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The growth-rate fσ8ðzÞ of the large-scale structure of the Universe is an important dynamic probe of
gravity that can be used to test for deviations from general relativity. However, for galaxy surveys to extract
this key quantity from cosmological observations, two important assumptions have to be made: (i) a
fiducial cosmological model, typically taken to be the cosmological constant and cold dark matter model
and (ii) the modeling of the observed power spectrum, especially at nonlinear scales, which is particularly
dangerous as most models used in the literature are phenomenological at best. In this work, we propose a
novel approach involving convolutional neural networks (CNNs), trained on the Quijote N-body
simulations, to predict fσ8ðzÞ directly and without assuming a model for the nonlinear part of the power
spectrum, thus avoiding the second of the assumptions above. This could serve as an initial step towards the
future development of a method for parameter inference in stage IV surveys. We find that the predictions
for the value of fσ8 from the CNN are in excellent agreement with the fiducial values since they outperform
a maximum likelihood analysis and the CNN trained on the power spectrum. Therefore, we find that the
CNN reconstructions provide a viable alternative to avoid the theoretical modeling of the nonlinearities at
small scales when extracting the growth rate.
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I. INTRODUCTION

Recent cosmological observations indicate that the
Universe is experiencing accelerated expansion, typically
attributed to a new form of matter, i.e., dark energy, that is
responsible for this phenomenon. Within the context of the
Friedmann-Lemaître-Robertson-Walker cosmology, this
new dark energy component is frequently attributed to
the cosmological constant Λ, which is introduced regard-
less of the fine-tuning issues that this may cause [1,2].
Together with the assumption of a cold dark matter (CDM)
component, these two ingredients comprise the so-called
ΛCDM model, which is currently the concordance cos-
mological model [3].
The large-scale structure (LSS) of the Universe encodes

very important details crucial to testing cosmological
models, as it provides information about the late-time

evolution of the Universe and the structure of the matter
density field. Both are useful for constraining the current
values of the fractional density parameters for CDM,
baryonic matter, and dark energy: Ωm;0, Ωb;0, and ΩΛ;0,
respectively, and many other parameters like the clustering
strength σ8 [4,5]. They are also important probes to search
for possible deviations from general relativity.
An overriding challenge in modern cosmology is under-

standing the features of dark energy, and here lies the
importance of obtaining highly accurate data from forth-
coming cosmologicalmissions such asEuclid [6], LSST [7],
and DESI [8], which aim to provide measurements to a few
percent of the various key parameters related to the LSS. In
order to make sense of the plethora of currently available
cosmologicalmodels and observations [9,10], it is necessary
to develop valuable statistical tools. In particular, machine
learning (ML) has attracted increasing attention as it
simplifies the usually computationally expensive proce-
dures for data treatment [11]. Simulations also play an
indispensable role in understanding the whole picture of the
LSS since some information is particularly difficult to
extract due to the nonlinear nature of the system. This is
the motivation behind the Quijote N-body simulations,
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consisting of CDM particle simulations that allow quantify-
ing data on the matter field in the fully nonlinear regime and
with different statistics [12].
One way of probing the dynamics of LSS is by

measuring the growth of matter density perturbations
δm ¼ δρm=ρm, where ρm is the background matter density
and δρm its linear order perturbation, and its growth rate
that is usually represented by its logarithmic derivative
f ¼ d ln δm

d ln a . However, when dealing with galaxy surveys, the
observed quantity is, in fact, the galaxy density δg, which is
connected to the matter perturbations through a bias
parameter that changes from survey to survey: δg ¼ bδm
and depending on the type of galaxy observed [13]. At
some redshift bin zi, the growth rate fðziÞ can be combined
with the bias bðziÞ to give rise to the so-called velocity-
density coupling parameter βðziÞ ¼ fðziÞ=bðziÞ. At the
same time, the combination of bðziÞσ8ðziÞ can also be
independently measured [14], where σ8ðzÞ is the root
mean square density fluctuation in a sphere of radius
R ¼ 8 Mpch−1. Therefore, the combination fσ8ðzÞ≡
fðzÞσðzÞ is independent of bias and can be measured
via redshift-space distortions [15]. Additionally, other
approaches were developed in recent years: analyses of
galaxy clustering have also been done using the effective
field theory of large-scale structure [16,17] and simulation-
based emulators were implemented [18–20].
In order to extract fσ8ðzÞ with this approach, two main

assumptions have to be made: first, that of a cosmological
model (typically assumed to be the ΛCDM model), as we
need to convert the redshifts of galaxies and coordinates
in the sky to distances, for extracting the correlation
function [21]. Second, we need to assume a model for the
nonlinear part of the power spectrum, typically done with
phenomenological models [22–26].
This approach has also created several fσ8ðzÞ dataset

compilations; see, for example, Refs. [14,27,28] and
references therein, where the data explicitly depend on
the cosmology used. This can be somewhat easily corrected
via an Alcock-Paczynski type correction [27], but the
second issue of the model dependence on the nonlinear
power spectrum is more insidious as all models used are
phenomenological, and, thus far, there is no way to correct
for that a posteriori.
One approach that has been recently proposed to extract

cosmological parameters in a theory-agnostic manner is
via ML techniques, in particular, by training convolutional
neural networks (CNNs) on N-body simulations and then
extracting the parameters from the LSS statistics [29]. This
approach was also further expanded to extract the cos-
mological density and velocity fields from N-body sim-
ulations [30,31]. These ML methods have the main
advantage that after the original training has occurred, any
subsequent evaluations are practically instantaneous, and
more importantly, they allow for extracting the quantities of

interest without assuming a specific functional form for the
power spectrum.
Therefore, in this work, we aim to extract and compare

the growth-rate fσ8 by leveraging ML techniques. We
implemented and trained a CNN directly on N-body
simulations at different redshift bins and also on the power
spectrum of these simulations. While we do not steer clear
of the cosmological model premise, we refrain from
assuming the modeling of the nonlinear power spectrum.
Lastly, let us clarify that, even if one could measure a

dark matter (DM) density map, the analysis would not be as
direct and useful as the one with fσ8 measurements in the
end. The reason is that while the DM density map serves as
a valuable tool, model comparison, e.g., ΛCDM versus
fðRÞ, is typically conducted using fσ8, which essentially
compresses the same information. Therefore, having pre-
dictions for fσ8 in a manner as model independent as
possible is highly desirable. An approximate analogy is
found in the Planck cosmic microwave background maps at
the pixel level. While these maps are useful for analysis and
contain comprehensive cosmological data, parameter infer-
ence and model selection are primarily based on the angular
power spectra.
The layout of our paper is as follows: in Sec. II, we

briefly summarize the theoretical background of our
analysis, while in Sec. III, we present the details for the
Quijote simulations used in our analysis. Then, in Sec. IV,
we describe the results of our ML analysis using the density
field of the simulations. Finally, we summarize our con-
clusions in Sec. V.

