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We simulate multicore merger of fuzzy dark matter in a periodic domain until it relaxes and forms the
typical core-halo structure, found both in small domain analyses as well as in structure formation
simulations. Using a reference potential gauge invariance of the Schrödinger-Poisson system of equations,
we use different values of the reference gravitational potential at the boundaries and illustrate how it affects
the core-halo scaling relation of the resulting core-halo structure. This result demonstrates that using
different boundary conditions for the reference gravitational potential in various simulations may contribute
to the diversity of the scaling relation.
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I. INTRODUCTION

Ultralight Bosonic dark matter is a candidate currently
under study because it shows interesting implications, it
behaves like cold dark matter (CDM) at large scales,
whereas at local galactic scales it forms clumps with a
core-tail structure, because its small mass, of order
10−24–10−20 eV=c2eV, implies a large de Broglie wave-
length that prevents the formation of cuspy density profiles.
It is then thought that this property may help reconciling the
cusp-core and too big to fail problems of CDM. More
properties and restrictions of this dark matter model are
well developed in recent reviews [1–5].
The state of the art of the subject involves various

aspects, most of them based on the implications from
each time more elaborate structure formation simulations
(e.g. [6–10]) based on the solution of the Schrödinger-
Poisson (SP) system of equations. Probably the most
important result of these simulations is that they demon-
strate the formation of core-tail structures with a solitonic
core surrounded by a high kinetic energy halo that on
average can be fitted with the Navarro-Frenk-White profile.
A pattern that has called the attention of these structures is
that they follow a core-halo mass scaling relation that may
contain information about its formation history. The SP
system of equations governing the evolution of this dark
matter can be expressed as follows:

iℏ∂tΨ ¼ −
ℏ2

2mB
∇2ΨþmBVΨþ gjΨj2Ψ; ð1Þ

∇2V ¼ 4πGðρ − ρ̄Þ; ð2Þ

where ℏ andG are Planck and gravitational constants,mB is
the bosonmass,Ψ the parameter order of the boson gas,V the
gravitational potential sourced by the density of the boson
gas itself given by ρ ≔ mBjΨj2, g is the self-interaction
parameter, which for fuzzy dark matter (FDM) [11] is set to
g ¼ 0, and ρ̄ is the spatial averaged density

ρ̄ ≔
1

jDj
Z
D
ρd3x; ð3Þ

calculated over a givendomainDwith volume jDj. The usual
scalar quantities used to monitor the properties of a given
evolving structure of FDM are the total mass M, kinetic
energy K, and gravitational energy W given by

M ≔
Z
D
ρd3x; ð4Þ

K ≔ −
ℏ2

2mB

Z
D
Ψ�∇2Ψ; ð5Þ

W ≔
1

2

Z
D
ρVd3x: ð6Þ

In [6], based on the results from structure formation
simulations (SFS) a scaling relation was found between
these quantities:

Mc ¼ constant

�
E
M

�
1=2
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where Mc is the integrated core mass of the also found
universal attractor soliton density profile

ρcoreðrÞ ¼ ρc

�
1þ 0.091

�
r
rc

�
2
�
−8
; ð8Þ

characterized by a core radius rc and a central density ρc,
whose integral is explicitly

Mc ¼ 4π

Z
rc

0

ρcoreðrÞr2dr ≈ 2.790ρcr3c; ð9Þ

and where E ¼ K þW is the total energy. The scaling
relation (7) associates the core mass on the left with the halo
dispersion relation on the right. This result was confirmed
using a controlled set of multicore merger local simulations
that collapse to form core-halo structures [12].
Later on, in [13] a different scaling relation was

proposed, in which the core mass is normalized with M,
which leaves a scaling relation invariant under the lambda
scaling [14]

ft; x⃗;Ψ; V; ρg → fλ−2t; λ−1x⃗; λ2Ψ; λ2V; λ4ρg;
fM;K;W;Eg → fλM; λ3K; λ3W; λ3Eg;

