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We apply the convolutional neural networks (CNNs) to the mock 21 cm maps from the post-reionization
epoch to show that the Λ cold dark matter and warm dark matter (WDM) model can be distinguished for
WDM particle masses mFD < 3 keV, under the assumption of thermal production of WDM following the
Fermi-Dirac (FD) distribution. We demonstrate that the CNN is a potent tool in distinguishing the dark
matter masses, highlighting its sensitivity to the subtle differences in the 21 cm maps produced by varying
dark matter masses. Furthermore, we extend our analysis to encompass different WDM production
mechanisms, recognizing that the dark matter production mechanism in the early Universe is among the
sources of the most significant uncertainty for the dark matter model building. In this work, given the mass
of the dark matter, we discuss the feasibility of discriminating four different WDM models: Fermi-Dirac
(FD) distribution model, neutrino Minimal Standard Model (νMSM), Dodelson-Widrow (DW), and Shi-
Fuller (SF) model. For instance, when the WDMmass is 2 keV, we show that one can differentiate between
CDM, FD, νMSM, and DW models while discerning between the DW and SF models turns out to be
challenging. Our results reinforce the viability of the CNN as a robust analysis for 21 cm maps and shed
light on its potential to unravel the features associated with different dark matter production mechanisms.

DOI: 10.1103/PhysRevD.110.023526

I. INTRODUCTION

The Λ cold dark matter (ΛCDM) model has garnered
widespread acceptance within the cosmological community
due to its robust capability to account for a multitude of
observational phenomena. Central to this model is the
presumption of cold dark matter (CDM), posited to consist
of nonrelativistic particles. Despite its remarkable success
and the extensive insights it provides into the structure and

dynamics of the universe, the ΛCDM model falls short of
fully elucidating the intricate nature and characteristics of
dark matter. Key aspects such as its production mechanisms
and the evolution of small-scale structures remain among
the most profound mysteries in cosmology, and the
possibility of a dark matter model that goes beyond the
simple cold dark matter paradigm presents an intriguing
avenue for exploration.
The warm dark matter (WDM) model stands as a

prominent alternative candidate among various dark matter
models. We explore the thermally produced WDM, dis-
tinguished by a phase space distribution governed by
Fermi-Dirac statistics (referred to as “FD” in subsequent
discussions). At the time of production, WDM particles are
relativistic, and their free-streaming suppresses the growth
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of matter fluctuation in the universe on small scales. The
extent of this free-streaming, and consequently the sup-
pression effect, is characterized by the WDM mass.
Consequently, by examining its impact on the formation
and evolution of cosmic structures, we can investigate the
mass range of WDM.
The cosmological observation gives some constraints

or their forecasts, with the Lyman-α forest as a prime
example. It traces the matter distribution of the universe
along the line of sight, delivering constraints on the
particle mass of the FD warm dark matter model.
Specifically, the analysis of the power spectrum of
Lyman-α forest sets a lower limit on the FD particle mass
to be of the order of Oð1Þ keV [1–4].
The 21 cm signals, emitted from the neutral hydrogen

(HI), offer another avenue for probing the distribution of
matter in the universe. These signals are the focus of
ongoing and planned observations by several major radio
astronomy projects, including the Murchison Wide-field
Array (MWA) [5], Canadian Hydrogen Intensity Mapping
Experiment (CHIME) [6], Hydrogen Intensity and Real-
time Analysis eXperiment (HIRAX) [7], and Square
Kilometer Array (SKA) [8]. Ref. [9] utilizes the power
spectrum of 21 cm signals, specifically anticipating the
SKA data, to forecast constraints on the WDM particle
mass. These efforts highlight the critical role of radio
observations in advancing our understanding of dark matter
and the larger cosmic structure.
In the context of analyzing large-scale cosmic structures,

we leverage image-based analysis by utilizing image-based
analysis with convolutional neural networks (CNNs).
CNNs adeptly extract information on matter distribution
directly from images, offering the potential for more
stringent constraints on the WDM mass than traditional
methods such as the power spectrum. Reference [10]
demonstrates that CNNs can yield more accurate predic-
tions of WDM mass by analyzing dark matter maps
generated from N-body simulations. Similarly, our prior
work [11] also shows that the CNN analysis is superior to
power spectrum analysis in extracting detailed information
from maps of 21 cm signals derived from cosmological
hydrodynamic simulations.
Firstly, this work considers the binary classification of

CDM and FD models with different masses. We generate
images of the 21 cm signals from hydrodynamic simu-
lations across a range of redshifts z ¼ ½3; 4; 5; 6� during the
post-reionization era. We then proceed to compare the
effectiveness of CNNs against traditional power spectrum
methods in performing these classifications. In addition,
we explore implementing a CNN architecture designed to
simultaneously incorporate data from multiple redshifts,
aiming to assess whether this multiredshift approach
yields superior performance compared to analyses
restricted to a single redshift. Additionally, we consider
the potential impact of observational noise, as encountered

in SKA-Low surveys, and present the outcomes of binary
classifications under both single and joint redshift analysis.
As a further application of our analysis, we study if

future 21 cm observations can distinguish different dark
matter production mechanisms. Here, we consider the
scenarios where the dark matter mass is predetermined,
possibly from collider and direct/indirect dark matter
search experiments, and apply our CNN analysis to the
mock 21 cm map data for the specified WDM mass with
different WDM production scenarios.
For instance, accelerator experiments generate dark

matter through particle collisions, and the relevant dark
matter abundance is independent of the total matter
abundance in the Universe Ωm. These experiments can
elucidate dark matter properties, including its mass and
interaction cross-sections, by analyzing aspects of dark
matter kinematics, such as transverse missing energy.
Consequently, it is plausible that such alternative dark
matter experiments could significantly narrow down the
constraints on dark matter mass, offering a complementary
perspective to the cosmological surveys. This potential for
cross-disciplinary synergy would motivate our approach,
aiming to highlight the connection between our cosmo-
logical studies and other dark matter search experiments.
We study, for illustration, four different WDM produc-

