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We propose a simple model that can alleviate the H0 tension while remaining consistent with big bang
nucleosynthesis (BBN). It is based on a dark sector described by a standard Lagrangian featuring a SUðNÞ
gauge symmetry with N ≥ 3 and a massive scalar field with a quartic coupling. The scalar acts as a dark
Higgs leading to spontaneous symmetry breaking SUðNÞ → SUðN − 1Þ via a first-order phase transition
à la Coleman-Weinberg. This setup naturally realizes previously proposed scenarios featuring strongly
interacting dark radiation (SIDR) with a mass threshold within hot new early dark energy. For a wide range
of reasonable model parameters, the phase transition occurs between the BBN and recombination epochs
and releases a sufficient amount of latent heat such that the model easily respects bounds on extra radiation
during BBN while featuring a sufficient SIDR density around recombination for increasing the value ofH0

inferred from the cosmic microwave background. Our model can be summarized as a natural mechanism
providing two successive increases in the effective number of relativistic degrees of freedom after BBN but
before recombination ΔNBBN → ΔNNEDE → ΔNIR alleviating the Hubble tension. The first step is related
to the phase transition, and the second is related to the dark Higgs becoming nonrelativistic. This setup
predicts further signatures, including a stochastic gravitational wave background and features in the matter
power spectrum that can be searched for with future pulsar timing and Lyman-α forest measurements.

DOI: 10.1103/PhysRevD.110.023531

I. INTRODUCTION

The Hubble tension has risen to become one of cosmol-
ogy’s most hotly debated problems [1] and persists despite
increasing levels of scrutiny [2]. Assuming it is not due to still
unaccounted for systematics in the measurements, a reso-
lution of the Hubble tensionwill have to involve new physics,
goingbeyond theLambdaColdDarkMatter (ΛCDM)model,
at relatively low (∼eV) energy scales, where it will affect the
cosmic microwave background (CMB) and other precision
probes of the evolution of the Universe [3,4]. This makes the
possible scenarios for resolving the Hubble tension very
constrained and also very testable.
One of the earliest and simplest proposed solutions to the

Hubble tension is the existence of a hypothetical fluid of
strongly interacting dark radiation (SIDR) [5–7]. The SIDR
solution has several incarnations. One is the so-called

stepped model, where the SIDR fluid temporarily becomes
nonrelativistic and then decays into a relativistic fluid again,
creating a small step in the number of effective relativistic
degrees of freedom,Neff [8–11]. This mechanism allows for
an l-dependence in the CMB, with different impacts of the
SIDR fluid on the high-l and low-l multipoles.
A common problem of the SIDR model, including the

stepped models, is that they are ruled out by big bang
nucleosynthesis (BBN) as solutions to the Hubble tension
when taken at face value. Specifically, to address the
Hubble tension, they require an initial value of the effective
number of relativistic degrees of freedom,Neff , which is too
large to be compatible with BBN constraints [9]. This
problem is usually circumvented by arguing that “some-
thing” could happen after BBN, creating the initially large
Neff required in the SIDR and the stepped models, but this
something has not been included in the models in the
literature so far at the detailed level (although for some
initial suggestions, see Refs. [12–15] and Sec. II B below).
Without further modification, SIDR and stepped models are
therefore ruled out as solutions to the Hubble tension by
BBN constraints.
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In fact, we take the point of view that BBN physics
cannot be separated from the solution to the Hubble tension
when fitting the CMB. This is emphasized by the fact that
the details of CMB and recombination physics depend on
the helium fraction predicted by BBN. Therefore, the CMB
and recombination physics are not independent from BBN
physics.1 The predictions of BBN are important for the full
subsequent thermal evolution of the Universe. Therefore, a
serious complete model solving the Hubble tension must
also be required to be consistent with BBN constraints.
In this work, we show how, in terms of a dark sector

described by a simple microphysical model, a first-order
phase transition triggered by the temperature of the dark
sector (named hot new early dark energy [hot NEDE] in
Refs. [16,17]) provides the UV completion of the SIDR and
stepped models, bringing them in agreement with the BBN
constraints as solutions to the Hubble tension. In particular,
we consider a standard Lagrangian described by an SUðNÞ
gauge symmetry and a massive dark Higgs field with
quartic coupling as only ingredients, leading to sponta-
neous symmetry breaking SUðNÞ → SUðN − 1Þ. As
pointed out by Witten [18], this setup features a strongly
supercooled first-order phase transition à la Coleman-
Weinberg [19] in the conformal limit where the effective
scalar mass vanishes. In conclusion, when the latent heat of
the false vacuum is converted into light species in the phase
transition, the number of effective relativistic degrees of
freedom, Neff , is suddenly increased.
If the hot NEDE phase transition occurs between

the BBN and recombination epochs, i.e., roughly within
the wide redshift range 105 ≲ z� < 109, this explains
how a relatively large Neff , as required in the SIDR and
stepped models, can be made consistent with BBN con-
straints. The dark radiation component generated after the
phase transition naturally gives rise to a sizeable change
ΔNeff ∼Oð1Þ. It is composed of massless SUðN − 1Þ
gauge bosons as well as a light-dark Higgs boson, featuring
self-interactions as assumed in SIDR models generated by
the remaining non-Abelian SUðN − 1Þ gauge interactions
for N ≥ 3. In addition, a small mass of the dark Higgs is a
characteristic feature of the Coleman-Weinberg mecha-
nism. Thus, it turns nonrelativistic somewhat after the
phase transition, leading to a further slight increase of Neff
in a second “step,” and providing a natural realization of the
stepped SIDR framework.
In Sec. II, we will review the NEDE framework and the

SIDR models as solutions to the Hubble tension. In Sec. III,
we explain our new dark sector model. In Sec. IV, we
compare our model with cosmological datasets and discuss

how it can alleviate the Hubble tension. Then, in Sec. V, we
discuss novel phenomenological signatures of the model,
and finally we conclude and give pointers for future work in
Sec. VI. The Appendixes contain further details on our
results as well as equations used to describe the evolution
after the phase transition.

II. BACKGROUND AND PRELIMINARIES

A. Comparison to cold NEDE

NEDE is a framework for addressing the Hubble tension
in terms of a new phase of dark energy which decays in a
fast-triggered phase transition before or around matter-
radiation equality [20–22]. It is distinct from other early
dark energymodels, most notably axion-like EDE (axiEDE)
[23] (for a review, see Ref. [24]) both in terms of its detailed
phenomenology and field-theoretic realization.
Hot NEDE [16,17,25] is also different from the pre-

viously studied cold NEDE models [20,21], in which the
phase transition is triggered by an ultralight axionlike
(ULA) scalar field at zero dark sector temperature [26].
In particular, the cold NEDE fluid is usually assumed to
have a constant equation of state w ≃ 2=3 after the phase
transition as a phenomenological requirement for solving
the Hubble tension. We note, however, that Neff is the same
in cold NEDE and in ΛCDM, making it trivially consistent
with BBN constraints. In hot NEDE, there is no ULA, and
the phase transition is instead triggered by the dark sector
temperature corrections to the NEDE boson’s effective
potential. After the phase transition, the latent heat of the
false vacuum goes into reheating the dark sector, creating a
nontrivial change in ΔNeff .
One of the main attraction points of hot NEDE as a

solution to the Hubble tension is that it is a phase transition
similar to other transitions such as the QCD and electro-
weak transitions that are already part of our understanding
of the thermal history of the Universe. As we point out, the
microscopic description of hot NEDE can be reminiscent of
a dark version of the electroweak phase transition with a
light Higgs. Besides, it could also be related to other open
questions, such as the origin of neutrino masses [16,17].
However, while cold NEDE has been implemented into a
Boltzmann code and studied rigorously in the past, a
phenomenological test of hot NEDE has not yet been
performed. In this paper, we will, for the first time,
implement hot NEDE into a Boltzmann code and test it
against data.
Previously, it was assumed that the phenomenology of

hot NEDE from a CMB point of view would be very similar
to cold NEDE. In this work, however, we point out that the
phenomenology of hot and cold NEDE differs greatly. The
fluctuations in the thermal trigger of hot NEDE are larger
than in the scalar trigger of cold NEDE. This means that the
hot NEDE model cannot resolve the Hubble tension by
simply decaying into a semistiff fluid with the equation of

1Assuming a different value of ΔNeff at the time of BBN than
around the recombination era would require manually setting the
helium abundance at the CMB epoch to an assumed value.
Instead, having a complete model allows one to consistently infer
the helium abundance from BBN.

GARNY, NIEDERMANN, RUBIRA, and SLOTH PHYS. REV. D 110, 023531 (2024)

023531-2



state w ≃ 2=3 around redshift z� ¼ 5000, as is typical in
previously studied (N)EDE models, like cold NEDE.
Instead, in hot NEDE, the phase transition must occur
earlier (but after BBN) at a redshift 105 ≲ z� < zBBN ∼ 109.
After the phase transition, the NEDE boson and gauge
fields will naturally behave like a SIDR fluid, mimicking
the SIDR and stepped models around recombination yet
with a natural explanation for the initial high Neff created
after BBN, and in this way UV completing the SIDR and
stepped models as solutions to the Hubble tension.

B. Previous steps attempted

As exemplified by the initial suggestions mentioned
above [12–15], increasing Neff after BBN is not easy. One
obvious idea would be to have an extra mass threshold
leading to a second step in the stepped SIDR model, with
both steps in Neff happening after BBN. Another of the
previously discussed possibilities is having some dark
degrees of freedom which thermalize late through the
neutrino sector after BBN. Let us quickly discuss both
of these ideas for generating a sufficiently large Neff after
BBN, before we proceed to discuss in detail how a phase
transition with a certain amount of supercooling between
BBN and before recombination provides a conceptually
simple mechanism.
As mentioned, one may wonder whether a “double step”

scenario could reconcile the extra radiation needed to
address the H0 tension within the stepped SIDR model
with BBN constraints.2 This would be a scenariowith a dark
sector featuring one mass threshold to address H0 and an
earlier one after BBN to obtain a sufficient energy density in
the dark sector. Assume real scalars, with nIR < nUV <
nBBN degrees of freedom, where nUV refers to the number of
degrees of freedom in the period between the two steps,nBBN
before the two steps, and nIR after them. The contribution to
Neff is then ΔNIR ¼ ðnUV=nIRÞ1=3ΔNUV and
ΔNUV ¼ ðnBBN=nUVÞ1=3ΔNBBN. Given BBN bounds
ΔNeff ¼ −0.11� 0.23 [32] or ΔNeff ¼ −0.10� 0.21
[33], we require ΔNBBN ≲ 0.1 in order
not to introduce any tension with BBN. Assuming
the dark sector was in thermal contact in the early
Universe, the minimal contribution toΔNeff for a real scalar
is 0.027 (e.g., Ref. [34]). This means we can have at most
nBBN ¼ 4. Further assuming the minimal possible nIR ¼ 1

and nUV ¼ 2, this means we can have at most ΔNUV ¼
ð4=2Þ1=34 × 0.027 ≃ 0.14 and ΔNIR ¼ ð2=1Þ1=3ΔNUV ≃
0.17, which is too low to address theH0 tension. To achieve
the desired ΔNIR ≃ 0.6, one would, even in the most
favorable casewith nIR ¼ 1, need nBBN ¼ ð0.6=0.027Þ3=4 ≃
10 degrees of freedom during BBN, which would mean