of the SP system (1) and (2). The proposed scaling relation
reads

Mc

M
¼ βΞα; Ξ ≔

jEj
M3

�
ℏ

GmB

�
2

; ð10Þ

where β is a constant. This relation is obtained from binary
mergers, and it was found for a number of simulations with
different initial conditions that α ∼ 1=4 in the case of
mergers in orbit, and α ∼ 1=6 for head-on collisions. For
multicore mergers similar to those in [12] it was found that
α is between 1=6 and 1=2. An important signature of this
analysis is that isolation boundary conditions are used for
the simulations.
In [7] a similar study based on multisoliton mergers finds

that α ∼ 1=3, more precisely bounded between 1=4 and
1=2. The difference with the results in [13] may be due to
the boundary conditions used, isolated in [13] and periodic
in [7], that help preserving energy and mass in the whole
domain during the simulations.
Other studies based on different core formation histories

find α ∼ 1=5–1=4 as a result of the fitting of final core-
halos, α ∼ 1=3 when the scaling relation is spatially
averaged [15]. From spherical collapse it was found that
α ∼ 1=3 [16,17]. More recently, in [18] the construction of
core-halo solutions with spherical symmetry shows α ∼
1=3 whereas when they relax α ∼ 1=2. The differences
among the various scaling relations led to the analysis
in [19], where the diversity of α is identified with different

formation histories using a number of different simulations
under various physical scenarios [20].
We explore the possibility that this diversity may be due

to some implementation details not completely specified in
FDM simulations, specifically the boundary conditions for
the gravitational potential. In Lagrangian approaches
involving for example SPH methods, boundary conditions
are not a big problem, because it suffices to change the
domain topology by enforcing periodic boundary condi-
tions without imposing reference values to the gravitational
potential at any Eulerian boundary. On the other hand,
when using Eulerean frame simulations for FDM dynam-
ics, like in the flagship references [7,12,13] among others
following a similar approach (e.g. [15,21]), the reference
potential seems to be subtle and important.
In order to explain our point, we exploit the V0-gauge

invariance of the SP system that allows one to set arbitrary
potential reference values at the boundaries of the numeri-
cal domain. We then produce simulations of multicore-
mergers on a periodic domain and study the effect of using
different reference gravitational potential on the value of α.
The paper is organized as follows. In Sec. II we describe

the gauge invariance that allows choosing the gravitational
potential at boundaries. In Sec. III we study the effects of
this gauge invariance on the value of α, and in Sec. IV we
draw some final comments.

II. THE V0-GAUGE INVARIANCE

We can distinguish between two scenarios considered in
simulations of FDM, one that assumes the system under
study remains isolated and boundary conditions imple-
mented at the numerical boundary simulate a transparent
surface that allows matter to get off. In this case M and E
integrated on D, change in time due to the loss of matter
ejected during the gravitational cooling process [22,23],
and the quantity Ξ is not preserved in time. In this case, as
done in [13], the boundary conditions are unique, in the
sense that the potential at the boundaries is given by
V ¼ −M=rþmultipolar terms, where r is the distance
from the domain center to each point of the boundary of the
simulation domain D.
A second scenario corresponds to the use of periodic

boundary conditions, that in a way recycle matter and
energy components so that the global properties M and E
are preserved. In this case, the boundary conditions lack of
a clear specification, and the value of the gravitational
potential at the boundary is not quite specified in various
analyses studying the core-halo scaling relation. Between
the two types of boundary conditions there are a number of
effects that can be only curiosities or have serious impli-
cations as discussed in [21], that may depend on the type of
boundary condition combined with the domain size of
simulations.
The periodic domain is the one we want to focus on,

because it is the most used when constructing core-halo
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scaling relations in FDM dynamic simulations. We start by
pointing out that the SP system is invariant under the V0-
gauge transformation defined by

fΨ; Vg → fΨe−imBV0t=ℏ; V þ V0g; ð11Þ

that leaves ρ,M, and K invariant, whereas the gravitational
energy suffers the translation

W → W þ V0M: ð12Þ

Consequently the total energy transforms as E →
Eþ V0M, which in turn changes the value of Ξ. This
compromises the scaling relation (10), which is V0

dependent.