tion mechanisms. Besides FD, which possesses thermal
phase space distributions, we study other commonly dis-
cussed nonthermal production mechanisms νMSM (neu-
trino minimal standard model), DW (Dodelson-Widrow),
and SF (Shi-Fuller). In DW mechanism [12], the sterile
neutrino dark matter is produced through the oscillations
with the active neutrinos in the cosmic plasma. The
oscillations convert a fraction of an active neutrino into
a long-lived sterile neutrino, acting as dark matter. In SF
mechanism [13], sterile neutrino dark matter production is
significantly amplified compared to the DW mechanism.
The enhancement occurs due to resonant mixing between
active and sterile neutrinos in the presence of a strong
lepton asymmetry. The SF mechanism addresses some of
the observational constraints on the DW mechanism by
allowing for a smaller mixing angle due to the resonant
enhancement. The νMSM [14] extends the Standard Model
by including additional sterile neutrinos, which can mix
with the active neutrinos, similar to the DW mechanism.
However, νMSM distinguishes itself by evading some of the
parameter constraints faced by the DW mechanism. The
lightest of these sterile neutrinos acts as theWDM candidate.
The model is appealing as it not only provides a viable
WDM candidate but also addresses other cosmological and
particle physics phenomena, such as the baryon asymmetry
of the universe and the masses of active neutrinos.
While some WDM production mechanisms, such as

those produced thermally, can lead to the Fermi-Dirac
distributions, others do not possess such simple thermal
phase distributions. We, however, point out that the main
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characteristics that the cosmological observables are sen-
sitive to are the free streaming scale and the relic abun-
dance, and there are degeneracies among those different
production mechanisms. One common practice in the
literature is the mapping between the mass for the
Dodelson Wildrow scenario and that for the thermally
produced warm dark matter, by demanding their free
streaming scale and abundance match, which can allow
a reinterpretation of mass constraints from large-scale
structure data across various WDM models [15].
Similarly, we can rescale the masses among the different
aforementioned production scenarios, and we, for con-
creteness, adopt the following mapping [16–18],

mDW ∼ 2.85 keV

�
mFD

keV

�
4=3

; ð1Þ

mSF ∼ 2.55mFD; ð2Þ

mνMSM ∼ 1.9mFD; ð3Þ

where mX represents the dark matter mass of the model X.
Even though those nonthermal production mechanisms do
not have the Fermi-Dirac phase space distributions, the
Fermi-Dirac phase space distributions with these rescaled
masses effectively replicate the identical matter power spectra
as those nonthermal distributions with mWD due to the
degeneracies in the cosmological observables (notably the
matter fluctuation suppression scales and amplitudes).
The advantage of this degeneracy represented by such a
mass rescaling is that we can apply our methodology and
techniques to study the Fermi-Dirac distributions to our setup
for different production scenarios with the common mass.
In this work, we also apply CNN for the classification

between the WDM models for the mock 21 cm map. We
discuss different production mechanisms for a predeter-
mined mass and demonstrate the potential of CNN to
constrain the dark matter model through large-scale struc-
ture analysis.
This paper is organized as follows. In Sec. II A, we show

the calculation of the power spectrum of the WDM for
the FD model. Section III describes the configuration of our
simulation and how to generate images for CNN. In Sec. IV,
we show the architecture of CNN and the neural network for
image-based and power spectrum analysis, respectively.
Section V shows the binary classification results between
the CDM and FD models and the classification of WDM
models. Finally, we summarize our work in Sec. VI.

II. WARM DARK MATTER MODELS

A. Fermi-Dirac WDM model

First, we consider the fermionWDM for which the phase
space distribution follows the Fermi-Dirac distribution,
written as

fðpÞ ¼ 1

exp ðp=ðαTγÞÞ þ 1
; ð4Þ

where p is the momentum, Tγ is the photon temperature,
and α is the parameter representing the ratio of the dark
matter temperature to the photon temperature. We refer to
this WDM as the FD (Fermi-Dirac). The dark matter
abundance ΩDM, the dark matter particle mass mFD, and
α are related as

ΩDM ¼ α3

4=11
mFD

94 eV
: ð5Þ

The FD particles are produced as relativistic particles,
resulting in suppressed clustering at small scales within
their free-streaming scale, depending on their particle mass.
We use CLASS [19] as the Boltzmann solver and compute

the matter power spectrum for the CDM model. And then,
we define the ratio of the FD and CDM power spectrum as

T2ðkÞ≡ PFDðkÞ
PCDMðkÞ

; ð6Þ

where PFDðkÞ and PCDMðkÞ is the matter power spectrum
for the FD and CDMmodel, respectively, and k is the wave
number. We can calculate T2ðkÞ as [17]

T2ðkÞ ¼ Φ
�

k
k1=2

�
; ð7Þ

where k1=2 is the wave number satisfying T2ðk1=2Þ ¼ 1=2
and described using the FD particle mass mFD as

k1=2 ¼ 6.72

�
mFD

keV

�
1.12

hMpc−1: ð8Þ

Φ is the analytic formula and is written as

ΦðxÞ ¼ 1

½1þ ð21=b − 1Þxa�b ; ð9Þ

where a is ¼ 1.304, and b is ¼ 4.478. Figure 1 shows the
dimensionless power spectra on the projected 2D plane for
CDM and FD with the masses 1, 2, and 3 keV. The lighter
FDWDM has a larger free-streaming scale, and we can see
the suppression of the amplitude of the power spectrum at a
larger scale for the lighter FD WDM.

B. Other WDM models

This work considers the additional three WDM models
mentioned in Sec. I: νMSM, SF, and DW. The production
mechanisms for these models differ from the thermal
production represented by the FD model, and the phase
space distributions and, consequently, the free streaming
scales differ. We, however, simplify our analysis by
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calculating the power spectra for these WDMmodels using
FD distributions through the mass mapping given by
Eqs. (1)–(3) in Sec. I, which suffices for our purpose of
demonstrating the potential power of the 21 cm observa-
tions to discriminate among different dark matter produc-
tion mechanisms.
We analyze the power spectra for a given WDM mass.