ΔNBBN ≃ 0.27. Although not being completely excluded,
this would arguably just trade the H0 for a BBN tension.
A logical possibility for which the double step could

work in principle is to assume that the dark sector was never
in thermal equilibrium with the SM and populated with a
lower temperature. While this by itself is a plausible
possibility, enhancing the dark sector density sufficiently
just due to mass threshold effects is still challenging in this
scenario. Specifically, to have ΔNBBN ≲ 0.1 but never-
theless achieve ΔNIR ≃ 0.6 via mass threshold effects for
addressing the H0 tension would require a large number of
particles in the dark sector with nBBN ≃ ð0.6=0.1Þ3nIR ≃
200 nIR ≥ 200 degrees of freedom (where we assumed the
minimal value nIR ¼ 1 in the last estimate) that all exhibit a
mass threshold after BBN but sufficiently before recombi-
nation [15]. Having more degrees of freedom than con-
tained in the entire Standard Model (SM) that undergo a
nontrivial thermal evolution in the dark sector in the energy
range between BBN and recombination is, however, a
rather nonminimal proposal.
It has also been suggested that the constraints from BBN

could be avoided if the dark sector temperature was
effectively zero at the time of BBN and only created after
BBN through thermalization of dark sector fermions with
the SM neutrinos, which have decoupled at this point [15].
Since the SM neutrinos have decoupled from the SM, the
thermalization with the dark sector does not by itself
change Neff , as it does not change the total energy density
of the dark sector and SM neutrinos. However, if one or
more of the self-interacting dark fermions subsequently
undergo a mass threshold and annihilate into a much lighter
force carrier, then that would lead to a second step as
discussed above, but without affecting BBN if the dark
fermions have a mass 100 eV≲mνd ≲ 100 keV. In
Ref. [15], it was argued that this allows for ΔNeff ¼
½ðgUVrel;d=gIRrel;dÞ1=3 − 1�Neq where Neq is the number of SM
neutrinos equilibrating with the dark fermions, and gUVrel;d
and gIRrel;d are the effective number of degrees of freedom
before and after the mass threshold, respectively. To have
ΔNeff ≈ 0.6, as relevant for solving the Hubble tension, one
would need four dark self-interacting fermions with masses
100 eV≲mνd ≲ 100 keV equilibrating with the SM neu-
trinos through a nonvanishing mixing angle θ > 10−13.
However, it is plausible that the SIDR after the mass
threshold consists of more than a single degree of freedom,
making gIRrel;d > 1, and hence a very large dark sector
equilibrating with the SM neutrinos after BBN is again
quickly required.3

2An additional possibility, which we will not discuss
here, is provided by nonrelativistic particles that decay after
BBN [27–31].

3In addition, the proposed mixing of active neutrinos and a
sterile neutrino with a self-interaction mediated by a light boson
also suffers model-dependent constraints from stellar and super-
nova cooling [35,36].
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While this remains a viable possibility, we will instead
consider a simple new proposal, namely that both a
significant dark sector temperature and a ΔNeff are created
by an energy injection into the dark sector from a super-
cooled phase transition between BBN and recombination in
the hot NEDE scenario. As we will see, all desired
ingredients to realize this scenario naturally emerge from
a dark sector described by a standard setup from the point
of view of particle physics.

III. ORIGIN OF DARK SPECIES

Our dark sector model relies on a local SUðNÞ gauge
symmetry, which is spontaneously broken to SUðN − 1Þ by
a scalar field undergoing a first-order phase transition. Our
main focus centers on the evolution of this sector’s
contribution to the effective number of relativistic degrees
of freedom, ΔNeff , before and after the phase transition,
featuring an increase related to the latent heat (the first
step). Later, yet less importantly, the scalar field driving the
phase transition becomes nonrelativistic, leading to a
second change in Neff (the second step), in a process
similar to the step described in Ref. [8]. The evolution of
ΔNeff as well as the various dark sector energy densities are
shown in Fig. 1 for a typical setup, and all relevant
parameters are summarized in Table I. We discuss how
this conceptually simple and well-known setup naturally
generates a consistent cosmological evolution throughout
BBN, recombination, and all the way until the present era,
alleviating the Hubble tension while retaining the success
of BBN.
We introduce the model’s Lagrangian in Sec. III A. Then,

we derive the parameter regime corresponding to a

supercooled phase transition in Sec. III B. The latent heat
deposited in the dark sector leads to a very quick reheating
as discussed in Sec. III C This is followed by a review of the
second step in Sec. III D. Finally, in Sec. III E, we describe
the perturbations in the plasma.

A. Model

We consider a dark sector featuring a gauge symmetry
SUðNÞ with gauge coupling g and a complex scalar field Ψ
described by the standard Lagrangian

L ¼ jDΨj2 − VclðjΨj2Þ −
1

2
trFμνFμν; ð1Þ

where D is the gauge covariant derivative, with DμΨ ¼
∂
μΨ − igAμ

aτaΨ and also with generators satisfying
½τa; τb� ¼ ifabcτc with structure constants fabc. Here Fμν ¼
ig−1½Dμ; Dν� is the field strength tensor. The dark Higgs
field Ψ transforms in the fundamental representation of
SUðNÞ, and we refer to it as the NEDE scalar field. Its zero
temperature tree-level potential is given by

VclðjΨj2Þ ¼ −μ2jΨj2 þ λjΨj4 þ V0; ð2Þ

where μ2 is the field’s (tachyonic) mass parameter and λ is
its self-coupling. V0 is an additive constant, which is
chosen such that the potential energy is zero in the true
vacuum.
As we will discuss in detail later, the gauge field induces

thermal corrections that will lead to a first-order phase
transition at a redshift z� ≡ 1=a� − 1 corresponding to a

FIG. 1. Energy density of different dark sector components in units of ρ1;ν ≡ 7
4
π2

30
ð 4
11
Þ4=3T4

vis. The blue line depicts the evolution of the
total dark sector energy density, composed of the dark radiation plasma formed by the gauge (green line) and Higgs (red line) bosons as
well as the latent heat ρNEDE (orange line and area), that rises above the radiation fluid before the supercooled phase transition. The
purple line depicts ΔNeff before and after the phase transition at a�; respectively, see (32) and (33). The red shaded area illustrates BBN
constraints, and the green area illustrates values ofΔNeff required for addressing theH0 tension. For comparison, gray dotted and dashed
lines show the SIDR model and its stepped version named WZDR [8] (see Sec. I).
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dark sector temperature T�
d.
4 As the symmetry breaking

from SUðNÞ → SUðN − 1Þ occurs, the NEDE field picks
up a vacuum expectation value v. We parametrize the
corresponding breaking pattern through

Ψ ¼ e2iπ
aτa=v

0
B@

0

…
vffiffi
2

p þ hψffiffi
2

p

1
CA; ð3Þ

where hψ is the physical Higgs mode of the NEDE field
after the phase transition and πa are the Goldstone fields
associated with the 2N − 1 broken generators τa that are
absorbed by the gauge bosons acquiring mass. Let us
consider the example of SUð3Þ → SUð2Þ in more detail.
After the breaking, there are three massless states,
mA1

¼ mA2
¼ mA3

¼ 0, corresponding to nA1−3
¼ 6

degrees of freedom. The remaining five gauge bosons
are massive. Explicitly, mA4

¼ mA5
¼ mA6

¼ mA7
¼ gv

2

with nA4−7
¼ 4 × 3 ¼ 12, and mA8

¼ gvffiffi
3

p with nA8
¼ 3.

The physical NEDE mode develops a vacuum mass mψ ,
of order g2v; see (7) below. The numbers of massless and
massive degrees of freedom in both phases are also
summarized in Table II for general N.

TABLE I. Summary of the fundamental and phenomenological model parameters. The reference values correspond to a typical hot
NEDE cosmology (also depicted in Fig 1). Once μeff , v, g, and N, alongside an initial condition for ΔNBBN, are fixed, all other
parameters can be derived.

Parameter Eq. Reference model Description

g (1) 0.05 Gauge coupling with lower bound [see (24)] g≳ 0.01.
N (1) 3 Gauge group breaking pattern: SUðNÞ → SUðN − 1Þ.
v (5) 1.4 × 104 eV NEDE field vacuum expectation value (vev) arising from

dimensional transmutation.
μeff (5) 1.1 eV Renormalized mass parameter of NEDE field, describes small

soft breaking of classical conformal symmetry for μeff ≪ g2v,
provides graceful exit from supercooling.

mA ≡ gv=2 � � � 3.5 × 102 eV Gauge boson mass scale after symmetry breaking.

mψ ∼ g2v (7) 4.4 eV Dark Higgs mass.

ΔV� ∼ g4v4 (14) ð127 eVÞ4 Latent heat released during the phase transition.

λ ∼ g4 (2) 5.0 × 10−8 Tree-level self-coupling of the NEDE field.

γ ∼ μ2eff=ðg4v2Þ (12) 0.01 Supercooling parameter, strong supercooling for γ ≪ 1.

Tc ∼ gv (10) 1.2 × 102 eV Dark sector temperature with two degenerate vacua.

T�
d ∼

ffiffiffi
γ

p
gv (18) 39.2 eV Dark sector temperature when percolation condition is met

(T�
d ≃ Tb in the supercooling regime).

Tb ∼
ffiffiffi
γ

p
gv (11) 39.1 eV Dark sector temperature below which thermal barrier vanishes.

T�;after
d ∼ ΔV1=4

� (26) 1.0 × 102 eV Dark sector temperature after the phase transition.

T�
vis (18) 2.4 × 102 eV Visible sector temperature during the phase transition.

H�=β (20) 2.9 × 10−6 Percolation time scale.

α � � � 0.076 Strength of phase transition, α≡ ΔV=ðρ∗rad;vis þ ρ∗rad;dÞ.
z� � � � 106 Redshift of the NEDE phase transition (first step) with possible

range: [105; 109].
zt ∼ gz� (31) 4.2 × 104 Redshift when the dark Higgs becomes non-relativistic, i.e. for

which mψ ¼ Td (second step) with zt < z∗.
fNEDE (14) 0.071 Fraction of latent heat at redshift z∗, setting the size of the first

step. Note that fNEDE ¼ α=ð1þ αÞ.
rg (B9) 1=6 Size of the second step.

ΔNBBN (19) 0.039 Contribution to ΔNeff before the NEDE phase transition,
applicable during BBN.

ΔNNEDE (27) 0.57 Contribution to ΔNeff after the NEDE phase transition.
ΔNIR (29) 0.6 Contribution to ΔNeff after the second step.