III. EFFECTS OF V0 ON α

A. Simulations

We illustrate this effect using a single affordable sce-
nario consisting of the multicore merger that forms a final

core-envelope FDM configuration. Similarly to [7,12,13],
we prepare initial data sets with 3–18 solitons, with random
masses ranging from 1.5 × 108M⊙ to 4 × 108M⊙, randomly
distributed within a cube of side 60 kpc. This cube is
centered within the numerical domain, which is a cube of
side 80 kpc.We assume the bosonmassmB ¼ 10−22 eV=c2.
Initial data are also prepared in such away that there is no net
angular momentum, so that the scaling relation would
depend only onM andE, and not on the angular momentum
like in binary mergers.
We evolve these initial conditions using periodic boun-

dary conditions using the code CAFE-FDM [21,24], that
implements a pseudospectral method with the fast Fourier
transform to solve the SP system using a discrete form of
the Schrödinger equation (1) with the Crank-Nicolson time
average. Time and spatial resolutions are Δ ¼ 62.5 pc and
Δt ¼ 2.5 × 10−3 Gyr and the evolution lasts 14 Gyr in
order to allow the system to relax. We use these simulations
to explore the behavior of using different values of V0. We
define three different boundary values of the gravitational
potential:

FIG. 1. Snapshots from one of our simulations, for the density ρ at the top row, the real part of Ψ at the middle row, and the phase of Ψ
at the bottom. These are taken, from left to right, at times 0, 3, 9, and 14 Gyr, on a plane perpendicular to the y axis that passes through
the final core. The density illustrates the clustering of various initial cores from initial until final time. The real part and phase ofΨ show
the interference patterns and the evolution of the wave function in the periodic domain.
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1. Potential A

In a first scenario we set the potential at the boundary
faces to

VA ¼ V −maxðVÞ −G
M
rmax

; ð13Þ

where maxðVÞ represents the maximum value of V that
happens at the corners of the box, and rmax ≔

ffiffiffi
3

p
40 kpc is

half the diagonal length of the cubic domain. This potential
is used as an approximation of monopolar boundary
conditions used in isolated systems.

2. Potential B

We add a constant value V0 to VA

VB ¼ VA þ V0: ð14Þ

which corresponds to a simple change of reference of VA
through the constant V0 and in principle, according to the
invariance (11) would give the same dynamics as with VA
except for a phase in Ψ. For this exercise we use two values
of the constant V0 ¼ 1843; 3685 km2=s2, or equivalently
V0 ¼ 5, 10 in code units.
As an illustration of the evolution of these multicore

mergers, in Fig. 1 we show snapshots of the density ρ,
ReðΨÞ, and the phase of Ψ during the evolution for one of
our simulations. The snapshots correspond to 0, 3, 9, and
14 Gyr from left to right, and are taken at a plane
perpendicular to the y axis that passes through the center
of the final core. These plots show the process of accu-
mulation of matter during the simulation as well as the
behavior of the wave function. We use this time window of
evolution in order to have a formed core, whereas for
our analysis we calculate space and time averages of the
density only during the lapse between 12 and 14 Gyr as
detailed below.