The dark matter mass can be determined from other
complementary experiments, such as a collider experiment,
where the properties of dark matter, such as their momen-
tum, are obtained from the kinematics. For a given WDM
mass, we then reinterpret its mass as the mass of the FD by
using Eqs. (1)–(3). Finally, we can calculate k1=2 and the
power spectra for the νMSM, SF, and DW following the
procedure for the FD model by the reinterpreted mass.
Figures 2 and 3 show the projected linear power spectrum
at z ¼ 3 for the WDM particle mass mDM ¼ 3 keV and

k1=2 for each WDM model. As we can see in these figures,
k1=2 and the power spectra are different between the WDM
models even when their particle masses are the same due to
the different free-streaming scales.

III. DATA

A. Gadget-Osaka simulation

In this work, we perform hydrodynamic simulations to
generate the mock 21 cm intensity map for the different FD
masses and the different WDM models. We assume the
cosmological parameter obtained by Planck satellite [20];
Ωm ¼ 0.3111, ΩΛ ¼ 0.6889, Ωb ¼ 0.049, h ¼ 0.677, and
ln 1010As ¼ 3.047. First, we consider the standard CDM
and FD models with different masses.
The initial power spectrum for the CDMmodel at z ¼ 99

is calculated using the CLASS. For FD models, we compute
its initial power spectrum following the formulas in
Sec. II A. We generate the initial conditions from these
input power spectra with 2LPTIC [21]. In making the initial
condition, we apply the glass realization to remove the grid
pattern in particle distribution and to avoid unrealistic
features in the matter distribution [22,23].
We use GADGET3-OSAKA [24,25] to solve the evolution of

matter distribution caused by the gravitational interaction
and gas physics. It is the cosmological smoothed hydro-
dynamic (SPH) code based on GADGET3 [26]. Our simu-
lations have 2563 dark matter particles and 2563 gas
particles in a box whose comoving size is 50 h−1Mpc
on a side. Therefore, the dark matter particle’s mass in our
simulation is 5.4 × 108M⊙=h, where M⊙ is the solar mass.
We generate the initial condition at z ¼ 99 and stop the
simulation at z ¼ 3. This simulation includes the star
formation, supernova feedback, UV radiation background,

FIG. 2. The relation between the particle mass of dark matter
and k1=2. Each line respectively corresponds to the FD (blue,
dashed), νMSM (green, dash-dot-dot), SF (orange, dash-dotted),
and DW (red, dotted) model.

FIG. 3. The projected 2D linear power spectra for the CDM
(purple, solid), FD (blue, dashed), νMSM (green, dash-dot-dot),
SF (orange, dash-dotted), and DW (red, dotted) WDM at z ¼ 3.
Here, we assume the particle mass of WDM is 3 keV. The
projection length is 25 h−1 Mpc.

FIG. 1. The projected 2D power spectra for CDM (solid), 1
(dashed), 2 (dotted), and 3 (dashed-dotted) keV FD WDM at
z ¼ 3. The projection length is 25 h−1 Mpc.
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and radiative heating and cooling. The cooling effect is
solved by Grackle chemistry and cooling library [27]. For
the star formation model, we apply the model used in the
AGORA project [28,29], the supernova feedback model
described in [25], and the uniform UV radiation back-
ground [30]. We do not consider the self-shielding of HI
gas, which is the obstruction of UV radiation by thick
HI gas.
Throughout this work, we use the snapshots at

z ¼ ½3; 4; 5; 6�. This redshift range corresponds to the
range observed by the SKA-Low survey after the post-
reionization epoch.

B. Images

In the following, we describe the procedures for gen-
erating the images from the hydrodynamic simulation used
to train, validate, and test CNN. Figure 4 illustrates the
procedure described in the following.

(i) [Step 1] We define a 5123 grid in the simulation box.
Then, we use the SPH kernel to calculate the HI
number density nHI and compute the differential
brightness temperature δTb, following our previous
work [11] (see Sec. 2.2 and 2.4), as

δTb∼
3

32π

hpc3A10

kBν20

�
1−

TγðzÞ
TS

�
nHI

ð1þzÞHðzÞ ; ð10Þ

where ν0 is the rest frequency of the 21 cm signal, Tγ

is the temperature of CMB photon, HðzÞ is the
Hubble parameter, and TS is the spin temperature of
HI gas. In this calculation, we consider the redshift
space distortion for the position of the simulation
particle. The position is shifted along the line of
sight (LOS) by ð1þ zÞvk=HðzÞ, where vk is the
velocity of the simulation particle along the LOS.

(ii) [Step 2] We have three choices for the LOS
direction; these can be considered independent
realizations. We use the images generated for the
two directions of LOS as the training and validation

data, respectively and the rest of the LOS direction is
used for the test data. We divide the simulation box
along the LOS and generate the slices for each LOS
direction. The width of each slice is 25.0 h−1Mpc,
corresponding to 2 slices. As the other choice of the
width, we consider 3.125, 6.25, and 12.5 h−1Mpc,
corresponding to the 16, 8, and 4 slices, respectively.
We find the case of 25 h−1Mpc projection shows the
base performance.

For the data augmentation, we employ the offsets
when we divide the simulation box to make the
training or validation data. The offsets are Δ ¼
50i=512 h−1 Mpc where i is the integer from zero to
512=ðnumber of slicesÞ in the direction along the
LOS. At the edge of the box, we apply the periodic
boundary condition. This may increase the number
of available images sufficiently and significantly
help our training process to converge, although the
shifted images are not independent of each other.

(iii) [Step 3] δTb is projected onto the plane
perpendicular to the LOS by summing up δTb along
the LOS in each slice, i.e., δTbðnÞ ¼

P
LOS δTbðxÞ.

