turning
to the perhaps more realistic possibility of an exponential
potential.

A. Hilltop potential

1. Overview of dynamics and parameter space

We begin by analyzing a Universe containing only ϕ and
ψ , with VðϕÞ ¼ VhillðϕÞ and choosing ϕ’s initial field value
ϕi ≪ Λ. The evolution of ψ is approximately independent
of ϕ so long as3

mint
ϕ

Λ
≲mψ ; ð4Þ

in which case the oscillations in ψ are governed by the
equation

ψ̈ þ 3Hψ̇ þm2
ψψ ¼ 0: ð5Þ

If we further assume that hψ2i is sufficiently small that the
total energy density is dominated by the contribution from
ϕ’s potential energy VhillðϕÞ ≃ Vhillð0Þ ¼ ρde, then the
background FLRWmetric takes an approximately dS form,
with H2

0 ≈ ρde=ð3M2
PlÞ and Eq. (5) is solved by

3Numerical solutions of the equations of motion of particular
theories show that an era of dark energy domination is possible
even if Eq. (4) is violated, in which case our subsequent analysis
replacing ψ by Eq. (6) is not accurate [typically with somewhat
fewer e-folds of dark energy than predicted from Eqs. (10a)
and (10b)]. We will show below that this regime is relevant for the
case that ϕ has an exponential runaway potential.
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ψðtÞ ¼ ψ ie−3H0t=2 cos ðmψ tÞ; ð6Þ

where we set the initial time ti ¼ 0.
The equation of motion for ϕ then becomes

ϕ̈þ 3H0ϕ̇þ ðm2
intψ

2
i e

−3H0tcos2ðmψ tÞ − ρdeÞ
ϕ

Λ2
≊0; ð7Þ

where we have expanded in ϕ=Λ ≪ 1. If ψ2 is replaced by
its average over timescales ∼m−1

ψ , then ϕ has an effective
mass squared

m2
eff≊ 1

2

m2
int

Λ2
ψ2
i e

−3H0t −
ρde
Λ2

: ð8Þ

We see that, provided hψ2i > ψ2
crit, with

ψ crit ≡ 2
ffiffiffiffiffiffi
ρde

p
=mint; ð9Þ

the term proportional to mint in Eqs. (7) and (8) results in ϕ
being temporarily held at the origin and sourcing dark
energy. Intuitively, there is an energy cost to ϕ moving to
larger field values because this would increase ψ’s effec-
tive mass.
This is only a transient de Sitter phase. To a first

approximation, as the amplitude of the ψ oscillations falls,
eventually the effective mass contribution to ϕ will be
insufficient to hold the latter at the origin, which occurs at
around t ¼ tend [40,41],

meff ≈ 0 ⇒ tendH0 ≈
2

3
log

�
mintψ iffiffiffiffiffiffi

ρde
p

�
: ð10aÞ

However, it is not sufficient that ϕ’s time averaged effective
mass squared parameter is positive. During every oscil-
lation ψ passes through a region in field space such that
jψ j < ψ crit. If the time spent in this instability range,
2ψ crit=ðmψψ ie−3H0t=2Þ, is comparable to the time scale
on which ϕ would roll due to its tachyonic mass near
the hilltop, 1=mtachyon ∼ Λ= ffiffiffiffiffiffi

ρde
p

, the point ϕ ¼ 0 is unsta-
ble. This happens around tinst [40,41] where

tinstH0 ¼
2

3
log

�
mintψ iΛmψ

ρde

�
: ð10bÞ

Depending on the extra factor inside the logarithm in
Eq. (10b), this can be a stronger or a weaker condition than
Eq. (10a). An upper bound on the number of e-folds of dark
energy domination Nde is thus obtained from these two
conditions

Nde ≤ min

�
2

3
log

�
mintffiffiffi
3

p
mψ

ψ i

Mpl

�
;
2

3
log

�
mint

3H0

Λ
Mpl

ψ i

Mpl

��
:

ð11Þ

2. Constraints from parametric resonance

The preceding analysis is not the end of the story. As
pointed out for locked inflation in Ref. [41], the coupling of
ϕ to the coherently oscillating ψ can cause resonant
instabilities in ϕ, analogous to preheating at the end of
inflation (where, however, it is the inflaton that coherently
oscillates and matter fields that undergo resonant amplifi-
cation). As we now show, following [41], this results in
additional constraints on our theory’s parameters.
By rescaling the dark energy field ϕ̂ ¼ e3H0t=2ϕ and

defining the new time variable τ ¼ mψ t, the equation of
motion, Eq. (7), of ϕ is recast into the well-known Mathieu
equation (a linear second order ordinary differential equa-
tion with periodic forcing of the stiffness coefficient)

ϕ̂00 þ ðcðτÞ þ 2qðτÞ cosð2τÞÞϕ̂ ¼ 0; ð12Þ

albeit with time-dependent coefficients

cðτÞ ¼ 2qðτÞ − b and qðτÞ ¼ m2
intψ

2
i

4m2
ψΛ2

e−3H0τ=mψ ; ð13Þ

where

b ¼ H2
0

m2
ψ

�
3M2

Pl

Λ2
þ 9

4

�
: ð14Þ

Because H0 ≲mψ , qðτÞ varies only slowly, and the
evolution is well approximated by an ordinary Mathieu
equation [55] at any given time. Floquet’s theorem [56]
then implies that the solutions are of the form

ϕ̂ðτÞ ¼ esτfðτÞ with periodic fðτ þ πÞ ¼ fðτÞ: ð15Þ

The Mathieu exponent sðc; qÞ can be complex and its real
part is always non-negative; when Reðsðc; qÞÞ ¼ 0, jϕ̂j is
stable; when Reðsðc; qÞÞ > 0, jϕ̂j is exponentially growing.
One can solve for sðc; qÞ numerically [56], mapping out a
stability-instability chart with characteristic instability, or
“resonance” bands.
Note that for sizable Nde, Eq. (10a) requires 1 ≪

logðmintψ i=ðH0MplÞÞ≲ logðmintψ i=ðH0ΛÞÞ and we will
see soon that mψ=H0 ≲ 15, so qðτ0Þ ≫ 1. Then, as τ
increases qðτÞ falls, and sðc; qÞ passes through the reso-
nance bands on time scales≊tinst. In the parameter space of
interest to us q ≫

ffiffiffi
b

p
for H0τ=mψ ≲ 1 (i.e. when ψ starts

oscillating) and b is not far from Oð1Þ. In this regime the
mean value of the Mathieu exponent, averaged over a range
of q is s̄ ≈ 0.11. Consequently, the full solution to Eq. (12)
behaves as ϕ̂ ∝ es̄τ, so the resonance causes ϕ̂ to grow
exponentially on a time scale for t set by ðs̄mψ Þ−1. This
instability in ϕ̂ is not disastrous provided the induced
oscillations are damped sufficiently fast by the expansion of
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the Universe: in terms of the original field, the solution to
Eq. (7) behaves as

ϕðtÞ ∝ eðs̄mψ−3H0=2Þt; ð16Þ

so for

mψ=H0 ≲ 15; ð17Þ

the resonant instability is evaded. Once the amplitude of
ψ’s oscillations have dropped enough that b ≃ ffiffiffi

q
p

the
average s̄ increases and the resonance becomes more
dangerous. However, this effect happens at (up to order-
1 numerical factors that we do not have control of) the same
time that the instability condition Eq. (10b) causes ϕ to roll
away from the top of the potential anyway, so it does not
lead to an additional bound on Nde.
So far we have only considered the zero mode in the

Fourier expansion of ϕðt; x⃗Þ to ϕkðtÞ (and likewise ψ). In
Appendix A 1, we show that in the parameter space where
the zero mode is not exponentially growing, higher
momentum modes—populated by quantum fluctuations
or any small inhomogeneities e.g. from an earlier era of
primordial inflation—are not amplified either.
We have confirmed with numerical solutions of the

equations of motion that, provided Eq. (17) is satisfied, the
number of e-folds of dark energy domination is reasonably
well approximated by the upper bound in Eq. (11) over the
majority of parameter space. The previously mentioned
strengthening of parametric resonance at t ≃ tinst can affect
Nde in some theories. However, the impact of this is
relatively minor and models within the identified allowed
parameter space still typically lead to viable cosmological
histories. The end of the era of dark energy occurs via a
second order phase transition.

3. Working example with realistic cosmological history

The same dynamics can occur in a realistic cosmological
history that includes the Standard Model. Note that the
condition Eq. (17) implies that ψ does not start oscillating
until long after matter-radiation equality, so it cannot make
up all (or the majority) of dark matter and a further dark
matter component must be added. We assume that this and
the Standard Model fields are totally decoupled from the
ψ − ϕ sector.
Remarkably, the presence of the Standard Model and

the dominant dark matter component, which as usual drive
the evolution of the Universe at early times, allow the
initial condition ϕi ≪ Λ to be relaxed. Instead ϕi and ψ i
can be set to their “natural” values ≃Λ and ≃MPl
respectively. Then, at early times all of the gradients
from Vðϕ;ψÞ are dominated by H and both ψ and ϕ are
frozen. If Λ≲MPl, mintψ i=Λ≳mψ and mintψ i ≳ ρde, the
first term from the potential to be cosmologically relevant
is the interaction term in ϕ’s equation of motion

∼∂ϕðm2
intψ

2ϕ2=Λ2Þ, when H≊mintψ i=Λ. At this stage ϕ
evolves in a background of basically constant ψ2 ¼ ψ2

i ,
and starts to oscillate around the minimum of its effective
potential, which is at ϕ ¼ 0. These oscillations are
damped by the expansion of the Universe, until the time
when 3H ≃mψ at which point ψ starts oscillating. In
Appendix A 2, we show that ϕ=Λ is localized close to 0
before this time provided

mψΛ
mintψ i

≪ 1 or ð18aÞ

Ω3=8
r

Ω1=2
m

�
H0Λ
mintψ i

�
3=4

�
mψ

H0

�
≪ 1; ð18bÞ

depending on whether ϕ starts to oscillate during matter or
radiation domination respectively (Ωr and Ωm are the
present-day radiation and matter density parameters). In
this way,ϕ is automatically driven to the required point in its
potential prior to when dark energy domination must begin.
Subsequently, the evolution is similar to the system

containing only ϕ and ψ , except that the main component
of dark matter dominates the energy density of the Universe
for a while until ϕ’s potential energy takes over and the
dark energy era starts. As in a universe containing only ϕ
and ψ , provided parametric resonance is ineffective, the
dark energy epoch ends either when the time-averaged
effective mass parameter for ϕ becomes tachyonic or when
the time spent in the tachyonic region as ψ oscillates is
comparable to the time scale of the hilltop roll. The
expected number of e-folds of dark energy domination
can be obtained from Eq. (11) replacing ψ i with the
amplitude of ψ ’s oscillations at the time when dark energy
domination starts (to account for earlier redshifting). Once
ϕ becomes unlocked, it oscillates around the minimum of
its potential at ϕ ¼ Λ. When this first happens ψ and ϕ are
strongly coupled together and the system evolves non-
linearly. Numerical solutions of the equations of motion
show that the accelerated expansion of the Universe ends
almost immediately at this time (see Fig. 5 inAppendixA 3).
Eventually, once the amplitude of the oscillations of ϕ and ψ
decrease sufficiently by redshifting, both evolve as matter.
We plot the evolution of ϕ and ψ in a particular theory

that is consistent with observational constraints in Fig. 1.
This is obtained by solving the equations of motion of the
theory numerically including the Standard Model radiation
and an additional dark matter component, accounting for
the full contributions from the energy densities of ϕ and ψ
to the expansion history of the Universe. The various stages
of the evolution can be seen clearly, including the eras
during which ϕ is locked and sources dark energy and the
eventual end of dark energy at a=a0 ≃ 5. Further analysis of
this theory is given in Appendix A 3 where we show plots
of the evolution of the energy density and equation of state
parameter w, which match the ΛCDM predictions to within
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percent level for a=a0 ≲ 5 and deviate dramatically
after this.

4. Allowed parameter space

We now consider, in more generality, the constraints on
the parameter space of dark matter assisted dark energy
when ϕ has a hilltop potential. This consists of

mint; mψ ; Λ; ψ i; ϕi; ð19Þ
where we will assume Λ ≲MPl and keep ϕi ≲ Λ
and ψ i ≲MPl.
A number of conditions must be satisfied for the

mechanism to work at all. We have already seen that we
require hψ2i > ψ2

crit ≡ 4ρde=m2
int in order for the back-

ground ψ to generate an effective minimum. Then hψ2i0 >
ψ2
crit constrains

ψ2
i >

4

9

ρdem2
ψ

ΩmH2
0m

2
int

: ð20Þ

To obtain several e-folds of dark energy domination we
need, from Eq. (11),

mint > mψ ; ð21Þ
and mψ=H0 ≲ 15. But we also require mψ > H0 so that ψ
oscillates, so overall

H0 ≲mψ ≲ 15H0: ð22Þ
We must also impose observational limits on the energy

density carried by extremely light scalar dark matter [57].

Equation (22) means that mψ ∼ 10−32 eV, and therefore the
associated density parameter, Ωψ ¼ m2

ψψ
2
0=ð6H2

0M
2
PlÞ, is

bounded from above as Ωψ ≲ 3 × 10−2 [57], which implies
that

3

2

ψ2
iΩm

M2
Pl

≲ 3 × 10−2; ð23Þ

where we used that ψ starts to oscillate during matter
domination. The observational bound on Ωψ also implies
ρde=ρψ ;0 ≃ 35 (where ρψ ;0 ≃m2

ψhψ2i is the present-day
energy density in ψ ). In combination with the condition
for a metastable minimum ρde ≪ m2

inthψ2i, this demands a
moderate hierarchy between the Lagrangian parameters m2

ψ

and m2
int.

