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Higgs inflation with a Gauss-Bonnet term is studied in the Einstein frame. Our model features two
coupling functions, Ω2ðϕÞ and ωðϕÞ, coupled to the Ricci scalar and Gauss-Bonnet combinations. We
found a special relationΩ2 ∝ ω sets the system a lot more simplified; therefore, we take it for granted in our
analytical studies. As a result of a Weyl transformation to the Einstein frame, we notice the emergence of
new interactions: a nonminimal kinetic coupling between the scalar field and gravity and a derivative self-
interaction of the scalar field. In the Einstein frame, we investigate the cosmological implications of these
interactions by deriving the background equation of motion and observable quantities. Our numerical result
on nS vs r suggests our model is consistent with the observational data for a wide range of the model
parameter, −1.4 × 104 ≲ α≡ ω

Ω2 ≲ 8 × 103, where both the positive and negative values of α are allowed.
As the Gauss-Bonnet contributions decay away with time after inflation, the propagation speed of
gravitational waves turned out to be consistent with the recent constraints on the propagation speed of
gravitational waves without inducing ghost instability.
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I. INTRODUCTION

Cosmic inflation, an idea of accelerated exponential
expansion of the early Universe, is a successful paradigm
that not only solved the flatness and horizon problems
but also made definite predictions for primordial cosmo-
logical perturbations that observations can directly test; see
Ref. [1] for review. However, there is no conclusive
solution to the problem of how to embed inflation into a
particle physics framework. The most common approach
for embedding inflation into the particle physics framework
is to couple the gravity sector to a scalar field, such as the
Higgs field. Driven by the Higgs field ϕ, which is non-
minimally coupled to gravity, Higgs inflation is a minimal
model of inflation without introducing additional scalar
degrees of freedom to those appearing in the Standard
Model (SM) of particle physics [2–8]. This model agrees
with data from cosmic microwave background experiments
on the bounds of the scalar spectral index nS and the
tensor-to-scalar ratio r [9–13]. What makes Higgs infla-
tion consistent with the observational data is the non-
minimal coupling function between the Higgs field
and the gravitational sector, which flattens the potential
in the Einstein frame in the large-field regime, allowing

the slow-roll conditions for inflation to be realized
[14–16].1 As a result, at first order in slow-roll approxi-
mation, the Higgs inflation model predicts an nS value
consistent with data and an r value to be comfortably
below the experimental limits [17,18]; see Ref. [19] for
the recent review.
While the nonminimal coupling between gravity and the

Higgs field is well motivated by consideration of the renorm-
alizationof a scalar field in curved space, it is feasible to expect
additional interactions to be present. From the effective-field
theory viewpoint R2 term [20–31], especially the Gauss-
Bonnet combination R2

GB¼R2−4RμνRμνþRμνρσRμνρσ, are
expected to arise [32]. Higher-curvature terms, R2þp terms
(of mass dimension 4þ 2p) may also arise, but they are
supposed to be suppressed [33,34]. The Gauss-Bonnet
term, in isolation, is purely topological and, therefore, does
not impact the dynamics of inflation. However, it can
introduce intriguing phenomenological effects when
coupled with the inflation field. Therefore, in the present
work, we are motivated to study inflation in the context of a
scalar field nonminimally coupled to the Ricci scalar and
the Gauss-Bonnet combination. Such motivations for add-
ing the Gauss-Bonnet term are also complemented by the
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string-theory perspective, where particular couplings
between the Gauss-Bonnet term and scalar fields have
been found [35,36]. We note that many authors have
studied phenomenological aspects of the Gauss-Bonnet
combination, including cosmic inflation [35–52], primor-
dial black holes [53], gravitational-wave leptogenesis [54],
dark energy [55–62], blackholes [63,64], and wormholes
[65,66], in the Einstein frame version of a theory, where a
generic function of a scalar field coupled to the Gauss-
Bonnet combination is often considered in addition to the
Einstein-Hilbert term. While the Jordan frame analyses of
Higgs inflation and a primordial black hole with the Gauss-
Bonnet term were discussed in Refs. [67,68], respectively,
we choose to study Higgs inflation with the Gauss-Bonnet
term in the Einstein frame, where the problem reduces to a
more studied and mathematically simpler problem with
well-known solutions.
The paper is organized as follows. Section II begins with

our setup formulated in the Jordan frame, where we have a
scalar (or Higgs) field coupled to the Ricci scalar and the
Gauss-Bonnet combination. At the end of the section, we
obtain the Einstein frame action using the so-called conformal
transformation. From the Einstein frame action, we derive the
background equationsofmotion and theobservable quantities
in Sec. III followingRef. [69]. In the same section,we provide
our numerical results and discuss the consequent findings of
our work. Finally, we conclude our work in Sec. IV.