4Here and henceforth, an asterisk is used as a shorthand for
evaluation at the moment of the phase transition. If a quantity is
discontinuous, we refer to its value before the transition; e.g., T�

d
is the (dark sector) temperature right before the phase transition
(also sometimes denoted as Tn in the literature).
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B. Phase transition

We now describe the physics of the thermal phase
transition at z ¼ z�, focusing on the regime of a supercooled
first-order phase transition, that permits a sizeable step in
ΔNeff . This occurs in the limit forwhich the darkHiggsmass
is light compared to the gauge boson masses [18]5

mA ≫ T�
d; mψ ; ð4Þ

being realized for λ ∼ g4. Adopting this power counting,
the phase transition can be described by the one-loop
approximation of the effective potential taking gauge
boson loops into account. It can be written as

Vðψ ;TdÞ ¼ V0 −
μ2eff
2

ψ2

�
1 −

ψ2

2v2

�
þ Bψ4

�
ln
ψ2

v2
−
1

2

�

þ ΔV thermalðψ ;TdÞ; ð5Þ

where ψ ≡ ffiffiffi
2

p jΨj denotes the field value. Let us review the
various contributions in turn. First of all, note that we traded
the tree-level parameters μ2 and λ in (1) by6 μ2eff and v

2 such
that μ2eff ¼ 0 corresponds to the classically conformal limit
for which symmetry breaking famously occurs purely due to
the radiative correction proportional to B [see (6)] and the
scale v is generated by dimensional transmutation as pointed
out by Coleman andWeinberg [19]. For generality, we allow
for nonzero (but potentially small) values μ2eff of order up to
v2g4, consistent with the power counting λ ∼ g4, which can
be seen as a technically natural “soft” breaking of conformal
symmetry. The parameter B is

B ¼ c1nA
64π2

�
g
2

�
4

; ð6Þ

where nA is the number of gauge bosons acquiring mass (see
Table II) and c1 is a constant of order unity (c1 ¼ 52=45 for
N ¼ 3).7 In this parametrization, theminimumof thevacuum

potential in the first line of (5) occurs at ψ ¼ v, and the
constant V0 ensures Vðv; 0Þ ¼ 0.
A well-known case featuring very strong supercooling,

discussed by Witten [18] (see also Ref. [45]), is the
conformal limit μeff ¼ 0. As we will see, a small nonzero
μeff [related to the supercooling parameter γ defined in (12)
below] provides a graceful exit mechanism allowing for a
controlled amount of supercooling and preventing the latent
heat from dominating the total energy budget [16,41]. As in
the purely conformal limit, the dark Higgs is parametrically
lighter than the gauge boson masses,

m2
ψ ¼ d2V

dψ2
ðv; 0Þ ¼ 2μ2eff þ 8Bv2 ≪ m2

A ∼ g2v2: ð7Þ

The second line in (5) denotes the thermal correction given
by [46–48]

ΔV thermalðψ ;TdÞ ¼
1

2π2
X
i

niT4
dJBðm2

i ðψÞ=T2
dÞ; ð8Þ

where JBða2Þ ¼
R
∞
0 dpp2 lnð1 − e−

ffiffiffiffiffiffiffiffiffiffi
p2þa2

p
Þ and the sum

runs over all species with field-dependent massesmi and ni
degrees of freedom. The parametrization JBða2Þ≡
2π2KðaÞe−a from Ref. [16] makes the Boltzmann suppres-
sion for a ≫ 1 explicit, while KðaÞe−a ≃ −π2=90þ
a2=24 − a3=ð12πÞ þ � � � in the opposite limit. In the super-
cooled regime λ ∼ g4, it is sufficient to include only the
gauge bosons with masses mA ∼ gv in the sum and omit
Debye corrections known as ring resummation [48]; see
Refs. [43,49] for further discussion. The leading ψ-depen-
dent thermal correction for Td ≫ gψ is

ΔV thermalðψ ;TdÞ →
1

24
c0nAg2T2ψ2; ð9Þ

where as before nA is the number of gauge bosons
acquiring mass (see Table II) and c0 is another model-
dependent constant of order unity (c0 ¼ 4=15 for N ¼ 3).
In the opposite limit Td ≪ gψ , the thermal correction is
exponentially suppressed.
The thermal correction restores the SUðNÞ symmetry at

high temperatures, while a second minimum at nonzero

TABLE II. Degrees of freedom (d.o.f.) in the dark sector. The first row shows the relativistic d.o.f. grel;d before (z > z�) and after
(z < z�) the SUðNÞ → SUðN − 1Þ phase transition, further discriminating the regime where the Higgs is relativistic (z > zt) or
nonrelativistic (z < zt). The lower rows show the d.o.f. of each species.

No. of d.o.f. z > z� (BBN) z� > z > zt (NEDE) z < zt (IR)

grel;d 2ðN2 þ N − 1Þ 2ðN − 1Þ2 − 1 2ðN − 1Þ2 − 2

Massless gauge bosons 2ðN2 − 1Þ 2ððN − 1Þ2 − 1Þ
Massive gauge bosons 0 nA ≡ 3ðN2 − ðN − 1Þ2Þ ¼ 3ð2N − 1Þ
Higgs bosons 2N 1

5See also Refs. [16,17] for more details in the context of hot
NEDE and, e.g., Refs. [37–44] for a discussion of supercooling in
other scenarios.

6The relation to (1) is μ2 ¼ μ2eff þ 4Bv2 ¼ λv2.
7c1¼ 3

nA
16

P
am

4
Aa
ðψÞ=ðgψÞ4, and c0 ¼ 3

nA

P
am

2
Aa
ðψÞ=ðgψÞ2.
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ψ ¼ vψðTÞ develops and becomes degenerate with the
one at ψ ¼ 0 at the critical temperature Tc. For μ2eff ≲ v2g4,
one has8

Tc ∼ gv; ð10Þ

and vψðTcÞ ∼ vψð0Þ ¼ v. The two minima are separated by
a barrier, such that the phase transition is of first order in the
regime we consider. The transition temperature T�

d at which
bubbles of the true vacuum are nucleated is significantly
below the critical temperature in the supercooled regime,
T�
d ≪ Tc. In the conformal case μeff ¼ 0, the barrier

becomes small but does not vanish (unless the temperature
vanishes exactly), leading to potentially very strong super-
cooling; see, e.g., Refs. [41–43]. For nonzero μeff , the
barrier vanishes at a finite temperature, given approxi-
mately by the temperature Tb for which d2V=dψ2ð0;TbÞ
changes sign,

T2
b ¼

12μ2eff
c0nAg2

¼ γ

π
g2v2; ð11Þ

where we introduced the supercooling parameter [16]

γ ≡ 12πμ2eff
c0nAv2g4

: ð12Þ

The conformal limit of radiative symmetry breaking à la
Coleman-Weinberg corresponds to γ → 0, while super-
cooling occurs as long as γ ≲Oð1Þ. The parameter γ
can take in principle any value in this range, being arguably
technically natural since classical conformal symmetry is
restored for γ ¼ 0. Its size controls the amount of super-
cooling. To determine the temperature at which the phase
transition occurs, we can discriminate two regimes. For
this, it is useful to consider the temperature T�

djCW for
which tunneling would occur with unit probability in a
Hubble volume and time in the Coleman-Weinberg case
γ ¼ 0. The first (rather extreme) possibility is that γ is so
small that Tb < T�

djCW, and the transition happens essen-
tially at the same time as it would occur for γ ¼ 0. This is
the case for γ ≪ ðT�

djCWÞ2=ðgvÞ2. The second case, that we
consider in the following, occurs if γ ≳ ðT�

djCWÞ2=ðgvÞ2,
such that Tb > T�

djCW. In this case, the μ2eff contribution to
the effective potential makes the barrier vanish already
before the field would have tunneled in the Coleman-
Weinberg case. Then, the transition occurs very shortly
before the barrier vanishes at temperature Tb, i.e.,

T�
d ≃ Tb ¼

ffiffiffi
γ

π

r
gv ∼

ffiffiffi
γ

p
Tc; ð13Þ

applicable for ðT�
djCWÞ2=ðgvÞ2 ≲ γ ≲ 1, which we assume

in the following. The parametric dependence for small g
can be estimated as [18] T�

djCW ¼ v exp ð−Oð1Þ=g3Þ when
using the percolation condition S�3=T

�
d ≃ 250 (taken from

Ref. [16]; see also Ref. [42]). For g≲ 1, as assumed in this
work, we can thus safely neglect the effect of a non-
vanishing T�

djCW.
For our purpose, we are interested in the latent heat

ΔV� ¼ Vðψ ¼ vψðT�
dÞ;T�

dÞ − Vðψ ¼ 0;T�
dÞ ð14Þ

released in the phase transition. For γ ≲ 1, one can estimate
the latent heat by the potential energy difference between
the two phases in the limit T ¼ 0,

ΔV� ≃ Vðv; 0Þ − Vð0; 0Þ ¼ 1

2
Bv4 þ 1

4
μ2effv

2

¼ g4v4
ð3c1 þ 128πc0γÞnA

6144π2
¼ T4

b
ð3c1 þ 128πc0γÞnA

6144γ2
;

ð15Þ

where we used (11), (12).
The relevance of having a strongly supercooled phase

transition becomes clear when considering the contribution
to Neff before and after the phase transition. In terms of the
temperature ratio ξ ¼ Td=Tvis, it is given by (assuming a
purely bosonic field content)

ΔNeff ¼
4

7

�
11

4

�
4=3

grel;dξ4; ð16Þ

where grel;d (grel;vis) denotes the number of relativistic
degrees of freedom in the dark (visible) sector. We further
introduce the maximal fraction of vacuum energy stored in
the scalar field just before the phase transition, dubbed
“new early dark energy,” as

fNEDE ¼ ΔV�=ρtotðT�
dÞ; ð17Þ

where ρtotðT�
dÞ ≃ π2g�rel;visT

�4
d =ð30ξ4�Þ þ ΔV� (when

neglecting the small contribution of the dark sector radi-
ation plasma before the transition). This allows us to
express ξ�, i.e., the relative dark sector temperature right
before the phase transition, in terms of fNEDE as9

8A more precise value can be easily obtained using the
parametrization of KðaÞ in Ref. [16] (see also Table I for a
numerical example).

9When combining with (15), this reproduces the result in [16]
for nA ¼ 3 and c0 ¼ 1 when we neglect one-loop corrections
(corresponding to the formal limit c1 → 0). This tree-level
approach is valid in the mildly supercooled regime with 1≳ γ ≳
0.03 (for N ¼ 3).
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ξ4� ≃ g�rel;vis
π2

30

fNEDE
1 − fNEDE

ðT�
dÞ4

ΔV�
: ð18Þ

Using the result (15) for the latent heat, and Tb ≃ T�
d in the

strongly supercooled regime, we obtain a (small) contri-
bution to Neff before the phase transition

ΔNBBN ≃
32

35

�
11

4

�
4=3 128π2γ2g�rel;dg

�
rel;vis

ð3c1 þ 128πc0γÞnA
fNEDE

1 − fNEDE

≃ 0.055
N2þN−1
2N−1
11=5

�
γ

0.01

�
2 52=45

c1

fNEDE
0.08

; ð19Þ

where in the second line we used g�rel;vis ¼ 3.38, g�rel;d ¼
2N2 þ 2N − 2, nA ¼ 3ð2N − 1Þ (see Table II) and assumed
γ; fNEDE ≪ 1. From this, it is clear that if γ is sufficiently
small, i.e., we are in the strongly supercooled regime,ΔNeff
can be made compatible with BBN. As a reference value for
N ¼ 3, we can satisfy the BBN bound ΔNBBN ≲ 0.1 for
γ

ffiffiffiffiffiffiffiffiffiffiffiffi
fNEDE

p ≲ 0.004 corresponding to ξ� ≲ 0.21. For our data
fit, we will set ξ� ¼ 0.1, which allows us to satisfy the BBN
bound for N < 15. As we will argue in detail in the next
section, this subdominant dark radiation fluid, through its
adiabatic perturbations δDR, sets the initial conditions for
the perturbations, δNEDE and θNEDE, in the dark sector
plasma after the phase transition. We highlight that the
precise value of the background parameter ξ� does not have
any impact on the cosmological observables considered
here as the corresponding energy density is suppressed
by ðξ�Þ4.

