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We update the field-level inference code KARMMA to enable tomographic forward-modeling of
shear maps. Our code assumes a log-normal prior on the convergence field, and properly accounts for the
cross-covariance in the lensing signal across tomographic source bins. We use mock weak lensing data
from N-body simulations to validate our mass-mapping forward model by comparing our posterior maps
to the input convergence fields. We find that KARMMA produces more accurate reconstructions than
traditional mass-mapping algorithms. Moreover, the KARMMA posteriors reproduce all statistical
properties of the input density field we tested—1- and 2-point functions, and the peak and void
number counts—with ≈10% accuracy. Our posteriors exhibit a small bias that increases with decreasing
source redshift, but these biases are small compared to the statistical uncertainties of current [Dark Energy
Survey (DES)] cosmic shear surveys. Finally, we apply KARMMA to DES year 3 weak lensing data, and
verify that the 2-point shear correlation function ξþ is well fit by the correlation function of the
reconstructed convergence field. This is a nontrivial test that traditional mass mapping algorithms fail.
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I. INTRODUCTION

Most standard analyses of cosmological data use 2-point
summary statistics such as correlation functions and power
spectra for extracting information from these datasets
(e.g., [1,2]). However, we lose valuable non-Gaussian
information while compressing the full dataset to 2-point
summary statistics. Field-based inference, where one
extracts information from the full field, is emerging as a
powerful alternative for optimally extracting information
from cosmological data sets across a broad variety of probes,
including cosmic microwave background lensing [3–5],
integrated Sachs-Wolfe effect [6], galaxy clustering [7,8],
peculiar velocity [9–11] and weak lensing [12–14].
In this paper, we focus on field-based inference of weak

lensing data. Such an analysis requires an accurate forward
model of the observed shear field. Once we have an
accurate forward model for the weak lensing data, we
can use it to reconstruct the unknown dark matter distri-
bution of the Universe. Indeed, reconstructed mass maps
from weak lensing surveys are crucial for extracting non-
Gaussian information (e.g., [15]), for studying voids [16],
and for cross-correlation studies [17,18]. As such, they are

an essential data product for stage-IV weak lensing surveys.
However, the reconstruction of the unseen dark matter
distribution from weak lensing shear data constitutes a
nontrivial inverse problem. While standard inversion meth-
ods such as Kaiser-Squires inversion [19] are widely used,
they suffer a variety of problems. For example, these
methods lead to biased reconstruction in the presence of
a survey mask. Furthermore, in the presence of shape noise
the reconstructed mass maps do not have the expected
statistical properties. For instance, the two-point functions
of the recovered maps are inconsistent with direct mea-
surements of the two point shear correlation function
(see Fig. 11).
Forward modeled mass-map reconstruction naturally

address these difficulties. For example, by forward-
modeling the convergence field in the masked region,
we get mass maps free from masking effects [20,21].
Likewise, depending on the accuracy of the forward
model, we are able to reconstruct mass maps with the
correct 2-point and 1-point function.
A number of different weak lensing field-based analysis

methods have been proposed in the literature, though none
so far have been applied to data. Running approximate
numerical structure formation simulations is likely to be
the most accurate forward model. This is the approach*Contact author: supranta@sas.upenn.edu
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followed by [13,22], who used Lagrangian perturbation
theory to forward model the cosmic shear data within the
BORG Bayesian forward modeling framework [7,23].
However, this approach is computationally expensive
and analyses are often limited to small areas with a limited
resolution.
Because of these difficulties, a number of alternative

field-based inference methods have tried to directly model
the observed two-dimensional projected fields, thereby
bypassing the need to generate a three-dimensional matter
density field. For example, [24,25] developed a Bayesian
hierarchical model that simultaneously inferred the
mass distribution and power spectrum of the weak lensing
maps in tomographic bins. However, their method
assumed Gaussianity of the field and only worked on flat
sky. References [26,27] proposed a similar algorithm,
ALMANAC, which performs wide-field mass mapping on
a sphere, but still assumes Gaussianity. Similarly, [16]
sampledmassmapswithDES-Y3data using the constrained
realization approach [28–30] assuming Gaussianity of the
convergence field.
Since the late-time density field is highly non-Gaussian, it