If we require ϕ to be driven close to the top of its
potential beginning from ϕi ≃ Λ (as opposed to tuning its
initial condition), we need Eq. (18a) or (18b) to be satisfied.
We also need that ψ is still frozen when ϕ starts rolling
towards ϕ ¼ 0, which is the case provided ϕi ≪ ψ i, so
mintϕi=Λ ≪ mintψ i=Λ and the effective ψ mass induced via
mint is negligible at these times (we also note that ψ’s
Lagrangian mass is always cosmologically negligible when
ϕ starts rolling in the relevant parameter space).
Further conditions on the theory’s parameter space

follow from the approximation we used, namely that ψ’s
dynamics are linear when it starts oscillating, being
dominated by its own mass term

mintϕψ roll=Λ ≪ mψ ; ð24Þ
where ϕψ roll is the value of ϕ when 3H ≃mψ . If Eq. (24) is
satisfied then ψ’s evolution remains linear until ϕ becomes

FIG. 1. The evolution of (left) ϕ and (right) ψ with scale factor a in a theory of dark matter assisted dark energy with a hilltop potential.
The theory is given by Eqs. (1) and (2) with VðϕÞ ¼ VhillðϕÞ, with parameter valuesmψ ¼ 10H0,mint ¼ 104H0, Λ ¼ MPl=50 and λ ¼ 0

and initial field values ϕi ¼ Λ, ψ i ¼ MPl=5. We also include the Standard Model radiation and an additional (dominant) dark matter
component that is assumed to be uncoupled to ϕ and ψ . The equations of motion of the theory and the Friedmann equations determining
the expansion history are solved numerically. The various stages of ϕ and ψ’s dynamics, described in the main text, are labeled, and amre
and aΛme indicate the times of matter radiation and dark energy-matter equality respectively. Prior to a=a0 ≃ 5 this theory matches the
cosmological predictions of ΛCDM to an accuracy consistent with current observations (we give further details and show plots of the
energy densities of ϕ and ψ and the equation of state parameter of the Universe in Appendix A 3).
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unlocked and moves to large field values. Such a condition
is not essential for a viable model, but the analytic control is
appealing. If ϕ is driven to the top of its potential
dynamically, ϕψ roll is small enough to satisfy Eq. (24)
provided

ϕi

ψ i
≪ 1 or ð25aÞ

Ω3=8
r

Ω1=2
m

�
mint

H0

�1
4 ϕi

ψ3=4
i Λ1=4

≪ 1; ð25bÞ

ifϕbecomesunfrozen duringmatter or radiation domination,
respectively, see Eq. (A5a) or (A5b) in Appendix A 2.
We also note that Eq. (10b) requires that Λ is not too

much smaller than MPl, and Eq. (25b) imposes that mint is
not too much larger than H0. As a result, the physical mass

of ϕ in the locked phase ≃mintψ=Λ≳ ρ1=2de =Λ [cf. Eq. (8)] is
at most a few orders of magnitude larger than H0.
In Fig. 2 (left panel), we plot a slice of the allowed

parameter space with mψ and Λ fixed and mint and Ωψ

(equivalently ψ i) varying. We also set ϕi ¼ Λ, which affects
the constraint from requiring ψ’s evolution be linear.
Although the various constraints, especially the requirement
that Ωψ is not too large, place important restrictions on the
parameter space, a substantial region that leads to theories
consistentwith current observations remain.We also indicate
the number of e-folds of dark energy domination predicted
from Eq. (11); for the chosen mψ and Λ the condition from
the time ψ spends in the instability range, Eq. (10b), is
slightly stronger than the condition that ϕ’s time averaged
mass squared is positive, Eq. (10a).Ageneric feature over the
allowed region is that only a few e-folds of dark energy
domination are obtained and Ωψ ≳ 10−3 (these are true also

FIG. 2. Left: a slice of the parameter space for a dark matter assisted dark energy theory, with potential equation (2), in which ϕ’s
potential has the hilltop form VðϕÞ ¼ VhillðϕÞ in Eq. (3). Constraints come from the energy density in ψ (parametrized by Ωψ and
determined by the initial field value ψ i) exceeding current observational constraints on the fraction of extremely light dark matter (“too
much energy density in ψ”) and from the number of e-folds of dark energy domination not being sufficient to match observations (“too
few e-folds of dark energy”). We also impose that ψ evolves linearly without backreaction from ϕ assuming that ϕi ¼ Λ, which allows
analytic control but might not be essential for a viable theory (and can be relaxed if ϕi is assumed smaller). We indicate the number of e-
folds of dark energy domination Nde expected from Eq. (11) (this can be somewhat altered by the nonlinear dynamics around the time
when ϕ becomes unlocked). We also show the parameter point corresponding to the theory analyzed in Fig. 1 with a red dot. Right: the
analogous plot for theories in which ϕ has a potential with an exponential runaway, VðϕÞ ¼ VexpðϕÞ in Eq. (3), and larger fixed
Λ=MPl ¼ 0.5. In this case, ψ’s dynamics are necessarily nonlinear throughout the parameter space [see Eq. (33)] so we cannot reliably
predict the number of e-folds of dark energy domination. However the resulting theories can still be consistent with observations
especially if ϕi < Λ is assumed, e.g. the red dot indicates a theory analyzed in Appendix A 3 that is viable for ϕi ¼ Λ=10 leading to≃0.5
e-folds of dark energy domination (i.e. dark energy domination ends at a=a0 ≃ 1.25). For such theories there is a constraint (absent in the
case of a hilltop potential) from the minimum of ϕ’s potential (after time-averaging ψ) not moving too fast (“too large dark energy
variation”). We also show the part of parameter space in which ψ ’s evolution is nonlinear when it first starts oscillating, in which case an
observationally viable era of dark energy domination is unlikely (this constraint depends on the value of ϕi, and for the plot we
fix ϕi ¼ Λ=10).
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for other values ofmψ andΛ). A plot of another slice, varying
mψ and Λ, can be found in Appendix A 3.

B. Exponential potential

We now show that coherent oscillations of ψ can source a
transitory de Sitter vacuum and accelerated expansion even
when the scalar potential equation (2) has no extremum, as
happens for example for the exponential potential VexpðϕÞ
in Eq. (3). Such potentials occur very generically in string
theory compactifications, where the leading perturbative
corrections after supersymmetry breaking tend to lift flat
directions in the moduli potential to steep runaways.

1. Overview of dynamics

We again begin with an analytical study of a theory
containing only ψ and ϕ, before analyzing a full cosmo-
logical history numerically. Assuming that ψ’s oscillations
are sufficiently fast to allow us to average over them, the
potential for ϕ in Eq. (2) with VðϕÞ ¼ VexpðϕÞ is extre-
mized for

∂Vðϕ;ψÞ
∂ϕ

¼ 0 ⇒ m2
int

ϕ

Λ2
hψ2i ¼ ρde

Λ
e−ϕ=Λ; ð26Þ

which leads to a minimum at ϕ ¼ ϕmin

ϕmin

Λ
¼ W0

�
ρde

m2
inthψ2i

�
; ð27Þ

where W0 is the principle branch of the Lambert W
function [58]. Note that there is a minimum ϕmin for any
background value of hψ2i, however, hψ2i ∝ a−3 Eq. (6), so
ϕmin is time dependent. Assuming that ϕ follows its moving
minimum, one can use ∂W0ðxÞ=∂x ¼ W0ðxÞ=ðxð1þ
W0ðxÞÞÞ to show that the rate of change in the potential
energy density goes as

∂ logVðϕminÞ
∂ log a

¼ −
3ϕmin=Λ

1þ ϕmin=Λ
: ð28Þ

Thus to meet the strong observational constraints on the
time dependence of dark energy, we need

ϕmin=Λ ≪ 1; ð29Þ

today, which replaces the condition for the existence of a
minimum in the hilltop case, Eq. (10a). Expanding Eq. (27)
in small ρde=ðm2

intψ
2Þ gives ϕmin=Λ ≈ ρde=ðm2

inthψ2iÞ ≪ 1,
which implies ρde=ðm2

inthψ2iϕ2
min=Λ2Þ ≫ 1 so there is

indeed a consistent solution in which dark energy domi-
nates over the energy density in the ψ − ϕ interaction.
Equation (29) leads to an upper bound on the number of e-
foldings of dark energy domination analogous to Eq. (10)

Nde ≪
2

3
log

�
mintψ iffiffiffiffiffiffi

ρde
p

�
; ð30Þ

which can be larger than 1, suggesting that a transient dS
era is plausible.
However, as in the hilltop case, there are additional

complications not captured when ψ2 is time averaged. The
equation of motion for ϕ, expanding in small ϕ=Λ is

ϕ̈þ 3H0ϕ̇þ ðm2
intψ

2
i e

−3H0tcos2ðmψ tÞ þ ρdeÞ
ϕ

Λ2
≊ ρde

Λ
;

ð31Þ

where we again set ti ¼ 0. We assumed before that ϕ
simply rolls with the minimum obtained after time-
averaging ψ , but Eq. (31) actually implies that ϕ will
undergo oscillations on time scales Δt ∼ 1=mψ as ψ moves
through its field range and ϕ’s effective potential changes.
In the limit ϕ ≪ Λ, the amplitude of ϕ’s oscillations can be
estimated as (recalling that mψ ≳H0)

ϕ̈≊ ρde
Λ

⇒
Δϕ
Λ

≊ ρde
Λ2m2

ψ
: ð32Þ

To have a theory that leads to an era of dark energy
domination requires Δϕ=Λ ≪ 1. Additionally, and impor-
tantly, Eq. (32) implies that the contribution from
m2

intϕ
2ψ2=Λ2 to the ψ equation of motion cannot be

neglected [cf. Eqs. (4) and (5)] because the ratio between
the induced mass and the Lagrangian mass, mψ , is

mintϕ=Λ
mψ

¼ mintρde
Λ2m3

ψ
¼ 3

mint

mψ

H2
0

m2
ψ

M2
Pl

Λ2
; ð33Þ

which is typically larger than 1. As a result, a numerical
solution of the equations of motion is required to determine
whether ϕ is trapped at a field value that leads to dark
energy.
The same conclusion can be reached by noting that the

Klein-Gordon equation for ϕ, Eq. (31), leads to an
inhomogeneous Mathieu equation for ϕ̂, with an exponen-
tially growing forcing term [cf. Eq. (12)], and the result of
this forcing is that ϕ oscillates with an amplitude whose
order matches Eq. (32). Then, as a result of Eq. (33), the
starting assumption in deriving the Mathieu equation, that
the backreaction on ψ can be neglected, fails.
Similarly to the case when ϕ has a hilltop potential,

theories in which ϕ has an exponential runaway can lead to
cosmological histories that are consistent with current
observations once the Standard Model and a dominant
dark matter (again assumed to be decoupled from ϕ and ψ )
are included. The evolution of ϕ and ψ in such a theory is
illustrated in Fig. 6 in Appendix A 3. The nonlinear
behavior in ψ’s equation of motion makes the system

GOMES, HARDY, and PARAMESWARAN PHYS. REV. D 110, 023533 (2024)

023533-8



somewhat more delicate, and for many parts of the
parameter space (including the example theory we plot)
a mild fine-tuning of the initial conditions, ϕi=Λ ≲ 1, is
required to obtain sufficient e-folds of accelerated expan-
sion. With this, there is indeed an era during which ϕ is
trapped and sources dark energy. As the background value
of hψ2i falls, the minimum for ϕ moves out to larger values
and the oscillations in ϕ increase in amplitude. Eventually,
ϕ rolls down its runaway exponential potential basically
unhindered with ψ’s energy density negligible. At this stage
the dynamics of the system are the same as those of a single
field with an exponential runaway potential and a back-
ground energy density in matter and radiation. The evo-
lution of such theories has been studied in detail [59] (see
[60] for a recent discussion). For our parameter space, with
Λ < MPl=

ffiffiffi
3

p
, there is a late-time, global attractor, non-

accelerating scaling solution, for which the energy density
in ϕ remains a fixed, small, fraction of the total energy. We
also note that the validity of our effective theory is expected
to break down around ϕ≳ Λ, when higher order terms
would become unsuppressed and general ultraviolet con-
siderations would suggest that new light states enter the
theory.

2. Allowed parameter space

The allowed parameter space of theories in which ϕ has
an exponential potential can be analyzed similarly to the
hilltop case. One difference is that the conditions to ensure
ϕ has an induced minimum that lasts long enough,
Eqs. (20) and (21), no longer apply with an exponential
potential. These can be replaced by the requirement that the
time dependence of the minimum should be sufficiently
mild. We estimate this by requiring that our dark energy
density varies, over one e-fold, at most within the 2σ
confidence range inferred by Planck (even if the latter is
obtained by fitting the ΛCDM model). From Eq. (28), the
resulting limit is

δΩde

Ωde
< 0.02 ⇒ ϕmin=Λ ≲ 0.008; ð34Þ

where we have used the Planck 2018 [61] value ΩΛ ¼
0.6834� 0.0084 and Eq. (28). The remaining constraints
are Eq. (22) so that ψ oscillates but does not lead to
parametric resonance too early (because we expect the
resonant instability to be at least as bad as for the
complementary function to the homogeneous Mathieu
equation); Eq. (23) from observational limits on the energy
density in an extremely light component of dark matter; and
the typical amplitude of ϕ’s oscillations from Eq. (32)
Δϕ=Λ < 1. Given the complicated nonlinear dynamics
arising from the exponential potential, we allow ϕi=Λ to
be chosen small rather than imposing Eq. (18a)/(18b),
which would result in ϕ being driven to a small value
starting from ϕi ≃ Λ. An additional possible constraint can

be obtained by demanding that ψ at least evolves linearly at
the time that it starts oscillating Eq. (24), which depends on
ϕi. Numerical solutions of the equations of motion show
that if this condition is violated there is unlikely to be an era
of dark energy domination that lasts long enough to be
consistent with observations. As in the hilltop case, the
physical mass of ϕ in the locked phase is typically not too
much larger than H0.
We plot a slice of the allowed parameter space in Fig. 2

(right panel), varying mint and ψ i.
4 We set mψ ¼ 12H0 and

fix Λ ¼ MPl=2 to avoid large ϕ oscillations, cf. Fig. 7 in
Appendix A 3 where we show the parameter space with Λ
andmψ varying [for a hilltop potential suchΛwould lead to
ψ evolving nonlinearly, which is why we picked a smaller
value Λ=MPl ¼ 0.02 in Fig. 2 (left)]. We stress that not all
of the parameter space that satisfies the preceding con-
straints leads to a cosmologically viable era of dark energy
domination because with an exponential potential ϕ
strongly affects ψ’s evolution during dark energy domina-
tion. In particular, there is a tension that smaller values of
mint tend to lead to ϕ being trapped less efficiently and for
less long, see Eq. (30), but larger mint tends to make the
nonlinear effects on ψ stronger, see Eq. (33). Nevertheless,
numerical investigation suggests that observationally viable
theories with a few e-folds of dark energy domination can
be obtained over substantial parts of what we identify as the
allowed parameter space, even when ϕi=Λ ∼ 1.

III. DARK RADIATION ASSISTED DARK ENERGY

Suppose now that ψ is a light field behaving not as matter
but as radiation in equilibrium with a thermal bath at a
temperature Th that is less than the visible temperature Tv
to satisfy observational constraints [62]. Thermal equilib-
rium requires a sufficiently large interaction rate ΓI ≫ H.
For relativistic particles with mψ ≪ Th as long as the
relevant processes come from a renormalizable interaction
in the low-energy effective Lagrangian typically ΓI ∼ gnTh,
where g is some dimensionless coupling constant, n
depends on the details of the hidden sector and thermal
equilibrium is generally easily achieved provided Th is not
too much smaller than Tv [e.g. in the present-day Universe
for g≳ ð10−30Tv=ThÞ1=n]. The potential of Eq. (2) can
provide a minimal realization of this scenario with ψ’s
quartic self-interaction maintaining thermal equilibrium
(ΓI ∼ λ4Th for the required number changing interactions),
but more complex hidden sectors with additional fields are
plausible and the details are unimportant for most of our
purposes. Such a thermal population could be produced e.g.
from the primordial inflaton’s decay at very early times.