C. Dark sector reheating

Another central point is the latent heat injection and
thermalization of the dark sector after the phase transition.10

A first-order phase transition leads to the nucleation of
vacuum bubbles that separate the false (symmetric) from
the true (broken) vacuum. As they expand, more and more
space is converted to the true vacuum. Since we are
considering strong supercooling, we expect that the latent
heat released during this percolation phase is partially
stored as kinetic and gradient energy in the bubble walls
and partially in coherent scalar field oscillations. Notice
that whether supercooling leads to a terminal bubble wall
velocity or runaway bubbles demands further analysis,
depending on the interaction with the plasma [50–54]. The
coupling with the plasma induces sound waves [55–61] that
can reheat the dark sector via other channels (e.g., via heat
dissipation in turbulence [62–64]). As these bubbles start to
collide, they break up into smaller fragments and form a
field condensate of small-scale anisotropic stress. The

corresponding length scale is conventionally denoted in
the gravitational wave literature as [65] β−1, where β ≃ Γ̇=Γ
quantifies the relative change in the transition rate Γ.11 In
the supercooled regime, it is given by Ref. [16] (see also
Ref. [41]),

β−1 ∼ 10−2n1=3A g2Hðt�Þ−1 ≪ Hðt�Þ−1: ð20Þ

Given a small enough gauge coupling, it is indeed much
smaller than cosmological scales set byHðt�Þ−1. For a more
complete description of the gravitational wave phenom-
enology, see Sec. VA.
Depending on the microphysics, there are different

possibilities as to how this system can evolve further. The
massless gauge bosons offer a channel at one-loop level for
the (nonthermal) scalar particles residing in the bubble wall
condensate and coherent field oscillations to decay through
triangle diagrams into pairs of massless SUðN − 1Þ gauge
bosons, e.g., for SUð2Þ ψ → A1−3 þ A1−3.

12 This is similar
to the h → γγ process of the Standard Model. To be precise,
we have [66]

ΓðcmÞ
ψ→AA ¼ g4

m3
ψ

v2

�
F

16π2

�
2 1

2π
; ð21Þ

whereF depends on the particle content running in the loop.
In our case, where mA ≫ mψ , we can approximate it as a
constant F ¼ Oð1Þ. Setting N ¼ 3 and employing (12),
(11), and (7), we derive

ΓðcmÞ
ψ→AA ≃

F2g9T�
d

196608
ffiffiffi
6

p
π15=2

ð13þ 64πγÞ3=2ffiffiffi
γ

p : ð22Þ

At the same time, we have

H� ¼
πffiffiffiffiffi
90

p
ffiffiffiffiffiffiffiffiffiffiffi
g�rel;vis

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − fNEDE

p T2
vis�
Mpl

: ð23Þ

Combining (22) and (23), we obtain the final estimate

ΓðcmÞ
ψ→AA

H�
¼ Oð1Þ × g9f1=4NEDE

1þ z�
1024; ð24Þ

10We refer to this process in analogy to the end of inflation as a
“reheating”. Note, however, that here, in the present work, we
assume dark matter is not created in that process and considered
to be cold.

11To be specific, if the time dependence of Γ is approximated
as a linear exponential, the parameter β corresponds to the inverse
duration of the phase transition. For a supercooled transition
where the bubble walls quickly approach the speed of light, β−1,
therefore, corresponds to the typical bubble size at the time of
collision.

12See Ref. [16] for two more possibilities, dubbed scenario A
and B. One in which the NEDE boson is stable is expected to
inhibit the decay and disintegration of the bubble wall conden-
sate. Another one, which shares similarities with the scenario
discussed here, has the bubble wall condensate decay into a stable
massive particle that makes a contribution to dark matter.
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where we used Tvis� ≃ 2.3 × 10−4ð1þ z�Þ eV alongside
(18) and (15) and assumed fNEDE; γ ≪ 1. Substituting the
typical value fNEDE ¼ 0.08, while demanding a post-BBN
phase transition with z� < 108, a sufficient condition for an

efficient decay with ΓðcmÞ
ψ→AA ≫ H� is g≳ 0.02. We note that

this calculation assumes that the ψ bosons are at rest at the
time of decay, which will only be true right after the bubble
nucleation. Also, it neglects bosonic enhancement effects,
which might become sizeable. However, we do not expect
these effects to significantly tighten the bound on g (after all,
it is softened by the ninth root).
While the massless gauge bosons are being populated,

they start to thermalize through their self-interactions,
A1−3 þ A1−3 → A1−3 þ A1−3. Their interaction rate is
Γtherm ¼ hσvinh, where hσvi is the velocity-averaged cross
section. Here, we can employ the much cruder estimate
Γ ∼ g4Td ¼ g4ξafter� Tvis� relying on a (partial) thermaliza-
tion. With ξafter� ∼ 0.5, we find

Γtherm

H�
∼

g4

1þ z�
1031; ð25Þ

which, even in the least favorable case with z� ∼ 109 and
g ∼ 0.01, ensures an extremely fast thermalization. This
also applies to similar number-changing 2 → 3 or in
general n → m processes involving the massless gauge
bosons, that establish complete chemical and kinetic
equilibrium with vanishing chemical potential and are
parametrically similarly efficient as 2 → 2 processes in a
non-Abelian plasma [67–69]. Once their temperature has
reheated above mψ , the gauge bosons also populate and
equilibrate the ψ bosons through the (inverse) decay
process A1−3 þ A1−3 ↔ ψ .
We have therefore established that both the percolation

scale β as well as the decay and thermalization scales,

ΓðcmÞ
ψ→AA and Γtherm, are large compared to H�. In the

following, we will thus treat the phase transition and
subsequent reheating as an instantaneous process on
cosmological timescales. As we will see, this simplifies
the description of the evolution of both the background
fluid and its perturbations.
After the reheating is completed, we can equate the dark

sector radiation fluid with the latent heat ΔV� (neglecting
the small contribution from the preexisting thermal fluid
that triggered the phase transition). An analog calculation
to the one above the one described above then yields the
contribution to Neff after the phase transition. To be
specific, we find

ðξ�;afterÞ4 ¼ g�rel;vis
gafterrel;d

fNEDE
1 − fNEDE

; ð26Þ

with gafterrel;d ¼ 2½ðN − 1Þ2 − 1� þ 1 (see Table II). Using (16),
this translates into

ΔNNEDE ≃
4

7

�
11

4

�
4=3

g�rel;vis
fNEDE

1 − fNEDE

≃ 7.4
fNEDE

1 − fNEDE
: ð27Þ

We note that ΔNNEDE should be identified with NUV as
used in the literature on the step model (see, for example,
Ref. [8]). This shows that we can achieve ΔNNEDE of order
unity for fNEDE ≃ 12% (for N ¼ 3, this corresponds to
ξ ≃ 0.5). With the definitions in (27) and (19), we can
summarize this first step as

ΔNBBN → ΔNNEDE ¼ 5ð3c1 þ 128c0πγÞnA
1024π2g�rel;dγ

2
ΔNBBN: ð28Þ

Therefore, a strongly supercooled phase transition with
γ ≪ 1 offers an efficient mechanism to heat the dark sector
after BBN and introduce a sharp step in ΔNeff .

D. Second step

After the phase transition, we have a two-component
fluid, with the light dark Higgs bosons and the massless
gauge bosons being in thermal and chemical equilibrium.
However, when the NEDE bosons become nonrelativistic,
their production channel becomes Boltzmann suppressed,
and they decay into the massless gauge bosons, thereby
depositing their entropy in the radiation fluid.
Microscopically, this happens again through the triangle
diagram ψ → AA, and we can use (24) evaluated at redshift
zt < z� (up to an order unity factor accounting for the
velocity distribution) to argue that the decay process is
efficient, and thus this process can be described assuming
thermal equilibrium, implying in particular entropy con-
servation, similarly as for eþe− annihilation in the visible
sector. As a result, the previous contribution to Neff
increases further,

ΔNNEDE → ΔNIR ¼ ΔNNEDEð1þ rgÞ1=3; ð29Þ

with rg the relative change in the number of relativistic
degrees of freedom. This second step has been studied
extensively as a solution to the Hubble tension in the
literature [8,9], and we review its derivation in Appendix B.
For our model, we find r−1g ¼ 2NðN − 2Þ ≥ 6, which
translates to a small step of less than 5.3%. We can
constrain the redshift zt of the second step, which is
defined implicitly through TdðztÞ ¼ mψ . From the defini-
tion in (7) and (15), we derive13

13As noted before, a light Higgs state is one of the character-
istics of a supercooled phase transition [18,19,39,40].
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m4
ψ

ΔV�
¼ g4nAð3c1 þ 64c0πγÞ2

24π2ð3c1 þ 128c0πγÞ
: ð30Þ

Together with the conditions ð1þztÞ=ð1þz�Þ¼mψ=T
�;after
d

and ΔV� ≃ π2

30
grel;dðT�;after

d Þ4, this implies

1þ zt
1þ z�

≃ g

�
c1gafterrel;dnA

240

�1=4

; ð31Þ

where we assumed γ ≪ 1. As an explicit example, in the
case of N ¼ 3, we find that ð1þ ztÞ=ð1þ z�Þ≃0.84g≳
0.02, where we used our reheating bound g≳ 0.02. As a
result, the second step is constraint to occur within a few
e-folds after the first step. This bound becomes even tighter
for N > 3. However, in this case, rg → 0, and as a
consequence the second step disappears in the large-N
limit, see Fig. 2, such that the value of zt does not play a
role in that case. We anticipate that the second step has
minor impact in the analysis, being not favored as a
solution to H0 (see Appendix A). This second step is
therefore more an extra feature of our model then a
necessary point to address the Hubble tension.
The entire two-step sequence, ΔNBBN → ΔNNEDE →

ΔNIR, is depicted in Fig. 1 as the purple line. We stress
that the first and second steps are physically distinct. While
the thermally induced phase transition is first order and thus
involves a discontinuous change in the fluid’s entropy, the
second step is a continuous process for which the entropy
remains constant (see Fig. 2). The remaining evolution at
background level is then simply that of a relativistic fluid.
To summarize, the dark sector fluid before the phase

transition (a < a�) is

ρ̄DRðaÞ þ ΔV�; ð32Þ

where ΔV� ¼ const is the latent heat defined in (14) and
ρ̄DR ¼ grel;d

π2

30
T4
d denotes the subdominant radiation fluid

that triggers the phase transition. The bar notation indicates
that we work at the background level. After the bubble
percolation and subsequent thermalization have completed,
we are left with a tightly coupled fluid composed of ψ
particles and massless gauge bosons with an evolving
equation of state parameter, giving rise to (a > a�),

ρ̄NEDEðaÞ ¼ ½ΔV� þ ρ̄DRða�Þ�

× exp

�
−3

Z
a

a�
d ln ãð1þ wðãÞÞ

�
; ð33Þ

where wðaÞ is defined in (B14). The time evolution for
different contributions to the dark sector plasma is depicted
in Fig. 1 as the orange (latent heat), red (Higgs), and green
(massless gauge bosons) lines.
Furthermore, a key assumption in our derivation is that

the phase transition completes in much less than a Hubble

time. This allows us to describe it as an instantaneous
process when implementing our model in a Boltzmann
code. In the next section, we discuss how such an abrupt
transition affects perturbations.