is important to include the non-Gaussianity of the density/
convergence field in the forward model. To that end, [21,31]
introduced the KARMMA algorithm. In KARMMA, the con-
vergence field is modeled as a log-normal random field,
enabling us to bypass the need to run expensive numerical
simulations to reconstruct the matter density field, while
simultaneously improving upon the Gaussian assumption
made in other works (e.g., ALMANAC). More recently [14]
introduced MIKO, a flat-sky field-level inference code that
also utilizes the same log-normal prior for the convergence
field. The log-normal model has been shown to be a good
approximation of the late-time non-Gaussian convergence
field [32,33]. Indeed, in our earlier works we demonstrated
that the KARMMA posteriors from mock observations of
simulated shear maps accurately reproduced a broad range
of statistical properties of the corresponding input con-
vergence fields. However, the algorithm had a severe
limitation: it was only able to forward model a single
tomographic source bin at a time. Here, we extend the
KARMMA algorithm using the methodology of [12] to
enable tomographic mass mapping on a sphere while
modeling the non-Gaussianity of the convergence field.
We validate the updated code by running it on mock weak
lensing data based on N-body simulations. We find that
the mass maps reconstructed with KARMMA have smaller
errors than traditional mass mapping approaches. Further,
the statistical properties of the posterior maps are con-
sistent with those from numerical simulations. After
validating our method with mock simulations, we apply
KARMMA to the Dark Energy Survey (DES) year 3 (Y3)
weak lensing data. To the best of our knowledge, these are
the first publicly available Bayesian mass maps recon-
structed with weak lensing data on the curved sky [34].

This paper is structured as follows: in Sec. II, we present
the simulations and the weak lensing data used in this work.
In Sec. III, we present the main features of KARMMA. Then
in Sec. IV, we validate KARMMA with mock weak lensing
simulations before presenting the Bayesian mass maps
produced from DES-Y3 data in Sec. V. Finally, we
conclude in Sec. VI. In the Appendix, we show the results
of our tests with log-normal mocks.

II. DATA

A. Mock maps from simulations

In this section, we describe the mock weak lensing
catalogs used in Sec. IV to test the performance of our
code. We use the publicly available simulations of [[35],
hereafter T17]. T17 produced a suite of 108 mock weak
lensing catalogs by ray-tracing N-body simulations run
with cosmological parameters Ωm ¼ 0.279, Ωb ¼ 0.046,
h ¼ 0.7, σ8 ¼ 0.82 and ns ¼ 0.97. Each mock catalog
consists of full-sky shear and convergence maps on redshift
shells separated by 150h−1 Mpc. We use HEALPix maps at a
resolution of Nside ¼ 4096 for this work.
To generate simulated shear maps, we adopt the survey

properties from the DES-Y3 analysis [36,37]. Specifically,
we use four tomographic redshift bins. The source redshift
distribution of each bin is taken from [38], shown here
in Fig. 1. The effective number density in each of the
tomographic bins is ½1.476;1.479;1.484;1.461� arcmin−2.
Finally, we adopt the shape noise estimate from the DES-Y3
shear catalog, σϵ ¼ 0.261 [39].
We produce tomographic maps of the quantityA (hereA

can be either the convergence or shear map) by taking a
weighted average of the maps at various redshift shells with
a given redshift distribution, nðzÞ, via

FIG. 1. The source redshift distribution, nðzÞ, for the DES-Y3
used in this work.
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Ai ¼
PNshells

j¼1 niðzjÞAj
shellPNshells

j¼1 niðzjÞ
; ð1Þ

where ni is the redshift distribution of the ith tomographic
bin and Aj

shell is the map of the quantity A on the jth
redshift shell. Note that the finite redshift resolution leads to
a systematic error ofOð≲5%Þ on the power spectrum of the
convergence field. Consequently, for the purposes of test-
ing our code, we use the power spectrum measured from
the T17 simulations, rather than a theory power spectrum
computed using Boltzmann codes such as CAMB [40] or
CLASS [41]. We change this in Sec. V while applying to
DES-Y3 data.
Our “observed” shear map is a noisy realization of the

true shear. Specifically, we produce our noisy shear maps at
a higher resolution of Nside ¼ 1024 and then downgrade to
a resolution of Nside ¼ 256 to mimic the impact of
pixelization. The number of sources in each sky pixel is
a Poisson random draw from the mean source density
of the appropriate tomographic bin in the higher resolution
maps. Note that this ignores source clustering which
is an important systematic effect while considering non-
Gaussian information [42]. We add to each shear compo-
nent a Gaussian shape noise with zero mean and standard
deviation, σϵ=

ffiffiffiffiffiffi
Np

p
, where Np is the number of source

galaxies sampled in that pixel. A resolution of Nside ¼ 256
corresponds to a pixel size with angular resolution
of ∼13 arcmin.