4For the purposes of the plot, we assume that ψ i is related to
Ωψ as if ψ evolved linearly, i.e. Eq. (23), which might lead to a
slight inaccuracy in parts of parameter space.
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We continue to assume that ϕi is initially homogeneous
with only the zero momentum mode populated.5

Given the Lagrangian equations (1)–(3), a nonzero ϕ
contributes to the mass of ψ . Consequently, because the ψ
radiation bath interacts with a ϕ background, a thermal
effective potential is produced for ϕ. At one-loop and for
Th ≫ mintϕ=Λ, ϕ’s corrected potential takes the form (see
e.g. [63,64])6

Vðϕ; ThÞ ¼ VðϕÞ þ 1

2
κT2

hϕ
2 with κ ¼ 1

12

�
mint

Λ

�
2

:

ð35Þ

Therefore an effective mass term is generated, which can
stabilize ϕ at a value where a positive potential energy
density can source dark energy. The mechanism is very
similar to the dark matter assisted case discussed in Sec. II,
with, roughly, the amplitude of the background oscillations
in ψ replaced by the temperature Th when ψ is in thermal
equilibrium. The stabilization of ϕ by finite temperature
effects is again only transient, because the induced local
minimum disappears below a critical temperature.
The dark radiation assisted scenario was called thermal

dark energy in [64] (see also [50,51] for the related thermal
inflation scenario and [52] for applications to early dark
energy). The case with a Hilltop potential—the thermal
analogy to Sec. II A—was studied in detail in [64] and so
here we focus on the exponential runaway potential, which
is well-motivated from string theory compactifications.

A. Overview of dynamics and parameter space

As before we start by considering a universe containing
only ϕ and ψ . Assuming the high-temperature approxima-
tion Eq. (35), the condition for the thermally corrected
potential to be extremized with respect to ϕ is

κT2
hϕ ¼ ρde

Λ
e−ϕ=Λ; ð36Þ

which leads to a minimum at

ϕmin

Λ
¼ W0

�
12ρde
m2

intT
2
h

�
: ð37Þ

For this to be consistent, ϕmin must be sufficiently small
that the mass contribution to the dark radiation ψ

mintϕ

Λ
≪ Th: ð38Þ

Physically Eq. (38) corresponds to ψ being present in the
thermal bath. While Eq. (38) is satisfied there is always a
minimum for ϕ, given by Eq. (37). ϕ’s potential energy at
ϕ ¼ ϕmin dominates the energy density in dark radiation
provided

ρdee−ϕmin=Λ ≫ ρψ ¼ π2

30
T4
h: ð39Þ

Similarly to Eq. (28), as the temperature of the hidden
sector falls the minimum equation (37) moves out to larger
field values. Using Th ∝ 1=a, one can easily show that the
time dependence of the dark energy density is

∂ logVðϕminÞ
∂ log a

¼ −
2ϕmin=Λ

1þ ϕmin=Λ
; ð40Þ

so to avoid too fast a change we again require

ϕmin=Λ ≪ 1: ð41Þ

The high-temperature approximation to the thermal
potential fails once the hidden sector temperature has
decreased to Th end ¼ meff

ψ . If ϕ’s induced minimum equa-
tion (37) still satisfies ϕmin=Λ ≪ 1 at this time then

Th end ¼
�
ρde
mint

�1
3

: ð42Þ

Subsequently, thermal contributions to ϕ’s effective poten-
tial become exponentially suppressed, the induced mini-
mum for ϕ disappears and ϕ begins to run away.
Equations (41) and (42) lead to upper bounds on the

number of e-folds of dark energy domination with approx-
imately constant energy density. Denoting the visible sector
temperature when dark energy dominations starts as Tv;de,
and defining ξh ¼ Th;0=Tv;0 with Th;0 and Tv;0 the hidden
sector and visible sector (photon) temperatures today
respectively, we obtain

Nde ≤ min

�
log

�
ξhTv;demintffiffiffiffiffi

12
p

ρ1=2de

�
; log

�
ξhTv;dem

1=3
int

ρ1=3de

��
: ð43Þ

Note that strongest bound typically comes from the second
term on the right-hand side because mint ≳ ρde in our
parameter space of interest.
Additionally, with its zero temperature potential having

the assumed runaway form, ϕ’s thermally corrected poten-
tial always has a global minimum with vanishing potential
energy out at ϕ → ∞ (in the hilltop case, such a minimum
exists at ϕ ¼ Λ for Th ≪ mint). Therefore, an exit from the
transient dS can take place by ϕ quantum [66] or thermal

5A thermal population of ϕ is typically produced subsequently
by ψ − ψ scatterings, but this does not affect the dynamics that
we consider.

6The thermal effective potential is Vðϕc; ThÞ ¼ VðϕcÞ þ
T4
h

2π2
JBððmeff

ψ ðϕcÞÞ2=T2
hÞ with JBðx2Þ ¼ − π4

45
þ π2

12
x2 − π

6
x3 þ � � �

for x ≪ 1 [65].
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tunneling [67] through the barrier in its finite temperature
corrected potential leading to a first order phase transition,
potentially shortening the era of dark energy domination.
We analyze these processes in Appendix B 2 and show that,
while the high-temperature approximation is valid, the rate
of tunneling is negligible provided

32π2

3

Λ4

ρde

T3
h

m3
int

≫ 1; ð44aÞ

and

8π
ffiffiffi
3

p

5

Λ2

ρ1=2de

T3=2
h Λ
m5=2

int

≫ 1; ð44bÞ

for quantum and thermal fluctuations respectively. If these
conditions are satisfied, tunneling only becomes significant
immediately prior to when dark energy is predicted to end
from Eq. (43) anyway (at which time the barrier in the
potential is on the edge of vanishing). Meanwhile, there are
no effects analogous to the instability time or parametric
resonance that were relevant to the dark matter assisted
scenario because the thermal fluctuations are fast and
incoherent (with period ∼1=Th) compared to the time
scale on which ϕ rolls,Δt ∼ Λ= ffiffiffiffiffiffi

ρde
p

(see Sec. IVA below).
As mentioned in the Introduction, the dark radiation

assisted scenario requires a super-cooled phase transition in
the hidden sector. In practice, this corresponds to ϕmin ≪ Λ
in Eq. (37) in combination with ρde a few orders of
magnitude larger than the energy density in hidden sector
radiation equation (39), which together imposes

T4
h ≪ ρde ≪ m2

intT
2
h: ð45Þ

As a result, the coupling constant of the quartic ϕ self-
interaction ρde=Λ4 ≪ m4

int=Λ4 ≪ 1 (recall that m2
int=Λ2 is

the coupling constant of the quartic ϕ − ψ interaction), and
for the Λ and mint we have in mind these values are tiny
(similarly small couplings are also needed for the dark
radiation assisted scenario with a hilltop potential). For
comparison, in the dark matter assisted case the analogous
conditions [discussed below Eq. (23)] require m2

int ≫ m2
ψ .

B. Working example with realistic cosmological history

Similarly to the dark matter assisted scenario, in a full
cosmological history ϕ can be driven to the required field
value (in this case its high-temperature minimum) at early
times independently of its initial value, e.g. even if ϕi ≈ Λ.
For this to occur, at some time after primordial inflation the
hidden sector must be in thermal equilibrium with a
temperature that satisfies Th > mint so that the finite
temperature correction to ϕ’s potential is relevant despite
ϕ ¼ Λ inducing a large ψ mass. Moreover, at the same time
the resulting gradient in ϕ’s equation of motion must be

large enough to overcome Hubble friction. In Appendix B 1,
we show that these two conditions are simultaneously
satisfied, and ϕ evolves to ϕ=Λ ≪ 1, provided

Λ
MPl

< ξ2h and
mint

MPl
< λ4ξ2h; ð46Þ

where we assume the hidden sector is kept in thermal
equilibrium by interactions of typical rate ΓI ∼ λ4Th [which
is appropriate to our minimal model equation (2) but can be
relaxed in more complex theories]. Alternatively, it may
simply be assumed that ϕi ≪ Λ.
In Fig. 3 we show an example of a theory of dark

radiation assisted dark energy with ϕ’s potential having an
exponential runaway that leads to a realistic cosmological
history, with the evolution of ϕ obtained by numerically
solving its equation of motion and the Friedmann equation.
The theory includes the Standard Model and a separate
source of dark matter, which, as usual, we assume are
totally decoupled from ϕ and ψ . As expected, at times when
the total mass of ψ (i.e. the combination of its bare mass
and the mass induced by ϕ) is less than Th, ϕ is trapped at a
local minimum close to ϕ=Λ ¼ 0 where it sources dark
energy. Once the mass of ψ is comparable to Th, which is
reached both directly due to Th decreasing and also because
ϕmin increases, the thermal correction to ϕ’s potential
becomes negligible. Subsequently, ϕ rolls down its zero
temperature potential with its energy density dominated by
kinetic energy, which therefore redshifts as a−6. Similarly
to the dark matter assisted exponential case, after the dark
energy dominated epoch ends the system will approach the
attractor, scaling solution with nonaccelerated expansion
described in [59], although this happens beyond the range
that we plot.

C. Allowed parameter space

For both the exponential and hilltop potentials, the
parameter space of theories of dark radiation assisted dark
energy consists of

Λ; mψ ; mint; ξh; ϕi: ð47Þ

We assume that the number of relativistic degrees of
freedom in the hidden sector is constant and that entropy
in the hidden sector is conserved.7

The temperature of the hidden sector, i.e. ξh, is con-
strained by the observed expansion history of the Universe,
parametrized by the effective number of neutrinos,

7The ratio of the hidden sector temperature to the visible sector
temperature is not constant in the early Universe due to the
change in the Standard Model number of degrees of freedom gs,
which depends on the temperature and has value gs;0 ¼ 3.909
today; indeed, Th=Tv ¼ ξhðgsðTvÞ=gs;0ÞÞ1=3.
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Neff ≈ 3.046þ 4

7

�
11

4

�
4=3

ghξ4h; ð48Þ

where the first term corresponds to the effective number of
neutrinos in the Standard Model accounting for nonin-
stantaneous neutrino decoupling [68] and gh counts the
number of degrees of freedom in the hidden sector,
weighted by 1 for bosons and 7

8
for fermions (see e.g.

[62] for more details). Neff is bounded by cosmic micro-
wave background observations to be Neff < 3.28 [61] (the
exact numerical value depends on which datasets are
included in the fit and the value of the present-day
Hubble parameter that is adopted). In our minimal model
with only ψ and ϕ in the hidden sector thermal bath8

gh ¼ 2, and the corresponding constraint is

ξh ≲ 0.48: ð49Þ

Big bang nucleosynthesis also leads to bounds on ξh that
are similar to Eq. (49) [69].
In the case that ϕ has an exponential potential, further

observational constraints arise from the time variation in
dark energy. Using Eq. (40), asking that the change in VðϕÞ

across one e-fold stays within 2σ of the Planck 2018 [61]
results on ΩΛ ¼ 0.6834� 0.0084 (albeit inferred by fitting
the ΛCDM model), implies

δΩde

Ωde
< 0.02 ⇒ ϕmin=Λ≲ 0.01: ð50Þ

Additionally, for the high-temperature approximation to
ψ’s contribution to ϕ’s thermally corrected potential to be
valid today requires Eq. (42)

Th > Th end ≡
�
ρde
mint

�1
3

; ð51Þ

which, as discussed around Eq. (43), is a stronger condition
than that from the time variation of ρde, Eq. (50). To avoid
nonperturbative decay through bubble nucleation,
Eqs. (44a) and (44b) must be satisfied for the present-
day hidden sector temperature Th;0 ¼ Tv;0ξh, which is
easily achieved for the relatively large Λ that we have in
mind. Additionally, if we require that ϕ is driven to the
minimum of its finite temperature-corrected potential
starting from ϕi ≃ Λ then Eq. (46) must be satisfied.
Finally we note that the quartic interaction between ϕ
and ψ has coupling constant m2

int=Λ2 and this must be ≲1

for the theory to be weakly coupled (this constraint is

FIG. 3. Left: the evolution of ϕ with scale factor a in a theory of dark radiation assisted dark energy in which VðϕÞ takes the
exponential runaway form of Eq. (3). We include the contributions of the Standard Model and dark matter to the expansion history
assuming that these are decoupled from ϕ and ψ . The Lagrangian parameters are Λ ¼ 10−3MPl,mint ¼ 108Tv;0 and mψ ¼ 0, and we set
ξh ¼ 0.2. We fix that at early times ϕ is in the minimum of its finite temperature-corrected potential (which can arise automatically from
dynamics at much earlier times than shown). We also plot the ratio between the contribution to ψ’s mass from ϕ’s expectation value
mψ ; ind ≡mintϕ=Λ and Th. Finally, we plot the minimum of ϕ’s corrected potential assuming the high-temperature approximation
Eq. (35), ϕhigh, which is tracked by ϕ while mψ ;ind ≪ Th. Once mψ ;ind=Th ≃ 1 the finite temperature correction to ϕ’s potential is
exponentially suppressed and ϕ rolls unhindered to large field values. Right: the energy density of ϕ (ρϕ) and the total energy density
including the Standard Model and dark matter (ρtot) of the theory plotted in the left panel, normalized to the critical energy density today
(ρc). For comparison we also show the total energy density in ΛCDM (ρΛCDM). While ϕ is trapped near ϕ=Λ ≪ 1 it sources dark energy
and a ΛCDM cosmology is reproduced to better than % precision. After ϕ rolls down its zero temperature potential at a=a0 ≃ 2,
ρϕ ∝ a−6, because this is dominantly in the form of kinetic energy (at sufficiently late times, beyond the range of the plot, the theory will
pick up the tracker solution for an exponential potential).

8As previously mentioned, a thermal population of ϕ is
typically produced by ψψ → ϕϕ interactions.
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irrelevant for the typical parameter values we are inter-
ested in).
In Fig. 4 we plot a slice of the parameter space of dark

radiation assisted dark energy theories, varying ξh and mint
with Λ fixed. Results are shown for theories in which ϕ’s
potential takes the exponential form and, for comparison,
also the case of a hilltop potential analyzed in detail in
Ref. [64]. The constraints have similar origins for the two
forms of the potential, except that with a hilltop potential
the bound equation (50) from the time variation of ϕmin is
absent because as long as a metastable minimum exists it is
at ϕ ¼ 0. We see that theories in which ϕ has an
exponential runaway lead to fewer e-folds of dark energy
than if ϕ had a hilltop potential. Nevertheless, in both cases,
observationally viable theories are possible over large parts
of the parameter space, with the constraints on the hidden
sector temperature, i.e. ξh, being perhaps the most
important.
Note that theories consistent with observations are

possible for Λ ≪ MPl. In this case, the physical mass of
ϕ while in the metastable minimum ≃mintTh=Λ can be

large compared toH0 and instead need only be smaller than
Th (so that the ϕ − ψ interaction is perturbative).
Alternatively, if Λ ≃MPl is assumed then the mass of ϕ
is similar to H0 unless mint ≫ Tv;0.