II. SETUP AND CONFORMAL
TRANSFORMATION

Let us begin with an action given by

SJ ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
M2

p

2
Ω2ðϕÞRJ

−
1

2
gJab∇aϕ∇bϕ − VðϕÞ þ ωðϕÞR2J

GB

�
; ð2:1Þ

where Mp is the reduced Planck mass. The superscript J
denotes quantities in the Jordan frame, where the scalar
field ϕ is coupled to the Ricci scalar R of the gravity sector
through the nonminimal coupling functionΩðϕÞ. The ωðϕÞ
is the coupling function between the ϕ and the Gauss-
Bonnet combination, R2

GB ¼ R2 − 4RμνRμν þ RμνρσRμνρσ.
If one interprets the ϕ field as the unitary-gauge Higgs
field, the first three terms in Eq. (2.1) are well known in the
context of Higgs inflation, for which the nonminimal
coupling function Ω2ðϕÞ and the potential VðϕÞ take the
following forms [2–4,6,7]:

Ω2 ¼ 1þ σ

M2
p
ϕ2; VðϕÞ ¼ λ

4
ðϕ2 − v2Þ2; ð2:2Þ

where σ and λ are the coupling constant and the potential
parameters, respectively. The v is the vacuum expectation

value of the Higgs field, i.e., v ∼Oð102Þ GeV, which can
be neglected at large field limit (ϕ ≫ v). Thus, the quartic
potential VðϕÞ ≃ λϕ4=4 is a good approximation during
Higgs inflation.
Many properties of the physically interesting quantities

become more apparent and easier to present in the Einstein
frame, where the scalar field is minimally coupled to the
Ricci scalar of a gravity sector. Using the so-called Weyl
transformation, a local conformal transformation, one
moves from the Jordan frame to the Einstein frame. The
spacetime metric and the square root of its determinants
change under the conformal transformation as

gJab ¼ Ω−2gab;
ffiffiffiffiffiffiffiffi
−gJ

p
¼ Ω−4 ffiffiffiffiffiffi

−g
p

; ð2:3Þ

where the gab, without the superscript J, is the metric in the
Einstein frame. In the Einstein frame, the action is written
as [2–4,6,7]

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

p

2
R −

1

2
gab∇as∇bs − VðsÞ

�
; ð2:4Þ

where s is the new canonical scalar field, which is related to
the ϕ via

ds
dϕ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ω2
þ 3M2

p

2

�
d lnΩ2

dϕ

�
2

s

¼
�
1þ σð1þ 6σÞϕ2=M2

p

ð1þ σϕ2=M2
pÞ2

�
1=2

; ð2:5Þ

and VðsÞ≡ VðϕðsÞÞ=Ω4ðϕðsÞÞ is the Einstein frame poten-
tial. Equation (2.5) can be solved for sðϕÞ as

s
Mp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6σ

σ

r
arcsinh½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σð1þ 6σÞ

p
ϕ=Mp�

−
ffiffiffi
6

p
arctanh

" ffiffiffi
6

p
σϕ=Mpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ σð1þ 6σÞϕ2=M2
p

q
#
: ð2:6Þ

In the large-coupling limit σjϕj=Mp ≫ 1 limit, Eqs. (2.2)
and (2.6) can be well approximated as [19,28]

s
Mp

≃
ffiffiffi
3

2

r
lnΩ2ðϕðsÞÞ: ð2:7Þ

Thus, by substituting this into the potential, we get

VðsÞ ≃ λM4
p

4σ2

�
1 − e−

ffiffi
2
3

p
s

Mp

�2
: ð2:8Þ

Let us now discuss how the last term in Eq. (2.1) transforms
under the conformal transformation and investigate what
consequent dynamics would be apparent in the Einstein
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frame that otherwise does not come into sight in the
Jordan frame.
The last term of the action in Eq. (2.1) reads

SJGB ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p
ωðϕÞR2J

GB: ð2:9Þ

The Gauss-Bonnet combination changes under the con-
formal transformation as [70]

R2J

GB ¼ Ω4½R2
GB − 8Ω−1Gab∇a∇bΩ − 4RΩ−2∇aΩ∇aΩ

þ 8Ω−2ð∇a∇aΩ∇b∇bΩ −∇b∇aΩ∇b∇aΩÞ
− 24Ω−3∇aΩ∇aΩ∇b∇bΩþ 24Ω−4ð∇aΩ∇aΩÞ2�;

ð2:10Þ

where Gab ≡ Rab − gabR=2 is the Einstein tensor.
Substituting Eq. (2.10) into Eq. (2.9) and using
Eq. (2.3), we obtain the action in the Einstein frame as

SGB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ωðϕÞ

× ½R2
GB − 8Ω−1Gab∇a∇bΩ − 4RΩ−2∇aΩ∇aΩ

þ 8Ω−2ð∇a∇aΩ∇b∇bΩ −∇b∇aΩ∇b∇aΩÞ
− 24Ω−3∇aΩ∇aΩ∇b∇bΩþ 24Ω−4ð∇aΩ∇aΩÞ2�:

ð2:11Þ

The coupling functions ωðϕÞ can generally be either a
constant or a generic function of a scalar field. In
Appendix A, we show that if ω ¼ const., no accountable
effect comes from the Gauss-Bonnet term in both frames.
Thus, from now on, we regard the Gauss-Bonnet coupling
as a generic function of the scalar field. With the use of the
integration by parts, the second and the third terms in
Eq. (2.11) can be simplified as

−8
Z

d4x
ffiffiffiffiffiffi
−g

p ½ωΩ−2Rab∇aΩ∇bΩ −Ω−1Gab∇aω∇bΩ�;

ð2:12Þ

while the fourth term becomes

8

Z
d4x

ffiffiffiffiffiffi
−g

p h
ωΩ−2Rab∇aΩ∇bΩ

− ωΩ−2ðω−1∇aω − 2Ω−1∇aΩÞ
× ð∇aΩ∇b∇bΩ −∇bΩ∇a∇bΩÞ

i
; ð2:13Þ

where we used Eq. (A1). Consequently, Eq. (2.11) can be
rewritten as

SGB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ωR2
GB þ 8Ω−1Gab∇aω∇bΩ

− 8ωΩ−2ðω−1∇aω − 2Ω−1∇aΩÞ
× ð∇aΩ∇b∇bΩ −∇bΩ∇a∇bΩÞ
− 24ωΩ−3∇aΩ∇aΩ∇b∇bΩ

þ 24ωΩ−4ð∇aΩ∇aΩÞ2�; ð2:14Þ

where the first term in Eq. (2.12) is canceled with that of
Eq. (2.13). It is worth noting that the third term in
Eq. (2.14) vanishes when the two nonminimal couplings
are proportional to each other, maintaining the following
relation:

ω ¼ αΩ2; ð2:15Þ

where α∈R. Although the coupling functions Ω2ðϕÞ and
ωðϕÞ have the flexibility to be arbitrary functions of a scalar
field, we would assume Eq. (2.15) as a part of our model.
The physical meaning behind this particular relation is that
with this choice, the Gauss-Bonnet term can be regarded as
the next-to-leading-order correction to the gravitational
sector with coupling constant α as is seen in Eq. (B1).
Moreover, once this relation is granted, which we did in this
work, the form of the Gauss-Bonnet coupling function can
also be determined, such that our flexibility in choosing
ωðϕÞ is quite restricted. For further elaboration, including
the form of action and the case of an arbitrary power
relationship ω ∝ Ωp, please refer to Appendix B.
Now, the action is greatly simplified as

SGB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
αΩ2½R2

GB þ 4Gab∇a lnΩ2∇b lnΩ2

−3∇b∇b lnΩ2∇a lnΩ2∇a lnΩ2�: ð2:16Þ

In terms of the scalar field s defined in Eq. (2.7), the action
in Eq. (2.16) becomes

SGB ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
αe

ffiffi
2
3

p
s

Mp

�
R2
GB þ 8

3M2
p
Gab∇as∇bs

−
1

M3
p

ffiffiffi
8

3

r
∇b∇bs∇as∇as

�
: ð2:17Þ

Combining Eq. (2.17) with Eq. (2.4), we can write the full
action in the Einstein frame as

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
M2

P

2
R−

1

2
gab∇as∇bs−VðsÞ− 1

2
ξðsÞ

×

�
c1R2

GB þ
c2
M2

p
Gab∇as∇bsþ c3

M3
p
∇as∇as∇b∇bs

��
;

ð2:18Þ
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where

ξðsÞ≡−2αe
ffiffi
2
3

p
s

Mp ; c1 ¼ 1; c2¼
8

3
; c3 ¼−

ffiffiffi
8

3

r
;

and the potential VðsÞ given in Eq. (2.8). Here, in addition
to the expected Gauss-Bonnet term, Eq. (2.18) presents
new interactions, including the kinetic coupling between
the scalar field and gravity, as well as the derivative self-
interaction of the scalar field, that were not apparent in the
Jordan frame. Such interactions discussed in Refs. [71–73]
as a particular subclass of Horndeski’s theory [74], the most
general scalar-tensor theory of gravity, or equivalently the
generalized Galileons [75]. Moreover, multiplied by ξðsÞ,
the last term in Eq. (2.18) is also discussed in Ref. [69] as a
string correction to Einstein gravity. These additional
interactions are dropped out if the α equals zero, such that
the general relativity (GR) limit can be reached in our study.
Thus, the deviation from the GR requires the nonzero
values of α; the larger the α value, the more the deviation

from the GR limit increases. Consequently, even though
both negative and positive values are allowed, we let the
observational data determine the sign of α. From now on,
we will specify the last term of Eq. (2.18) as the Gauss-
Bonnet contributions.