B. DES-Y3 weak lensing data

In Sec. V, we run KARMMA on the DES-Y3 weak lensing
data to produce Bayesian mass maps from weak lensing
data. We use the DES-Y3 METACALIBRATION [43,44] shape
catalog [39]. These galaxies were divided into the 4
tomographic bins according to their estimated photometric
redshifts [38]. Then we construct a HEALPix map of
estimated shear for each of the tomographic bin by taking
the weighted average over the galaxy ellipticities, ϵ, in
each pixel as

γαp¼
P

i∈pwiϵi;αP
i∈pwi

; α¼ 1;2; ð2Þ

where wi are the per-galaxy inverse variance weights, p is
the pixel label, and α denotes the two polarizations. The
estimated variance of each shear component in the pixel p
is given as [45,46]

σ2ϵ;p ¼
P

i∈pw
2
i ðe2i;1 þ e2i;2Þ=2

ðPi∈pwiÞ2
: ð3Þ

III. MASS MAP INFERENCE WITH KARMMA

KARMMA models the convergence field as realizations of
a log-normal random field. The observed shears are then
forward modeled from the resulting convergence fields. We
determine the posterior distribution of convergence maps
by sampling the posterior using Hamiltonian Monte Carlo
(HMC) methods. In this way, rather than providing a single
“best-fit” convergence, we recover the full posterior dis-
tribution of convergence maps consistent with the input
shear data. These posterior quantify the uncertainty in the
reconstructed mass maps. We describe this algorithm in
further detail below.
Our log-normal assumption states that the convergence

field κ is a nonlinear transform of a Gaussian random field y
where

κ ¼ ey − λ: ð4Þ

The parameter λ is called the shift parameter. At the
resolutions of this study (Nside ¼ 256, or ≈13 arcmin), a
multivariate log-normal model provides a good description
of the convergence field [32,33].
Here, we use the log-normal formalism developed

in [12,21]. Specifically, we sample the spherical harmonics
(or Fourier wave modes) of the y maps. Furthermore,
following [12] we introduce new reparametrized variables,
x, defined via

yðiÞlm ¼
XNbin

k¼1

LikðlÞxðkÞlm ; ð5Þ

where yðiÞlm is the spherical harmonics of the y variable
defined in Eq. (4) and LðlÞ is the Cholesky decomposition
of a Nbin × Nbin matrix constructed from the power
spectrum CðlÞ at a wave mode l in various tomographic
bins (Nbin being the number of tomographic bins).1 The
power spectrum and the shift parameters are computed at
the T17 cosmological parameters using their simulations.
The index i labels the tomographic bin of y=x. This
reparametrization helps in two ways: (1) it decorrelates
the x variable in different redshift bins under the prior,2

and (2) the x variable now has unit variance and is
described by the prior

hxðiÞlmxðjÞl0m0 i ¼ δKijδ
K
ll0δ

K
mm0 ; ð6Þ

where δK is the Kronecker delta symbol. This redefinition
makes the sampling of mass maps more efficient.

1Note that the definition of the unit variance variables differ
from the definition in [12] where the xlm variables were related to
the ylm through the eigenvalue decomposition of CðlÞ.

2Note that posterior samples of x can be correlated due to the
likelihood.
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Furthermore, even though the x maps are decorrelated
under the prior, the y=κ maps in difference redshift bins are
correlated with the theoretically expected cross-correlation.
As we had shown in [12] and as we will see in Sec. V,
including this cross-correlation as a part of the prior leads to
massive improvement in the recovery of the small scale
structures in the maps.
To better understand why adding this covariance is

helpful, it is worth considering a model in which the
tomographic convergence maps are uncorrelated. In this
case, the posterior distribution of the maps in different
tomographic bins factors out, so that the recovered con-
vergence map in bin i depends only on the shear map in bin
i. This is exactly how traditionally mass-mapping algo-
rithms work (e.g., [47]). Thus, rather than being agnostic to
the amount of covariance present in the data, analyses that
“ignore” covariance in the model are enforcing a prior that
the maps should not be correlated. By contrast, our
correlated model results in a nonfactorizable posterior
distribution which allows bin i to be informed by the data
in j shear map.
Following [31], we filter our maps at lmax ¼ 2Nside to

avoid aliasing. Note that the low-pass filter is applied on the
κ field and not on the y (or x) fields. Also note that because
of the filtering, the resulting κ field is no longer a log-
normal field.
Once we have the convergence field, the shear field is

constructed using the Kaiser-Squires (KS) relation. We
perform our inference on the sphere, thus requiring the
curved sky version of the KS relation; the spherical
harmonic coefficients of the shear field are related to the
spherical harmonic coefficients of the κ field via [48]