E. Perturbations

Next, we turn to perturbations in the dark sector radiation
fluid. We will refer to them as dark sector acoustic
oscillations (adapting the terminology used in the acoustic
dark energy model [70]). Before the NEDE phase

FIG. 2. Evolution of ΔNeff , temperature ratio ξd ¼ Td=Tvis,
entropy ratio sd=svis, and equation of state w ¼ pd=ρd for
SUðNÞ → SUðN − 1Þ with N ¼ 3, 4, 5. All are discontinuous
at the phase transition at a� (first step), while only the entropy is
conserved once the dark Higgs becomes nonrelativistic at at
(second step). The second step disappears in the large-N limit.
Note that for a growing number of degrees of freedom gd (i.e., for
N ¼ 3, 4, 5) the temperature Td decreases, while sd ∝ gdT3

d
increases with gd for given ΔNIR ∝ gdT4

d.
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transition, the subdominant dark radiation fluid carries
adiabatic perturbations, while the NEDE vacuum acts like
a (homogeneous) cosmological constant. After the phase
transition, there are two main sources for perturbations in
the radiation fluid. First, there are inhomogeneities related
to the nucleation of bubbles of the broken symmetry
phase. These perturbations are large and set by the density
contrast between the bubble interior and exterior, explicitly
δNEDE ∼ 1 (as we can neglect the radiation plasma before
the transition). However, they are only present on small
scales 1=β set by the size of vacuum bubbles before they
collide. In particular, for a phase transition that occurs
much before recombination and g sufficiently small,
these modes cannot be probed neither in the CMB nor
in Large-scale structure (LSS) data.14 Second, there are
perturbations seeded by adiabatic perturbations of the
(subdominant) radiation fluid that trigger the thermal phase
transition. Let us stress that these perturbations are not a
consequence of the stochastic character of the phase
transition; instead, they are created because different spatial
regions are slightly “ahead” or “behind” in time. In a
coarse-grained approach valid on large scales, i.e., for
spatial momenta k≡ jkj ≪ β−1, they can be derived by
matching the cosmological perturbation theory across
a surface of constant δDRðη;kÞ≡½ρDRðη;kÞ−ρ̄DRðηÞ�=
ρ̄DRðηÞ.15 The details of this matching procedure are
described in Refs. [16,21,73], giving rise to the initial
conditions for the NEDE density contrast δNEDE ≡
δρNEDE=ρ̄NEDE and velocity divergence θNEDE valid in
synchronous gauge (following the definitions in Ma and
Bertschinger [74]),

δðþÞ
NEDE ¼ −3ð1þ wðþÞÞH�

δq�
q̄0�

¼ 3

4
ð1þ wðþÞÞδ�DR; ð34aÞ

θðþÞ
NEDE ¼ k2

δq�
q̄0�

¼ −
k2

4H�
δ�DR; ð34bÞ

where H ¼ aH, primes denote derivatives with respect to
conformal time η, and (þ) indicates evaluation right after
the phase transition. The variable qðη;xÞ≡ q̄ðηÞ þ
δqðη;xÞ defines a general transition surface leading to

spatial trigger time variations δηðxÞ ¼ −δq�=q̄0�. In accor-
dance with the discussion in the previous sections, in the
case of hot NEDE, a surface of constant temperature
corresponds to a surface of constant tunneling probability.
We thus identify q�ðxÞ with the dark sector temperature
Tdðη�;xÞ. This allows us to relate

δq�
q̄0�

¼ −
1

H�

δT�
d

T�
d
¼ −

1

4H�
δ�DR; ð35Þ

which was used in (34). In a scenario like ours where all the
latent heat is converted to radiation, we have wða ≥ a�Þ≃
1=3.As a result, δðþÞ

NEDE ≃ δ�DR andθ
ðþÞ
NEDE ≃ −k2δ�DR=ð4H�Þ. It

is the latter condition that leads to the matching’s distinct
imprint on subhorizon scales.We stress that thismakes the hot
NEDE phenomenology differ from the SIDR case for modes
that have entered the horizon before the phase transition. In
particular, as discussed in a related context for the acoustic
dark energy model [70] but also for cold NEDE [21], the
pressure perturbations associated with these dark sector
acoustic oscillations will lead to an excess decay of the
gravitational potential, which in turn affects structure for-
mation and hence the matter power spectrum at a later stage.
For their subsequent time evolution, we use the con-

tinuity and Euler equation in synchronous gauge [74–76],

δ0NEDE ¼ −ð1þ wÞ
�
θNEDE þ

h0

2

�

− 3Hðc2s − wÞδNEDE; ð36aÞ

θ0NEDE ¼ k2c2s
1þ w2

δNEDE −Hð1 − 3c2sÞθNEDE; ð36bÞ

where h is the spatial trace of the metric perturbation, and
the sound speed csðaÞ is defined in (B15). The self-
interaction required to suppress higher moments and ensure
fluidlike behavior is naturally realized within the dark
sector model by the residual gauge interactions of the
SUðN − 1Þ group after the phase transition as well as the
ψ ↔ AA process discussed above.

IV. COSMOLOGICAL PARAMETER
EXTRACTION

A. Implementation and datasets

We implemented the phenomenological model described
in the previous sections into TRIGGERCLASS,16 which builds
on the Cosmic Linear Anisotropy Solving System (CLASS)
[76]. The background radiation fluid that triggers the NEDE
phase transitions is initialized with a fiducial dark sector
temperature ξ ¼ 0.1 to ensure the suppression ofΔNBBN. As
previously mentioned, this initial dark sector is very

14For concreteness, a sufficient condition for the absence of
any direct bubble signature in CMB data is [21] H�=β ≪
0.01ðz�=5000Þ (see also Ref. [71] for a recent discussion).
According to (20), this condition only requires g≲Oð1Þ even
for a z� as low as 104.

15This instantaneous matching approach has also been shown
to work in an inflationary context where the inflation sets the
initial perturbations in the cosmic fluid after reheating [72]. The
main conceptual difference here is that we must also track
subhorizon modes as our phase transition occurs at a later time
when observable scales have already started to enter the horizon. 16https://github.com/NEDE-Cosmo/TriggerCLASS.
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subdominant, and its temperature has no impact for obser-
vations. Nevertheless, its perturbations play an important
role for triggering the perturbations of the dark sector fluid
after the phase transition. The first step in ΔNeff is
characterized by its redshift z� and latent heat fraction
fNEDE [fixing ΔNNEDE via (27)]. Similarly, the second step
is determined by its redshift zt and size rg [fixing ΔNIR

through (29)]. At the level of perturbations, the trigger fluid
is initialized as a tightly coupled radiation plasma with
adiabatic perturbations δDR and θDR, which are evolved
using the standard fluid perturbation equations with
w ¼ c2s ¼ 1=3. The matching across the transition surface
uses (34) to initialize the NEDE perturbations δNEDE and
θNEDE, which are subsequently integrated using the system
(36) (with more details provided in Appendix B). In total,
this extends ΛCDM by four parameters: fNEDE, z�, rg, and
zt. However, for reasons that will become clear later, we fix
rg ¼ 0 (which renders zt unconstrained) and z� ¼ 106 in
most of our analysis, which leaves us with fNEDE (or
ΔNNEDE equivalently) as the only parameter. We will
compare our model with the SIDR model, which extends
ΛCDM with ΔNeff as one parameter. The strongly coupled
nature of the Dark radiation (DR) component is, as usual,
implemented by using a fluid description with vanish-
ing shear.
For the Markov chain Monte Carlo analysis, we use the

PYTHON code MONTEPYTHON [77,78] interfaced with
TRIGGERCLASS and run the Metropolis Hastings algorithm.
We vary all six ΛCDM parameters, i.e., the dimensionless
dark matter and baryon densities ωcdm and ωb, the dimen-
sionless Hubble parameter h, the reionization depth τreio, and
the spectral tilt and amplitude ns and As with standard prior
choices. We further impose the prior 0 < fNEDE < 0.3 and if
applicable also 2< log10ðz�Þ<6, 0 < log10ðz�=ztÞ < 3, and
−2 < log 10ðrgÞ < 3. We consider chains to be converged
when the Gelman-Rubin parameter satisfies R − 1 < 0.05.
All neutrinos are effectively treated as massless by setting
Neff ¼ 3.044. Unless stated otherwise, we have used the
CLASS interpolation table, computed with PARTHENOPE V1.0

[79], to infer the primordial helium abundance Yp as a
function of NBBN

eff ≡ 3.044þ ΔNBBN and ωbh2.
We use the following datasets for our analysis17:
(i) Planck 2018. The combined Planck 2018 lensing,

high-l TTþ TEþ EE, and low-l TTþ EE CMB
anisotropy measurements [80,81].

(ii) Baryon acoustic oscillations: We include three
baryon acoustic oscillation (BAO) measurements
from 6dF Galaxy Survey (6dFGS) at z ¼ 0.106 [82],
Sloan Digital Sky Survey (SDSS) at z ¼ 0.15 [83],

and also SDSS-III DR12 at z ¼ 0.38, 0.51,
0.61 [84].

(iii) Pantheon: The “Pantheon Sample” luminosity dis-
tances of Supernovae (SNe) Ia covering the redshift
range 0.01 < z < 2.3 [85].

(iv) SH0ES: To assess the ability of the model to address
the H0 tension, in addition to our main analysis, we
also use the SH0ES results from the Cepheid–SN Ia
sample at z < 0.01 to put priors on the Hubble
parameter h ¼ 0.7304� 0.0104 [86].

(v) BBN: We include the BBN information in the form
of a prior on ΔNBBN

ν ¼ 2.889� 0.229 obtained
from helium and deuterium abundance measure-
ments [32], noticing that this result is CMB inde-
pendent, i.e., it does not include the CMB
measurements of the baryon abundance or use the
CMB constraint on ΔNeff .

18

We refer to Planck 2018, BAO, and Pantheon as our
“base” dataset. When quantifying the Hubble tension, we
will use the difference of the maximum a posteriorimeasure

QDMAPðH0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2wnH0

− χ2wnoH0

q
: ð37Þ

Following Ref. [87], we compute it as the root square of the
difference between the best-fit χ2 values with and without
the SH0ES prior on H0 included. We further employ the
Akaike Information Criterion [88] ΔAIC ¼ Δχ2 þ 2 ×
ð#added parametersÞ for model comparison.

B. Results

Before presenting results for the hot NEDE model, we
first discuss the impact of taking into account BBN
constraints on ΔNeff and Yp within SIDR. The purpose
of this exercise is to quantify in how far models that do not
feature a post-BBN heating mechanism are disfavored
when it comes to the H0 tension.