IV. QUINTESSENCE ASSISTED DARK ENERGY

We now return to the possibility that, as in the dark
matter assisted case, both ϕ and ψ are homogeneous and
isotropic with ψ i ≠ 0 away from its minimum and,
although not essential, ϕ̇ ¼ ψ̇ ¼ 0 initially (and no thermal
population), and we again assume λ ≪ m2

ψ=M2
Pl so that ψ

self-interactions are negligible. However, here we suppose
that mψ ≲ 3H0. As a result ψ can behave as a cosmologi-
cally frozen quintessence field sourcing a sub-dominant
component of dark energy. We will show that in such
theories the ϕ − ψ interaction circumvents many difficul-
ties faced by single-field slow-roll quintessence and a
transient era of dark energy domination sourced by VðϕÞ
can easily be obtained. Moreover, there is an automatic end
to accelerated expansion and the initial conditions, ϕi and

FIG. 4. Slices of the parameter space for dark radiation assisted dark energy, Left: when ϕ has a hilltop potential. Right: when ϕ’s
potential has an exponential runaway [see Eqs. (2) and (3)]. The results are shown as a function of the ratio of the hidden sector and
visible sector temperatures ξh and the Lagrangian parameter mint with Tv;0 the visible sector temperature today. In both cases there are
observational constraints from the hidden sector not containing too much energy density (“hidden sector too hot”) and from the era of
dark energy domination not lasting long enough (“too few e-folds of dark energy”). In the case of an exponential potential there is an
additional, weaker, constraint from the dark energy density varying too fast for observational limits (“too large dark energy variation”).
We also impose that the quartic coupling between ϕ and ψ , m2

int=Λ2 is smaller than 1 (“perturbativity”). Finally, if we require that ϕ is
dynamically driven to ϕ=Λ ≃ 0 in the early Universe the region labeled “initial conditions?” is excluded, although such dynamics are not
needed if ϕi ≪ Λ is assumed. The number of e-folds of dark energy domination, Nde, is also shown. For both types of potential Nde can
easily be sufficiently large for an observationally viable cosmological history, although in the case of an exponential potential there are
typically fewer e-folds of dark energy domination in total. The red dot in the exponential potential plot corresponds to the theory shown
in Fig. 3.
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ψ i, do not need to be tuned. Because many aspects of this
regime are similar to the first phase of the dark matter
assisted scenario before ψ begins to roll, we focus on
overall physical intuition rather than detailed numerical
analysis.

A. Challenges for slow-roll quintessence when mint = 0

We know that when mint ¼ 0, that is ϕ and ψ are
decoupled, ϕ cannot source accelerated expansion without
fine-tuned initial conditions and/or large field displace-
ments,≳MPl, which take us outside the regime of control in
the effective field theory (because corrections of the form
ϕn=Mn−4

Pl with n > 4 become important and moreover
towers of states typically become light as predicted by
the swampland distance conjecture [70]) [23,24]. Similarly,
super-Planckian field displacements are necessary for ψ to
source accelerated expansion.
In more detail, in the case of a hilltop potential the

solution to ϕ’s equation of motion is, while ϕ ≪ Λ,
approximately

ϕðtÞ ≈ ϕie
ffiffiffiffi
12

p
H0

MPl
Λ t; ð52Þ

assumingMPl ≫ Λ and fixing ϕ̇i ¼ 0 at ti ¼ 0. As a result,
the number of e-folds of accelerated expansion generated
by ϕ rolling from an initial value ϕi ≪ Λ to the minimum at
ϕ ¼ Λ is

Nde ≃H0tΛ ≃
Λffiffiffiffiffi

12
p

MPl

log

�
Λ
ϕi

�
: ð53Þ

Therefore, to have any significant number of e-folds ϕi
must be fine-tuned to lie exponentially close to the top of its
potential and/or Λ ≫ MPl. This can also be seen from the
slow-roll conditions near the hilltop:

M2
Pl

2

�
VϕðϕÞ
V

�
2

≪ 1 ⇒
8M2

Plϕ
2

Λ4
≪ 1; ð54aÞ

and M2
Pl

jVϕϕðϕÞj
V

≪ 1 ⇒
4M2

Pl

Λ2
≪ 1: ð54bÞ

The case that ϕ has an exponential potential likewise
requires Λ ≫ MPl for the slow-roll conditions to be
satisfied or fine-tuned of initial conditions, such that ϕ
starts off rolling up its potential and comes momentarily to
rest to drive a transient acceleration before rolling back
down (see e.g. [71,72] for reviews on the observational and
theoretical challenges in the latter scenario). Similarly, ψ
can only source accelerated expansion if it takes a super-
Planckian field value ψ i ≳MPl (withmψ ≲H0 to match the
observed dark energy density).
It is worth noting that there are plenty of more involved

models for slow-roll inflation/quintessence (see e.g.

[73–79]), but these usually require some fine-tuning between
Lagrangian parameters to produce a sufficiently flat poten-
tial. An exception is assisted inflation/quintessence [76,77],
which is related to the theory we consider and involves fields
slow rolling due to the Hubble friction sourced by other
fields. Assisted quintessence still requires fine-tuning of
initial conditions and implies an equation of state too far from
wde ¼ −1 to be compatible with recent observations; more-
over, interactions between different fields—as are expected
in ultraviolet models such as supergravity—are problematic
[77] making such theories difficult to realize [80].

B. Slow-roll and a transient dS vacuum for mint ≠ 0

Remarkably, the problems of single field quintessence
just discussed can be overcome simply by switching on the
interaction termmint > 0 in Eq. (2). Let us assume that mψ ,
mint and ϕi are such that ψ is frozen at ψ i ≲MPl. Then the
contribution from ψ i to the mass of ϕ via mint can induce a
minimum for ϕ. For a hilltop potential such a minimum
exists provided

ψ i > ψ crit ≡ 2
ffiffiffiffiffiffi
ρde

p
=mint; ð55Þ

in which case ϕmin ¼ 0. Meanwhile, if ϕ’s potential has the
exponential form a minimum exists for any ψ ≠ 0 with

ϕmin

Λ
¼ W0

�
ρde

m2
intψ

2

�
; ð56Þ

but similarly to the hilltop case, ϕmin=Λ ≪ 1 if ψ i ≳ ψ crit
defined in Eq. (55). For the remainder of this section we
assume that ψ i indeed satisfies this condition.
To begin with, let us also assume that ϕi is close to its

induced minimum (we will relax this condition at the end of
the section) and ϕ̇ðtiÞ ¼ 0. We impose that the potential
energy sourced by ϕ is greater than contributions from ψ
and the ϕ − ψ interaction term

ρde ≫
1

2

m2
int

Λ2
ϕ2
i ψ

2
i þ

1

2
m2

ψψ
2
i : ð57Þ

For the case of a hilltop potential, this requirement is
satisfied providedmψψ i=ðH0MPlÞ ≪ 1 with ϕi=Λ assumed
sufficiently close to the induced minimum at 0. Meanwhile,
for an exponential potential Eq. (57) is consistent with
Eq. (56) if mintψ i=ðH0MPlÞ ≫ 1 and mψψ i=ðH0MPlÞ ≪ 1

(which is possible for mint ≫ mψ ).
The initial Hubble parameter in a theory that satisfied the

preceding conditions is given by

Hi ≡HðtiÞ ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρde=ð3M2

PlÞ
q

: ð58Þ

Then for mψ ≪ H0 (≈Hi) and mintϕi=Λ ≪ H0, dV=dψ ≪
MPlH2

0 and ψ slowly rolls, even for sub-Planckian initial
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field values, while ϕ remains trapped. The key change
compared to single-field quintessence is that the slowly
rolling field is distinct from the field sourcing dark energy;
the slow-roll conditions thus reduce to

M2
Pl

2

�
VψðψÞ
VðϕÞ

�
2

≪ 1; ð59aÞ

and M2
Pl

jVψψðψÞj
VðϕÞ ≪ 1; ð59bÞ

with VðψÞ ≈m2
ψψ

2. These can be more easily satisfied than
the analogous conditions in a theory of single field
quintessence because the scales in VðψÞ and VðϕÞ can
be separated.

C. The end of dark energy domination

The slowly rolling ψ evolves according to the Klein-
Gordon equation (5) with

ψ ≈ ψ i

�
1 −

m2
ψ t

3H0

�
: ð60Þ

In the hilltop case this background induces a minimum for
ϕ at the origin until ψ falls below the critical value,
ψ crit ¼ 2

ffiffiffiffiffiffi
ρde

p
=mint, at which point ϕ rolls away from the

top of its potential according to Eq. (52). The time scale for
ψ to reach ψ crit (∼0 assuming 2

ffiffiffiffiffiffi
ρde

p
=mint ≪ ψ i) is

tcrit ∼ 3H0=m2
ψ , giving

Nde ¼ H0tcrit ¼
3H2

0

m2
ψ
; ð61Þ

e-folds of dark energy domination. For mψ ≲H0, the
Nde ¼ logða0=aΛmeÞ ≃ 0.26 e-folds observed in the real
Universe thus far can easily be reached (where aΛme is the
scale factor at dark energy-matter equality).
In the exponential case ϕ tracks its induced minimum

equation (56), which shifts to larger values as ψ slowly
rolls down its potential. Using Eq. (60) to show that
∂ψ=∂a ¼ −m2

ψψ i=ð3H2
0aÞ, one can deduce that the rate

of change in the dark energy density V ≈ ρdee−ϕmin=Λ is

∂ logV
∂ log a

≈ −
2m2

ψ

3H2
0

ϕmin

Λ
; ð62Þ

which allows an extended era of dark energy domination
with ρde approximately constant if mψ ≪ H0 and
ϕmin=Λ ≪ 1. Eventually, the value of ψ decreases so much
that the minimum in ϕ moves too quickly outwards and ϕ
effectively rolls away. Once ψ settles to its minimum at
ψ ¼ 0, the minimum of ϕ is out at infinity and the era with
w ≃ −1 ends. If the exponential form of the potential

remains valid at ϕ≳ Λ the system will approach the same
nonaccelerating scaling solution described for the dark
matter assisted scenario and in Ref. [59], but as discussed
we expect the effective field theory to break down at this
point anyway.

D. Relaxed initial conditions

Similarly to the dark matter and dark radiation assisted
scenarios, in a full cosmological history the quintessence
assisted scenario requires no fine-tuning of initial condi-
tions. Indeed, as mentioned, the dynamics are identical to
that in the first phase of the dark matter assisted case, before
ψ has begun to roll; see the discussion around Eqs. (18a)
and (18b) and in Appendix A 2. To briefly recap, assume
that at early times ϕi ∼ Λ and ψ i ∼MPl, and both fields start
off frozen by a high Hubble friction (even if ϕ̇ and ψ̇ start
off nonzero, they will quickly become frozen). Since
ψ i ≫ ϕi, the earliest effect of the interaction term is on
the dynamics of ϕ; when H ¼ Hϕ roll ≡mintψ i=Λ, ϕ thaws
and rolls towards its effective minimum, around which it
oscillates and sources dark energy. The ϕ oscillations
decrease as matter, ϕ ¼ ϕiðaϕ roll=aÞ3=2, thus ϕ today is
given by

ϕ0 ¼ ϕiΩ
1=2
m

H0Λ
mintψ i

; ð63Þ

where we assume that ϕ begins to roll during matter
domination, as is the case in all of our parameter space
of interest. Therefore, for mint ≫ H0 and ψ i ≫ Λ, ϕ is
driven to its effective minimum, close to the origin. At the
same time,mintϕ=Λ ≪ H throughout the evolution because
ϕ ∝ H during matter domination, which, together with
mψ < H0, ensures that ψ remains frozen.
To summarize, although quintessence assisted dark

energy requires a small mass mψ ≲H0 and a somewhat
larger mint ≳H0, it can lead to an epoch of accelerated
expansion despite sub-Planckian field distances being
traversed, thus staying within the regime of validity of
the effective field theory. The physical mass of ϕ while
trapped depends on Λ. Perhaps the most plausible pos-
sibility is to avoid large separations of scale with Λ not too
much smaller than MPl and mint not too much larger than
H0, in which case the physical mass of ϕ is only somewhat
larger than H0. As with our other assisted scenarios, these
theories do not rely on fine-tuned initial conditions and also
automatically lead to an end to accelerated expansion. A
numerical solution of the equations of motion of a
cosmologically viable example theory with ϕ having an
exponential potential can be found in Fig. 9 in Appendix C.
Interestingly, none of the parameters of that theory are
particularly extreme, e.g. mψ ¼ H0=5 and mint ¼ 40H0 are
only separated by ∼2 orders of magnitude.
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V. FINE-TUNING

All three scenarios discussed involve light scalar fields:
when ψ is dark matter we needmψ ≲ 15H0, when it is dark
radiation we need mψ ≪ ρ1=4de and when it is quintessence
we needmψ ≪ H0. Meanwhile, the dark energy field ϕ has

an effective mass mphy ≡mint

ffiffiffiffiffiffiffiffiffi
hψ2i

p
=Λ, which must be

larger than the Lagrangian mass scale mϕ ∼ ρ1=2de =Λ, so we
require mint ≳H0 for ψ ≲MPl. In fact, for a sustained
epoch of dark energy domination mint ≳ 104H0, mint ≳
107ρ1=4de and mint ≳H0 are needed for the dark matter, dark
radiation and quintessence assisted scenarios respectively.
These scalar masses would typically receive loop cor-

rections that are sensitive to the scale of the UV completion
of the theory, ΛUV, which we may take to be somewhere
below the string scale, and from loops of visible sector
states that will typically interact with the dark sectors at
least gravitationally. For instance, the key ϕ − ψ interaction

term, 1
2

m2
int

Λ2 ϕ2ψ2 in Eq. (2), itself leads to corrections to the
mass-squared parameters of ϕ and ψ of

Δm2
ψ ≈

m2
int

32π2Λ2
Λ2
UV and Δm2

ϕ ≈
m2

int

32π2Λ2
Λ2
UV: ð64Þ

Such a radiative correction to the mass of ψ can be small,
Δmψ ≪ mψ , without fine-tuning in all three scenarios. In
the dark matter and quintessence assisted cases, Δmψ ≪
mψ [≲H0 for quintessence and Oð10ÞH0 for dark matter]
provided thatΛUV ≲ Λ.9 In the dark radiation case, we need
Δmψ ≪ mψ ≲ Th ≲ ρ1=4de , and we find again that ΛUV ≲ Λ.
It is not a problem if the UV cutoff ΛUV lies below Λ
because all the energy densities in our theories remain far
below Λ4

UV and the UV completion could correspond to
physics that does not alter the dynamics described, e.g. the
appearance of supersymmetric partners that cut off the UV
divergence.
We also have to consider the loop contributions to the

mass of ϕ, Δm2
ϕ, in Eq. (64). For this to correspond to a

small correction Δm2
ϕ ≪ jm2

ϕj≲m2
phy requires that

ΛUV ≪ MPlH0=mint: ð65Þ

In the dark matter and quintessence assisted cases, Eq. (65)
can be achieved without fine-tuning simply with a UV
cutoff somewhere below MPl because the condition that a
minimum for ϕ is induced by the interaction term is
ψ imint=Λ ≫ ffiffiffiffiffiffi