II. THEORETICAL FRAMEWORK

A. The ΛCDM model and the growth rate

In this work, we will consider general relativity and a flat
ΛCDM universe with an equation of state of w ¼ −1 for
dark energy.
At the background level, the Hubble parameter in a flat

ΛCDM model is given by the first Friedmann equation as
usual:

HðaÞ2 ¼ H2
0ðΩm;0a−3 þ 1 −Ωm;0Þ; ð1Þ

where H0 is the Hubble constant and the matter density
Ωm;0 can be related to the scale factor a by

ΩmðaÞ ¼
Ωm;0a−3

HðaÞ2=H2
0

: ð2Þ

Also, assuming a flat universe, we can calculate the
comoving distance DðzÞ from us to a redshift z as

DðzÞ ¼
Z

z

0

cdz0

Hðz0Þ ; ð3Þ
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where c is the speed of light and HðzÞ is Hubble parameter
at redshift z calculated via Eq. (1), when neglecting
radiation and neutrinos at late times.
On the other hand, observations from the LSS and the

cosmic microwave background also suggest the existence
of small∼Oð10−5Þ perturbations. Consequently, we have to
work in the framework of a perturbed Friedmann-Lemaître-
Robertson-Walker metric, as the gravitational instability
produced by density fluctuations plays a crucial role in
seeding the structures at large scales. In the conformal
Newtonian gauge, we consider scalar metric perturbations
Ψ and Φ, so the perturbed metric can be written as [32,33]

ds2¼ aðτÞ2f−½1þ2Ψðx⃗;τÞ�dτ2þ½1−2Φðx⃗;τÞ�dx⃗ 2g; ð4Þ

where the potentials depend on the space-time point
xμ ¼ ðx⃗; τÞ, with τ being the conformal time, while the
scale factor aðτÞ only depends on the conformal time.
In general, we can assume that the matter component

behaves as a perfect fluid and is described by the stress-
energy tensor:

Tμ
ν ¼ Pδμν þ ðρþ PÞUμUν; ð5Þ

where the four-velocity is Uμ ¼ dxμffiffiffiffiffiffiffi
−ds2

p , the total density is

ρ ¼ ρ̄þ δρ, the total pressure is P ¼ P̄þ δP, also δρ ¼
δρðx⃗; τÞ and δP ¼ δPðx⃗; τÞ are the density and pressure
perturbations, respectively, while ρ̄ ¼ ρ̄ðτÞ and P̄ ¼ P̄ðτÞ
are the background energy density and pressure quantities.
Therefore, the stress-energy tensor components are [34]

T0
0 ¼ −ðρ̄þ δρÞ; ð6Þ

T0
i ¼ ðρ̄þ P̄Þui; ð7Þ

Ti
j ¼ ðP̄þ δPÞδij þ Σi

j; ð8Þ

where Σi
j ≡ Ti

j − δijT
k
k=3 is the anisotropic stress and

u ¼ ˙x⃗. The dot denotes the derivative with respect to
τ [35]. Recall that the energy-momentum tensor follows
the conservation law Tμν

;ν ¼ 0, as a consequence of the
Bianchi identities [34].
To study the evolution of the perturbed variables, we

resort to the perturbed Einstein equations in k space [32,34]:

k2Φþ 3
ȧ
a

�
Φ̇þ ȧ

a
Ψ
�

¼ 4πGNa2δT0
0; ð9Þ

k2
�
Φ̇þ ȧ

a
Ψ
�

¼ 4πGNa2ðρ̄þ P̄Þθ; ð10Þ

Φ̈þ ȧ
a
ðΨ̇þ 2Φ̇Þ þ

�
2
ä
a
−
ȧ2

a2

�
Ψþ k2

3
ðΦ −ΨÞ

¼ 4π

3
GNa2δTi

i; ð11Þ

k2ðΦ −ΨÞ ¼ 12πGNa2ðρ̄þ P̄Þσ; ð12Þ

where the fluid velocity is defined via θ ¼ ikjuj and kj
is the wave number of the perturbations in Fourier space.
We can also rewrite the anisotropic stress as ðρ̄þ P̄Þσ≡
−ð−k̂ik̂j − 1

3
δijÞΣij.

By taking the following approximations: subhorizon
(only the modes in the Hubble radius are important) and
quasistatic (neglect terms with time derivatives), we can
simplify the perturbed Einstein equations. Let us consider
the perturbation of the Ricci scalar and see how it simplifies
with these approximations:

δR ¼ −
12ðH2 þ ḢÞ

a2
Ψ −

4k2

a2
Φþ 2k2

a2
Ψ

−
18H
a2

Φ̇ −
6H
a2

Ψ̇ −
6Φ̈
a2

;

δR ≃ −
4k2

a2
Φþ 2k2

a2
Ψ; ð13Þ

then, we can find the following expressions for the
Newtonian potentials, see [34]

Ψðk; aÞ ¼ −4πGN
a2

k2
μðk; aÞρ̄mδm; ð14Þ

Φðk; aÞ ¼ −4πGN
a2

k2
Qeffðk; aÞρ̄mδm; ð15Þ

where μðk; aÞ≡Geffðk; aÞ=GN is used to denote an evolv-
ing Newton’s constant. In GR, the two parameters μðk; aÞ
and Qeffðk; aÞ can be shown to be equal to unity, but in
modified gravity theories they are, in general, time and
scale dependent [34].
From the context developed before and by using the

continuity equations that come from the conservation of the
energy-momentum tensor (via the Bianchi identities), we
arrive at a second-order differential equation that describes
the evolution of the matter density perturbations (in the
absence of massive neutrinos), which is valid in the context
of most modified gravity models [36]:

δ00mðaÞ þ
�
3

a
þH0ðaÞ

HðaÞ
�
δ0mðaÞ

−
3Ωm;0μðk; aÞ
2a5HðaÞ2=H2

0

δmðaÞ ¼ 0; ð16Þ

for which we assume the initial conditions δmða ≪ 1Þ ∼ a
and δ0mða ≪ 1Þ ∼ 1 at some initial time in the matter
domination era, e.g., a ¼ 10−3.
In GR and the ΛCDM model (μ ¼ 1), the analytical

solution for the growing mode can be found by directly
solving Eq. (16) and is given by [37–40]

NONLINEARITY-FREE PREDICTION OF THE GROWTH-RATE … PHYS. REV. D 110, 023525 (2024)

023525-3



δmðaÞ ¼ a · 2F1

�
1

3
; 1;

11

6
; a3
�
1 −

1

Ωm;0

��
; ð17Þ

where we use the quasistatic and subhorizon approxima-
tions [36] and 2F1 is the Gauss hypergeometric function
expressed as [41]

2F1ða; b; c; zÞ ¼
X∞
n¼0

ðaÞnðbÞn
ðcÞn

zn

n!
; ð18Þ

where ðxÞn is the rising factorial calculated as

ðxÞn ¼ xðxþ 1Þðxþ 2Þ � � � ðxþ n − 1Þ: ð19Þ
With this in mind, we can define several key quantities:

the growth rate f, and σ8, which is the root mean square
normalization of the matter power spectrum as

fðaÞ ¼ d log δm
d log a

; ð20Þ

σ8ðaÞ ¼ σ8;0
δmðaÞ
δmð1Þ

; ð21Þ

σ28;0 ¼ hδmðxÞ2i: ð22Þ
It is important to mention that, in general, we have to

correct the data for the Alcock-Paczynski effect (as differ-
ent surveys use different fiducial cosmologies) [42–44].
The combination of the growth rate fðzÞ and σ8ðzÞ gives
rise to a new bias-independent variable fσ8, that is, in fact,
what is measured by galaxy surveys from redshift space
distortions (RSDs):

fσ8ðaÞ ¼ a
δ0mðaÞ
δmð1Þ

· σ8;0: ð23Þ

This quantity can be directly measured from current and
forthcoming galaxy surveys, and several compilations
exist in the literature [14,27,28]. Thus, if a growth rate
measurement has been obtained via a fiducial cosmology
H0ðzÞ, then the corresponding fσ8 value is obtained for
the true cosmology HðzÞ via an Alcock-Paczynski-like
correction [27,44,45]:

fσ8ðzÞ ≃
HðzÞDAðzÞ
H0ðzÞD0

AðzÞ
fσ08ðzÞ: ð24Þ

Nonetheless, one of the main advantages of the fσ8
growth rate is that it is a direct dynamic probe of gravity
since, as can be seen from Eq. (16), the dependence on the
gravitational theory appears explicitly via the normalized
evolving Newton’s constant μðk; aÞ and indirectly via the
Hubble parameter HðaÞ. On the other hand, one of its main
weaknesses is also that the measurements, as currently
made by the galaxy surveys, suffer from model dependence

(typically assumed to be the ΛCDM model) and by the fact
that the modeling of the nonlinear scales is phenomeno-
logical [22–26].

B. Modeling of the nonlinear scales

While this work aims to predict fσ8 without assuming a
specific model, for comparison with the machine learning
approaches, we performed a maximum likelihood analysis
for the effective field theory (EFT) power spectrum in
redshift space in a later section. Here, we provide a brief
review of this approach for completeness.
The power spectrum analysis needs to adopt a theoretical

model to accurately account for the nonlinear effects in
galaxy clustering (e.g., [26,46–56]). We introduce the
nonlinear power spectrum, incorporating one-loop correc-
tions, through the utilization of the EFT power spectrum in
redshift space, described as [57]

PEFT
s ðk; μÞ ¼ PδδðkÞ þ 2f0μ2PδθðkÞ þ f20μ

4PθθðkÞ
þ ATNSðk; μÞ þDðk; μÞ
þ ðα0 þ α2μ

2 þ α4μ
4 þ α6μ

6Þk2PLðkÞ
þ c̃ðf0σvkμÞ4PK

s ðk; μÞ
þ Pshot½αshot0 þ αshot2 ðkμÞ2�; ð25Þ

where μ is the cosine of the angle between the line of sight,
and f0 is the growth rate at large scales.
The first and second lines of the equation represent the

power spectrum in redshift space up to the one-loop order
in perturbation theory. Here, Pδδ and Pθθ refer to the one-
loop power spectra for the density and velocity fields in real
space, respectively. The term Pδθ denotes the cross-power
spectrum between these fields. Additionally, ATNSðk; μÞ
and Dðk; μÞ are correction terms derived from combina-
tions of three and four fields (densities or velocities),
respectively [51,54].
In the third line, PLðkÞ represents the linear matter power

spectrum, and the EFT parameters α0, α2, α4, and α6 are
introduced. This term accounts for small-scale variations in
the behavior of large scales and the mapping between real
and redshift space in the nonlinear regime. The forth line
represents the finger-of-God effects [58], where σv is the
velocity dispersion and PK

s ðk; μÞ is the Kaiser power
spectrum [56].
The last line accounts for noise effects. Here, Pshot

denotes the Poisson shot noise, which is proportional to
1=n, where n represents the number density of the tracer.
The term ðkμÞ2 characterizes deviations from pure white
noise [13,59,60].

III. THE QUIJOTE SIMULATIONS

The Quijote simulations, see Ref. [12], are a set of
44100 N-body simulations created via the TreePM code
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Gadget-III in boxes of sides of 1 Gpc/h, where h is the
reduced Hubble constant. This work uses these simulations
to train and test our CNN [61].
The Quijote simulations have 2000 realizations with

different combinations of cosmological parameters
ðΩm;Ωb; h; ns; σ8Þ, chosen by the Latin-hypercube sam-
pling within the ranges of

Ωm ∈ ½0.1; 0.5�;
Ωb ∈ ½0.03; 0.07�;
h∈ ½0.5; 0.9�;
ns ∈ ½0.8; 1.2�;
σ8 ∈ ½0.6; 1.0�: ð26Þ

All those simulations have different seeds of the initial
condition. A single simulation contains 5123 dark matter
particles and each realization has five snapshots at redshifts
z ¼ ½3.0; 2.0; 1.0; 0.5; 0.0�. In Fig. 1, we show the fσ8
distribution for 2000 realizations.