III. HIGGS INFLATION WITH A GAUSS-BONNET
TERM IN THE EINSTEIN FRAME

In this section, we investigate Higgs inflation with the
Gauss-Bonnet contributions in the Einstein frame with
potential presented in Eq. (2.8). From Eq. (2.18), we derive
gravitational and field equations of motion as [69]

Gab ¼ ∇as∇bs −
1

2
gabð∇cs∇cs − 2VÞ − 1

2
TGB
ab ; ð3:1aÞ

∇a∇as − V;s ¼
1

2
TGB; ð3:1bÞ

where

TGB
ab ¼ c1½4gabð2∇c∇dξRcd −∇c∇cξRÞ − 4ð2∇c∇dξRacbd − 2∇c∇cRab þ 4∇c∇ðbξRc

aÞ −∇a∇bξRÞ�
þ c2
M2

p
½ξðRab∇cs∇csþ R∇as∇bs − 4Rc

ða∇bÞs∇csÞ −∇c∇cðξ∇as∇bsÞ

−∇a∇bðξ∇cs∇csÞ þ 2∇c∇ðbðξ∇cs∇aÞsÞ þ gabðξGcd∇cs∇ds −∇d∇cðξ∇cs∇dsÞ þ∇d∇dðξ∇cs∇csÞÞ�
þ c3
M3

p
½2∇ðaðξ∇cs∇csÞ∇bÞs − 2ξ∇c∇cs∇as∇bs − gab∇dðξ∇cs∇csÞ∇ds�;

TGB ¼ c1ξ;sR2
GB −

c2
M2

p
Gabðξ;s∇as∇bsþ 2ξ∇a∇bsÞ

þ c3
M3

p
½ξ;s∇b∇bs∇as∇asþ∇b∇bðξ∇as∇asÞ − 2∇aðξ∇b∇bs∇asÞ�;

with “V;s ¼ ∂V=∂s” and “ξ;s ¼ ∂ξ=∂s.” In the spatially flat
Friedmann-Robertson-Walker universe with metric

ds2 ¼ −dt2 þ aðtÞ2δijdxidxj;
where aðtÞ is the scale factor, the background equations of
motion yield from Eq. (3.1) [69]

3M2
pH2 ¼ 1

2
ṡ2 þ V þ 12c1ξ̇H3 −

9

2

c2
M2

p
ξṡ2H2

þ 1

2

c3
M3

p
ðξ̇ − 6ξHÞṡ3; ð3:2aÞ

M2
pð2Ḣþ3H2Þ ¼−

1

2
ṡ2þVþ4c1½ξ̈H2þ2ξ̇HðḢþH2Þ�

−
1

2

c2
M2

p
ṡ½ξṡð2Ḣþ3H2Þþ4ξs̈Hþ2ξ̇ ṡH�

−
1

2

c3
M3

p
ṡ2ð2ξs̈þ ξ̇ ṡÞ; ð3:2bÞ

s̈þ3HṡþV;s¼−12c1ξ;sH2ðḢþH2Þ

þ3

2

c2
M2

p
½H2ðξ̇ ṡþ2ξs̈Þþ2Hξṡð2Ḣþ3H2Þ�

−
1

2

c3
M3

p
ṡ½ξ̈ ṡþ3ξ̇ s̈−6ξðḢ ṡþ2Hs̈þ3H2ṡÞ�;

ð3:2cÞ

where H ≡ ȧ=a is the Hubble parameter and the overdot
denotes the derivative with respect to time t. The imprints
of the Gauss-Bonnet contributions in the Einstein frame can
be easily identified by examining the equation of motion
for the presence of the ξðsÞ function. Thus, the terms
containing ξðsÞ are clear indicators of the Gauss-Bonnet
contributions in the Einstein frame and should not be
overlooked.
In the context of slow-roll inflation, it is often assumed

that the acceleration of the scalar field is negligible with
respect to the gravitational friction, ̈s ≪ 3Hṡ, and the
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potential energy dominates over the kinetic energy,
V ≫ ṡ2=2; together they are known as the slow-roll
approximations. Thus, in light of the slow-roll approxima-
tions, the above equations in Eqs. (3.2) can be simplified
even further as

3M2
pH2 ≃ V; ð3:3Þ

3Hṡ ≃ −
B ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 − 4AC
p

2A
; ð3:4Þ

where

A≡ c3
M3

p
ξ; B≡1−

3c2
M2

p
ξH2; C≡V;sþ12c1ξ;sH4:

In obtaining Eqs. (3.3) and (3.4), we assumed ξ̇=ð2ξHÞ≪1
with ξðsÞ ≠ 0. Without any loss of generality, one can
rewrite Eq. (3.4) as