γ̃lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 2Þ

lðlþ 1Þ

s
κlm: ð7Þ

The shear field is then obtained as a sum over the spin-2
spherical harmonics,

γðθÞ ¼
X
lm

γ̃lm2YlmðθÞ: ð8Þ

Since the convergence field is low-pass filtered, the shear
field is also low-pass filtered. By contrast, the observed
shear field is not filtered, which leads to some amount of

model misspecification. However, we have found that given
the resolution of our maps, this slight model misspecifi-
cation is easily preferable to the aliasing that occurs when
we do not filter the field [31].
Finally, we use pixelized shear maps to perform the

inference, so we must account for the pixel window
function in our forward model. The pixelization operation
is implemented in the harmonic space by multiplying each
spherical harmonic mode by the spherical transform of the
pixel window function,

γ̃lm → WNside
p ðlÞγ̃lm; ð9Þ

where WNside
p is the HEALPix pixel window function at

resolution of Nside. While in principle the pixel window
function for each HEALPix pixel is different, an average
pixel window function can be computed using the HEALPY

function healpy.sphtfunc.pixwin. The need for
including the pixel window function in the forward model
has previously been noted in [14,21].
Given a κ map, the observed shear map is modeled as a

noisy realization of the true shear map, where the noise is
set by the shape noise of the survey. In particular, the noise
is uncorrelated from pixel to pixel, so that

logPðγobsjxÞ ¼
χ2

2
¼
X2
p¼1

XNbin

i¼1

XNpix

α¼1

½γi;pα ðxÞ− γi;pα;obs�2
2σ2i;α

: ð10Þ

The summation is over all the pixels within the survey mask
and over the two polarizations (labeled with p).
Given an “observed” shear map, the posterior of x is

simply

PðxjγobsÞ ∝ PðγobsjxÞPðxÞ: ð11Þ

Because x are unit variance variables, the prior, PðxÞ is a
unit variance normal distribution.
The various steps involved in our forward model are

illustrated in Fig. 2. Note that all the intermediate steps are
differentiable allowing us to take the gradient of the
posterior with respect to the variables x, as is required to
sample using HMC. We implement our forward model in
the Python package PyTorch [49] and use the probabilistic
programming language Pyro [50] to sample the mass maps.

FIG. 2. Illustration of the various steps involved in the KARMMA forward model. Here, SHT refers to the spherical harmonic transform,
KS refers to Kaiser-Squires. Note that each of the steps illustrated above are differentiable, thus allowing us to compute the gradient with
respect to the input variables—a necessary feature for using HMCmethods. The maximum l value of the spherical harmonic modes and
the HEALPix map resolution of the maps is shown at each step. See Sec. III for details.
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We use the No U-Turn Sampler [51] to sample x (or
equivalently κ).
We emphasize that in the current implementation, the

transformation from the x variables to convergence are
conditioned on the power spectrum and shift parameter
characterizing the log-normal prior. Both of these are
cosmology dependent, and therefore one must specify a
cosmological model to sample from these maps. One can, in
principle, simultaneously sample the cosmological param-
eters characterizing the prior as part of the inference process
as described in [12]. In this way, KARMMA can produce joint
cosmology and mass map posteriors. However, we have not
yet characterized the shift parameter λ as a function of
cosmology, nor have we validated the resulting cosmologi-
cal inference pipeline. For this reason, we postpone this
simultaneous inference process to future work.