A. The halo catalog

The Quijote simulations have a halo catalogue built by a
friends-of-friends algorithm, where each halo has at least
20 dark matter particles. Therefore, the lower limit of the
halo mass is Oð1012Þ–Oð1013Þ½M⊙=h� (the value varies
with the values of the cosmological parameters).
We use the snapshots of z ¼ ½0.5; 1.0; 2.0; 3.0� from the

Quijote simulations. Then, we assume the redshift halo
distribution that roughly corresponds to the Euclid survey
and randomly pick up halos such that the redshift distri-
bution matches the relative numbers in Table I. This table
shows the mean of the comoving number density of the
halos in each redshift bin over 2000 realizations after after
the selection process.

B. Data for machine learning

The architecture of our CNN will be discussed in
Sec. IVA. For the training part, we use the dark matter
or halo distribution, and we build images for our CNN as
follows: first, we define the 403 grids in a simulation box,
while this size of the grid corresponds to k ¼ 0.25 hMpc−1

in Fourier space, and then we redistribute dark matter
particles or halos to the cells by nearest gridding point. As a
result, we get the 3D images whose size is 403, and each
voxel value is the density of dark matter or halo in each cell.
Note that this grid size is larger than the scale of the redshift
distortion. In fact, we have tested our CNN using images in
redshift space and found that the results do not change from
those obtained using images in real space.
And then, for comparison, we train and test a neural

network (NN) by the Legendre multipoles of power
spectrum which is the two-point statistics in the redshift
space defined as

PlðkÞ ¼
2lþ 1

2

Z
1

−1
Pðk; μÞLlðμÞdμ; ð27Þ

where Pðk; μÞ is the anisotropic power spectrum in redshift
space, and LlðμÞ is the Legendre polynomial of order l. In
this work, we use the expansion coefficient P0ðkÞ, P2ðkÞ,
and P4ðkÞ, which are already calculated for the dark matter
distribution in the simulations we introduce and are
publicly available. As the input to our NN, we use the
P0ðkÞ, P2ðkÞ, and P4ðkÞ for 0.089 < k½hMpc−1� < 0.25,
linearly separated in 39 bins.
The Quijote simulations have 2000 realizations, so we

use 1500 simulations as training data, 100 as validation
data, and 400 as test data for both, the CNN and the NN.

IV. MACHINE LEARNING BASED
COSMOLOGICAL PARAMETER INFERENCE

In this section, we describe the ML approach to extract
cosmological parameters from the images of the density
field or the measured power spectra using the Quijote
simulation. Furthermore, we employ maximum likelihood
analysis to estimate the value of fσ8, which we compare

FIG. 1. The distribution of the fσ8 parameter values for Latin-
hypercube realizations of the Quijote simulations at their corre-
sponding redshifts. Black dots represent the mean value at each
redshift, and the dashed curve shows the ΛCDM prediction.

TABLE I. Specifications for the mock simulation. It includes
the relative number, which represents the expected number of
halos based on an observation akin to the Euclid survey, and nhalo
denotes the total number of halos incorporated within the
simulation box, after the random selection process.

z Relative number nhalo ½ðGpch−1Þ−3�
0.5 2 8.0 × 103

1.0 4 1.6 × 104

2.0 3 1.2 × 104

3.0 2 8.0 × 103
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with the CNN approach. We first provide a basic structure
of the ML architecture, specifically optimized for analysing
images and power spectrum, and the method of the
maximum likelihood analysis. We then show the results
of the comparison of different methodologies. We first
compare the result of the CNN on the dark matter density
field images to those on the halo density field images
(Sec. IV C). This will directly compare the ability to
constrain fσ8 between dark matter and halo. We then
compare the result of the CNN on the dark matter
component with the ML-based dark matter power spectrum
result and the maximum likelihood analysis (Sec. IV D).
The predicted errors on the fσ8 quantity as derived by

different methods are summarized in Table II. In what
follows, we discuss in detail how the analysis is performed
for each method and how we perform the measurements in
each case.

A. ML architecture

This work uses the three-dimensional CNN to analyse
the images and an NN for the power spectrum. We used the
publicly available platform PyTorch [62] to construct our
CNN and NN and the architecture based on Ref. [29];
however, note that some hyperparameters are different from
those of that work, as the size of input data is different. In
Tables III and IV, we show the architecture of our CNN and
NN, while it should be noted that for the activation
function, we apply the ReLU after each convolution layer
and FullyConnected layer except for the last layer. Also,
our CNN predicts the value of fσ8ðzÞ from the 40 × 40 ×
40 image of dark matter or halo distribution introduced in
Sec. III B.
Here, we also use minibatch learning, and when we

choose Nb as the batch size, we randomly divide the
training data into groups, and each group has Nb training
data. This group is called a minibatch, and then the average

value of the loss function in the minibatch is used to update
the trainable parameters. With trial and error, we deter-
mined that the optimal batch size is 16; however, if we
make the batch size unity, the loss value does not converge
because we use batch normalization in our CNN.
As our main loss function, we use the mean squared

error (MSE)

L ¼ 1

Nb

XNb

i¼1

ðyi − ŷiÞ2; ð28Þ

where Nb is the batch size, yi is the predicted value of fσ8
from our CNN for the ith data in the minibatch data, and ŷi
is the ground-true value, i.e., the correct fσ8 value.
In updating the trainable parameters, we use the Adam

optimizer [63], which is defined as torch.optim.
Adam() in PyTorch. We use 5 × 10−7 and 0.1 as the value
of lr and weight_decay, which are the arguments of

TABLE II. The predicted errors on the fσ8 as derived by
different methods and tracers. For the method, CNN, PS-ML, and
likelihood stand for convolutional neural networks, the power
spectrum analyzed by machine learning, and the maximum
likelihood analysis, respectively. The values for “halo” are
obtained from the halo data, resampled from the parent halo
to match the redshift distribution of our simulated observation
(see Table I) for CNN, while those in parenthesis are from the
parent halo sample as a reference.