1. SIDR

Different variants of the stepped and nonstepped SIDR
model have been investigated rather extensively in the
literature as a possible solution to the Hubble tension
[8,9,11,89–92]. Therefore, it is not our ambition here to
repeat these analyses or add to the controversy about their
effectiveness as solutions to the Hubble tension when BBN
constraints are absent (for extensive recent studies, see
Refs. [11,91]). Instead, we will focus on a rather basic
SIDR model without dark matter interactions and mass
threshold and with constant ΔNeff throughout the relevant
BBN and recombination epochs. We add a BBN constraint
on ΔNeff to the base datasets when analyzing the SIDR
model. Our corresponding results are summarized in Fig. 3.
We see that including the BBN constraint on ΔNeff (orange

17Here, we closely follow the datasets considered in Ref. [8],
leaving the inclusion of information about the full-shape of the
matter power spectrum, redshift space distortions, and additional
ground-based CMB data for future work. 18We use the relation ΔNeff ¼ ð1.0147ÞΔNBBN

ν .
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contour) makes the SIDR model incompatible with the
SH0ES value of H0 (gray vertical band). This corresponds
to a residual difference of the maximum a posteriori
(DMAP) tension of 3.9σ (only slightly improving on the
ΛCDM tension of 4.3σ). Correspondingly, the fit improve-
ment over ΛCDM remains relatively small with Δχ2 ¼ −4
when the analysis includes the (incompatible) H0 prior.
These findings clearly remove the simple SIDRmodel from
the space of interesting proposals to resolve the Hubble
tension. Let us stress that similar conclusions were reached
for the stepped SIDR model when BBN constraints were
included [9]. Nevertheless, most of the previous studies on
the (stepped) SIDR solutions find smaller values for the
residual tension as they neither infer Yp from BBN nor
impose constraints onΔNeff . However, we take the point of
view that a viable model should be able to describe both the
BBN and CMB epochs, since they interfere in multiple
ways. This motivates models featuring a post-BBN heating
mechanism such as the hot NEDE scenario investigated in
this work, to which we turn next.

2. Hot NEDE

In the hot NEDE model, NBBN ≃ 3.044 during BBN and
thus including the BBN constraint does not lead to any

penalty. Thus, while both the hot NEDE setup studied in
this work as well as SIDR lead to a similar ΔNeff around
recombination, the BBN constraint hardly affects the
posteriors within hot NEDE, and (as expected) merely
creates a small, data-insensitive offset Δχ2BBN ¼ 0.23.
We provide a comparison between the ΛCDM, hot

NEDE, and SIDR posteriors in Fig. 4, with the dashed
contours representing the addition of the H0 prior. We find
that hot NEDE provides the larger values of H0, when
including BBN information. As the main result, described in
Tables III and IV, we find that the DMAP tension is reduced
to 2.8σ (which should be compared to 3.9σ for the SIDR
model). In the absence of the SH0ES prior onH0, we obtain
H0 ¼ 69.13þ0.62

−1.0 km sec−1 Mpc−1 (68% C.L.), which trans-
lates into a Gaussian tension of 3.2σ. This is slightly higher
than the DMAP tension of 2.8σ, which we attribute to the
non-Gaussian shape of the posterior. On the other hand, if we
include the SH0ES prior, we find ΔNIR ¼ 0.42� 0.13
(68% C.L.), which corresponds to a larger than 3σ prefer-
ence for hot NEDE over ΛCDM. While the model in this
simple form is arguably not a full resolution of the Hubble
tension, our point here is that the model remains in the space
of possible solutions, whereas DR models susceptible to the
BBN constraint are not. Here, we consider a simple and
minimal model, and we leave for future work investigating
extended versions that, for example, feature interactions
between the dark radiation and dark matter components.

FIG. 3. Impact of BBN constraint on a simple SIDR model with
constant ΔNeff . Orange contours show 68% C.L. and 95% C.L.
marginalized posteriors when including the BBN prior on ΔNeff
and using the corresponding helium abundance predicted by BBN.
The red contours show for comparison the case when ignoring
BBN constraints and setting the helium fraction to the value found
for ΛCDM (Yp ¼ 0.2454) by hand, as done in previous analyses.
Filled contours correspond to the case without SH0ES, and open
dotted contours illustrate the impact of including SH0ES. We
observe that BBN disqualifies SIDR models without a post-BBN
heating mechanism for addressing the H0 tension.

FIG. 4. Comparison between the ΛCDM (blue), SIDR (or-
ange), and HNEDE (green) 68% C.L. and 95% C.L. marginalized
posteriors, with BBN information included in all cases and
without (filled) and with (open dotted) including SH0ES. Only
HNEDE is marginally compatible with the SH0ES value of h
(gray vertical band).
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A further interesting feature that can be observed in
Fig. 4 is that for the hot NEDE model and the
baseþ BBN dataset S8 slightly decreases when increas-
ing h. We checked that this can be attributed to a decrease
in the matter density parameter Ωm ¼ ðωcdm þ ωbÞ=h2
entering S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
, while the clustering ampli-

tude on scales of 8 h=Mpc, σ8, stays approximately
constant or even slightly increases with h. The decrease
of Ωm is a consequence of an overcompensation
of the increase of ωcdm due to the factor 1=h2. We note
that these features could be interesting to investigate
further in view of the S8 tension reported by weak lensing
shear measurements; see, e.g., Ref. [93] for a recent
analysis.
We note that, when choosing the redshift of the phase

transition z� ≳ 105 such that modes affecting the CMB
were still outside the horizon at z�, we expect that the hot
NEDE model yields results that are comparable to previous
analyses of SIDR models that had ignored BBN con-
straints. We find that this is indeed true for our fiducial
choice z� ¼ 106. Comparing the green contours in Fig. 4

with the red ones in Fig. 3, we see that there is almost no
discernible difference between both models when the BBN
constraint on SIDR is removed.19

Similarly, data are also not able to meaningfully con-
strain the second step (green contour in Fig. 8). This is
broadly in agreement with the findings in Ref. [11],
although it is possible that in a slightly more sophisticated
scenario with dark matter interactions the step feature can
be more clearly constrained. Moreover, in Ref. [11], it was
found that the QDMAP tension measure hints at a more
favorable effect the step has on the Hubble tension, in line
with Ref. [8]. As this is not the focus of the current analysis,
we leave this question for future explorations and, for
simplicity, set rg ¼ 0 (which also renders zt unconstrained).
For a broader discussion on the second step, see
Appendix A.
Moreover, as we demonstrate in Fig. 5, data provide us

with a lower bound log10ðz�Þ > 4.64 (95% C.L.) (orange

TABLE III. Summary of results for our combined analyses (with and without a SH0ES prior onH0). We compare ΛCDM, SIDR, and
HNEDE (with negligible second step, i.e., rg ¼ 0). If applicable, we present the mean values with�1σ error. As a result of including the
BBN constraints, the SIDR model is hardly an improvement over ΛCDM.

Baseþ BBN þH0

H0 ΔNIR χ2 Δχ2 ΔAIC H0 ΔNIR χ2 Δχ2 ΔAIC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QH0

DMAP

q

ΛCDM 68.13� 0.42 � � � 3810.5 � � � � � � 68.81� 0.39 � � � 3829.7 � � � � � � 4.3σ
SIDR 68.77þ0.52

−0.73 0.094þ0.024
−0.093 3810.5a 0.0 2.0 70.37� 0.72 0.27� 0.10 3825.7 −4.0 −2.0 3.9σ

Hot NEDE 69.13þ0.62
−1.0 0.151þ0.041

−0.15 3810.4 −0.1 1.9 71.17� 0.83 0.42� 0.13 3818.3 −11.4 −9.4 2.8σ

aHere we take the ΛCDM value as bestfit, since we were not able to find the bestfit for SIDR with the base datasets.

TABLE IV. Detailed comparison of the bestfit χ2 for different datasets and models, including BBN information in all cases. For hot
NEDE, we also include the case when allowing for the second step in the last column, which performs similarly to our fiducial analysis
with rg ¼ 0. Note that we do not include the case with free z�, since it is very similar to the fiducial scenario with z� ¼ 106. The SIDR
model without H0 prior is also not shown; see Table III.

ΛCDM SIDR Hot NEDE

Baseþ BBN þH0 Baseþ BBNþH0 Baseþ BBN þH0 þH0; rg; zt

Planck High-l TT-TE-EE 2350.4 2350.6 2354.6 2351.7 2355.1 2353.0
Planck Low-l EE 396.0 398.5 398.1 395.7 395.8 398.3
Planck Low-l TT 23.7 23.0 22.3 22.7 22.2 21.5
Planck lensing 8.8 8.6 8.9 8.9 9.2 9.4
BAO 5.2 6.1 6.0 5.2 6.2 7.2
SH0ES � � � 15.6 7.2 � � � 3.7 1.5
Pantheon 1025.9 1026.6 1025.77 1025.7 1025.6 1026.1
BBN 0.2 0.2 2.5 0.2 0.2 0.2

Total 3810.5 3829.7 3825.7 3810.4 3818.3 3817.5

19This also serves as a nontrivial cross-check of how we
initialize perturbations in the NEDE fluid on superhorizon scales.
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contour). This is an important result, as it yields a wide
window (roughly five orders of magnitude in redshift)
between BBN and z ¼ 4.4 × 104 during which the phase
transition can have occurred. We note that this result also
highlights the relevance of the trigger physics. For
comparison, in the case of cold NEDE, adiabatic pertur-
bations in a slowly rolling scalar field trigger the phase
transition; instead, here, this role is played by perturba-
tions in the dark radiation fluid. While this difference in
microphysics would not matter on superhorizon scales, it
does make a difference on subhorizon scales. Although
we do not provide a quantitative exploration, the quali-
tative explanation is as follows: The thermal trigger
enhances the initial conditions for δNEDE and θNEDE on
scales k > H� via (34) [together with (35)]. As a result,
these modes will carry rather strong dark acoustic
oscillations, which would be incompatible with the
CMB if the phase transition would occur at z� ≲ 105.
This is illustrated in Fig. 7, where we compare the CMB
temperature power spectrum for hot NEDE cosmologies
for different values of z�. However, this conclusion is
avoided if the phase transition occurs early enough such
that the CMB modes are still frozen on superhorizon
scales at z�. This is different for cold NEDE. Here, the dark
acoustic oscillations are moderated by the amount of
slow-rolling of the trigger field at the time of the phase
transition [21]. In Sec. V B, we argue that the enhanced
dark acoustic oscillations imprinted on somewhat smaller

scales than those probed by the CMB are actually an
interesting signature of hot NEDE that can be searched for
in LSS data, and that further sets it apart from SIDR
models.
As a result, we are left with a one-parameter extension of

ΛCDM that performs similarly as analyses of the SIDR
model when disregarding BBN. When including BBN
constraints, hot NEDE remains largely unaffected, while
SIDR is disfavored. Thus, the heating by the first-order
phase transition provides an efficient mechanism to make
models addressing the Hubble tension within an SIDR-like
setup consistent with BBN.

V. PHENOMENOLOGY

A vacuum phase transition between BBN and recombi-
nation leads to unique signatures. If the phase transition
happens early enough with z� > 106, there is the prospect
of detecting a stochastic background of low-frequency
gravitational waves. On the other hand, if it does occur
sufficiently late with z� < 106, it will imprint itself in the
CMB and in the matter power spectrum on small scales. We
will discuss these somewhat complementary possibilities
in turn.