3Hṡ ≃ −V;s½1þ δðsÞ�; ð3:5Þ

where

δðsÞ≡ B ∓ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p

2AV;s
− 1: ð3:6Þ

The duration of inflation is measured by the so-called
number of the e-folds, which is defined as N ≡ R te

ti Hdt,
where the variables ti and te represent the initial and end
times of inflation, respectively. Using Eq. (3.5), we obtain

N ¼
Z

se

si

H
ṡ
ds ≃

1

M2
p

Z
si

se

V
V;ϕ

�
ds
dϕ

�
2 1

ð1þ δÞ dϕ; ð3:7Þ

where si and se refer to the scalar field values at the
beginning and end of inflation, respectively. Here, Eq. (3.7)
shows that the Gauss-Bonnet contributions in the Einstein
frame impact the number of e-folds through the δðsÞ
function as defined in Eq. (3.6).
To reflect the aforementioned slow-roll approximations,

it is useful to introduce the following so-called slow-roll
parameters2:

ϵ1≡ Ḣ
H2

≃−ϵVð1þδÞ;

ϵ2≡ s̈
Hṡ

≃ ½ϵV −ηV −
ffiffiffiffiffiffiffiffi
2ϵV

p
Mp lnð1þδÞ;s�ð1þδÞ; ð3:8Þ

where

ϵV ≡M2
p

2

�
V;s

V

�
2

; ηV ≡M2
p
V;ss

V
:

Following Ref. [69], we also introduce the following
additional slow-roll parameters to take the effects of the
Gauss-Bonnet contributions into account:

ϵ3 ≡ Ė
2EH

¼ E;s

2E
ṡ
H
;

ϵ4 ≡ Qa

4M2
pHQt

;

ϵ5 ≡ Q̇t

2QtH
¼ Qt;s

2Qt

ṡ
H
; ð3:9Þ

where

E≡ 1

ṡ2

�
ṡ2 þ 3Q2

a

2M2
pQt

þQc

�
;

with

Qa ≡ −4c1ξ̇H2 þ 2c2
M2

p
ξṡ2H þ c3

M3
p
ξṡ3;

Qb ≡ −8c1ξ̇H þ c2
M2

p
ξṡ2;

Qc ≡ −
3c2
M2

p
ξṡ2H2 þ 2c3

M3
p
ṡ3ðξ̇ − 3ξHÞ;

Qt ≡ 1þ Qb

2M2
p
:

For slow-roll inflation to occur successfully in our model,
we require these slow-roll parameters to be smaller than
unity, i.e., jϵ1;2;3;4;5j ≪ 1, during inflation. Then, inflation
ends as the condition jϵ1ðseÞj ¼ 1 is reached. The se value
is also affected by the presence of Gauss-Bonnet contri-
butions. Following the linear perturbation analyses carried
out in Ref. [69], we obtain the spectral indices for scalar
and tensor fluctuation modes [69]

nS − 1 ¼ 2ð2ϵ1 − ϵ2 − ϵ3Þ; nT ¼ 2ðϵ1 − ϵ5Þ; ð3:10Þ

and the tensor-to-scalar ratio

r ¼ 16

				 1

Qt

�
cA
cT

�
3
�
ϵ1 −

2Qc þQd −HQe þH2Qf

4M2
pH2

�				:
ð3:11Þ

Here, the squared propagation speeds of the scalar and
tensor perturbation modes are given [69,76] by

2Our definitions of the ϵ1 and ϵ2 are different from those in
conventional inflation models, where ϵ1 and ϵ2 are often defined
with the overallminus signs, i.e., ϵ1 ≡ −Ḣ=H2 and ϵ2 ≡ −̈s=ðHṡÞ.
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c2A ≡ 1þ
Qd þ Qa

2M2
pQt

Qe þ
�

Qa
2M2

pQt

�
2
Qf

ṡ2 þ 3Q2
a

2M2
pQt

þQc

;

c2T ≡ 1 −
Qf

2M2
pQt

; ð3:12Þ

where

Qd ≡ −
2c2
M2

p
ξṡ2Ḣ −

2c3
M3

p
ṡ2ðξ̇ ṡþξ̈s − ξṡHÞ;

Qe ≡ −16c1ξ̇ Ḣþ 2c2
M2

p
ṡðξ̇ ṡþ2ξ̈s − 2ξṡHÞ − 4c3

M3
p
ξṡ3;

Qf ≡ 8c1ðξ̈ − ξ̇HÞ þ 2c2
M2

p
ξṡ2:

When α ¼ 0, the GR limit, theQa;b;c;d;e;f quantities vanish,
while Qt becomes unity. Consequently, fcA; cTg → 1 and
the canonical case is restored. When α ≠ 0, on the other
hand, the propagation speeds deviate from the unity.
However, if the cA is either a negative (cA < 0) or super-
luminal (cA > 1), one must worry about the ghost insta-
bility [69,76]. By using the numerical solutions to the
background equations of motion in Eqs. (3.2) and the
expression of the slow-roll parameters defined in Eqs. (3.8)
and (3.9), we perform numerical analyses for the values of
the cA and cT of our model later in this section.
Now that we have the key observable quantities, we will

conduct numerical analyses in the following using
Eqs. (3.10) and (3.11) and put constraints on the model
parameters. In general, we have three free parameters,
including α, λ, and σ. However, if we adopt the Planck
normalization [77] for λ=σ2 ∼Oð10−9Þ in our numerical
study, our model becomes a one-parameter model effec-
tively. This adaptation and the absence of the Gauss-Bonnet
contributions, i.e., α ¼ 0, allow us to recover well-known
results of conventional Higgs inflation in the Einstein
frame.
Figure 1 presents the theoretical predictions of our model

in the nS vs r plane, along with the observational data. The
background dark- and light-blue contours represent the 1σ
and 2σ confidence level (CL) of the Planck TT; TE; EEþ
lowEþ lensingþ BK15þ BAO data, respectively. At the
same time, the blue, black, and red lines show theoretical
predictions of our model for α ¼ 8 × 103, α ¼ 0, and
α ¼ −1.4 × 104, respectively. The orange squares and
disks denote the N� ¼ 50 and N� ¼ 60 e-folds, respec-
tively. The solid black line in the figure indicates the
absence of the Gauss-Bonnet contributions (α ¼ 0), and in
this case, we recover theoretical predictions of Higgs
inflation in the GR case. The small wiggles in the plot
manifest the numerical errors that accumulated in solving

the background equations of motion in Eqs. (3.2); hence,
they do not indicate any specific significance.3

In the presence of the Gauss-Bonnet contributions
(α ≠ 0), the theoretical predictions of our model shift along
the dotted-black lines. Moreover, both the nS and r values
decrease (increase) for the positive (negative) values of α.
The preferred parameter ranges of α are between −3 ×
104 ≤ α ≤ 8 × 103 when N ¼ 50 and −1.4 × 104 ≤ α ≲
2 × 104 when N ¼ 60, respectively. The magnitude of α
being relatively large, i.e., jαj ≫ Oð1Þ, means our model
requires relatively large values of jαj to give rise to
noticeable deviations from the GR. While the observational
data allow the large jαj values, the Gauss-Bonnet contri-
butions remain subdominant mainly because of the terms
inside the round brackets in Eq. (2.18) and of the
exponential form of the ξðsÞ function. The terms inside
the round brackets are small because the R2

GB combination
of the first term is in the second order of curvature
quantities, while the second and third terms are

FIG. 1. Numerical plot of nS vs r (top) and their number
of e-fold dependence (bottom) from Eqs. (3.10) and (3.11).
The two ends of each solid line denote N� ¼ 50 (squares) and
N� ¼ 60 (disks). The solid black line (α ¼ 0) indicates the
absence of the Gauss-Bonnet contribution. The model parameter
α varies along the black-dotted lines between −1.4 × 104ðredÞ ≤
α ≤ 8 × 103ðblueÞ.

3The nS and r in Eqs. (3.10) and (3.11) expressions depend on
̈s through the ϵ2 parameter as defined in Eq. (3.8). Thus, to
estimate the ̈s, we numerically solve Eqs. (3.2b) and (3.2c) for
fs; ṡ; Hg with appropriate initial conditions, i.e., fs0; ṡ0; H0g ¼
f5.6Mp; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vðs0Þ=ð3M2

pÞ
q

g. Then, by using the obtained

numerical solutions, we approximate the ̈s as a function of time.
As a consequence of our numerical treatment, the numerical error
manifests in the approximation of nS and r in Fig. 1. The
numerical error is actually quite small of degreeOð10−14Þ if taken
over the whole range of inflation and is “apparently noticeable in
Fig. 1 due to the plotting range of e-fold N. We use the number of
e-folds, which is related to time t via dN ¼ Hdt, as a time
parameter, and the duration of inflation is counted from the end of
inflation.
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(i) suppressed by two and three powers of reduced Planck
mass Mp, respectively, and (ii) proportional to the deriv-
atives of s, which gives negligible contribution during
inflation due to the slow-roll dynamics of the scalar field. In
addition, these terms inside the round brackets are multi-
plied by exponentially decreasing function of ξðsÞ, i.e.,
expð ffiffiffiffiffiffiffiffi