And then, in each slice, we cut out 8 × 8 images.
Therefore, the single image has 642 pixels,
6.25 h−1 Mpc on a side. Finally, we also apply
the transformation of the pixel value following
our previous work [11], and it is described as
mTðnÞ ¼ sinh−1ðδTbðnÞ ½nK�Þ. Figure 5 shows ex-
amples of the image for the CDM, 2 keV FD, and
3 keV FD model at z ¼ 3 and z ¼ 6.

In total, we have ð8 × 8Þ (cut out in Step 3) ×512
(offsets × slices) ×2 (directions of the LOS) ¼ 65535 for a
set of training and validation data for one realization of the
simulation. We use one percent of these images as the
validation data. For the test data, we have ð8 × 8Þ (cut out)
×1 (direction of the LOS) ¼ 64 images for a realization,
where we do not apply the offsets. In addition, in training
the CNN, the images are rotated every 90 degrees and
flipped horizontally to generate another different set of
images to increase the training images effectively. In most

FIG. 4. The illustration of the procedure of making images from the simulation. Step 1: Define the physical quantities on the regular
grid of 5123 using SPH kernel. Step 2: Project them along the LoS over 25 Mpc=h width with the offsets of ∼0.1 Mpc=h steps for the
data augmentation. Step 3: The image is subdivided into 8 × 8 images, and the δTb image is transformed with sin h−1 function to
increase the dynamic range. Please see the text (in Sec. III B)for more detailed procedures.
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cases, data is split into 80% training and 20% validation
sets. However, due to our limited dataset, we chose an
extreme split of 99% for training and 1% for validation.
This decision aims to optimize the model as much as
possible. While this approach may risk overfitting the
training data, the independent hold-out test dataset, which
is large enough, indicates that the model fits well and is not
overfitted.

C. Noise budget

In this section, we add the system noise assuming SKA-
Low to the images generated in Sec. III B to test the effect
of the noise on the CNN classification between the CDM
and FD model.
Here we assume the noise at a pixel follows the Gaussian,

where its mean is zero, and variance is given by [31]

σ2N ¼ d2uCN
l : ð11Þ

du corresponds to the angular size of the simulation box in
Fourier space and is 2πχ=Lbox, where χ and Lbox are the
comoving distance to the source of the signal and the box
size of our simulation, respectively.

CN
l is the angular noise power spectrum. In this work,

we simply assume that CN
l is scale independent and is

described as [32]

CN
l ¼ T2

sys½FOV�2
Bt0nðuÞ

; ð12Þ

where B is the frequency bandwidth corresponding to the
projection length in our work, and t0 is the integration time.
In this work, we assume t0 ¼ 1000 hours. FOV is the field of
view and is approximated as λ2=Ad, where λ is the observed
wavelength and Dd is the diameter of the single antenna.
Tsys is the system temperature and is described by using

the observed frequency ν ¼ ν0=ð1þ zÞ as

Tsys ¼ 28þ 66

�
ν

300 MHz

�
−2.55

K: ð13Þ

nðuÞ is the number density of the baselines, described
as [33]

nðuÞ ¼ NdðNd − 1Þ
2πðu2max − u2minÞ

; ð14Þ

FIG. 5. These are examples of the image for CDM (left), 3 keV FDWDM (middle), and 2 keV FDWDM (right) at z ¼ 3 (upper) and
z ¼ 6 (lower). Each image includes the 6.25 × 6.25 ½ðh−1 MpcÞ2� × 25 ½h−1 Mpc� region of a simulation box and has 64 × 64 pixels.
These images come from the same region of each simulation box.
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where Nd is the number of the antenna, umax and umin are
defined by using the maximum baseline Dmax and the
antenna diameter Dd as Dmax=λ and Dd=λ, respectively.
Our work considers the redshifts from z ¼ 6 to z ¼ 3

with the SKA-Low. To compute Eq. (11), we approximate
Ad ∼ Atot=Nd, where Atot is the total collective area and
Ad ¼ πðDd=2Þ2. We use Atot ¼ 419000 m2, Nd ¼ 512, and
Dmax ¼ 74 km as the SKA-Low configuration [34].
To generate noised images, we make the noise-

only image with 512 × 512 pixels, corresponding to
50 × 50 ðh−1 MpcÞ2, and add this image to the δTb map
after the projection in the Step 3 in Section III B.
In addition, we apply the transformation by m0

TðnÞ ¼
sinh−1ðδTbðnÞ ½mK�Þ instead of mTðnÞ in Step 3, because
we found that our CNN shows better performance for the
classification of the noised images when we apply m0

TðnÞ.
Figure 6 shows examples of noised images. We can see

the noise at the higher redshift hides the signals because the
structure has not grown yet compared to the lower redshift.

IV. METHODS

This work considers the NDM-class classification, where
NDM is the number of the dark matter models assumed in
the classification. Specifically, the 2-class (binary) classi-
fication of the CDM and FD WDM (Secs. VA and V B)
and the 5-class classification of the CDM, FD, νMSM, SF,
and DW models (Sec. V C). In Secs. IVA and IV B, we
consider the analysis focusing on images and power spectra
from a single redshift, which is one of z ¼ ½3; 4; 5; 6�.

And Sec. IV C considers that all images at z ¼ ½3; 4; 5; 6�
are simultaneously used as the input to the machine
learning algorithms. Finally, Sec. IV D shows the training
procedure.