ρde
p

=Λ with ψ i ≲MPl. However, Eq. (65)
is more problematic in the dark radiation case. Using
mint ≳ ρ1=4de , it requires a cutoff ΛUV ≪ ρ1=4de below the
energy scale of our effective theory. As a result, the theories

we have considered require some fine-tuning to keep scalar
masses sufficiently small. It would be interesting to analyze
whether this could be avoided in more complicated
theories, e.g. whether a supersymmetric theory with break-
ing scalemsoft hid ≲ ρ1=4de can lead to the same dynamics. We
note that in such a theory, the hidden sector would need to
be sequestered from the visible sector supersymmetry
breaking given that the visible sector soft terms are at
least at the TeV scale. Within string theory, this could be
achieved by some geometric separation between the dark
sectors and supersymmetry breaking sectors within the
extra dimensions, e.g. as in the constructions of Ref. [81].
In addition, there is an unavoidable interaction between

the dark sectors and all other states, including e.g. visible
sector states, via graviton exchange. This leads to contri-
butions to the scalar mass (see e.g. [82])

Δm2
ϕ ∼

1

ð4πÞ6
M6

M4
Pl

and Δm2
ψ ∼

1

ð4πÞ6
M6

M4
Pl

; ð66Þ

with M the mass of the additional states considered. In the
dark matter and quintessence assisted cases, the mass of ψ
is less than the mass of ϕ, so corrections to mψ are most
dangerous and Δmψ ≪ mψ can be satisfied without fine-
tuning only for M < GeV. In the dark radiation case the
mass of ϕ, ∼ρ1=2de =Λ is much smaller than the mass of ψ ,
∼Th, and M < ðMPl=ΛÞ1=3 GeV is required to avoid fine-
tuning from Eq. (66).
Finally, there is a danger ψ and ϕmight receive too large

corrections due to additional couplings to heavy states at,
say, the string scale. This UV sensitivity is potentially
difficult, but no worse than normal quintessence, see e.g.
[83]. Supersymmetry in the dark sector might help to
suppress such corrections, provided that the supersym-
metry breaking scale in the dark sector is sufficiently low.
Similarly, sequestering between the dark sector and visible
sector could help suppress portal couplings that lead to
unobserved fifth forces, which, as we discuss in Sec. VII,
are required by observations to be weaker than Planckian.
To summarize, the fine-tuning required to avoid UV

sensitivity from the ϕ − ψ quartic interaction term is much
milder in the dark matter and quintessence assisted scenar-
ios compared to the dark radiation scenario. This is because
for dark radiation assistance, one needs relatively strong
couplings between the dark energy field and the thermal
bath via mint ≳ ρde, whereas for dark matter and quintes-
sence assistance, ϕ and ψ couple relatively weakly
mint ∼H0. On the other hand, the small value of mψ

required for dark matter and quintessence assistance means
that their interactions with other sectors present (including
the Standard Model and e.g. a supersymmetry breaking
sector) must be even more sequestered than for the dark
radiation assisted case.

9This is better than the constraints found in locked inflation
[40], where an order one quartic interaction was assumed.
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VI. OUT OF THE SWAMPLAND

Conceptual issues, together with technical challenges in
identifying parametrically controlled metastable de Sitter
vacua within string theory, have led to the (controversial)
conjecture that metastable de Sitter vacua are inconsistent
with quantum gravity; in other words, they lie in the “string
theory swampland.” The de Sitter swampland conjecture
states that the scalar potential of an effective field theory
that descends from quantum gravity must satisfy [9]

either ϵ≡MPl
j∇Vj
V

≥ Oð1Þ ð67aÞ

or η≡M2
Pl

minð∇i∇jVÞ
V

≤ −Oð1Þ; ð67bÞ

in parts of field space with V > 0. This means that any de
Sitter solution must be unstable. The conjecture is widely
believed to be true in the asymptotic regions of moduli
space, where it is motivated by the swampland distance
conjecture [70], and it has been proposed to be true even in
the interior of the moduli space.
Equation (67) implies that there can be no extended

epoch of slow-roll accelerated expansion, which is in strong
tension with 60e-folds of early Universe inflation and in
some tension with the less than 1e-fold of late-time
accelerated expansion (see [22]). Interestingly, as we
now show, the effective Lagrangians that we consider,
Eqs. (1)–(3), can satisfy Eq. (67) while leading to accel-
erated expansion in basically all of the interesting dark
radiation assisted parameter space and in parts of the viable
parameter space for the dark matter assisted scenario. In
contrast, the quintessence assisted scenario necessarily
violates Eq. (67).
In the dark matter assisted scenario we evaluate ϵ and η

for the Lagrangian equation (1) with the hilltop and
exponential potentials equation (3). In particular, we
require that at least one of Eqs. (67a) and (67b) is satisfied
for all value of ψ <

ffiffiffiffiffiffiffiffiffiffiffiffi
2hψ2i

p
, i.e. the swampland conjecture

must be satisfied throughout a full oscillation of ψ . For the
hilltop potential, fixing ϕ ¼ 0 and recalling that mψ > H0,
Eq. (67a) reduces to

ψ > ψϵ crit ≈ 3MPl
H2

0

m2
ψ
; ð68aÞ

and Eq. (67b) becomes

ψ < ψη crit ≈ 2
ffiffiffi
3

p
MPl

H0

mint
; ð68bÞ

where we used MPl > Λ and mint > mψ . The de Sitter
conjecture is therefore satisfied provided ψϵ crit < ψη crit,
that is

H0

mψ
<

2ffiffiffi
3

p mψ

mint
: ð69Þ

This condition is somewhat restrictive because mψ=H0 ≲
15 to avoid parametric resonance and is actually not
satisfied for the theory plotted in Fig. 1. However, we
have found cosmologically viable parameter points for
which Eq. (69) is true (some of which require ϕi=Λ to be
fixed small and which typically lead to a relatively short era
of dark energy domination). The analysis is similar for
theories in which ϕ has an exponential potential, except
that this case only Eq. (67a) is relevant (because η > 0
always). For ψ > ψϵcrit Eq. (67a) is satisfied from the
derivative of the potential with respect to ψ while for ψ ≲
MPlH0=mint the derivative with respect to ϕ (down its
runaway potential, which is not stabilized for such ψ) is
sufficiently large. Hence, up to numerical factors, Eq. (69)
again guarantees the de Sitter conjecture is satisfied for
ϕ ¼ ϕmin ¼ ΛW0ðρde=ðm2

inthψ2iÞÞ. So far we have only
considered Eq. (67) with ϕ at the minimum of the induced
potential, but we have also numerically analyzed the
conditions for the full cosmological trajectories presented
in preceding sections and confirmed that they remain
satisfied for some viable points in parameter space.
Conversely, for the quintessence assisted scenario,

mψ < H0, so Eq. (68a) cannot be satisfied for ψ < MPl.
Moreover, Eq. (68b) also cannot be satisfied for values of
mint such that ϕ is trapped [both for the hilltop and
exponential potentials, cf. Eq. (55)]. This is to be expected
since such models are examples of slow-roll quintessence.
However, it is worth noting that both VðϕÞ and 1

2
m2

ψψ
2

would satisfy the de Sitter conjecture alone and it is only
mint ≠ 0 that prevents the full theory being compatible with
this. It would be interesting to study whether such an
interaction between scalars with otherwise unremarkable
potentials is easier to obtain from string theory than a single
scalar with a potential that violates Eqs. (68a) and (68b).
It is unclear how the swampland criteria should be

applied to the dark radiation assisted scenario (further
theoretical work on this, e.g. in the context of arguments for
the dS conjecture connected to the distance conjecture and
entropy bounds [9,84] would be worthwhile).10 Because
the thermal corrections to the potential are a calculational
tool to account for the net effect of the fast fluctuating
background of low mass, relativistic, ψ particles at temper-
ature T, we make the plausible guess that, if true, the de
Sitter conjecture should apply only to the zero temperature
potential equation (2). Moreover, we demand that the
conditions are satisfied for ψ in the range ½0; T2

h=mψ � such
that the energy density in a constant ψ zero mode reaches
that of the relativistic bath we consider.

10The compatibility of thermal inflation with the swampland
conjectures was discussed in [85].
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With such an extension to finite temperature, the de Sitter
conjecture is satisfied over the required field range for both
the hilltop and the exponential potentials for thevastmajority
of the interesting dark radiation assisted parameter space. For
the hilltop potential with ϕ at the minimum of its finite
temperature corrected potential ϕmin ¼ 0, Eq. (69) is true
(because mψ is not much smaller than ρ1=4de and mψ and mint

are similar). Therefore, as argued previously, at least one of
Eqs. (68a) and (68b) is satisfied. Meanwhile, in the expo-
nential case with ϕ at the high-temperature minima equa-
tion (37) ϕmin ¼ ΛW0ð 12ρdem2

intT
2
h
Þ we find that Eq. (67a) is

satisfied for the assumed range of ψ , again because Λ <
MPl and all themasses are not too far from ρ1=4de .We have also
checked numerically that the de Sitter conjecture remains
satisfied along full cosmological trajectories with ϕi ≃ Λ.
Another related swampland conjecture is the trans-

Planckian censorship conjecture [86], which starts from
the assumption that any fluctuation that is sub-Planckian in
length must remain forever hidden by cosmological hori-
zons. It follows that both

ϵ ≥
ffiffiffi
2

3

r
; ð70aÞ

in the asymptotics of moduli space, that is, there are no
asymptotic de Sitter vacua; and

τ ≤
1

H
log

MPl

H
; ð70bÞ

in the interior of moduli space, with τ the lifetime of any
metastable de Sitter vacua and H its associated constant
Hubble parameter. In other words, any metastable de Sitter
vacua are short lived, with Nde ≲ 138 forH ¼ H0. Because
we always find only relatively few e-folds of dark energy
domination, the trans-Planckian censorship conjecture is
always satisfied for all of the dark matter, dark radiation and
quintessence assisted theories we have considered.

VII. DISCUSSION

We have seen that coupled dark sectors open up
interesting, underexplored routes to obtaining transient
de Sitter vacua with numerous appealing features. The
main ingredient is a coupling between a scalar ϕ that
sources dark energy and another dark field, ψ . Depending
on the size of its mass and interaction rates, ψ behaves as a
frozen quintessence background, a component of dark
matter or dark radiation. Although some of these ideas
have been studied individually in the past, as locked dark
energy [45] and thermal dark energy [64], we have
provided several new insights, including strong constraints
from parametric resonance for locked dark energy, and we
have shown that runaway potentials can be stabilized.
In Table I we provide a comparison of the three scenarios

including their parameter space, and theoretical and obser-
vational constraints. For mψ ≲ 3H0, ψ behaves as frozen
quintessence; when 3H0 ≲mψ ≲ 15H0, it behaves as
coherent classical oscillating dark matter component; and
when in thermal equilibrium with a bath at temperature

TABLE I. Comparison of the dark matter (DM), dark radiation (DR), and quintessence (Q) assisted dark energy scenarios. We assume
the Lagrangian equations (1)–(3), with Λ≲MPl and initial conditions ψ i ≲MPl, ϕi ≲ Λ. Limits onmψ come from requiring ψ to behave
as dark matter, dark radiation, or quintessence, with dynamics that induce a transient de Sitter minimum for ϕ. The physical mass of ϕ in
the metastable vacuum, meff

ϕ , is necessarily larger than
ffiffiffiffiffiffi
ρde

p
=Λ, and the values in the table are set by the allowed Λ. Constraints on mint

come from requiring a sufficient number of e-folds of dark energy domination (Nde ≳ 0.26). Constraints on λ are such that we can
neglect ψ ’s quartic interaction for the dark matter and quintessence assisted cases, and so that thermal equilibrium is maintained for the
dark radiation case (in particular, for the dark radiation scenario we give the condition for thermal equilibrium to be reached early enough
for ϕ to be driven from ϕ ¼ Λ to ϕ=Λ ≃ 0). The cases that VðϕÞ has a hilltop or exponential form are similar, although there is less
analytic control for the dark matter assisted scenario with an exponential potential.

DM assisted DR assisted Q assisted

mψ H0 ≲mψ ≲ 15H0 mψ ≲ Th ≲ ρ1=4de
mψ ≲H0

meff
ϕ meff

ϕ ≳H0 Tv;0 ≫ meff
ϕ ≳H0 meff

ϕ ≳H0

mint mint ≳ MPl
Λ

MPl
ψ i

H0 mint ≳ ρ1=4de mint >
MPl
ψ i

H0

λ λ ≪ m2
ψ=M2

Pl λ≳ ðmint=ðMPlξ
2
hÞÞ1=4 λ ≪ m2

ψ=M2
Pl

Parametric resonance? Yes No No
Bubble nucleation? No Yes No
No fine-tuning from quartic coupling? ΛUV ≪ Λ;MPl

H0

mint
ΛUV ≲ ρ1=4de ΛUV ≪ Λ;MPl

H0

mint

No fine-tuning from graviton exchange with other sectors? M < GeV M < ðMPl=ΛÞ1=3 GeV M < GeV
No fine-tuning from Oð1Þ couplings to other sectors? msoft hid ≪ H0 msoft hid ≪ ρ1=4de

msoft hid ≪ H0

Sequestering of portal couplings, e.g. κϕOSM κ ≲ 10−6M−1
Pl κ ≲M−1

Pl κ ≲ 10−6M−1
Pl

Other potential signals? wðzÞ, Ωψ wðzÞ, Neff wðzÞ
dS swampland constraint? Satisfied for H0

mψ
< mψ

mint Satisfied Violated
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Th ≳mψ it behaves as dark radiation. Outside of thermal
equilibrium, and with mψ > 15H0, parametric resonance
destabilizes the induced de Sitter minimum too early. As a
result, in the dark matter assisted scenario ψ behaves as an
extremely light component of dark matter; because mψ ≲
15H0 such a theory is not too far from the two field
quintessence regime (but, given the de Sitter conjecture, the
difference could be crucial). In the dark radiation case, for
mψ > Th thermal effects are exponentially suppressed and
there is again no de Sitter minimum. In each scenario, we
need mint to be sufficiently large for the background ψ to
generate a transient minimum for ϕ, putting mint somewhat
above H0 for dark matter and quintessence assisted cases
and somewhat above ρ1=4de for the dark radiation assisted
case. Still, the quartic coupling can be sufficiently small
that radiative corrections do not drive the scalar masses too
high, especially in the dark matter and quintessence
assisted scenarios, which do not require the Lagrangian
parameters to be be fine-tuned.
The theories that we have considered lead to a wide

range of possible observational signals. These include
deviations from ΛCDM due to a dynamical dark energy,
coupled to another scalar field, at the edge of the allowed
parameter space. Constraints on the effective dark energy
equation of state parameter are an important target for
current and future large-scale-structure surveys, including
DESI (see e.g. [87]). The dark matter and quintessence
assisted scenarios may also lead to some spatial variation in
the effective w, due e.g. to adiabatic fluctuations in the
initial conditions for ψ from primordial inflation, which is
an interesting direction to explore in future work. The dark
radiation case predicts deviations from the Standard Model
value for Neff ; the next-generation LSS and CMB obser-
vations, such as CMB-S4 (see e.g. [88]) could constrain
ΔNeff < 0.06 [89], corresponding to ξh < 0.35 in our
minimal model with gh ¼ 2, covering part of the parameter
space in Fig. 4. Meanwhile, the dark matter assisted case
predicts a potentially observable energy density in
extremely light dark matter, which will be further con-
strained by future CMB observations and the Square
Kilometre Array intensity mapping [57].
Additionally, both the light scalar fields ψ and ϕ would

mediate fifth forces, which could be observed in future
experiments. In fact, current fifth forces constraints impose
strong upper bounds on possible portal couplings to the
visible sector. For example, for interactions of the form
κϕOSM, where κ is a coupling constant and OSM is a
dimension four singlet under the Standard Model gauge
group, scalars with masses ≪ 10−18 eV already require
κ ≲ 10−6M−1