2=3
p

s=MpÞ, where the s decreases during inflation as
the scalar field rolls from a large value to small value along
the plateau of the potential in Eq. (2.8). As a result, even
though the large jαj values are allowed by observational
data, the small contributions coming from the terms inside
the round brackets and the exponentially decreasing func-
tion multiplying it make the Gauss-Bonnet contributions
small; hence, the Gauss-Bonnet contributions can be
treated as a small correction to GR as is regarded so
in Ref. [69].
Since our analyses in this section are purely numerical,

we need to ensure the smallness of the slow-roll parameters
during inflation. Figure 2 shows the numerical plot of the
slow-roll parameters, where the exact expressions of ϵi with
i ranging from 1 to 5 are used from Eqs. (3.8) and (3.9), and
our result shows that they are indeed small during inflation,
i.e., jϵij ≲ 1 for the values of α that are favored by
observational data. To plot the figure, we first numerically
integrate the background equations of motion in Eqs. (3.2)
and use the solutions in Eqs. (3.8) and (3.9). The red and
blue disks in each subfigure mark the end time Nend of
inflation, which is determined from jϵ1ðNendÞj ¼ 1. In the
absence of Gauss-Bonnet contributions, the ϵ3;4;5 values
become zero, the dashed black lines in the figure. For the
conventional models of inflation, the tensor power spec-
trum is called red tilted (blue tilted) if the tensor spectral
index nT is negative (positive). From Eq. (3.10), the nT can
be negative if the ϵ5 > ϵ1. However, Fig. 2 shows for our
model that the ϵ1 parameter is negative during inflation due
to our definitions in Eq. (3.8), and it significantly outweighs
the ϵ5 throughout inflation. As a result, the tensor spectral
index is negative during the nT < 0, and the power
spectrum of the tensor fluctuations is, therefore, red tilted.
The direct detections of gravitational waves (GWs) from

a neutron star merger GW170817 [78], as well as its
associated electromagnetic counterpart GRB170817A [79],
allows us to constrain the GWs propagation speed with
remarkable precision: −3×10−15≤cT=cγ−1≤7×10−16,
where cγ is the speed of light and we normalize it to
cγ ¼ 1. This bound indicates that the difference in the
propagation speed between light and gravitational waves
is less than about 1 part in 1015. However, the bound
corresponds to the late-time universe, where the scalar-field
value in ourmodelmust have reached zero, i.e., s ¼ 0.When
s ≠ 0, which is the case for the early universe, one can expect
significant deviations out of this bound induced by the
Gauss-Bonnet contributions. Such deviations are subject to
future probes. In Fig. 3, we plot cT=cγ and cA as functions of
N. The red and blue lines denote α ¼ −1.4 × 104 and

α ¼ 8 × 103, respectively, and the ends of inflation for each
case are marked with the red and blue disks. The figure,
especially the insets, shows that the Gauss-Bonnet contri-
butions gradually decay away and become negligible a few

FIG. 2. Numerical plot of ϵiðNÞ from Eqs. (3.8) and (3.9),
where i ¼ 1, 2, 3, 4, 5, for α ¼ −1.4 × 104 (red) and α ¼ 8 × 103

(blue). The red and blue disks mark the end time of inflation for
each case.
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e-folds after the end of inflation. As a result, we conclude
that Gauss-Bonnet contributions play a significant role
during inflation by letting the GWs propagate at a speed
different from the speed of light and become negligible
over time such that the GW propagation speed converges to
that of the speed of light a few e-folds after the end of
inflation.

IV. CONCLUSION

Wehave investigatedHiggs inflationwith aGauss-Bonnet
term in the Einstein frame for the model given in Eq. (2.1).
Our model in the Jordan frame has two coupling functions,
Ω2ðϕÞ and ωðϕÞ, coupled, respectively, to the Ricci scalar
and the Gauss-Bonnet combinations. We assumed these two
coupling functions to hold a relation presented in Eq. (2.15)
to simplify the delivery of results in the Einstein frame. Our
key analytic result of the currentwork is derived inEq. (2.18),
where additional interactions, including a nonminimal
kinetic coupling between the scalar field and gravity, as
well as a derivative self-interaction of the scalar field,
emerged in the Einstein frame as a result of a conformal
transformation from the Jordan to the Einstein frame.
From Eq. (2.18), the background equations of motion are

derived in Eq. (3.2), and the observable quantities are
obtained in Eqs. (3.10) and (3.11), where we have followed

Ref. [69] closely. Although there are three free parameters
in the model, including the potential parameter λ, the
nonminimal coupling parameter σ between the scalar field
and the Ricci scalar, and the coupling parameter α of the
Gauss-Bonnet contributions, we showed that our model
becomes effectively the one-parameter model if we adopt
the Planck normalization for λ=σ2 ∼Oð10−9Þ. The key
numerical result of our current work is presented in Fig. 1,
where the theoretical predictions fnS; rg of our model are
plotted together with the observational data.
Without the Gauss-Bonnet contributions, where α ¼ 0,