IV. VALIDATING KARMMA WITH MOCK
SIMULATIONS

We test the performance of KARMMA using the simu-
lations presented in Sec. II A. The multivariate log-normal
prior requires the power spectrum and the shift parameters
as its input. We measure these quantities in the simulations,
averaging over all 108 simulations, and use these as the
inputs to the log-normal prior.3 We then run KARMMA on all
108 mock data sets created from the T17 data. This allows
us to check how well the log-normal forward model

performs on mock weak lensing data from N-body sim-
ulations. Each KARMMA run requires ∼Oð50–100Þ CPU
core hours to produce 100 independent samples on
Advanced Micro Devices Inc., Zen2 processors.
Figures 3 and 4 illustrate the properties of the KARMMA

posteriors when run on our simulated dataset. The figures
correspond to themassmaps from tomographic redshift bins
1 and 4, respectively. The input mass map used to generate
the simulation is shown on the top left panel. The center and
right panels on the top row show two randomly chosen
samples for our posterior distribution ofmaps. Themean and
standard deviation of the posteriors are shown in the bottom
left and bottom center panels, respectively. The bottom right
panels shows the signal-to-noise ratio defined as

SNR ¼ MeanðκÞ
σ½κ� : ð12Þ

By comparing the input convergence map to the KARMMA

posterior and mean map, we can see that KARMMA recovers
the darkmatter distribution of the inputmap.We also see that
the higher redshift bins have a higher signal-to-noise ratio, as
expected.
The fidelity of our reconstructed mass maps can be

quantified using the correlation coefficient between the
reconstructed map and the input κ maps defined as

ρcðlÞ ¼
Crec×inputðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CinputðlÞCrecðlÞ

p ; ð13Þ

where Crec×input is the cross power spectrum between the
reconstructed and the input map, while Crec=input is the auto
power spectrum of the reconstructed/input map. We

FIG. 3. An illustration of the properties of the KARMMA posteriors for the first tomographic redshift bin in our simulations. The input
convergence map used to generate our mock observations is shown in the top left panel. The center and right panels on the top row shows
two randomly chosen KARMMA map samples. The mean map and the corresponding pixel-by-pixel rms uncertainty are shown in the
bottom left and bottom center panels, respectively. The bottom right panel shows the signal to noise ratio computed from the sample
mean and standard deviation.

3We remind the reader that the use of the simulated power
spectrum is necessary due to the small differences between the
power spectrum in the simulations and theory power spectra.
When applied to data, we replace the power spectrum by the
appropriate theory power spectrum for our fiducial cosmology.
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compute the cross-correlation as a function of scale in
harmonic space. The cross-correlation between the mean of
the posteriors maps and the corresponding input map is
shown in Fig. 5. As we can see from the figure, the cross-
correlation on large scales (i.e., low l) is higher than on
smaller scales. This is because the signal-to-noise ratio on
small scales is reduced by the shape noise. We also see that
the cross-correlation of the lowest redshift bin is the lowest
among the various redshift bins due to the lower signal-to-
noise ratio of the data in this bin.
Next we assess the quality of the reconstructed mass

maps by computing the pixel-by-pixel errors in the output
mass maps. The error between the convergence value in the
ith pixel of a reconstructed KARMMA sample (labeled s) and
the simulation is

Δκi ¼ κiKARMMA;s − κisim: ð14Þ

In Fig. 6, we compare the histogram of the convergence
residuals for two different maps: (1) a randomly chosen
map from our posterior sample; and (2) a traditional Kaiser-
Squires mass map. Both maps are generated using the same
input shear map. We find the errors in the KARMMA mass
maps are always much lower than those in Kaiser-Squires
maps. The standard deviation of the KARMMA residuals
are 85%, 77%, 66% and 60% lower than the standard

FIG. 4. Same as Fig. 3, but for the fourth tomographic bin. Compared to Fig. 3, the structures are produced with a higher SNR in the
higher redshift bins.

FIG. 5. Cross-correlation of the mean KARMMA map with the
true simulation map. The different lines indicate the cross-
correlation in the different tomographic bins. As we can see
the cross-correlation is the highest for the high-redshift bins
where the signal-to-noise ratio is the highest. Furthermore, we see
a higher cross-correlation at large scales (low ls) than at small
scales that are dominated by the shape noise.

FIG. 6. Comparison of the residual errors in a randomly chose
KARMMA mass map sample (blue) and Kaiser-Squires mass map
(red) created with the same data. The different panels show the
results in different tomographic bins. As we can see from the
figure, the residuals of the KARMMA mass maps are much lower
than that of the Kaiser-Squires mass maps, showing the better
quality of the KARMMA mass maps. The improvement is
especially noteworthy for the lowest redshift bin, where the
signal-to-noise ratio is the lowest.
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deviations of the KS residuals in the 4 tomographic bins,
respectively. The improvement is especially noticeable
for the lowest redshift bin, where the signal-to-noise ratio
is the lowest. As shown in [12], adequately accounting for
the covariance between tomographic bins dramatically
improves the signal-to-noise ratio of the κ reconstruction
at low redshift by allowing us to extract information about
low redshift structures contained in the high redshift
tomographic bins.
As we now demonstrate, one of the principal advantages