A. Power spectrum

To compare the image-based analysis with the power
spectrum analysis, we implement the neural network
trained by the power spectrum. In this section, we show
the calculation of the power spectra of images and the
architecture of our neural network.
To calculate the power spectra of images, we apply

a two-dimensional Fourier transform to the images, and
the pixel values of the Fourier-transformed image are
calculated as

m̃Tðk⊥Þ ¼
Z

exp ð−ik · nÞmTðnÞd2n; ð15Þ

where k⊥ is the wave number perpendicular to the LOS.
And then, the power spectrum of a mTðnÞ image is

written as

PmT ðkiÞ ¼
1

L2

1

Nki

X
j

m̃TðkjÞm̃�
TðkjÞ; ð16Þ

where ki ¼ jkij is the absolute value of the wave number of
the center of the ith bin, kj is the wave number satisfies
ki ≤ jkjj < kiþ1,Nki is the number of the modes in ith k bin

FIG. 6. Examples of the noised image (top) and the signal-only image (bottom) in the same region for the CDM model. From left to
right, each panel corresponds to z ¼ 3, 4, 5, and 6. The size of the image corresponds to 6.25 × 6.25 ½ðh−1 MpcÞ2�.
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and L is the size of image and is 6.25 h−1Mpc. The
minimum and maximum wave numbers are determined
by the size and resolution of the images from which
we measure the spectrum, and they are kmin ¼
2π=6.25 hMpc−1 and kmax ¼ 2π=ð6.25=64Þ hMpc−1,
respectively. We change the number of k-bins from 2 to
16 and find that 8 minimizes the AUC value. Therefore, we
apply 8 bins.
Figure 7 shows the power spectra calculated by Eq. (16)

for CDM and FD with some masses and the ratio of the FD
power spectrum to the CDM’s one. For the power spectrum
of the HI distribution, we can see the suppression of the
amplitude at all scales in images differently from the dark
matter case shown in Fig. 1. The relation between the
power spectrum of the matter density fluctuation δm and the
one of the differential brightness temperature δTb is

hδT̃bδT̃bi ∝ hñHIñHIi
¼ hðn̄HIδ̃HI þ n̄HIÞðn̄HIδ̃HI þ n̄HIÞi
¼ n̄2HIb

2
HIhδ̃mδ̃mi þ n̄2HI; ð17Þ

where Ã represents the Fourier counterpart of a physical
quantity A, n̄HI is the mean of the HI number density, and
bHI is the HI bias. Therefore, even when the suppression of
the matter power spectrum caused byWDM appears only at
the small scale, the overall amplitude of δTb power
spectrum is affected due to the smaller HI number density
in the WDM models. Figure 8 also shows the PmT ðk⊥Þ for
the CDM and 2 keV FDmodel at redshift z ¼ 3, 4, 5, and 6.
We can see the growth of structure in the upper panel and
the dependence of the power spectra on the redshift.
For the power spectrum analysis, we use a neural network.

We implement the neural network with PYTORCH [35],

which is a PYTHON module to implement the deep learning
algorithm, shown in Table I. This neural network has
four hidden fully connected layers and we apply the 40%
dropout [36] after each layer to avoid overfitting to the
training data. Our neural network is trained by the power
spectrum of the training images generated in Sec. III B.
Therefore, we have exactly the same number of training,
validation, and test datasets for the power spectrum as in the
case of the CNN. We examine some architecture with more
or less layers and nodes and find the architecture shown in
Table I shows the best performance in the binary classi-
fication of the CDM model and 2 keV FD model.
The last layer of our neural network has NDM nodes. For

the ith input image of the model M, we describe the output
from the kth node as yiðkjMÞ. Each node corresponds to the
output for each dark matter model, and the weight param-
eters are optimized to maximize yiðMjMÞ by training.

FIG. 7. The upper panel shows the mT power spectra of images
for the CDM, 3 keV FD, and 2 keV FD model at z ¼ 3. In the
lower panel, we show the power spectrum ratio for FD models to
that for the CDM model.

FIG. 8. The upper panel shows the mT power spectra of images
for the CDM (purple) and 2 keV FDmodel (blue) at z ¼ 3 (solid),
4 (dashed), 5 (dot-dashed), and 6 (dotted). In the lower panel, we
show the power spectrum ratio for FDmodels to that for the CDM
model for each redshift.

TABLE I. Our neural network architecture. This network has
174,530 trainable parameters. After the 2nd, 3rd, 4th, and 5th
layers, we apply the dropout, and 40% of the nodes selected
randomly in the previous layer are not used in training.

Layer Output size

1 Input 8
2 fully connected 64

dropout(0.4)
3 fully connected 128

dropout(0.4)
4 fully connected 256

dropout(0.4)
5 fully connected 512

dropout(0.4)
6 fully connected NDM
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B. CNN

In this work, we use CNN for the image-based analysis.
Table II shows the architecture of our CNN, which was
originally proposed by the convergence field analysis [37].
We explore some deeper or shallower architecture. In the
following, we apply the architecture shown in Table II,
which shows the best performance among our tests for the
binary classification of the CDM and 2 keV FD WDM. In
addition, the choices of the kernel size or the channel
number are also subject to optimization. We find that the
choice of kernel size and number of channels mildly affects
the results, but the current choice is the most effective
regarding the DM model classification.
Our CNN consists of 10 convolution layers, an

AveragePooling layer, and a GlobalAveragePooling
layer [38]. In the x × y convolution layer, the input to this
layer is convolved by the x × y kernel with the stride ¼ 1.
In our CNN, the padding is not applied, and the image size
becomes smaller after each 3 × 3 convolution layer.
Additionally, we apply the batch normalization [39] to
improve the efficiency of the training.
This CNN has ∼3.4 × 106 trainable parameter, and we

have 6.5 × 104 for each dark matter model. Therefore, we
train our CNN by ∼105 training images for the binary
classification and have enough training data [40].
The output of the last layer represents the same as our

neural network in Sec. IVA, and we also describe it
as yiðkjMÞ.

C. Joint redshift

Here, we investigate the joint redshift analysis for both
the power spectrum analysis with the neural network and
the image-based analysis with CNN. By using the power

spectra and images at different redshifts z ¼ ½3; 4; 5; 6�
simultaneously as the input to the neural network and CNN,
we examine whether the classification results are improved
due to the increase of information included in the inputs. In
the following subsection, we randomly pick up four images
from each redshift and use them as input for our machine-
learning algorithms.
For the power spectrum analysis with the neural net-

work, we first calculate PmT ðk⊥Þ for the input images at
each redshift. Then, these power spectra are simply
concatenated and used as the input to the neural network.
The architecture is the same as the one shown in Table I
except for the input layer, and the input size is 8 (number of
k⊥ at a single redshift) ×4(number of redshifts) ¼ 32.
We examine the architectures including more nodes
than Table I, but we do not find an improvement in the
classification result.
For the image-based analysis with CNN, we prepare 4

CNNs, whose architecture is the same as Table II except
that it does not have a last fully connected layer.
Subsequently, each CNN is fed with images from each
redshift, and their outputs are combined by an additional
fully connected layer, which has 512 (number of feature
maps from GlobalAveragePooling layer) ×4(number of
redshifts) ¼ 2048 nodes.
The architectures for the joint redshifts analysis are

shown in Fig. 9.