Method CNN PS-ML Likelihood

Tracer DM Halo DM DM

z ¼ 0.5 3.8 4.5 (3.9) 2.3 7.9
1.0 2.3 2.5 (2.2) 2.0 5.7
2.0 1.2 1.7 (1.1) 2.7 3.9
3.0 0.74 1.2 (1.2) 2.9 3.3

(×10−2).

TABLE III. Our CNN architecture. In all convolutional layers,
stride ¼ 1 and padding is not applied. Output map size corre-
sponds to (height, width, depth, and channel). After each
convolution layer and FullyConnected layer, except for the last
layer, we apply the ReLU as the activation function. The total
number of trainable parameters is 5,345,341.

Layer Output map size

1 Input 40 × 40 × 40 × 1
2 3 × 3 × 3 convolution 38 × 38 × 38 × 2
3 BatchNorm3d 38 × 38 × 38 × 2
4 2 × 2 × 2 MaxPool 19 × 19 × 19 × 2
5 2 × 2 × 2 convolution 18 × 18 × 18 × 64
6 BatchNorm3D 18 × 18 × 18 × 64
7 2 × 2 × 2 MaxPool 9 × 9 × 9 × 64
8 3 × 3 × 3 convolution 7 × 7 × 7 × 64
9 3 × 3 × 3 convolution 5 × 5 × 5 × 64
10 2 × 2 × 2 convolution 4 × 4 × 4 × 128
11 BatchNorm3d 4 × 4 × 4 × 128
12 Flatten 8192ð¼ 43 × 128Þ
13 FullyConnected 512
14 FullyConnected 256
15 FullyConnected 1

TABLE IV. Our NN architecture. After each FullyConnected
layer, except for the last layer, we apply the dropout layer with
rates of 0.1. The total number of trainable parameters is 848, 897.

Layer Output size

1 Input 3 × 39
2 FullyConnected 512
3 FullyConnected 512
4 FullyConnected 512
5 FullyConnected 512
6 FullyConnected 1
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torch.optim.Adam(), respectively. The batch normali-
zation [64] is used in our CNN as we have found that this
improves the learning efficiency. This is defined as
torch.nn.BatchNorm3d() in PyTorch, and we use
the default values for all parameters.
Our NN predicts the value of fσ8 from the Legendre

expanded power spectrum. We use the P0ðkÞ, P2ðkÞ, and
P4ðkÞ for k ≤ 0.25 hMpc−1, so the size of input data to our
NN is 3ðP0; P2; andP4Þ × 39 ðthe number of k binsÞ.
Furthermore, we apply the dropout layer with the rate of
0.1 after each FullyConnected layer, except for the sixth
layer, see Table IV. As the loss function and the optimizer
of the trainable parameters, we use the MSE and the Adam
optimizer where lr ¼ 5 × 10−6 and weight decay ¼ 0. In
addition, we apply Nb ¼ 16 as the batch size in training.

B. Parameter inference by the maximum likelihood

For the comparison between machine learning and
conventional approaches, we estimate fσ8 using maximum
likelihood for the dark matter density field. Here, we
consider the likelihood below:

−2 lnL ¼
X
i;j

½Pmodel
i − Pdata

i �

× Cov−1i;j

× ½Pmodel
j − Pdata

j �: ð29Þ

Here, PX
i , where X is either “model” or “data,” represents

the concatenated Legendre multipoles ½P0ðkÞ;P2ðkÞ;P4ðkÞ�
of the power spectrum as defined in Eq. (27). We restrict
our analysis to k < 0.2 hMpc−1, which is justified by the
maximum wave number applicable for the EFT power
spectrum utilized [57]. Each multipole comprises 31 bins of
the wave number, resulting in i ranging from 1 to
93 (¼ 3 × 31).
Also, Pdata denotes the power spectrum derived from the

Quijote Latin Hypercube (LH) simulation dataset, where
cosmological parameters are sampledusingLatin-Hypercube
sampling. Cov represents the covariance matrix of Pdata.
To estimate the covariance matrix, we use 15,000 realiza-
tions from the “Fid” simulation dataset of Quijote, where
the cosmological parameters are ½Ωm;Ωb; h; ns; σ8� ¼
½0.3175; 0.049; 0.6711; 0.9624; 0.834�. Each realization is
generated with a different random seed for its initial
condition, thus accounting for cosmic variance in the
covariance estimation.
Finally, Pmodel

i corresponds to the power spectrum calcu-
lated following Eqs. (25) and (27). To compute it, we use
FOLPS-nu [65], which computes the Legendre multipoles
of the EFT power spectrum [57], and CLASS [66] for the
linear power spectrum. Here, we focus on an unbiased tracer
(dark matter). Specifically, we consider the five cosmologi-
cal parameters [Ωm, Ωb, h, ns, σ8] and four nuisance

parameters [α0, α2, αshot0 , αshot2 ] in Eq. (25), setting both
α4 and α6 to zero following [57]. We randomly select
400 realizations from the LH dataset, compute Pdata

for each realization, and fit the aforementioned 5þ 4
parameters to minimize − lnL. For the minimization
of − lnL (equivalent to maximizing the likelihood), we
use scipy.optimize.minimize(), implemented
in SciPy [67]. Subsequently, we calculate fσ8 from
the fitted parameters in each realization following
Eqs. (17)–(24).

C. CNN results on dark matter and halo

In this subsection, we compare the results from our CNN
for the images of dark matter distribution and the halo
distribution.
During the training phase, our CNN undergoes 100

epochs, each representing a complete iteration of the CNN
learning process using the entire training dataset. Then, in
the test phase, we use the CNNmodel, which minimizes the
value of the loss function for the validation data.
In this work, the errors are estimated by the standard

deviation of the vector of Δfσ8;i ¼ ðypred;i − ytrue;iÞ, where
ypred;i and ytrue;i are the CNN prediction and the ground
truth for the ith test data, respectively.
To probe the validity of this estimation, we perform the

following test:
(1) We make a 30 × 30 grid of parameters for

Ωm ∈ ½0.1; 0.5� and σ8 ∈ ½0.6; 1.0�.
(2) For each redshift, we evaluate the fσ8 in the whole

grid, and then, we pick 400 grid points (the same
number of the test data for our CNN) from them.

(3) We draw predictions for fσ8 based on a normal
distribution with mean given by the value at each
point and with error σ. This is justified by consid-
ering a large number of simulations and the central
limit theorem.