Pl [90–92]. When ψ behaves as dark matter or
quintessence, with a mass aroundH0, a large suppression of
portal couplings is therefore necessary to avoid unobserved
fifth forces (comparable to that needed for standard quintes-
sence [93]). This problem is greatly ameliorated in dark
radiation assisted scenarios, for which the masses ofϕ and ψ

are typically much larger than H0, although κ ≲M−1
Pl is still

needed [94]. On the other hand, in the dark radiation
scenario, any portal couplings must still be tiny if fine-tuning
is to be avoided because visible sector loops can generate a
large ϕ tadpole and mass term (see [64] for further dis-
cussion). A sizeable suppression of portal couplings could be
achieved within string constructions if visible and dark
sectors are geometrically separated in the extra dimensions
[93,95–100]. In our current work we have focused only on a
simple toy model for clarity, and in the future it will be
important to understand if more complete models can be
constructed. From a purely field theory perspective, in the
dark radiation case more complex (e.g. gauged) hidden
sectors might naturally lead to the required super-cooling
without small Lagrangian parameters. Meanwhile, in the
darkmatter case there could be theories inwhich the required
dynamics are driven by the dominant darkmatter component
rather than the extremely light component thatwehave had to
rely on. From a top-down perspective, the critical issue is
whether viable models can be constructed from string
compactifications. None of the essential features seem
especially implausible; all that is needed are two interacting
scalar fields, one with a mass term and another with a more
complicated potential energy functional that increases as ϕ
approaches 0 from the right.11 It is also interesting to note that
if either or both of our coupled dark sectors are pseudoscalar
axions rather than scalars, then constraints from fifth forces
are relaxed and apparent fine-tunings could be explained via
the associated pseudo-Nambu-Goldstone shift symmetries.
Given that the stabilizationmechanismswork evenwhenϕ is
otherwise a runawaymodulus, it would also be interesting to
explore whether a coupling to a dark matter or dark radiation
sector could provide a dynamical mechanism to address the
moduli stabilization problem in addition to accounting for
dark energy. In this context, we highlight related previous
analysis of the effects of thermal effects on the evolution of
string moduli in the early Universe (which can sometimes
lead to destabilization rather than stabilization) [101–109].
Given the richness of string theory hidden sectors, it is

plausible that the dynamics we have described might be
relevant not only in the present-day era, but could also have
occurred in the cosmological past. For instance, the theories
we have considered could provide models for a subdomi-
nant early dark energy [110], which has been proposed to
resolve the growing tension between late-time direct
measurements of H0 and the value inferred from the
CMB assuming ΛCDM. Potential signatures, in particular
from the exit from past transient dark energy phases, could
provide a target for future observations, e.g. bubble
collisions at the end of a dark radiation assisted early dark
energy might potentially produce detectable gravitational

11For the induced transient dS minimum to be at small ϕ=Λ,
the ϕψ3 interaction must be small or vanishing, which could be
explained e.g. with a discrete symmetry under which ϕ → −ϕ.
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wave signatures. As mentioned, there could also be
interesting late-time observational signals from the evolu-
tion of initially small perturbations in the fields ϕ and ψ ,
and it would be interesting to extend our initial inves-
tigation in Appendix D in future work.
Last but of course not least, it should be stressed that we

have assumed some as yet unknown solution to the
cosmological constant problem that precisely cancels all
other contributions to the vacuum energy, leaving at most a
small negative contribution.
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APPENDIX A: MORE DETAILS OF THE DARK
MATTER ASSISTED SCENARIO

1. Analysis of the parametric resonance

Here we consider the effects of parametric resonance on
the dark matter assisted scenario, discussed in Sec. II A 2,
in more detail. We first note that for b≳ 1 and q ≳ b2, the
value of s averaged over an Oð1Þ range of q can be fitted
numerically to

s̄ ≃ b=ð4 ffiffiffi
q

p Þ þ 0.11: ðA1Þ

For the theories of interest, we do indeed have that b, given in
Eq. (14), is roughly 1 becauseΛ < MPl. Asmentioned in the
main text, this means that the resonance condition on mψ

becomes stronger as time progresses and q decreases.
However, b=

ffiffiffi
q

p ≃ ðH2
0M

2
plÞ=ðmψΛmintψÞ, so once b= ffiffiffi

q
p ≃

1 the era of dark energy is automatically at an end anyway by
Eq. (10b) (up to a numerical factor inside the logarithm).
Therefore, it is sufficient to impose the constraint, valid at
q≳ b2, of mψ=H0 <

3
2
s̄−1 ≲ 15.

As well as the zero momentum mode, ϕ also has small
but nonzero initial occupation number in higher momentum
modes (e.g. as a result of quantum fluctuations or due to an
earlier era of primordial inflation). If such modes were
resonantly amplified more strongly than the zero mode, this
could lead to additional constraints despite their amplitude
initially being suppressed. Actually ϕ modes with nonzero
momentum grow at most as fast as the zero mode.

In particular, a mode of comoving momentum k follows
Eq. (12) except with the replacement [41]

b → bðkÞ≡ b −
k2

m2
ψ
e−2H0τ=mψ ; ðA2Þ

(where we set ai ¼ 1 for convenience). For bðkÞ= ffiffiffi
q

p
small

and negative, we again obtain s̄ ≃ 0.11 and s̄ is smaller for
bðkÞ= ffiffiffi

q
p ≲ −1. Therefore, in the parameter space where

the zero mode is not exponentially growing higher momen-
tum modes are not amplified either.

2. Driving ϕ to the origin

In this appendix we provide more details on the
dynamics that can lead ϕ to be driven to the origin in
both the dark matter and quintessence assisted scenarios, in
full cosmologies including the Standard Model and an
additional dominant component of dark matter (both of
which we assume are totally decoupled from ϕ and ψ). In
the early Universe, ϕwill be frozen by Hubble friction until
3H ≃mintψ i=Λ. This may happen in the cosmological era
of radiation domination or later during matter domination.
Using the appropriate regime of the Friedmann equation,
H2=H2

0 ≈Ωra−4 or H2=H2
0 ≈Ωma−3, with Ωm and Ωr the

matter and radiation density parameters, one can identify
the scale factor when ϕ starts oscillating as

aϕ roll ¼ ð9ΩmÞ1=3
�

H0Λ
mintψ i

�
2=3

or ðA3aÞ

aϕ roll ¼ ð9ΩrÞ1=4
�

H0Λ
mintψ i

�
1=2

; ðA3bÞ

if ϕ starts to oscillate during matter domination or radiation
domination respectively. We note that even for the largest
mint and smallest Λ in our parameter space of interest, ϕ
starts oscillating long after the temperature of the Universe
is ∼MeV, i.e. after big bang nucleosynthesis (see Fig. 2).
Observations constrain the reheating temperature of the
Universe after primordial inflation to be above these
temperatures so there is no additional constraint on the
reheating temperature for ϕ to be driven to the origin.
The energy density in the ϕ oscillations redshifts as

matter, with ϕ ¼ ϕiðaϕ roll=aÞ3=2. Once ϕ is driven close to
the top of its potential, ϕ’s energy density behaves as a
component of dark energy owing to the potential energy
being roughly constant throughout each oscillation
[Vð0Þ ¼ ρde]. These dynamics continue until not long
before dark energy domination when 3H ≈mψ and ψ
unfreezes. At this time ψ starts to oscillate around its
minimum, which happens at scale factor

aψ roll ¼ ð9ΩmÞ1=3ðH0=mψÞ2=3: ðA4Þ
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At this time the energy density in ψ starts redshifting as
matter, with ψ ¼ ψ iðaψ roll=aÞ3=2. Meanwhile, the ampli-
tude of ϕ’s oscillations stops decreasing ∝ a−3=2, but ϕ is
locked as a consequence of the coupled dynamics. We can
estimate the value at which ϕ is locked as

ϕψ roll ¼ ϕi
mψΛ
mintψ i

or ðA5aÞ

ϕψ roll ¼ ϕi
ð9ΩrÞ3=8
ð9ΩmÞ1=2

�
H0Λ
mintψ i

�
3=4

�
mψ

H0

�
; ðA5bÞ

if ϕ starts to oscillate during matter or radiation domination,
respectively. Thus, ϕ=Λ is small enough that ψ’s evolution
is dominated by its bare massmψ rather thanmintϕ=Λ at the
time ψ starts rolling (so its equation of motion is linear) if

ϕi

ψ i
≪ 1 or ðA6aÞ

Ω3=8
r

Ω1=2
m

�
mint

H0

�1
4 ϕi

ψ3=4
i Λ1=4

≪ 1; ðA6bÞ

again if ϕ becomes unfrozen during matter or radiation
domination, respectively. These are the conditions given in
Eq. (25) in the main text.

3. Further analysis of the parameter space

In this appendix we provide further results from numeri-
cal solutions of the equations of motion of theories in the
dark matter assisted scenario, supporting the analysis
presented in Sec. II.
In Fig. 5 (left panel), we plot the evolution of the various

energy densities with the scale factor for the same theory as
in Fig. 1 in the main text (we include the energy density
from the ϕ − ψ quartic interactions in ρψ ). Prior to
a=a0 ≃ 0.7, the total energy density of the Universe is
dominated by (first) the energy density in the Standard
Model radiation bath and (subsequently) the additional
dark matter component that we include. At sufficiently
early times, the energy density in the ϕ − ψ system is
mainly in the interaction term. The energy density in ϕ
initially increases as it is driven away from ϕ ¼ Λ towards
ϕ ¼ 0 (in the process decreasing the energy density in the
ϕ − ψ interaction). Following this, part of ϕ’s energy
density, corresponding to its oscillations around ϕ ¼ 0,
redshifts away ∝ a−3 with the component corresponding to
potential energy remaining. At a=a0 ≃ 0.7 this potential
energy comes to dominate the energy density of the
Universe, acting as dark energy (meanwhile the energy
density in ψ redshifts as matter). Once ϕ is unlocked at
a=a0 ≃ 5 the total energy density of the Universe decreases
fast. In the right panel, we plot the evolution of the equation
of state parameter of the Universe w in the same theory.

FIG. 5. Left: the energy densities in ϕ (ρϕ), ψ (ρψ ) and in total, including the Standard Model and the additional dominant dark matter
component, (ρtot) in the dark matter assisted theory plotted in Fig. 1 normalized to the present-day critical energy density of the Universe
ρc (we choose to put the energy density from the ϕ − ψ interaction in ρψ ). For comparison, we also plot the total energy density in a
ΛCDM theory (ρΛCDM). At a=a0 ≪ 10−3, the energy density of the ϕ − ψ system is dominantly in the interaction term
ρ ≃m2

intϕ
2
i ψ

2
i =Λ2. This energy density is transferred to ϕ while a=a0 ≲ 10−3 as ϕ is driven towards ϕ=Λ ¼ 0 (with ψ frozen). Most

of ϕ’s energy density at these times is in the form of kinetic energy, which redshifts ∝ a−6. Starting from a=a0 ≃ 10−1, ϕ’s energy
density is mostly potential energy, which comes to dominate the evolution of the Universe sourcing an era of dark energy domination (at
these times ψ’s energy density decreases as matter ∝ a−3). After ϕ is unlocked at a=a0 ≃ 5, its energy density decreases approximately
like matter as it oscillates around the minimum of its potential. Right: the equation of state parameter wtot ¼ p=ρ, where p is pressure
and ρ is the energy density of the Universe for the theory plotted in the left panel and in Fig. 1. At a=a0 < 5 this agrees with the ΛCDM
prediction (wΛCDM) to % level accuracy. Once ϕ is unfrozen and dark energy domination ends, wtot deviates from wΛCDM; the theory is in
a complex nonlinear regime at these times, but it will eventually settle down to wtot ≃ 0 corresponding to matter domination as ϕ and ψ
oscillate around the minimum of their potential.
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FIG. 6. Left: the evolution of ϕ and ψ in a theory of dark matter assisted dark energy in which ϕ has the exponential runaway potential
of Eq. (3). The Lagrangian parameters are mψ ¼ 12H0, mint ¼ 105H0, Λ ¼ MPl=2 and λ ¼ 0 and initial field values ϕi ¼ 10−1Λ,
ψ i ¼ MPl=5. The dynamics are similar to the case that ϕ has a hilltop potential, described in Fig. 1, except that the era of ϕ being locked
is less stable because the system is driven to a nonlinear regime [see Eq. (33)] soon after ϕ becomes unlocked. Nevertheless, ϕ remains
close enough to the origin to source an era of dark energy domination that is consistent with current observations. Right: the equation of
state parameter of the theory plotted in the left panel wtot compared to the ΛCDM prediction, wΛCDM. Prior to ϕ becoming unlocked at
a=a0 ≃ 2, the theory matches the ΛCDM result to better than % level precision. Subsequently wtot has a complex time dependence
because the system is highly nonlinear, but it will eventually approach the tracker solution for an exponential potential discussed in the
main text.