D. Training

For the evaluation of the output from the neural
network and CNN, we convert the outputs by the softmax
function as

piðkjMÞ ¼ exp ðyiðkjMÞÞP
l exp ðyiðljMÞÞ ; ð18Þ

where we sum up the outputs over all nodes in the last layer
in the denominator, and piðkjMÞ is the probability pre-
dicted by our CNN that the ith input image is k model and
M means the true dark matter model for the ith input.
To optimize our neural network and CNN, we update the

weight parameters in our machine learning architectures to
maximize the predicted probability for the correct model M
for the ith input image piðMjMÞ. To do this, we minimize
the loss function. In this work, we adopt a typical cross-
entropy as a loss function,

EiðwÞ ¼ −
X
k

p̃iðkjMÞ ln ðpiðkjMÞÞ: ð19Þ

In this equation, p̃i takes 1 for correct class (k ¼ M) and 0
otherwise (k ≠ M), and predicted probability pi takes
continuous values between 0 and 1. The output pi is an
implicit function of the weight parameters w.

TABLE II. Our CNN architecture. The output map size
represents the ðheightÞ × ðwidthÞ × ðchannelsÞ of the output from
the layer, where channel means the number of the kernels. After
each convolution layer, we apply batch normalization (BN). This
CNN has the 3,379,522 trainable parameters.

Layer Output map size

1 Input 64 × 64 × 1
2 BNð3 × 3 convÞ 62 × 62 × 64
3 BNð3 × 3 convÞ 60 × 60 × 64
4 BNð3 × 3 convÞ 58 × 58 × 128
5 BNð3 × 3 convÞ 56 × 56 × 128
6 BNð3 × 3 convÞ 54 × 54 × 256
7 BNð1 × 1 convÞ 54 × 54 × 128
8 BNð3 × 3 convÞ 52 × 52 × 256
9 BNð3 × 3 convÞ 50 × 50 × 512
10 BNð1 × 1 convÞ 50 × 50 × 256
11 BNð3 × 3 convÞ 48 × 48 × 512
12 2 × 2 AveragePooling 24 × 24 × 512
13 GlobalAveragePooling 1 × 1 × 512
14 fully connected NDM
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For the optimization, we apply the AMSG RAD [41]
and take the learning rate as 10−4 and 10−5 for the neural
network and CNN, respectively. In training, we apply the
minibatch learning with the batch size ¼ 32.

V. RESULTS

In this section, we show the results of the dark matter
model classifications. First, we show the results of the
binary (NDM ¼ 2) classification between the CDM and FD
WDM in Sec. VA. Section V C discusses the classification
including different WDM models.

A. Binary classification

Here, we classify the CDM and FD WDM images and
assume the FD WDM mass is 2 and 3 keV.
We use the neural network and CNN to classify the

images and evaluate the results using the area under the
curve (AUC) of the receiver operating characteristic (ROC)

curve. In calculating the AUC following [11], we assume
that the positive and negative represent the input image is
classified into the FD and CDM model, respectively. If our
neural network or CNN can accurately classify the images,
AUC becomes close to 1. On the other hand, AUC is
around 0.5 for the binary classification when they cannot
classify the images.
Figure 10 shows the AUC values for the binary classi-

fication with CNN and power spectrum denoted as PS. The
left and right panels correspond to the classification for
2 keVand 3 keV FDWDM, respectively. In this figure, the
errors (1-σ) are estimated by the jackknife resampling of
the test images, where the number of resampled images is
127 for each dark matter model.
For both 2 keVand 3 keV FDWDMmasses, CNN (blue)

shows larger AUC values than the power spectrum (orange)
at each redshift. Our CNN can classify the CDM and 2 keV
FD WDM with AUC ∼ 0.9, while the AUC for the power
spectrum is ∼0.6 at all redshifts we consider. This is not

FIG. 9. The architectures for joint redshift analysis are shown. For the power spectrum analysis, the power spectra from each redshift
are concatenated, and we input it to the neural network shown in Table I. For the image-based analysis, we construct 4 CNNs of Table II
and input the image from each redshift to each CNN. And then, the outputs from the CNNs are concatenated by a fully connected layer.
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surprising because CNN uses images that can include
information beyond the power spectrum, such as higher-
order statistics. For the 3 keV FD case, CNN shows a
slightly larger AUC than the power spectrum, and it is
difficult to distinguish 3 keV FD WDM from CDM. It
should be clear from Fig. 7 that the power spectrum of mT
for 3 keV differs from the CDM model at most 5% and the
most significant difference is only on smaller scales where
the shot noise dominates. Therefore, it is more challenging
to discriminate the 3 keV model from the CDM compared
to the 2 keV model.
Additionally, while Fig. 8 shows the redshift dependence

of the ratio of the power spectrum of the CDM and FD
WDM, we do not find significant effects on our results for
the classifications. The halo number is smaller at higher
redshifts, and the shot noise in the images is more
significant. Therefore, the classification results are not
improved despite the larger difference in the power
spectrum at higher redshifts.

We also show the results for the joint redshift analysis
with the shaded region in Fig. 10. For the classification
between the CDM and 2 keV FD WDM, we find the AUC
for the joint redshift is larger than the one for the single
redshift at each redshift and the improvement of the AUC for
both CNN and the power spectrum. On the other hand, the
power spectrum information alone is insufficient to classify
the CDM and 3 keV FD model for the 3 keV FDWDM, and
AUC does not improve even with joint redshift analysis.