A. Gravitational waves

A stochastic gravitational wave background is a typical
prediction of a cosmological first-order phase transition. In
general, there are different production mechanisms, related
either to plasma effects such as sound waves and turbulence
or the bubble walls. To keep the discussion simple, we will
focus here on bubble collisions as the source of gravita-
tional waves (additional sources might lead to a stronger
signal [55–61]). In that case, the spectrum produced has a
characteristic peak determined by the typical size of the
nucleated bubbles relative to the Hubble scale at the time
when they collide (we follow Refs. [65,21]),

h2ΩGW ¼ 6 × 10−8ðH�β−1Þ2

×

�
fNEDE
0.1

�
2

ðg�rel;visÞ−1=3SGWðfÞ; ð38Þ

where β−1 sets the timescale for the duration of the
transition [see (20)] and the strength of the transition is
commonly characterized by α ¼ ΔV�=ðρ�rad;d þ ρ�rad;visÞ,
which implies α ¼ fNEDE=ð1 − fNEDEÞ [see (17)]. Further,

SGWðfÞ ≃
3.8ðf=f�Þ2.8

1þ 2.8ðf=f�Þ3.8
ð39Þ

is the spectral shape obtained in the envelope approxima-
tion [94] (see also Refs. [94–100]), and

FIG. 5. Posteriors when including the redshift of the dark sector
phase transition z� as a free parameter, compared to the fiducial
case with fixed z� ¼ 106. Including z� does not affect the
posteriors of the other model parameters and provides us with
a lower bound z� > 4.4 × 104 (95% C.L.).
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f� ≃ 4.1 × 10−6 nHz
1

ðH�β−1Þ
�
1þ z�
106

�
ðg�rel;visÞ1=6 ð40Þ

is the peak frequency as measured today. Before the peak,
the spectrum grows as f3 for f ≪ f� and falls off after the
peak as f−1 for f ≫ f�. Even in the extreme case where the
phase transition happens just after BBN, with z�≲
zBBN ∼ 109, the peak frequency is smaller than nanohertz.
Therefore, only in the regime f ≫ f�, we can have hope of
detecting a signal with pulsar timing arrays probing f ∼
nHz [101]. To find the amplitude of the signal in the
nanohertz regime, one can substitute (40) into (38),

ΩGWh2 ≃ 3.4 × 10−13
�
H�β−1

0.01

��
nHz
f

�

×

�
fNEDE
0.1

�
2

ðg�rel;visÞ−1=6
�
1þ z�
108

�
; ð41Þ

where the ratio H�=β, due to (20), is bounded from above
by 10−2 (corresponding to an order unity gauge coupling).
For example, given the peak frequency of the Square
Kilometer Array (SKA) of [102–104] ΩGWh2 ∼ 10−15, we
could expect a signal for a phase transition that occurs in
the range zBBN > z≳ 106. We display in Fig. 6 some
scenarios for the gravitational wave prediction from the
envelope approximation, together with results from 15 years
of pulsar observations by the NANOGrav Collaboration
[105] as well as the expected sensitivity of SKA after
20 years of observation.20

We stress that the falloff in (39) is obtained by using the
envelope approximation, which is subject to rather large
theoretical uncertainties. In particular, recent lattice calcu-
lations indicate that the falloff lies between [107,108] f−1.4

and f−2.2, which for a post-BBN phase transition with z� ≲
109 would move a signal below the sensitivity threshold.
However, the same studies also find the presence of a
“bump” in the high-frequency tail. It is caused by oscil-
lations of the scalar field around the true vacuum and can
raise the power even above the envelope estimate.
Moreover, it is not clear if these studies account for the
phenomenology of a supercooled phase transition. We
therefore leave a more detailed discussion of these issues
for future work and maintain that Fig. 6 can still provide us
with an indication of where to look for a signal.

B. Small scales

The first-order phase transition imprints characteristic
features on the small-scale matter power spectrum, affect-
ing modes that have already entered the horizon at the
transition z�, i.e., on scales

k≳ 0.3h
Mpc

1þ z�
105

: ð42Þ

As discussed in Secs. IV B and III E, the adiabatic
perturbations present in the dark radiation trigger the phase
transition at slightly different times in different locations
and kick off fluctuations on the dark plasma after the
transition on subhorizon scales whose propagation leads to
dark acoustic oscillations. Since the dark radiation con-
stitutes a non-negligible fraction of the energy density after
the transition, ρNEDE=ρvis ≃ 8% × ðΔNeff=0.6Þ, they impact
the gravitational potential and consequently imprint oscil-
latory features on the CMB as well as on the matter power
spectrum;; see Fig. 7. For z� ¼ 104, these features overlap
with the scales probed by the CMB, excluding these low
redshifts, requiring z� ≳ 4 × 104 as discussed in Sec. IV B.
However, for z� ∼ 105–106, the dark acoustic oscillations
show up on smaller scales k≳ 0.3 h=Mpc where they can
potentially be probed by large-scale structure observations.
We indicate the scales probed by one-dimensional Lyman-α
forest measurements by the gray band in Fig. 7, for which
the ongoing Dark Energy Spectroscopic Instrument (DESI)
survey [109] is expected to achieve percent-level sensitivity
[110,111]; see [112] for first results from the early data
release. We also show the power spectrum for the case with
the same amount of DR but without phase transition
(SIDR) in Fig. 7 for comparison, that is likely indistin-
guishable from ΛCDM. Thus, small-scale probes of the
power spectrum may discriminate SIDR from the hot
NEDE scenario if the phase transition occurs
for 106 ≳ z� ≳ 105.

FIG. 6. Gravitational wave spectrum generated in the first-order
phase transition using the envelope approximation. We show an
estimated prediction for a benchmark scenario (black) and the
impactwhenvarying one of the parameters (other lines; see legend).
We also includeNANOGrav 15-year results fromRef. [105] and the
expected sensitivity of SKA after 20 years of data.

20For a detailed analysis of a pre-BBN phase transition in a dark
sector including BBN constraints on Neff , see Ref. [106] (see also
Ref. [25] for a discussion of how these constraints can be avoided).
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VI. CONCLUSION

In this work, we point out a conceptually simple model
that can address the Hubble tension by adding extra dark
radiation around recombination, while retaining the success
of BBN. Its central feature is a supercooled first-order
phase transition that occurs in a dark sector between the
BBN and recombination epochs. The latent heat released in
the phase transition heats up the dark sector, such that the
amount of extra radiation can be sizeable during recombi-
nation while it is negligibly small during BBN.
We find that all properties of such a dark sector that are

favorable from the point of view of cosmology can be
realized within a straightforward microscopic model. It
features a (dark) gauge symmetry that is spontaneously
broken as SUðNÞ → SUðN − 1Þ by a scalar field. The

associated phase transition is of first order and features
strong supercooling if the scalar is described by a classi-
cally (nearly) scale-invariant Lagrangian, leading to radi-
ative symmetry breaking à la Coleman-Weinberg in the
limit of vanishing effective mass of the scalar field. A soft
mass term breaking scale-invariance provides a natural
graceful exit mechanism to terminate the supercooling
phase and alongside a well-tempered amount of latent heat.
Moreover, the dark radiation after the transition is

composed of the massless gauge bosons belonging to
the remaining SUðN − 1Þ symmetry as well as the light
dark Higgs boson also characteristic of the Coleman-
Weinberg mechanism. The SUðN − 1Þ gauge interactions
naturally make the dark radiation strongly interacting, thus
realizing SIDR. Moreover, once the light Higgs becomes
nonrelativistic somewhat after the phase transition, another
slight increase of the amount of extra radiation occurs, as
considered in the stepped SIDR scenario. This model thus
naturally connects the previously discussed frameworks
with hot NEDE, thereby UV completing (stepped) SIDR to
achieve a consistent cosmological model for addressing the
Hubble tension while allowing us to also embrace BBN.
To demonstrate the effectiveness of this setup, we imple-

mented the model in a Boltzmann solver and performed an
analysis of Planck CMB, as well as BAO and SNe Ia data,
considering in addition a prior on the amount of radiation
during BBN. This also allows us to consistently use the
prediction of the helium fraction from BBN for the sub-
sequent recombination dynamics. We find that for the model
considered in this work the Hubble tension can be reduced to
the level of 2.8σ, while for SIDR, we find 3.9σ due to the
penalty from spoiling BBN (for comparison, our analysis
yields 4.3σ for ΛCDM). We note that, when ignoring BBN,
SIDR performs similarly to the model considered here.
The supercooled phase transition between BBN and

recombination leads to various signatures. If it occurs shortly
after BBN, say for z� ∼ 108, the stochastic gravitationalwave
background generated by the transition can potentially be
seen in pulsar timing arrays, even though a robust prediction
would require further work. If the phase transition occurs in
the range 106 ≳ z� ≳ 105, the impact of dark acoustic
oscillations triggered by the transition can be probed with
futureDESILyman-α forest data.We also find a lower bound
z� ≳ 4 × 104 from Planck CMB data, since otherwise the
dark oscillations would affect the high-lmodes. We find the
hot NEDE perturbations triggered by the dark plasma to be
stronger compared to the case of a scalar-field induced (cold
NEDE) transition formodes that are already subhorizon at z�.
Our work motivates further exploration, including tech-

nical improvements, for example, related to the thermal-
ization dynamics immediately after the transition and the
gravitational wave production and spectrum (including
sound waves), as well as phenomenological aspects. To
be concrete, it would be interesting to investigate con-
nections with dark matter, e.g., dark matter production in
the phase transition [44] or the possibility that dark matter is
charged under the dark SUðNÞ, which may also address the

FIG. 7. CMB CTT
l (upper panel) and matter power spectra PðkÞ

(lower panel) for HNEDE models with various z� and rg,
normalized to ΛCDM. In all cases, we use the best-fit
(baseþ BBNþH0) parameters obtained for HNEDE with
z� ¼ 106, rg ¼ 0 and match ΔNIR ¼ 0.40 for SIDR. Compati-
bility with Planck requires z� ≳ 105, while for z� ≲ 106, Lyman-α
scales overlap with the onset (yellow dashed) or even the first
peaks (yellow dotted) of the dark sector acoustic oscillations. The
gray area represents the region probed by Lyman-α forest data.
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S8 tension seen in various weak lensing datasets via scatter-
ing of darkmatter with dark radiation [6,16], whichmay lead
to further signatures in galaxy clustering [90,113] or cluster
counts [114]. Another direction could be the dynamics in the
earlyUniverse that is responsible for creating the small initial
dark sector temperature prior to the phase transition.We note
that even the purely gravitational interactions with the visible
sector could be sufficiently strong to provide this initial
population [115], with the SUðNÞ gauge interactions leading
to efficient thermalization within the dark sector [67].
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APPENDIX A: RESULTS INCLUDING THE
SECOND STEP

In this Appendix, we provide further results when
explicitly including the second (small) step in ΔNeff
due to the dark Higgs becoming nonrelativistic at some
redshift zt < z�. Such a stepwas first considered inRef. [8] as
a solution to theHubble tension (without considering a phase
transition at z�), and we review its dynamics in Appendix B.
Wedisplay in Fig. 8 the posteriorswhen includingSH0ES

data and considering the second step with size rg [see (B9)]
at redshift zt, sampled as log10 rg and log10 z�=zt, respec-
tively (keeping z� ¼ 106 fixed). We find log10ðrgÞ < 1.03
(95%C.L.) and also a relatively unconstrained redshift zt for
the second step. That is consistentwith the findings in Fig. 7,
in which we notice that the effect of rg in the angular power
spectrum CTT and in the matter power spectrum PðkÞ is
relatively small. Notice that the second step within the
SUðNÞmodel is indeed expected to be small with rg ≤ 1=6
in agreement with the phenomenological bound. This can be
compared with the Wess Zumino Dark Radiation (WZDR)
model in Ref. [8], which predicts rWZDR

g ¼ 8=7. However,
this model suffers from BBN constraints similarly to the
simplest SIDR model discussed in the main text.
Note that within the SUðNÞ model the redshift of the

second step, as derived in (31), is theoretically constrained to
occur within a few e-folds after the phase transition, depend-
ing on the gauge coupling g. In contrast, the step size rg
depends only on the sizeN of the gauge group.More precise
high-lCMB data may be able to discriminate scenarios with
different step size and redshift, which would therefore allow
to specifically constrain N and g, respectively.