FIG. 7. Left: a slice of the parameter space for dark matter assisted dark energy in which ϕ has a hilltop potential, analogous to Fig. 2
(left panel), but varying Λ and mψ . The constraints come from parametric resonance causing ϕ to be unlocked if mψ is too large
(“parametric resonance”); ψ evolving nonlinearly if Λ is too large (“ψ nonlinear”) cf. Eq. (33); and not enough e-folds of dark energy
(“too few e-folds of dark energy”) from Eq. (11). Additionally if mψ < 3H0 the theory is in the quintessence assisted rather than dark
matter assisted regime, i.e. it is a two field quintessence theory (“quintessence limit”). The theory plotted in Fig. 1 is again shown with a
red dot and we denote the predicted number of e-folds of dark energy domination with Nde. Right: the analogous parameter space for
when ϕ has an exponential potential. In this case ψ is nonlinear throughout the parameter space (so we cannot reliably predict Nde), but
we still expect that mψ ≳ 15H0 leads to dangerous parametric resonance similarly to the case of a hilltop potential. Additionally, if ϕ’s
oscillations in the locked regime are too large, cf. Eq. (32), there is no era of dark energy domination (“ϕ oscillations too large”). For
ϕi ¼ Λ=10 (as in the case of our example theory), ψ initially evolves linearly over all the slice plotted (for larger ϕi requiring this leads to
a significant constraint). The red dot indicates the example theory plotted in Fig. 6; this leads to ∼0.5 e-folds of dark energy domination
consistent with observational data.
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For a=a0 ≤ 1 this agrees with ΛCDM to a precision of
better than %, comfortably within observational con-
straints. The ΛCDM prediction is followed until a=a0 ≃
5 when ϕ is unlocked. The subsequent dynamics of the
system are initially nonlinear and complicated, but accel-
erated expansion ends soon after this time. Eventually w ¼
0 will be reached once both ϕ and ψ have only small
oscillations around the minima of their potentials.
In Fig. 6 (left panel), we show the evolution of ϕ and ψ in

the theory in which ϕ has an exponential runaway potential
corresponding to the red dot in Fig. 2 (right panel) in the
main text. As mentioned in the main text, we pick
ϕi ¼ Λ=10, which leads to a slightly longer era of dark
energy domination than if ϕi ¼ Λ. The dynamics are
similar to the case of ϕ having a hilltop potential, except
that the era of ϕ being trapped is less stable with the
amplitude of ϕ’s oscillations gradually increasing [between
a=a0 ≃ 0.3 and 2 in the Fig. 6 (left)]. At a=a0 ≃ 2, ϕ is
unlocked and subsequently rolls to large field values. In
Fig. 6 (right panel), we show the evolution of w in the same
theory as in the left panel. As in the case of the hilltop
potential theory in Fig. 5, w matches the ΛCDM prediction
accurately until ϕ is unlocked and accelerated expan-
sion ends.
Finally, in Fig. 7 we plot slices of the allowed dark matter

assisted dark energy parameter space, similarly to Fig. 2 but
varying Λ andmψ with ψ i andmint fixed. For both the cases
of a hilltop potential and an exponential runaway, if mψ ≳
15H0 parametric resonance prevents ϕ remaining trapped
at ϕ=Λ ≪ 1, while ifmψ ≲ 3H0, ϕ remains frozen up to the
present day and the theory is in the quintessence limit
considered in Sec. IV. In the case of a hilltop potential, if Λ
is too small there are not enough e-folds of dark energy to
match observations, whereas if Λ is too large then ψ
evolves nonlinearly and we cannot predict the number of
e-folds of dark energy domination. Meanwhile, in the case
of an exponential potential, ψ inevitably evolves non-
linearly so we cannot predict the number of e-folds of
dark energy domination, although viable theories can be
found numerically. Moreover, for an exponential potential,
if Λ is too small then the expected amplitude of ϕ’s
oscillations, given in Eq. (32), is larger than Λ and an
extended era of dark energy domination is unlikely.

APPENDIX B: MORE DETAILS ON THE DARK
RADIATION ASSISTED SCENARIO

1. Automatic initial conditions

In this appendix we provide more details about how ϕ
can be driven from an initial condition ϕi ≃ Λ to close to
ϕ=Λ ≃ 0 in the dark radiation assisted scenario in a full
cosmological theory. For this to occur, the hidden sector
must be in thermal equilibrium and ψ itself must be present
in the thermal bath such that the high-temperature limit,
Th max ≫ mint for ϕ ≈ Λ, applies (otherwise ψ decouples

from the thermal bath with only a freeze-out abundance
remaining). Provided these conditions are satisfied, the
scalar potential for ϕ receives an effective mass contribu-
tion with ðmeff

ϕ Þ2 ≃ T2
hm

2
int=Λ2. However, ϕ is also subject

to Hubble friction with H2 ∼ T4
v=M2

Pl during radiation
domination (where Tv is the temperature of the visible
sector), which, assuming a sufficiently large reheating
temperature, will initially dominate and freeze the field.
As the temperatures of the hidden and visible sectors fall, a
critical temperature is reached, Th unfreeze, when the poten-
tial gradient can beat the Hubble friction and succeed in
pushing ϕ towards its effective minimum at ϕ=Λ ≪ 1; this
occurs when meff

ϕ ¼ H, that is

Th unfreeze ¼
MPl

Λ
mintξ

2
h; ðB1Þ

where ξh is the ratio between hidden and visible sector
temperatures, ξh ≡ Th=Tv (note that Th unfreeze is indeed
before matter-radiation equality, as assumed).
We therefore require that there exists some hidden sector

temperature

Th roll < Th unfreeze; ðB2Þ

such that with ϕ ¼ Λ: (i) ψ is in thermal equilibrium,
ΓI > H. Assuming ΓI ∼ λ4Th as is the case for our minimal
model of Eq. (2) (with a more complicated hidden sector
there could be additional interactions such that thermal-
ization need not be via λ and could involve different powers
of different coupling constants), this leads to

λ4Th roll >
T2
h roll

ξ2hMPl
; ðB3Þ

which becomes easier to satisfy at late times; (ii) the high-
temperature approximation for ψ’s contribution to ϕ’s
potential is valid

Th roll > mint; ðB4Þ

which, of course, is harder to satisfy at late times.
Equations (B2)–(B4) are simultaneously satisfied pro-

vided that first, from Eqs. (B2) and (B4),

Λ
MPl

< ξ2h; ðB5Þ

which can be a significant constraint in the parameter space
we are interested in because typicallyΛ is not much smaller
than MPl. Second, from Eqs. (B3) and (B4) we need

mint

MPl
< λ4ξ2h; ðB6Þ
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which in practice is easily satisfied provided λ is not tiny.
This reproduces the conditions, Eq. (46), given in the
main text.
Finally, we require that the reheating temperature after

primordial inflation is sufficiently large that there is some
post-inflationary era when these dynamics can take place.
This is the case provided that the visible sector temperature
after inflation Tv;RH > mint=ξh so that Eq. (B4) is satisfied
and ψ is not decoupled from the thermal bath immediately
after inflation. For the parameter space of interest, see e.g.
Fig. 2, such a condition is easily satisfied for Tv;RH ≳MeV
as is needed anyway to match the predictions of big bang
nucleosynthesis.

2. Tunneling

As discussed in Sec. III A, in the dark radiation assisted
scenario the de Sitter vacuum is unstable to tunneling by
quantum and thermal fluctuations [39,66,67,111,112]
through the finite temperature corrected potential barrier
to a region in field space where thermal effects are
exponentially suppressed. As a result, the exit from the
dark radiation assisted dark energy epoch might take place
via a first order phase transition, with nucleation of bubbles
containing energetically preferred values of ϕ, which then
expand at close to the speed of light. If such tunneling
happens sufficiently early, it could lead to fewer e-folds of
dark energy domination than predicted by Eq. (43). In this
appendix, we analyze these processes focusing on the
scenario that ϕ has an exponential runaway potential, in
which case the full potential always has a global minimum
out at ϕ → ∞. We will first compute the quantum tunneling
rate, Γ4, and then the thermal decay rate, Γ3. For the
radiatively generated minimum to source the current dark
energy epoch, we require that vacuum decay occurs at a
sufficiently slow rate compared to the lifetime of the
Universe

Γ4 < H4
0 and Γ3 < H4

0: ðB7Þ

The rate of quantum tunneling per unit volume V
depends on the Euclidean action, and is approximately
[113,114]

Γ4

V
¼ v4

�
S4
2π

�
2

e−S4 ; ðB8Þ

where v is the width of the barrier. This rate is dominated by
the classical Oð4Þ bounce solution with associated action
S4 [115]. With ϕ’s potential taking the exponential runaway
form, the global minimum is infinitely far away in field
space and the potential is such that the thin-wall approxi-
mation cannot be made. The tunneling will take ϕ not all
the way to the true vacuum but to some energetically
preferred value on the other side of the barrier, after which
it will roll. The bounce solution can be found numerically

by the undershoot/overshoot method; however, we will
make instead an analytical estimate. To do so, we approxi-
mate the potential as the no-barrier potential [116] shown in
Fig. 8

V ≈ VappðϕÞ ¼ −kðjϕj − jϕmaxjÞθðjϕj − jϕmaxjÞ

þ ρdee−
ϕmin
Λ −

π2

90
T4
h; ðB9Þ

where we choose the point where the plateau ends as ϕmax
(the value of ϕ at the maximum of the full potential), and
the slope to the right of the plateau to be given by
k ¼ Vðϕmin; ThÞ=ðΛ − ϕmaxÞ. Given that for ϕ > ϕmax,
∂
2=∂ϕ2Vðϕ; TÞ > 0 we have that VappðϕÞ < Vðϕ; TÞ for
all ϕ > ϕmin. Further, we can estimate the value of ϕmax by
noting that the barrier in the full potential will occur around
where the high-temperature approximation breaks down

ϕmax=Λ ∼ Th=mint; ðB10Þ

(i.e. meff
ψ ∼ Th, but still ϕmax ≪ Λ).

Quantum tunneling in the no-barrier potential
equation (B9) has been analyzed in [116]. The bounce
solution to the Euclidean equations of motion,

ϕ00 þ 3

s
ϕ0 ¼ ∂V

∂ϕ
; ðB11Þ

that satisfies the boundary conditions ϕ0ð0Þ ¼ 0 and
lims→∞ϕðsÞ ¼ ϕmin ≈ 12Λρde=ðm2

intT
2
hÞ ≈ 0, and continu-

ity across smax, where ϕ ¼ ϕmax, is found to be

FIG. 8. The finite temperature corrected potential of ϕ, VTðϕÞ,
and the approximation we make to obtain a lower bound on the
tunneling rate, VappðϕÞ. We also indicate the zero temperature
potential, VexpðϕÞ, and the metastable minimum ϕmin and
maximum ϕmax of ϕ’s corrected potential. Note that the plot is
not to scale for a realistic theory that can lead to an era of dark
energy domination (for which ϕmin=Λ, the height of the barrier
and T4

h=ρde would all be much smaller).
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ϕðsÞ ¼
8<
:

ϕmax

	
2 − s2

s2max



for s < smax

ϕmax
s2max
s2 for s > smax;

ðB12Þ

with smax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ϕmax=k

p
. The Euclidean action evaluated on

this Oð4Þ bounce gives

S4 ¼
32π2

3

ϕ3
max

k
; ðB13Þ

leading to a quantum tunneling rate

Γ4

V
∼ v4

T6
h

m6
int

Λ8

ρ2de
e
−32π2

3
Λ4
ρde

T3
h

m3
int : ðB14Þ

The runaway part of ϕ’s finite temperature-corrected
potential can also be reached via thermal fluctuations that
roll ϕ up and over its barrier, with an associated decay rate
per unit volume V given approximately by [113,114]

Γ3

V
¼ T4

h

�
S3

2πTh

�
3=2

e−S3=Th : ðB15Þ

This process is dominated by the Oð3Þ bounce solution
with an associated action S3. The corresponding Euclidean
equation of motion is

ϕ00 þ 2

r
ϕ0 ¼ ∂V

∂ϕ
; ðB16Þ

with boundary conditions ϕ0ð0Þ ¼ 0 and limr→∞ϕðrÞ ¼
ϕmin ≈ 0, and ϕ continuous across rmax. The solution in this
case is

ϕðrÞ ¼
8<
:

1
2
ϕmax

	
3 − r2

r2max



for r < rmax

ϕmax
rmax
r for r > rmax;

ðB17Þ

where rmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ϕmax=k

p
. The Euclidean action evaluated

on the Oð3Þ bounce is

S3 ¼
8

ffiffiffi
3

p
π

5

ϕ5=2
max

k1=2
; ðB18Þ

thus giving a thermal decay rate

Γ3

V
∼
Λ9=2T25=4

h

m15=4
int ρ3=4de

e
−8π

ffiffi
3

p
5

Λ2

ρ
1=2
de

T3=2
h

Λ

m5=2
int : ðB19Þ

Note that the action obtained from the full potential must
be greater than the action obtained from the approximate
no-barrier potential and, therefore, the actual decay rates
will be slower than the estimates provided here. This can be

seen by noting that the full Euclidean action evaluated on
its full bounce solution must be greater than the approxi-
mate no-barrier Euclidean action evaluated on the full
bounce solution (since the full potential is always greater
than or equal to the approximate no-barrier potential).
Moreover, the approximate no-barrier Euclidean action
evaluated on the full bounce solution must be greater than
the approximate no-barrier Euclidean action evaluated on
the no-barrier bounce solution because the no-barrier
bounce solution minimizes the no-barrier Euclidean action.
Therefore, the conditions in Eq. (B7), using the approx-
imations equations (B14) and (B19), guarantee that the
actual models are viable. The limits quoted in the main text,
Eqs. (44a) and (44b), are obtained simply by insisting that
Γ3 and Γ4 are strongly exponentially suppressed, which is
sufficient precision for our purposes.

APPENDIX C: MORE DETAILS ON THE
QUINTESSENCE ASSISTED SCENARIO

In Fig. 9 (left panel), we show the evolution of the fields
ϕ and ψ in a theory of quintessence assisted dark energy in
which ϕ has a potential with an exponential runaway. The
dynamics of the theory are similar to the early stages of a
dark matter assisted dark energy theory, e.g. as plotted in
Fig. 6, except that ϕ sources dark energy while ψ is still
frozen by Hubble friction. Once ψ is unfrozen, at around
a=a0 ≃ 10, ϕ is no longer trapped at ϕ=Λ ≃ 0 by the ϕ − ψ
interaction term and rolls down its runaway potential (for
the parameters of the theory shown, there is no era in which
ϕ is trapped while ψ behaves as matter). In the right panel
we plot the equation of state parameter of the same theory.
Prior to a=a0 ≃ 10 this matches the ΛCMD prediction
closely. Soon after ϕ is released from ϕ=Λ ≃ 0 the theory is
nonlinear and w evolves in a complicated way. However,
eventually the system will approach the standard tracker
solution for an exponential potential [59], which, for the
value of Λ=MPl used, leads to nonaccelerating expansion.

APPENDIX D: PRELIMINARY ANALYSIS OF
COSMOLOGICAL PERTURBATIONS

The theories that we consider allow for additional
cosmological perturbations compared to ΛCDM. Indeed,
during primordial inflation both ψ and ϕ inevitably get a
(approximately) flat spectrum of isocurvature perturbations
of magnitude roughly HI=ð2πÞ, where HI is the Hubble
scale during inflation (in addition to the usual adiabatic
perturbations). Depending on their size at different times
during the cosmological history, such perturbations could
lead to either constraints or new observational signals. For
instance, these could arise from their impact on the cosmic
microwave background [1], structure formation either at
early times (as probed by e.g. Lyman-α observations [117])
or late-time observations at redshift z≲ few.
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In this appendix, we carry out a preliminary analysis of
the evolution of cosmological perturbations in our theories.
We argue that if, as imposed in the main text, the initial
perturbations in ϕ and ψ at the end of inflation are small
then they do not grow exponentially and can therefore be
safe from observational constraints.12 In particular, we
focus on the evolution of density perturbations during
those eras that are potentially the most dangerous for the
growth of beyond-ΛCDM perturbations. We leave the
important work of a full analysis and comparison to
observational data to future work.
We begin by considering the dark matter and quintes-

sence assisted scenarios. We consider only times before
when ψ starts oscillating in the dark matter assisted
scenario (such analysis might miss interesting late-time
observational signals; we will return to this in future work).
In this regime, the evolution of initially small cosmological
perturbations can be analyzed by considering the relativ-
istic linear perturbation equations for the two coupled
scalar fields ϕ and ψ and a perfect fluid, which represents
either the dominant dark matter component or the SM
radiation bath (which we assume to be only coupled to ϕ
and ψ gravitationally). To do so, we follow Ref. [118]
closely (see also [119] and e.g. [18,120,121]).