B. Binary classification with the system noise

Here, we consider the binary classification between the
CDM and FD WDM model for the noised images to
compare with the previous section without noises.
Figure 11 shows the AUC values for the classification

between the CDM and FD model. The left and right panels
correspond to the 1 keV and 2 keV FD WDM masses.
For 1 keV mass, the AUC for the power spectrum

depends on the redshift. The AUC is 0.64 and the power

FIG. 10. The AUC values for the classifications of the test images between the CDM and FD model with CNN (blue) and the power
spectrum (orange) at each redshift. The left and right panels correspond to the classification for the 2 keV and 3 keV FD models,
respectively. In addition, the dot-dashed line and shaded region represent the joint redshift analysis. The error bar and shaded region
show the 1σ jackknife error.

FIG. 11. The AUC values for the classification of the test images between the CDM and FD model with CNN (blue) and the power
spectrum (orange) at each redshift. The left and right panels correspond to the classification for the 1 keV and 2 keV FD models,
respectively. In addition, the dot-dashed line and shaded region represent the joint redshift analysis. The error bar and shaded region
show the 1σ jackknife error.
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spectrum can classify the images at z ¼ 3, while the AUC is
0.52 at z ¼ 6. These results are consistent with Fig. 6,
where the signals are hidden by the noise at higher redshift.
The joint redshift analysis shows a similar AUC value to the
single redshift analysis at z ¼ 3, and the other redshift does
not contribute to the classification.
CNN shows a better performance than the power

spectrum analysis for 1 keV FD WDM mass. At z ¼ 3,
the AUC for CNN is 0.84, while the one for the power
spectrum is 0.64. CNN’s results also show the redshift
dependence, but the dependence is not as strong as the case
of the power spectrum. This is not surprising because CNN
can extract information beyond the power spectrum. For
instance, the CNN can extract the shape information such
as the Minkowski functionals as demonstrated in Ref. [42].
The joint redshift analysis shows better AUC than the

single redshift analysis. The AUC value is 0.98, and the
CNN can accurately distinguish the images.
For the 2 keV FD WDM mass, the AUC for the power

spectrum is not significantly larger than 0.5 at each redshift,
and the power spectrum cannot classify the images. Even
for CNN, the AUC is slightly larger than 0.5, and the
classification would be difficult with the images including
the noises.

C. Classification of WDM models

Here, we consider the classification of the dark matter
models for NDM ≥ 2. We additionally conduct the simu-
lations for νMSM, DW, and SF models introduced in Sec. I
and study the cases of 2 and 3 keV WDM masses. The
configuration of the simulations is the same as the one in
Sec. III A. The initial power spectra for each WDM model
are computed by the same procedure for the FD model as
shown in Sec. II B.
In this section, we classify the images with the joint

redshift analysis and, for simplicity, do not consider the
system noise. To evaluate the results, we consider the mean
probability of the results as

p̄ðkjMÞ ¼ 1

NM

X
i

piðkjMÞ; ð20Þ

where NM is the number of the test images of the dark
matter model M. p̄ðkjMÞ is maximized when k ¼ M.
In the following, we consider the 4 cases: 5-class

(CDM þ4 WDM), 4-class (4 WDM only), 3-class (FD,
νMSM, and DW), and 2-class (SF and DW). Here, we fix
the WDM particle mass mDM, corresponding to mFD and
the left-hand side of Eqs. (1)–(3) for each WDM model,
and we calculated the initial power spectrum of our
simulation following Eqs. (6)–(9).
As we can see in Fig. 2, which shows the relation

between mDM and k1=2 following Eq. (8), the lighter dark
matter can be distinguished more easily from the CDM
model due to the larger scale of the free streaming. On the
other hand, the difference between the WDM models
becomes larger in the case of the heavier WDM.
Especially, SF and DW are similar at around m ∼ 2 keV.
Therefore, we examine the case of the 3-class classification,
which does not classify the SF and DW, and the binary
classification between the SF and DW model.
Figure 12 shows the results of discriminating the differ-

ent model for given mDM ¼ 2 keV. The left panel corre-
sponds to the 5-class classification. The CDM, FD, and
νMSMmodels can be distinguished from the other models,
while the DW model cannot be distinguished from the SF
model. In the 2-class classification between the SF and DW
model (right panel), the CNN predicts the model with
similar probability, regardless of which model the image is
generated from, which means it cannot classify these two
models correctly. As we can see in Fig. 2, the SF and DW
models have similar features for mDM ¼ 2 keV because
their initial power spectrum is almost identical; hence, it is
difficult to distinguish these models even for the image-
based analysis.
In Fig. 12, the second panel from the right shows the

4-class classification among WDM models. Our CNN can
maximize p̄ðkjMÞ for the correct model for the FD and
νMSM model, and the FD model is distinguished from the
other models with higher accuracy because our CNN is not
perplexed by the CDM model. Finally, to illustrate the
degeneracy between the SF and DW models, we also
showed the 3-class classification results between the FD,
νMSM, and DW model. As a result, our CNN can

FIG. 12. This figure shows the p̄ðkjMÞ for each input dark matter model for mDM ¼ 2 keV. The 5-, 4-, 3-, and 2-class classifications
correspond to the left to right panel, respectively. In each panel, the vertical axis shows the ground truth model of the input images, and
the horizontal axis represents the prediction of the model.
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distinguish the FD, νMSM, and the other models (SF and
DW), while it is difficult to distinguish the SF and DW
models.
Figure 13 shows those same as Fig. 12, but we assume

mDM ¼ 3 keV. For this case, the difference between the
dark matter models appears at the smaller scales than the
case of mDM ¼ 2 keV. For the 5-class classification (top
left), our CNN cannot distinguish the FD from the CDM
model as we can see in the second raw corresponding to the
case that the input is the FD model. The free streaming
scale is smaller than the 2 keV case and the classification
between the CDM and FD becomes difficult. The νMSM
cannot be distinguished either from the other models, and
the p̄ðkjνMSMÞ is a similar value regardless of the target
model represented by k. The amplitude of the power
spectrum for the νMSM model is in between the
other dark matter models, and this model cannot be
distinguished from the others. In the 4-class classification,
the FD model can be distinguished from the other
models, but p̄ðFDjνMSMÞ shows a comparable value to
p̄ðνMSMjνMSMÞ. The SF and DW models cannot be
distinguished and are confused by the νMSM model.
For the 2-class classification between the SF and DW

model, it is still difficult to classify these models. However,
p̄ is maximized for the correct model for the input, and the
classification is slightly improved compared to the case of
mDM ¼ 2 keV. This result is consistent with Fig. 2. The
difference between the WDM models becomes larger for
more massive dark matter due to the larger difference of
k1=2, while the difference appears at smaller scales. If the
WDM is a heavy particle, the classification can become
more feasible with higher-resolution data.