APPENDIX B: REVIEW OF FORMALISM FOR
THE SECOND STEP

In this Appendix, we review the dynamics of the second
step, following Ref. [8]. The expressions are used for our
CLASS implementation of the dynamics around zt within
hot NEDE. We consider a dark sector Higgs field with gh
degrees of freedom (gh ¼ 1 in our model), mass m,
temperature Td, and vanishing chemical potential21 and
use the dimensionless variable

xðaðtÞÞ ¼ m=TdðaðtÞÞ: ðB1Þ

We first recall the expressions for the Maxwell-Boltzmann
and Bose-Einstein distributions with vanishing chemical
potential for a single degree of freedom,

ρMBðTdÞ ¼
Z
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q
e−

ffiffiffiffiffiffiffiffiffiffi
q2þm2

p
=Td

¼ 3T4
d

π2

�
K1ðxÞ
6

x3 þ K2ðxÞ
2

x2
�
;

ρBEðTdÞ ¼
Z
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q
½e

ffiffiffiffiffiffiffiffiffiffi
q2þm2

p
=Td − 1�−1; ðB2Þ

FIG. 8. Posteriors exploring the second step at redshift zt forwhich
the darkHiggs becomes nonrelativistic after the phase transition at z�
in theHNEDEmodel.We compare themodel considered in themain
text with step size rg ¼ 0 (green contours) and another onewhere rg
and zt are sampled (orange contours). While rg is bounded from
above, zt is hardly constrained at all, in agreement with findings in
the literature for stepped SIDR models [11].

21The gauge bosons interactions fix μgauge ¼ 0, and the Higgs
gauge boson interactions set μh ¼ 2μgauge.
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where
R
q≡

R d3q
ð2πÞ3, andKi are the modified Bessel functions

of the second kind. Similar expressions can be obtained for
the pressure. In the high-temperature limit Td ≫ m,

ρhighTMB ðTdÞ ¼
3

π2
T4
d;

ρhighTBE ðTdÞ ¼
π2

30
T4
d; ðB3Þ

with ρhighTðTdÞ ¼ 3phighTðTdÞ for both statistics. We define
the (dimensionless) normalized density and pressure for the
Maxwell-Boltzmann statistics as

ρ̂ðTÞ≡ ρMBðTÞ=ρhighTMB ðTÞ ¼ K1ðxÞ
6

x3 þ K2ðxÞ
2

x2;

p̂ðTÞ≡ pMBðTÞ=phighT
MB ðTÞ ¼ K2ðxÞ

2
x2: ðB4Þ

Following Ref. [8], we approximate the dark Higgs density
and pressure as

ρhðTdÞ≡ ghρ
highT
BE ρ̂MBðTdÞ; ðB5Þ

phðTdÞ≡ ghp
highT
BE p̂MBðTdÞ: ðB6Þ

Notice that, in the limit Td ≫ m, one has ρ̂ðTÞ → 1 and
ρhðTÞ → ghρ

highT
BE . In other words, the approximation is

normalized such that it reproduced the correct quantum
statistical result in the high-T limit. It slightly deviates from
quantum statistics in the low-T regime [8], where the
distribution is already Boltzmann suppressed.
The total dark sector density and pressure at z < z�,

including also the massless SUðN − 1Þ gauge bosons after
the phase transition, can be written as

ρdðTdÞ ¼ ρhðTdÞ þ
π2ggaugeT4

d

30

¼ π2ggaugeT4
d

30
ð1þ rgρ̂ðxÞÞ; ðB7Þ

pdðTdÞ ¼ phðTdÞ þ
π2ggaugeT4

d

90

¼ π2ggaugeT4
d

90
ð1þ rgp̂ðxÞÞ; ðB8Þ

where ggauge is the number of relativistic degrees of freedom
in the gauge sector, with the same dark temperature Td, and

rg ≡ gh
ggauge

; ðB9Þ

following the notation used in Ref. [8] for the correspond-
ing quantity. For the dark sector with SUðNÞ → SUðN − 1Þ
symmetry breaking, we have gh ¼ 1 and ggauge ¼
2NðN − 2Þ, i.e. 1=6 ≥ rg ≥ 0 for 3 ≤ N < ∞. That leads
to a substantially smaller step if compared to the WZDR
model of Ref. [8], in which rWZDR

g ¼ 8=7.

Parametrizing the energy density in units of the neutrino
energy density ρ1ν ¼ 7

4
π2

30
ðTν0
a Þ4 via

ρdðxÞ≡ ΔNeffðxÞρ1ν; ðB10Þ
we find after matching with (B7)

ΔNeffðxÞ ¼ ΔNIR
1þ rgρ̂ðxÞ

½1þ rgð34 ρ̂ðxÞ þ 1
4
p̂ðxÞÞ�4=3 : ðB11Þ

This allows us to identify the effective number of relativ-
istic degrees of freedom before (NEDE) and after (IR) the
step as

ΔNNEDE ¼ ΔNIR

ð1þ rgÞ1=3
; ðB12Þ

ΔNIR ¼ ggauge
7=4

�
Td0

Tν0

�
4

: ðB13Þ

Using (B7) and (B8), we obtain for the equation of state and
the speed of sound

wðxÞ ¼ 1

3
−
rg
3

ρ̂ðxÞ − p̂ðxÞ
1þ rgρ̂ðxÞ

; ðB14Þ

c2sðxÞ ¼
1

3
−
rg
3

ρ̂ − p̂ − x
4
ðρ̂0 − p̂0Þ

1þ rgρ̂ − x
4
rgρ̂0

: ðB15Þ

In order to derive xðaÞ, needed for the Boltzmann imple-
mentation, we use entropy conservation within the dark
sector for z > z�, implying x × ðρþ pÞ ∝ 1=a3. This can
be written as

�
xat
a

�
3

¼ 1þ rg
4
ð3ρ̂ðxÞ þ p̂ðxÞÞ ðB16Þ

and solved for a

a ¼ atx
�

1

1þ rg
4
½3ρ̂ðxÞ þ p̂ðxÞ�

�
1=3

; ðB17Þ

where at ≡ 1=ð1þ ztÞ is the scale at which the Higgs field
becomes nonrelativistic as defined in Ref. [8] and used as
an input parameter for the Boltzmann solver in the form of
zratio ¼ z�=zt. This expression can be inverted numerically
to obtain xðaÞ.22

22Note that the energy conservation equation dρd=dtþ
3Hðρd þ pdÞ ¼ 0 in the dark sector is also automatically satisfied
in this case. We can rewrite it as a dx

da
dρd
dx ¼ −3ðρd þ pdÞ. Writing

the entropy equation as xðρd þ pdÞ ∝ 1=a3 and taking a deriva-
tive of this equation with respect to a, one can check that energy
conservation requires that ρd þ pd þ x dpd

dx ¼ 0. This is satisfied
for the contribution from gauge bosons. For the Higgs, it requires
ρ̂ − p̂þ x

3
dp̂
dx ¼ 0. Using explicit expressions from above, one

sees that this is indeed satisfied.
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Delabrouille, C. Yèche, and Z. Lukić, Simulating

GARNY, NIEDERMANN, RUBIRA, and SLOTH PHYS. REV. D 110, 023531 (2024)

023531-22

https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2013/02/001
https://doi.org/10.1016/j.dark.2018.100260
https://doi.org/10.1016/j.dark.2018.100260
https://doi.org/10.1016/j.cpc.2008.02.015
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910e
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1051/0004-6361/201833886
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1093/mnras/stv154
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.3847/1538-4357/aab9bb
https://doi.org/10.3847/2041-8213/ac5c5b
https://doi.org/10.1103/PhysRevD.99.043506
https://doi.org/10.1111/j.1745-3933.2007.00306.x
https://doi.org/10.1016/j.physrep.2022.07.001
https://doi.org/10.1103/PhysRevD.108.023520
https://doi.org/10.1103/PhysRevD.108.023520
https://doi.org/10.1103/PhysRevD.108.123513
https://doi.org/10.1103/PhysRevD.108.123513
https://doi.org/10.1088/1475-7516/2024/04/059
https://doi.org/10.1088/1475-7516/2024/04/059
https://arXiv.org/abs/2403.13794
https://doi.org/10.1088/1475-7516/2008/09/022
https://doi.org/10.1088/1475-7516/2008/09/022
https://doi.org/10.1103/PhysRevD.77.124015
https://doi.org/10.1103/PhysRevD.77.124015
https://doi.org/10.1103/PhysRevD.79.083519
https://doi.org/10.1103/PhysRevD.93.124037
https://doi.org/10.1103/PhysRevD.93.124037
https://doi.org/10.1103/PhysRevD.95.024009
https://doi.org/10.1103/PhysRevD.95.024009
https://doi.org/10.1088/1475-7516/2019/01/060
https://doi.org/10.1088/1475-7516/2019/01/060
https://doi.org/10.1088/1475-7516/2018/03/047
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1088/0264-9381/32/1/015014
https://doi.org/10.1016/j.newar.2004.09.001
https://arXiv.org/abs/1501.00127
https://arXiv.org/abs/1501.00127
https://doi.org/10.1017/pasa.2019.42
https://doi.org/10.3847/2041-8213/acdac6
https://doi.org/10.1088/1475-7516/2023/11/053
https://doi.org/10.1088/1475-7516/2023/11/053
https://doi.org/10.1103/PhysRevD.97.123513
https://doi.org/10.1103/PhysRevD.103.023531
https://doi.org/10.1103/PhysRevD.103.023531
https://arXiv.org/abs/1611.00036
https://doi.org/10.1093/mnras/staa2331
https://doi.org/10.1093/mnras/staa2331


intergalactic gas for DESI-like small scale Lymanα forest
observations, J. Cosmol. Astropart. Phys. 04 (2021) 059.

[112] N. G. Karaçaylı et al., Optimal 1D Lyα Forest power
spectrum estimation—III. DESI early data, Mon. Not. R.
Astron. Soc. 528, 3941 (2024).

[113] H. Rubira, A. Mazoun, and M. Garny, Full-shape BOSS
constraints on dark matter interacting with dark radiation
and lifting the S8 tension, J. Cosmol. Astropart. Phys. 01
(2023) 034.

[114] A. Mazoun, S. Bocquet, M. Garny, J. J. Mohr, H. Rubira,
and S. M. L. Vogt, Probing interacting dark sector models
with future weak lensing-informed galaxy cluster abun-
dance constraints from SPT-3G and CMB-S4, Phys. Rev.
D 109, 063536 (2024).

[115] M. Garny, M. Sandora, and M. S. Sloth, Planckian inter-
acting massive particles as dark matter, Phys. Rev. Lett.
116, 101302 (2016).

HOT NEW EARLY DARK ENERGY BRIDGING COSMIC GAPS: … PHYS. REV. D 110, 023531 (2024)

023531-23

https://doi.org/10.1088/1475-7516/2021/04/059
https://doi.org/10.1093/mnras/stae171
https://doi.org/10.1093/mnras/stae171
https://doi.org/10.1088/1475-7516/2023/01/034
https://doi.org/10.1088/1475-7516/2023/01/034
https://doi.org/10.1103/PhysRevD.109.063536
https://doi.org/10.1103/PhysRevD.109.063536
https://doi.org/10.1103/PhysRevLett.116.101302
https://doi.org/10.1103/PhysRevLett.116.101302