(4) We compare the predicted error from the standard
deviation of Δfσ8;i vector with the fiducial error
assumed in the previous step.

Figure 2 shows the relation between true and predicted
fσ8 for our CNN results, respectively for dark matter (blue)
and halo (orange) test images. Figure 3 displays histograms
of Δfσ8 for the test data, allowing us to compare errors
between the dark matter and halo images. As shown in
Fig. 3, all histograms are centered around zero, indicating
the effectiveness of our approach in constraining fσ8.
Here, for comparison purposes, we use all the halos

when building the images (without disregarding any halo).
By comparing the results for dark matter and halo images,
we find that the errors are mostly comparable across all
redshift bins, while the results for the dark matter images
are better at z ¼ 3.0. The error decreases as the redshift
increases for both dark matter and halo images. One
possibility is that nonlinearities make it more challenging
to extract information from the matter distribution at low
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redshifts. At z ¼ 3.0, the error for the halo images is larger
than that for the dark matter and comparable to the error for
z ¼ 2.0 halo images. We can attribute this to shot noise
because the number of halos in the simulation at z ¼ 3.0 is
less than one-tenth of the number at other redshifts when
considering all halos.
As a side note, whenwe test our CNNwith the darkmatter

images of 643 grids, corresponding to k ¼ 0.4 hMpc−1, we
observe slightly improved errors by approximately 15%
across all the redshifts we consider. Given the configuration
of the Quijote simulation we utilize, the Poisson shot
noise dominates the dark matter power spectrum at
k ¼ Oð1Þ hMpc−1. It is probable that the CNN performs
well in analyzing these scales.
Next, we investigate the effect of the random selection of

the halos. Instead of the images including all halos, we
reduce the number of halos so that its redshift distribution
follows a realistic observation (the ratio is shown in Table I)

and use them to train and test our CNN. The results are
shown in Fig. 4. Even when we use only randomly selected
halos, we can see the redshift dependence of the error as in
the all-halo case. The errors of the selected halo case are
more significant than the ones for all the halos, but this is
reasonable because the images of the selected halos lose the
information compared to the images including all halos.
It is important to mention that, by assuming a redshift-

halo distribution that matches the one of surveys like
Euclid, our intention is to make an analysis with stage
IV-like (realistic) data. However, to make a direct com-
parison with a real catalog, additional criteria must be
addressed. An initial strategy could involve training a CNN
to analyze observable features within a galaxy survey, such
as a luminosity-limited galaxy sample, which inherently
contains noise. Subsequently, the CNN could extract fσ8
from these observations.

FIG. 2. The results of our CNN for dark matter images (blue) and halo images, including all halo (orange) for each redshift. The
horizontal axis shows the true value of fσ8, and the vertical axis shows our CNN’s predicted value of fσ8.
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In a simulation suite likeQuijote,where thematter density
varies, the minimum mass of halos fluctuates according to
the cosmological parameters. Another approach could be to
train on a halo catalogwith aminimum luminosity matching
the one expected from Euclid. These could be interesting
ways of complementing the realistic-like catalog analysis,
but this is beyond the scope of this work.
We additionally performed some tests in the CNN

architecture by exploring different loss functions to cor-
roborate our results. We studied the CNN behavior with
MSE loss, MAE (mean absolute error) loss, Hubber loss,
and the moments network loss (LFI—likelihood free
inference) [68,69]. We observe a slight improvement in
error with the LFI loss at low redshift. However, when
evaluating the loss curve, we find that the MSE loss is more
stable, so we chose to implement it for our final results. See
the Appendix for more details.

D. ML-based power spectrum analysis
on dark matter

Now, we compare the CNN results with the ones from the
machine-learning-based power spectrum analysis (PS-ML)

for dark matter. In this subsection, we use the NN whose
architecture is defined in Table IV for the power spectrum
analysis. Training and error evaluation processes are exactly
the same for our CNN in Sec. IV C.
In Fig. 5, we compare the results obtained by dark matter

images (blue, same as the one in Fig. 3) and PS-ML
(green). We see that the constraints on fσ8 from PS-ML are
weaker at higher redshifts (z ≥ 2.0) while it goes opposite
at low redshift z ≤ 1.0. The results look puzzling, but the
constraining power may depend on the architecture of the
CNN/NN, as we discussed in Sec. IV C. Therefore, it is not
straightforward to interpret the results, but one possibility is
that in the highly nonlinear regime, image recognition tends
to fail to extract the characteristics of the data.
In Fig. 5, we also show the results of the maximum

likelihood analysis for dark matter images (red). The
standard deviation of Δfσ8 is represented by the red error
bar. We estimate the fσ8 values for 400 realizations from
the Quijote LH dataset following Sec. IV B. For each
realization, we obtain the predicted fσ8 value and evaluate
Δfσ8 in a manner similar to the ML analysis. It is evident
that CNN and PS-ML outperform the likelihood analysis,
indicating their ability to extract more information from the

FIG. 3. The histograms of the CNN prediction for dark matter images (blue) and halo images (orange) for each redshift bin. The
horizontal axis corresponds to the value of Δfσ8 predicted by our CNN, and the vertical axis shows the number of test images for each
Δfσ8. The error bars show the standard deviation of Δfσ8; its value is shown in the legend. It can be noticed that all histograms are
centred around zero, indicating that our approach successfully constrains fσ8.
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dark matter density field than the modeled power spectrum
in Eq. (25).
Additionally, we can see two features in the results

obtained from the maximum likelihood. First, the maxi-
mum likelihood analysis shows redshift dependence similar
to CNN. This dependence is likely caused by nonlinearities
at lower redshifts. At z ¼ 3, the maximum likelihood and
the PS-ML show comparable results because the non-
linearity is weaker at higher redshifts. The PS-ML directly
fits the observed power spectra for the simulation data,
including the nonlinear effects, to derive the fσ8 value, and
the nonlinearity has less effect on the PS-ML compared to
the maximum likelihood method. Second, the maximum
likelihood analysis shows a bias of Δfσ8 at lower redshifts.
This bias may be caused by the model-dependent property
of the analysis. On the other hand, CNN and PS-ML do not
show such bias, and it is one of the advantages of the ML-
based analysis.