of KARMMA is that the posterior maps faithfully reproduce
the statistical properties of the input convergence field.
Figure 7 shows the difference between the mean 2-point
function in our posterior maps and that of the input
convergence map in both real and harmonic space. For
the latter, we compute pseudo-CðlÞs using the publicly
available code NaMaster [52]. The blue line shows the mean
difference, averaged across all 108 simulations. The gray

bands show the mean error in the posterior for one
simulation, while the blue bands show the error on the
mean. The difference in the two point functions between
the input simulated maps and our reconstructed maps is
≲5%, with the difference increasing with decreasing red-
shift. These biases arise because of the failure of the log-
normal model to accurately model nonlinear structure
formation. In particular, the Appendix demonstrates that
we do not observe any such biases when we test KARMMA

using log-normal convergence maps as input.
Apart from the 2-point function, the log-normal model

also captures many non-Gaussian features of the conver-
gence field. Figure 8 compares three such statistics, namely
the probability density function (PDF) of κ values in each
pixel (i.e., the 1-point function), and the peak and void
counts of the κ maps. The peaks (voids) of the map are
defined as the number of pixels which have the highest
(lowest) κ value among all its neighbors. These statistics are

FIG. 7. Fractional error between the 2-point functions of the input simulation maps and those estimated from the KARMMA posteriors.
The bottom-left triangles shows the correlation functions between the different tomographic bins, while the upper-right triangles shows
the corresponding power spectra computed using pseudo-CðlÞs. Each panel corresponds to a different cross-bin combination, as labeled.
The blue lines show the difference in the map statistics averaged across the full 108 simulated maps. The gray bands shows the mean
error in one map as estimated using the KARMMA posteriors, while the blue band shows the error on the mean estimated using all 108
simulations. The difference between the simulated maps and our posteriors increases with decreasing redshift and smaller scales, and is
typically ≲5%.
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well known to be sensitive to the non-Gaussian information
of the convergence field [53,54]. We see that the non-
Gaussian statistics of the KARMMAmaps are close to those in
the simulations, particularly for the high redshift bins.
However, the differences between the simulated maps and
our posteriors increases with decreasing redshift, being
particularly large for the lowest redshift bin. This is not
surprising, as it is at this redshift that nonlinear structure
formation is most important. We note that because the
signal-to-noise ratio of the convergence in an individual
pixel is low (S=N ≲ 1), the one point of the posteriors is
nearly identical to that of the prior.

V. BAYESIAN MASS MAPS
WITH DES-Y3 DATA

We run KARMMA on pixelized shear maps produced from
the DES-Y3 shape catalogs as detailed in Sec. II B. The
input CðlÞ for this run is computed for the T17 cosmo-
logical parameters using PYCCL [55]. We use the shift
parameters computed from the T17 simulations for these
KARMMA runs. We produce a chain with 500 independent
samples. The maps showing the mean and standard
deviation of the posteriors in each of the four tomographic
bins is shown in Fig. 9. The figure highlights the fact that

FIG. 8. Comparison of non-Gaussian statistics of the KARMMA maps (blue) and of the mock simulations (red dashed). The different
rows corresponds to the three non-Gaussian statistics computed here—the PDF of κ values (top panels), the peak counts (middle panels)
and the void counts (bottom panels). The different columns show these statistics in the 4 tomographic bins. As we can see, all these non-
Gaussian summary statistics are well approximated by KARMMA at high redshift, whereas at low-redshift, these summary statistics are
significantly biased due to the breakdown of the log-normal model.
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FIG. 9. The mean (top) and standard deviation (bottom) of the KARMMA posterior maps for DES-Y3 data in each of the 4 tomographic
bins, as labeled.