B. Core determination through
time-spatial averaging

In order to locate the resulting formed core, we track the
maximum density during the evolution lasting 14 Gyr. We
then calculate the average density during the last 2 Gyr of
simulation over the solid angle as

hρiðrÞ ¼ 1

2 Gyr

Z
14 Gyr

12 Gyr

�
1

4π

Z
Ω
ρdΩ

�
dt: ð15Þ

For the simulationofFig. 1we illustrate, in gray, the plots of
this density at various times within the last 2 Gyr of evolution
in the first panel of Fig. 2, corresponding to only the spatial
average in formula (15), that is, the expression in square
braces. Using this averaged radial density, we fit the para-
meters ðρc; rcÞ of the core using formula (8), which are then

used to calculate the core massMc with the recipe (9). Both,
the spatially averaged density andMc are time dependent. In
black we show the average in time calculated with the whole
formula (15). This plot illustrates how spatial averages change
in time, more evidently in the envelope region.
Now, the time dependence of the spatial average (see the

gray lines) implies a time-dependent value of Mc, which is

FIG. 2. For the same simulation of Fig. 1 we show various
diagnostics. At the top we show in gray, various snapshots of the
normalized spatially averaged density between 12 and 14 Gyr and
in black the time average of all snapshots, taken every 0.05 Gyr,
captured within such time window. Gray lines capture the spatial
average of the first integral of formula (15), that is the expression
in squared braces, whereas the black line represent the density
averaged both, in space and in time using the whole formula (15).
The dashed line corresponds to the density profile (8) that better
fits the black line. At the bottom we show the core mass Mc as
function of time during the whole evolution; at the beginning, our
core finder measures the mass of a dominant core and afterwards
what is seen is the mass of the core resulting from the multi-
merger. Notice that the mass oscillates due to the time depend-
ence of the average density (the gray lines of the plot at the left)
and in average it has a growing trend. The last 2 Gyr of the values
of Mc are used to calculate an average value and an uncertainty
for each of the simulations.
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shown in the third plot of Fig. 2. This figure starts with the
core mass of the dominant core among those in the initial
set of random cores, its mass is calculated, and then, by
t ∼ 5 Gyr, the final core starts to be formed. From then on,
Mc oscillates around a growing value due to the accretion
of matter from the envelope as found in [25]. We measure
the values of Mc during the last 2 Gyr of evolution to
calculate its time average and standard deviation that we
use as experimental data and error bars respectively, in the
study of the scaling relation below.

C. Scaling relation

We simulate the multimergers and postprocess the data
as described for a particular simulation above, until we
obtainMc as function of time like the results in Fig. 2. This
value of Mc is calculated every 0.05 Gyr between 12 and
14 Gyr, we then calculate the average of the 41 values of
Mc in such time window and the standard deviation of all
these values is used to define an error bar in the value of
Mc. This value, together with the integrals M and E in the
whole domain define points in an Mc=M vs Ξ diagram.
These points are then fitted with the ansatz (10) in order to
find the best fitting values of α and β.

The results are summarized in Fig. 3, where we show the
fittings of the core-halo scaling relation with formula (10)
obtained from our simulations using potentials VA and the
two cases VB, specifically for V0 ¼ 0, 5, 10. The values
of the exponent α are respectively α ¼ 0.407� 0.008;
0.237� 0.011; 0.212� 0.017.
For potential VA, that is V0 ¼ 0, corresponding to the

approximated monopolar boundary condition we find that
the core-halo scaling relation has an exponent α ≈ 0.4,
consistent with multicore mergers reported in [7] and the
general structures constructed in cases of spherical
symmetry [18] where the monopolar boundary condition
is imposed by construction. On the other hand, for potential
VB with V0 ¼ 5, 10, α is close to ∼1=4. Even though it is
dynamically the same system, we show how by redefining
the reference potential we find a different scaling relation.

IV. CONCLUSIONS

We found that the core-halo scaling relation can vary,
depending on the gravitational potential reference value. In
periodic domains this may be the responsible for finding
different values of α out of different simulation scenarios
and domain sizes. We illustrate this result using the V0-
gauge invariance on the particular scenario of multicore
mergers. We speculate that the nonstandardization of the
reference gravitational potential in the various simulations
may be one of the reasons for the dispersion and diversity
of the scaling relation studied in e.g. [9,19].
Notice that the result in this paper applies to the case in

which the domain is periodic and a value of the potential is
used in the faces of the domain. The potential shifting does
not apply to the case in which isolated boundary conditions
are used, as done in [13].
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