E. Effect of the random seed

Finally, we discuss the effect of the random initial
conditions. So far, we have used the Latin-hypercube
Quijote simulations, which have different random seeds

for the initial conditions. Therefore, the difference in these
simulations is caused by the difference in its cosmological
parameters and initial conditions. To discuss the effect of
the second one, we use another dataset of Quijote simu-
lations. The Quijote simulations have 15,000 realizations as
“Fid” simulations for the same cosmological parameter set
and different random seeds for their initial conditions.
First, we pick up 7000 realizations from the “Fid”

simulation dataset, accessible on the San Diego Cluster
hosting the Quijote simulations data. Then, we build the 3D
images of randomly selected halo distributions from these
data following Sec. III B. Then, we use our CNN model,
which is already trained by the randomly selected halo
images in Sec. IV C, and test it by the images from the
“Fid” simulations. By doing this, we can evaluate the error
only from random initial conditions. As a result, we find
that the error for “Fid” realizations is Oð10−3Þ.
This is about one-fifth of the error in the results in the

previous subsections, which should include both effects
from the variations of cosmological parameters and the
initial conditions. Therefore, we can conclude that the error
in our CNN analysis is dominated by the variance of
cosmological parameters arising from different cosmolo-
gies in each realization.

FIG. 4. The results of our CNN for images including all halos (orange) and randomly selected halos (brown) for each redshift bin. The
horizontal axis corresponds to the value of Δfσ8 predicted by our CNN, and the vertical axis shows the number of the test images for
each Δfσ8. The error bars show the standard deviation of Δfσ8, and its value is shown in the legend.
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V. DISCUSSIONS AND CONCLUSIONS

The growth rate of matter density perturbations,
described by the bias-independent fσ8ðzÞ quantity, is an
important quantity in studying the large-scale structure of
the Universe, as it allows us to probe the dynamic features
of gravity. However, to extract fσ8ðzÞ from observations
made by galaxy surveys, two key assumptions have to be
made: (i) a fiducial cosmological model and (ii) the
modeling of the nonlinear part of the power spectrum.
From these two assumptions, the latter is particularly
insidious. Currently, only purely phenomenological models
exist in the literature, thus potentially biasing the measure-
ments of fσ8ðzÞ in ways that are not easy to correct
a posteriori.
The primary objective of this work, is to implement a

ML approach based on training CNNs on N-body simu-
lations to extract fσ8ðzÞ, without the reliance on any
specific modeling of the nonlinear power spectrum. This
could serve as an initial step towards the future develop-
ment of a method for parameter inference in stage IV
surveys, but for this, some considerations, like systematic
and baryonic effects, need to be taken into account. In a
sense, we perform a likelihood-free extraction of the

growth rate, as the CNN requires neither a likelihood
nor any modeling of the power spectrum, by leveraging the
ability of the neural network architecture to predict the
growth fσ8ðzÞ from images of the dark matter or halo
distributions build from the N-body simulations, as dis-
cussed in Sec. IVA. In addition, we compare the results of
the ML approaches with those obtained by NN trained on
the multipoles of the power spectrum and by the maximum
likelihood analysis with the modeled power spectrum.
Specifically, our work followed a multipronged approach

to find the optimal way to extract the growth via an ML
architecture. The principal results and comparisons
between the various approaches are shown in Figs. 2–5,
where we showed scatter plots and histograms comparing
the CNN dark matter and halo reconstructions, and the
CNN dark matter and PS-ML reconstructions Table II
shows the predicted errors from all approaches.
Overall, as can be seen in the figures above and Table II,

we find that the ML architecture can predict quite accu-
rately the value of the growth rate fσ8ðzÞ (as seen in Fig. 3
where all histograms are centered around zero). At the same
time, the reconstructed errors from the CNN are compa-
rable within a factor of order unity between the different

FIG. 5. The results of our CNN for dark matter images (blue), PS-ML (green), and likelihood (red) for each redshift. The horizontal
axis corresponds to the value of Δfσ8 predicted by our CNN, PS-ML, and likelihood, and the vertical axis shows the number of
test images for each Δfσ8. The error bars show the standard deviation of Δfσ8 for each method. The values of these errors are shown in
the legend.
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ML approaches based on the DM or halo catalogs.
Additionally, the ML approaches show smaller errors
compared to likelihood analysis using modeled power
spectra. However, we observe the redshift dependence of
the CNN results, while the errors calculated by the ML-
based power spectrum analysis do not largely depend on
the redshift. To probe for the cause of this redshift behavior
of the error from the CNN, we tested several possibilities,
which, while they might not individually constitute the
main reason, each may contribute to some extent.
First, one plausible reason for the redshift trend of the

CNN results might be that at low redshifts, the enhanced
nonlinearities might introduce more scatter in the observed
values of fσ8 by the CNN, something which might not be
captured correctly by the PS-ML.
Second, another possible reason for the decreasing error

of the CNN estimate might be because while the Quijote
simulations are sampled well on the ðΩm;Ωb; h; ns; σ8Þ
from the Latin-Hypercube, this is not the case for fσ8ðzÞ, as
already seen in Fig. 1. This would, in effect, introduce a
prior on fσ8ðzÞ that decreases/tightens with redshift. See
the blue “blobs” in Fig. 1 that indicate the scatter of fσ8ðzÞ,
thus artificially training the CNN to expect a reducing value
on the error with redshift (since the possible scatter of the
parameters is limited by the prior). However, we should
note that the width of the prior is generally greater than the
error of the CNN. We conducted a test by artificially
narrowing the range of the prior (making the fσ8ðzÞ width,
equal for all the considered redshift bins). After training
and testing our architecture, no significant impact on the
error estimates was found.
To investigate the correct sampling of fσ8ðzÞ in the