As usual in linear perturbation theory we split all
quantities into a spatially homogeneous background
(denoted with a subscript 0) and spacetime-dependent
small perturbations. The perturbations consist of a pertur-
bation for each scalar field (ϕ1 and ψ1) and the energy

density perturbation (ρðfÞ1 ) and velocity perturbation (vðfÞ) in
the perfect fluid (there is no anisotropic stress for perfect
fluids or scalar fields [118,119]). In addition these pertur-
bations couple to the gravity perturbations. The perturbed
Friedmann-Lemaître-Robertson-Walker metric has the
form [118]:

ds2 ¼ −ð1þ 2αÞdt2 − 2a∂iβdxidt

þ a2½ð1þ 2φÞδij þ 2∂i∂jγ�dxidxj; ðD1Þ

where α, β, γ, and φ are the spacetime-dependent first order
scalar-type metric perturbations, and a is the scale factor.
In momentum space, the equations of motion of the

metric perturbations can be written as [118]

−
k2

a2
φþHκ ¼ −

1

2M2
Pl

ρ1; ðD2aÞ

κ −
k2

a2
χ ¼ 3

2M2
Pl

a
k
ðρ0 þ p0Þv; ðD2bÞ

χ̇ þHχ − α − φ ¼ 0; ðD2cÞ

κ̇ þ 2Hκ þ
�
3Ḣ −

k2

a2

�
α ¼ 1

2M2
Pl

ðρ1 þ 3p1Þ; ðD2dÞ

FIG. 9. Left: the evolution of ϕ and ψ in a theory of quintessence assisted dark energy, i.e. two field quintessence, in which ϕ has the
exponential runaway potential of Eq. (3). The Lagrangian parameters are mψ ¼ H0=5, mint ¼ 40H0, Λ ¼ MPl=10 and λ ¼ 0 and initial
field values ϕi ¼ Λ, ψ i ¼ 2MPl=5. The dynamics are similar to the dark matter assisted scenario shown in Fig. 6, except that because of
its small mass ψ does not roll down its potential until after the present day. While ψ is frozen, it first drives and then traps ϕ at a field
value≪ Λwhere it sources dark energy. Once ψ rolls to sufficiently small values, ϕ rolls down its runaway potential to large field values
(for the particular parameters chosen, there is not an era of dark matter assisted dark energy after ψ starts oscillating). Eventually the
system will reach the standard tracker solution discussed in the main text. Right: the equation of state parameter of the theory plotted in
the left panel wtot compared to the ΛCDM prediction, wΛCDM. Until a=a0 ≃ 10, the theory matches the ΛCDM result, and subsequently
the era of accelerated expansion ends.

12Note that even if they do not grow, there can still be strong
observational constraints that require the initial size of e.g. any
isocurvature perturbations in even a subcomponent of dark matter
(as ψ is in the matter dominated regime) to be a few orders of
magnitude smaller than the adiabatic perturbations. This typically
translates to an upper bound on HI .
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where κ ≡ 3ð−φ̇þHαÞ þ k2

a2 χ, χ ≡ aðβ þ aγ̇Þ, and k is the comoving wave number. Here ρ and p denote the total energy
density and pressure respectively, which include contributions from the background fluid, ϕ and ψ ; v denotes the total
velocity perturbation. Meanwhile, the perfect fluid perturbations satisfy [118]

ρ̇ðfÞ1 þ 3HρðfÞ1 ð1þ wðfÞÞ ¼ ρðfÞ0 ð1þ wðfÞÞ
�
−
k
a
vðfÞ þ κ − 3Hα

�
; ðD3aÞ

v̇ðfÞ þHvðfÞð1 − 3wðfÞÞ ¼ k
a

�
αþ wðfÞ

ð1þ wðfÞÞ
ρðfÞ1

ρðfÞ0

�
; ðD3bÞ

where for a noninteracting perfect fluid both background and perturbations satisfy pðfÞ ¼ wðfÞρðfÞ, which defines wðfÞ, since
its nonadiabatic pressure vanished [119]. The equations of motion for the scalar field perturbations are given by [119]

ϕ̈1 þ 3Hϕ̇1 þ
k2

a2
ϕ1 þ ∂ϕ0ψ0

V0ψ1 þ ∂
2
ϕ0
V0ϕ1 ¼ ϕ̇0ðα̇þ κÞ þ αð2ϕ̈0 þ 3Hϕ̇0Þ; ðD4aÞ

ψ̈1 þ 3Hψ̇1 þ
k2

a2
ψ1 þ ∂ϕ0ψ0

V0ϕ1 þ ∂
2
ψ0
V0ψ1 ¼ ψ̇0ðα̇þ κÞ þ αð2ψ̈0 þ 3Hψ̇0Þ; ðD4bÞ

where ϕ0 and ψ0 represent the background scalar fields and V0 is their potential.
Finally one needs to relate the metric perturbations with the matter content. The energy-momentum perturbations have

contributions from the perfect fluid and from the two field system

ρ1 ¼ ρðfÞ1 þ ρðϕψÞ1 ; ðD5aÞ

p1 ¼ pðfÞ
1 þ pðϕψÞ

1 ; ðD5bÞ

v ¼ vðfÞ þ vðϕψÞ: ðD5cÞ

The perturbation of the scalars can be written in terms of field perturbations as [118,119]

ρðϕψÞ1 ¼ ϕ̇0ϕ̇1 þ ψ̇0ψ̇1 − αðϕ̇2
0 þ ψ̇2

0Þ þ ∂ϕ0
V0ϕ1 þ ∂ψ0

V0ψ1; ðD6aÞ

pðϕψÞ
1 ¼ ϕ̇0ϕ̇1 þ ψ̇0ψ̇1 − αðϕ̇2

0 þ ψ̇2
0Þ − ∂ϕ0

V0ϕ1 − ∂ψ0
V0ψ1; ðD6bÞ

ðρðϕψÞ0 þ pðϕψÞ
0 ÞvðϕψÞ ¼ k

a
ðϕ̇0ϕ1 þ ψ̇0ψ1Þ: ðD6cÞ

We now have a complete set of equation for the
perturbations in a “gauge-ready” form. In a full analysis,
it would be convenient to translate these in terms of gauge
invariant quantities as in [119], which would allow the
evolution of adiabatic and entropic perturbations to be
consistently isolated. Instead, for our purposes of seeing
that the perturbations do not grow, it is sufficient to
consider the synchronous gauge by setting α ¼ β ¼ 0
[122]. This choice reduces the number of independent
perturbations to

ϕ̈1 þ 3Hϕ̇1 þ
k2

a2
ϕ1 þ ∂ϕ0ψ0

V0ψ1 þ ∂
2
ϕ0
V0ϕ1 ¼ ϕ̇0κ;

ðD7aÞ

ψ̈1 þ 3Hψ̇1 þ
k2

a2
ψ1 þ ∂ϕ0ψ0

V0ϕ1 þ ∂
2
ψ0
V0ψ1 ¼ ψ̇0κ;

ðD7bÞ

ρ̇ðfÞ1 þ 3HρðfÞ1 ð1þ wðfÞÞ ¼ ρðfÞ0 ð1þ wðfÞÞ
�
−
k
a
vðfÞ þ κ

�
;

ðD7cÞ

v̇ðfÞ þHvðfÞð1 − 3wðfÞÞ ¼ k
a

wðfÞ

ð1þ wðfÞÞ
ρðfÞ1

ρðfÞ0

; ðD7dÞ
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κ̇ þ 2Hκ ¼ 1

2M2
Pl

ðρðfÞ1 ð1þ 3wðfÞÞ þ 4ϕ̇0ϕ̇1 þ 4ψ̇0ψ̇1

− 2∂ϕ0
V0ϕ1 − 2∂ψ0

V0ψ1Þ: ðD7eÞ

In both the dark matter and quintessence assisted
scenarios, at early times, when H ≫ mintψ=Λ, both ϕ0

and ψ0 are frozen. At such times, the perturbations ϕ1 and
ψ1 are also frozen, and (given that ϕ and ψ contribute only
a tiny contribution to the overall energy density of the
Universe) no significant metric perturbations are induced.
In typical theories allowed by existing constraints, this era
continues until around the time of matter-radiation equality
or later (cf. Figs. 1 and 9).
The subsequent evolution of perturbations during the era

while ϕ is being driven to the origin due to its interaction
with ψ (which remains frozen) is potentially more interest-
ing. For simplicity, we will assume that this occurs during
matter domination, as is the case of over the majority of the
interesting parameter space. Consequently, the dominant
background fluid has wðfÞ ¼ 0. Denoting quantities at the
timewhenϕ first starts being driven towards the origin by the
subscript osc, we can write the scale factor and background
energy density during this era as a ¼ aoscðt=toscÞ2=3 and
ρ0ðtÞ ¼ ρoscðtosc=tÞ2, and we note that tosc is set by
3Hosc ¼ mintψ i=Λ. The background fields satisfy

ϕ0ðtÞ ¼ ϕosc
tosc
t
cosðmintψ iðt − toscÞ=ΛÞ; ðD8aÞ

ψ0ðtÞ ¼ ψosc: ðD8bÞ

It is then straightforward to solve the system of
equations (D7) numerically, both for super- and subhorizon
modes. As an example, in Fig. 10 we plot the evolution of

superhorizon perturbations (k ≪ aH), starting from initial
conditions with ϕ0 ¼ Λ and ψ0 ¼ MPl=5 as in Fig. 1 and
small initial perturbations ϕ1 ¼ 10−3Λ ≪ ϕ0 and ψ1 ¼
10−3MPl ≪ ψ0 (and with initial κ1 ¼ v1 ¼ ρ1 ¼ 0). We
have checked that these results are independent of whether
ϕ has a potential with a hilltop or an exponential form, as
expected given that ϕ’s potential is subdominant at these
times. Results are shown until a=aosc ≃ 300, at which point
ψ0 starts oscillating for the parameters used. Note that for a
matter dominated universe v is not sourced (and any initial
value would decay as v ∝ t−2). The perturbation in ϕ grows
by a factor of 10, but does not increase any further (and
decreases towards the final times) and also has average value
0. Meanwhile ψ1 is basically frozen. The induced perturba-
tions in ρ and κ are tiny, which is consistent with the energy
densities in ϕ and ψ being subdominant during this time [in
particular, from Eq. (D7) the natural normalization for the
induced κ isHosc, and κ is suppressed relative to this byρψ=ρ0
with ρψ the energy density in ψ ’s potential]. We checked
numerically that the behavior in Fig. 10 is representative of
superhorizon perturbations also for parameters correspond-
ing to the quintessence assisted scenario. We have also
checked that subhorizon (k ≫ aH) perturbations oscillate
with a decreasing amplitude. We therefore conclude that
provided they are initially small, cosmological perturbations
do not grow to magnitudes that are dangerously large for
observations during this era.
Subsequently, in the dark matter assisted scenario, ψ

starts oscillating and ϕ enters the locked regime. We have
argued that during this era, subhorizon ϕ modes (corre-
sponding to subhorizon perturbations) grow at most as fast
as the zero mode (cf. Appendix A 1), so these remain small
during dark energy domination assuming a homogeneous ψ
background. It would be very interesting to investigate the

FIG. 10. The evolution of superhorizon perturbations (left) ϕ1 and ψ1 (right) ρ and κ (in the synchronous gauge) in a theory of dark
matter assisted dark energy with ϕ having a hilltop potential. The theory is given by Eqs. (1) and (2) with VðϕÞ ¼ VhillðϕÞ, with
parameter values mψ ¼ 10H0, mint ¼ 104H0, Λ ¼ MPl=50 and λ ¼ 0 and initial field values ϕ0 ¼ Λ, ψ0 ¼ MPl=5. The initial
conditions for the perturbations are ϕ1 ¼ 10−3Λ, ψ1 ¼ 10−3MPl and ρ1 ¼ v ¼ κ ¼ 0. The evolution of the perturbations is obtained by
numerically solving the equations of motion of the perturbations with a background with ϕ0 oscillating towards the origin and ψ0 frozen
by Hubble friction in a matter dominated universe (w ¼ 0). The initial time is set by the time when ϕ starts being driven towards ϕ ¼ 0,
which occurs when 3H ≃mintψ i=Λ.
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evolution of metric perturbations and perturbations in ψ
during this era as well, and any possible observational
signatures, but we leave this for future work. Meanwhile, in
quintessence assisted scenario the subsequent dynamics,
during dark energy domination, consist of ϕ and ψ slow
rolling with only small field displacements. We leave the
interesting question of the determining the evolution of
perturbations during dark energy domination and possible
resulting late-time observational signals to future work (we
do not expect the dynamics during this era, long after CMB
formation, to lead to observational signals in the CMB).
Finally, we briefly comment on perturbations in the dark

radiation assisted scenario, in which there is a thermal bath
of ψ that acts as subdominant radiation component. In such
theories it is natural to suppose that the ψ thermal bath is
produced by the decay of the inflation, and as a result only
inherits the usual initially small adiabatic fluctuations. We
have check numerically that initially small perturbations in
ϕ with a homogeneous ψ background also do not grow in
such theories (see also [120,121] for the related analysis of
perturbation for a perfect fluid and a scalar field system)

while ϕ is being driven towards the origin (as in the dark
matter and quintessence assisted scenarios, it might be
interesting to consider the evolution of perturbations during
dark energy domination). We have also checked that small
perturbations in ψ (which result in ϕ having a slightly
different thermal potential in different regions of space) do
not induce growing perturbations in ϕ. Moreover, we
expect that, given that the ψ thermal bath is relativistic
today, it will free stream out of the gravitationally collapsed
halos that form from adiabatic perturbations during usual
structure formation, which means that large perturbations in
ϕ would not be induced this way. From these results it is
plausible that such theories with only small perturbations in
ϕ and adiabatic fluctuations in the ψ thermal bath do not
contradict observations. However, in the future it would be
very interesting to analyze the dynamics of ϕ perturbations
in the era of structure formation in detail, especially in the
case that ϕ has an exponential potential, such that the
minimum of its full thermally corrected potential varies
continuously with temperature rather than always being at
ϕ ¼ 0 while ϕ is trapped.
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