FIG. 10. Comparison of the mass map for the lowest tomographic redshift bin in the DES-Y3 data. Each panel corresponds to a
different algorithm: KARMMA mean map (top left), Wiener filtering (top right), Kaiser-Squires with null B-mode prior (bottom left), and
GLIMPSE (bottom right). The fact that KARMMA adequately models the covariance between tomographic redshift bins enable us to
robustly recover structure on scales significantly smaller than those resolved in other algorithms.
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KARMMA produces full posterior distributions of the mass
maps, which is particularly important if these maps are to
be used for cross-correlation studies (e.g., [56]).
Figure 10 compares the mean of our posterior maps for

the lowest tomographic redshift bin to the publicly avail-
able mass maps released by the DES collaboration [47].
Specifically, we compare our mean mass map to their null
B-mode prior Kaiser-Squires method, Wiener filter method
and the wavelet transform based GLIMPSE method [57]. We
find that KARMMA can resolve smaller structures than any
of the other methods. This improvement is driven by the
fact that KARMMA self-consistently accounts for the covari-
ance across all tomographic redshift bins, which, as noted

earlier, allows us to extract information on the low-redshift
density field from the high-redshift shear data [12].
In Fig. 11, we compare the correlation function and the

pseudo CðlÞ of the DES-Y3 mass maps reconstructed using
KARMMA and the same publicly available mass maps used
in Fig. 10. In that figure, we also show the correlation
functions and the pseudo-CðlÞs measured by the DES
collaboration with black dots.4 As we can see from the
figure, barring KARMMA, none of the other methods recover

FIG. 11. Comparison of the correlation function (bottom left) and the pseudo-CðlÞ (top right) of mass maps created from DES-Y3
data with the same data vectors computed directly from the DES-Y3 shape catalog (black). The blue shaded region shows the
95% confidence interval of the summary statistics of KARMMA posteriors. The correlation function and pseudo-CðlÞs of DES-Y3 mass
maps created with different methods, namely Null-B prior KS (red dash dotted), Wiener filter (green dashed), GLIMPSE (cyan dotted), are
also shown in the figure. As we can see from the figure, none of the mass mapping methods except KARMMA reproduce the correlation
functions of the DES-Y3 weak lensing data.

4DES-Y3 data vectors are available at https://des.ncsa.illinois
.edu/releases/y3a2/Y3key-products and the pseudo-CðlÞ mea-
surements are taken from [46].
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the expected 2-point functions in the mass maps. This is
unsurprising. Indeed, the fact that best point-estimates of
the convergence map are expected to be biased further
highlights the importance of being able to properly sample
the posterior distribution of the maps.
We run two additional KARMMA analyses with different

priors to test the sensitivity of the recovered mass maps to
the input cosmological parameters. We use the best fit
cosmological parameters from Planck collaboration cos-
mological analysis [58] and DES-Y3 3 × 2 pt analysis [1].
For each of these cosmologies, we recompute the power
spectrum and shift parameters. The shift parameter at
different cosmologies is computed by rescaling the shift

parameter in the T17 simulations with the ratio of the shift
parameter predicted using CosMomentum [59]. That is, we
only rely on analytic predictions for the shift parameter for
the purposes of rescaling the shift parameter from our
fiducial cosmology to a new cosmology. The results of
these runs are shown in Fig. 12, where we plot the
fractional difference of the recovered correlation function
and pseudo-CðlÞs for the KARMMA runs with different
cosmological parameters with respect to the T17 2-point
functions. As we can see from the figure, the power
spectrum on large scales is largely insensitive to the input
prior. On large scales, the signal-to-noise ratio is high and
therefore the large-scale modes are determined by the

FIG. 12. The fractional difference in the recovered correlation function and pseudo CðlÞs for KARMMA runs with different
cosmological parameters with respect to the theory predictions from T17 cosmology. The gray shaded region shows the 95% confidence
interval for the KARMMA run with the fiducial cosmological parameters of T17. The blue (red) solid line shows the mean of the KARMMA

posterior with Planck (DES-Y3) cosmological parameters. The blue (red) dashed lines in the CðlÞ plot shows the input CðlÞ prior for
the corresponding cosmological parameters. As we can see from the figure, the CðlÞs on large scales are not substantially impacted by
the input cosmological parameters. However, the small-scale power depends on the input cosmological parameters.
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likelihood. By contrast, the signal-to-noise ratio on small
scales is low, which renders the posterior at small scales
sensitive to the adopted prior.
In Fig. 13 we compare the distribution of χ2 values

computed using Eq. (10) for each map in the KARMMA

posterior. Interestingly, we see that the KARMMA maps
produced using a Planck cosmology provide a better fit
for the DES-Y3 data than the DES-Y3 or T17 cosmological
parameters. However, we caution against interpreting this
result as evidence for a Planck cosmology since we did not
account for observational systematics in our analysis. Rather,
wewant to highlight the difference in the likelihood between
the Planck and DES-Y3 posteriors suggests that a field-level
analysis of the DES-Y3 data may have the potential to
distinguish between these different cosmologies.