Quijote simulations compared to ðΩm;Ωb; h; ns; σ8Þ, two
approaches could be considered. First, increasing the
number of simulations used in training could broaden
the prior and address the observed redshift dependence
on the error in Fig. 1. Alternatively, directly sampling
within the fσ8ðzÞ space, possibly facilitated by an N-body
emulator, could be explored. This would require additional
N-body simulations to potentially enhance resolution.
However, due to the limited availability of Quijote simu-
lations, leveraging an emulator to artificially augment the
dataset is proposed as a means to address this limitation and
potentially mitigate any observed trends in fσ8.
Nonetheless, conducting these additional tests is deemed
beyond the scope of this study as we primarily aim to
highlight our methodology.
Third, the training/testing approach of the CNN also has

some stochasticity/randomness as different runs produce
different errors. Thus, we tested this by running the testing
phase with different random seeds and calculated the mean
and standard deviation of the CNN error. In this case, we
have found that the mean error is consistent with the values
in Table II and the standard deviation of the error (i.e., the
“error of the error”) is much smaller. Thus, this reason

could only contribute to a small extent to the redshift
behavior of the CNN error.
Finally, we also performed several more tests; for

example, we examined the effect of the random selection
of the halos by making images that have a part of halos to
reproduce the relative number shown in Table I and then
used them to train and test our CNN. Doing that, we found
the same redshift dependence of the error as in the previous
case. Second, we also explored different loss functions,
including the MSE, MAE, Hubber Loss, and LFI loss
functions. Overall, we found a similar decrease in the error
with redshift. Third, we investigated the effect of the
random initial conditions by using another dataset of
Quijote simulations. Doing so, we find that the error
contribution is only one-fifth of the total error. Thus, we
conclude that the difference in the cosmological parameters
dominates the error in our analysis.
We successfully trained and validated CNNs to predict

fσ8ðzÞ, using various input data sources, such as dark
matter density fields and halo catalogs. But the applicability
of the trained CNNs is somehow limited when talking
about its implementation to real data. Therefore, this could
be taken only as a first step for developing ML-based
methods for cosmological parameter inference from obser-
vations. This approach may require additional factors into
consideration, including the systematic and baryonic
effects, as well as the fact that in real galaxy surveys,
the positions of halos are known within a certain degree of
uncertainty, so the measurements of fσ8 in these surveys
carry uncertainties proportional to their inherent noise
characteristics. There were other attempts to perform
parameter inference from simulations, for instance [70],
where Ωm and σ8 are inferred directly from the power
spectrum multipoles, whereas in this study we employ the
raw image of the density field. Certainly, if the Legendre
polynomial power spectrum decomposition were available
without the bias term, one could compute σ8 directly.
Furthermore, in the presence of a dark matter density field,
it is feasible to integrate the variance of the matter density
within 8 Mpc shells to derive σ8. For example see [71,72]
where parameter inference is carried out at the density field
level, thus requiring forward modeling to predict the field
value, followed by a pixel-by-pixel comparison to deter-
mine the likelihood. Our approach does not demand a
pixel-by-pixel comparison, since it operates within the
latent space. This is a more generic approach compared
to the field-level inference, but it needs a more compre-
hensive study to understand how various parameters (such
as minimum halo mass, friend-of-friends method), affect
the results and potentially bias the constraints on fσ8,
therefore this represents a limitation for our current
methodology.
For comparison, we also carried out an EFTapproach and

we found that the CNN performs better when inferring fσ8.
This outperformance may be attributed to the fact that the
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EFT is limited to wave numbers below k < 0.2 hMpc−1,
whereas the CNN extends its scale to values up to
k < 0.25 hMpc−1. The broader range of wave numbers
accessible to the CNN likely provides it with more infor-
mation, enhancing its ability to infer fσ8.
We leave for future work the extension of this analysis to

models beyond the ΛCDMmodel, i.e., to eliminate the first
assumption of current growth measurements as mentioned
earlier since that requires N-body simulations for modified
gravity. Also, we leave a more detailed comparison
between the CNN and the conventional approach such
as the Fisher matrix approach for future work, as it would
require significant theoretical modifications on the non-
linear part for the latter and more tests on the CNN
architecture to investigate the effect on low redshifts. We
also leave for future work the possible development of ML-
based methods for parameter inference with real data.
Finally and to conclude, given that in a few years, the

forthcoming galaxy surveys will provide a plethora of high-
quality data related to the large-scale structure of the
Universe, novel ways to analyze these data will be required
to minimize the theoretical errors emanating from assump-
tions, just as the nonlinear modeling at small scales. Here,
we provided the first step in this direction, but more work
will be required to bridge the gap between the theory and
the actual data.

The numerical codes used in this analysis will be
available upon publication [73].
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APPENDIX: LOSS FUNCTIONS TESTS

The MSE loss calculates the mean squared error between
the CNN estimates and the true values and is set up to find an
approximation of the marginal posterior mean. In general,
the marginal posterior describes the probability that a
simulation (and its array of clustering measurements) were
created with a particular combination of parameters θi.
The advantage of LFI with respect to the other loss

functions is that it achieves a better convergence between
the CNN output and both the mean μi and standard
deviation σi of the marginal posterior parameters θi;j.
LFI eliminates the influence of the overall scale in the
spread of a parameter by incorporating logarithms. This
approach assigns weights based on inverse variance to the
gradients of the various terms, in contrast to the MSE loss.
Consequently, it optimizes the combination of gradients to
account for each term’s importance. According to the
mentioned arguments, LFI loss is defined by [77]

LLFI ¼ log

 X
j∈ batch

ðθj − μjÞ2
!

þ log

 X
j∈ batch

ððθj − μjÞ2 − σ2jÞ2
!
: ðA1Þ

The input parameter of each training and test procedure
was fσ8. This particular loss function takes the logarithm of
the squared difference between the true and predicted
values of this parameter within a batch j of the simulation,
taking into account the standard deviation in the second

TABLE V. Predicted errors for each redshift snapshot using
MSE, MAE, Hubber loss, and the moments network (LFI) loss
functions in the CNN architecture.

Redshift MSE loss MAE loss Huber loss LFI loss

0.5 3.8 4.1 3.9 3.3
1.0 2.3 3.1 2.9 2.3
2.0 1.2 1.5 1.8 1.7
3.0 0.74 1.0 1.1 1.3

(×10−2).
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term. As a matter of interest, we found a similar outcome
with all the considered loss functions—an error decrease
for larger redshifts. It is worth mentioning that LFI
performs better, as expected. In Table V, we show the
results only for the MSE and LFI loss functions for
simplicity, where we see that the LFI improves slightly

the error estimates compared to the previously considered
MSE loss function.
It is worth mentioning that the slight improvement

found at low redshift, achieved by the LFI loss, had a
cost in stability, as mentioned before. This is why we chose
the most stable method, MSE loss, for the final results.
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