VI. CONCLUSION/DISCUSSION

This paper first investigates the binary classification
between the CDM and FD models with various particle
masses. We conduct a suite of the hydrodynamic simu-
lations of the CDM model and FD models and generate the
images of the δTb, which is the signal from HI. We classify
the images between the CDM and FD with CNN and the
power spectrum and show that CNN outperforms the power
spectrum for the classifications as shown in Fig. 10. The
AUC of CNN is ∼0.9 for the CDM and 2 keV FD, while the

one of the power spectrum is ∼0.6. In addition, we do not
find the redshift dependence of the classification for both
methods. At higher redshift, the difference of the power
spectrum for the CDM and FD is larger, as shown in Fig. 8,
but the number of halos is smaller, and the classifications
are not improved.
We also consider the joint of the images for different

redshifts. We classify the images of the CDM and FD with
CNN and the power spectrum, where the machine learning
architectures are shown in Fig. 9. The results are shown in
Fig. 10, and we find the classification results for the joint
redshift are improved compared to those for the single
redshift in both CNN and the power spectrum cases.
However, the classification between the CDM and 3 keV
FDWDM is not improved even when considering the joint
redshift. The power spectrum analysis reveals that infor-
mation derived solely from the power spectrum is insuffi-
cient to distinguish 3 keV FD WDM from CDM. This
finding underscores the superiority of CNN analysis in
distinguishing different dark matter models.
Next, we consider the case of the noised images. We

assume the SKA-Low observation and add the white noise
to the images. Then, we classify the noised images between
the CDM and FD models. The results are shown in Fig. 11.
For the images with noise, CNN shows better performance
than the power spectrum. For the 1 keV FD case, the AUC
for CNN is 0.84 at z ¼ 3 while the one for the power
spectrum is 0.64. Additionally, we find the redshift
dependence of the results for both CNN and the power
spectrum. This is because the noise at higher redshift hides
more signals, as we can see in Fig. 6.
The classification with CNN for the 1 keV FD is

improved for the joint redshift. The AUC is 0.98 for the
joint redshift, while the one is 0.84 for only z ¼ 3.
However, the classification is not significantly improved
when CNN or the power spectrum cannot distinguish the
images for the single redshift image, such as in the case of
the 2 keV FD WDM.
Finally, we consider additional three WDM models:

νMSM, SF, and DW production scenarios. We conduct the
additional simulations for these WDM models and make
images. And then, we classify the dark matter models with
CNN for the joint redshift.

FIG. 13. Same as Fig. 12 but for mDM ¼ 3 keV.
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We consider the case that the particle mass of the WDM
is 2 keV. For the 5-class classification, CNN can distinguish
the CDM, FD, and νMSM from the other dark matter
models. However, CNN cannot classify the SF and DW
models due to the small difference in their initial power
spectra. This misclassification is not changed for the case of
4-class classification without CDM, where we consider
only WDM models. Even for the binary classification
between the SF and DW, CNN cannot distinguish these two
models for 2 keV mass.
When we consider the WDM particle mass of 3 keV, the

classifications are degraded as shown in Fig. 13 due to
the smaller free-streaming length of the WDM. However, the
difference between the WDM models is larger at a smaller
scale when we consider heavier particles, as shown in Fig. 2.
The classification of different WDM models can be more
feasible for a higher WDM mass if we have images with a
high enough resolution. Our study shows that the classi-
fication between the SF and DW with the mass 3 keV, for
instance, is indeed improved compared to the 2 keV case.
Further comments on the treatment for the different dark

matter production mechanisms are in order. Our approach
simplified the representation of differences in production
mechanisms by rescaling the warm dark matter mass within
a Fermi-Dirac distribution. This methodology provides
valuable insights and emphasizes the potential of 21 cm
signal observations in probing warm dark matter models.
However, a more rigorous examination of these scenarios is
warranted for a more comprehensive exploration of dark
matter properties. Having demonstrated that different
production scenarios can leave observable imprints on
the 21 cm signals and, more broadly, on cosmic structure
formation, the next step would be to incorporate these
varied phase space distributions into the collisional terms of
the Boltzmann equations. Furthermore, integrating the
Boltzmann equation in a six-dimensional phase space,
although computationally intensive, would be a vital future
step toward a deeper understanding of dark matter char-
acteristics [43–45]. Our use of machine learning tech-
niques, which leverage image recognition and thus can
capture higher-order correlation information beyond the
simple two-point correlation functions, would also benefit

from such a thorough analysis and is expected to provide
deeper insights into the nature of dark matter. The question
of how dark matter was produced in the early Universe
continues to be one of the most intriguing challenges at the
crossroads of particle physics and cosmology, and further
exploration of dark matter production mechanisms through
the cosmological observations, including the treatment of
the Boltzmann equation in six-dimensional phase space, is
left for future work.
As the volume of observational data continues to grow,

the need for efficient data processing becomes increasingly
critical for forthcoming observations. While CNNs outper-
form other methodologies, their extensive consumption of
computational resources limits the complexity that can be
incorporated into machine learning models. This significant
drawback hampers efforts to constrain dark matter models.
To enhance data processing efficiency, we intend to explore
alternative statistical methods or more efficient architec-
tures, such as graph neural networks (GNNs) [46]. This
exploration will be the focus of our future work.
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