VI. CONCLUSION

The KARMMA algorithm [21,31] models the convergence
field as a lognormal random field. By doing so, KARMMAcan
perform a forward-modeled Bayesian reconstruction of
the density field of the Universe as constrained by cosmic
shear data. In this paper, we have extended the KARMMA

framework so that it can simultaneously forward model
multiple tomographic redshift bins while fully accounting
for their expected covariance. This enhancement signifi-
cantly improves the signal-to-noise ratio of the reconstructed
maps, particularly in the low signal-to-noise regime (see
Sec. IV and [12]). We validated our method on simulated
cosmic shear data generated using N-body simulations,
and demonstrated that the KARMMA posteriors accurately

reproduce a variety of Gaussian and non-Gaussian statistics
of the input simulatedmaps (see Figs. 7 and 8).However, we
do find evidence of small≲5%–10% biases which increase
with decreasing redshifts. These biases arise due to the
failure of the log-normal model to correctly capture non-
linear structure formation. These results suggest that further
improvements require improving the field-level prior
assumed for the convergence field. Some options for such
an improvement include analytic extensions such as the
double log model of [8] or using generative artificial
intelligence models [60–63].
Following our simulation tests, we applied KARMMA to

DES-Y3 weak lensing data to produce the first Bayesian
forward-modeled tomographic mass maps from stage-III
weak lensing data on a sphere. Thesemaps are also the first to
self-consistently account for the covariance between tomo-
graphic redshift bins as part of the mass map reconstruction
algorithm, which in turn improved the signal-to-noise of the
resulting maps, particularly at low redshifts. We show that
these maps have the correct theoretically expected statistical
properties such as the 2-point function [34].
An important limitation in our work is the relatively

coarse angular resolution of our lensingmaps (≈13 arcmin).
Since the information on small scales is highly non-
Gaussian, one might expect that field-level inference will
become evenmore useful at higher resolution. However, this
leads to increased computational demands due to (1) spheri-
cal harmonic transforms at a higher resolution and (2) a
larger parameter space. Significantly improving resolution
over that achieved in this work will require improved
computational spherical harmonics code and faster sampling
methods. Improved spherical harmonic transform codes
have been produced using GPU acceleration (e.g., [64])
or spherical Fourier neural operators [65]. Improvement in
sampling can be achieved using improved sampling meth-
ods such as microcanonical Hamiltonian Monte Carlo
methods [66,67].
Despite this limitation, the inclusion of tomographic

mass mapping on a sphere represents an important step
towards enabling a full field-level cosmological analysis of
cosmic shear data. In addition to varying cosmology, our
future work will focus on incorporating weak lensing
systematics as part of the inference process. The field-
level approach is particularly well suited for incorporating
some of these systematics. For example, it has been shown
that the non-Gaussian clustering of galaxies can improve
the inference of photometric redshifts [68,69]. Likewise,
Bayesian photo-z inference algorithms [70–73] can natu-
rally be extended to incorporate density field inference to
further improve photometric redshift estimation. Similarly,
we will need to model intrinsic alignments at the field
level in order to properly extract information using our
forward modeling framework [74]. Fortunately, we see no
reason why any of these challenges should be prohibitive,

FIG. 13. χ2 distribution from the KARMMA posteriors with
different cosmological parameters. The posteriors with DES-Y3
cosmological parameters (red vertical lines) have the highest χ2,
followed by the T17 (gray histograms) and P19 (blue diagonal
lines). The fact that these distributions are clearly differentiated
suggests a field-level cosmological analysis of the DES shear
maps may be able to distinguish between the Planck and DES-Y3
cosmologies.

BORUAH, FIEDOROWICZ, and ROZO PHYS. REV. D 110, 023524 (2024)

023524-12



suggesting that field-based inference of cosmological
parameters from cosmic shear data could soon be realized.
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APPENDIX: TESTS
WITH LOG-NORMAL MOCKS

In Fig. 14, we show the fractional error in the
correlation function, pseudo-CðlÞs and the 1-pt PDF in
the KARMMA posterior maps on runs with log-normal
mocks. For the ease of visualization, we only show the
results for the first redshift bins, where we saw in Sec. IV
that the uncertainty was the largest. As we can see from
the figure, we do not see the ∼Oð5%Þ bias in the 2-pt
functions or the even larger bias in the 1-pt PDF. This
demonstrates that the biases we see in our runs with
N-body simulations arise because of model misspecifica-
tion due to the assumed log-normal prior.
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