our result recovers the predictions of Higgs inflation in the
GR. Once the Gauss-Bonnet contributions are turned on
with α ≠ 0, the nS and r predictions deviate from the GR
case. The nS and r values decrease (increase) for the
positive (negative) α values, as is seen in Fig. 1. The
observational data favor the broad-range model parameter:
−3 × 104 ≤ α ≤ 8 × 103 when N ¼ 50 and −1.4 × 104 ≤
α≲ 2 × 104 when N ¼ 60, respectively. In Fig. 3, our
analysis reveals that the propagation speed of GWs deviates
from the speed of light during the inflationary period,
influenced by Gauss-Bonnet contributions on the order of a
few parts in hundreds of thousands. These Gauss-Bonnet
effects gradually dissipate after the inflation, leading the
GWs to progressively align with the speed of light. We have
also shown the validity of the slow-roll approximation in
Fig. 2 by showing the slow-roll parameters are small, much
smaller than unity, during inflation.
In our future research, we plan to relax our assumption

made in Eq. (2.15) and explore postinflationary cosmology
and its implications for (p)reheating. It also remains to be
determined whether these newly emerged interactions in
the Einstein frame can adequately account for the observed
late-time accelerating expansion of the Universe.
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APPENDIX A: CONSTANT COUPLING
TO THE GAUSS-BONNET TERM

Let us consider the constant Gauss-Bonnet coupling,
i.e., ωðϕÞ ¼ const in Eq. (2.1), and simplify the Einstein
frame action in Eq. (2.11). For the fourth term in Eq. (2.11),
we use

FIG. 3. Numerical plot from Eq. (3.12) where cγð¼1Þ is the
speed of light. The red and blue lines denote α ¼ −1.4 × 104 and
α ¼ 8 × 103, respectively. The red and blue disks mark the end
time of inflation for each case. The horizontal black solid lines at
“1” indicate the GR limit where cT ¼ 1 ¼ cA.
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∇a

�
Ω−2

�
∇b∇bΩ∇aΩ −

1

2
∇að∇ΩÞ2

��

¼ Ω−2½ð∇a∇aΩÞ2 − ð∇a∇bΩÞ2� − RabΩ−2∇aΩ∇bΩ

− 2Ω−3ð∇ΩÞ2∇b∇bΩþ 2Ω−3∇aΩ∇bΩ∇a∇bΩ; ðA1Þ

and integration by parts to obtain

8ω

Z
d4x

ffiffiffiffiffiffi
−g

p
Ω−2ð∇a∇aΩ∇b∇bΩ−∇b∇aΩ∇b∇aΩÞ

¼ω

Z
d4x

ffiffiffiffiffiffi
−g

p ½2Rab∇a lnΩ2∇b lnΩ2þ4ðΩ−1∇b∇bΩÞ

× ð∇ lnΩ2Þ2−4ðΩ−1∇a∇bΩÞð∇a lnΩ2∇b lnΩ2Þ�; ðA2Þ
where the following relations are used:

∇a lnΩ ¼ Ω−1∇aΩ;

Ω−1∇a∇aΩ ¼ ∇a∇a lnΩþ∇a lnΩ∇a lnΩ

¼ 1

2
∇a∇a lnΩ2 þ 1

4
∇a lnΩ2∇a lnΩ2: ðA3Þ

The third term in Eq. (2.11) can also be rewritten as

− 4ω

Z
d4x

ffiffiffiffiffiffi
−g

p
RΩ−2∇aΩ∇aΩ

¼ −ω
Z

d4x
ffiffiffiffiffiffi
−g

p
gabR∇a lnΩ2∇b lnΩ2: ðA4Þ

Then, the first term on the right-hand side of equality in
Eq. (A2) is combined with Eq. (A4) to give

2ω

Z
d4x

ffiffiffiffiffiffi
−g

p
Gab∇a lnΩ2∇b lnΩ2; ðA5Þ

which is then canceled with the second term in Eq. (2.11).4

Thus, the remaining terms in Eq. (2.11) read

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ω½R2

GB − 2ðΩ−1∇b∇bΩÞð∇ lnΩ2Þ2

− 4ðΩ−1∇a∇bΩÞð∇a lnΩ2∇b lnΩ2Þ

þ 3

2
ð∇a lnΩ2∇a lnΩ2Þ2�: ðA6Þ

Let us rewrite Eq. (A6) once again using Eq. (A3):

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ω½R2

GB − ð∇b∇b lnΩ2Þ

× ð∇a lnΩ2∇a lnΩ2Þ − 2ð∇b∇a lnΩ2Þ
× ð∇a lnΩ2∇b lnΩ2Þ − ð∇a lnΩ2∇b lnΩ2Þ2
þ ð∇a lnΩ2∇a lnΩ2Þ2�: ðA7Þ

The second and third terms are canceled after integration by
parts. Thus, we obtain

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ω

�
R2
GB −

4

9
ð∇as∇bsÞ2 þ

4

9
ð∇as∇asÞ2

�

¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ωR2

GB; ðA8Þ

where s≡ ffiffiffiffiffiffiffiffi
3=2

p
lnΩ2. It is well known in the literature

that the Gauss-Bonnet term is topological in 4 dimensions
if the Gauss-Bonnet coupling is a constant. Thus, for the
ω ¼ const: case, we conclude that no dynamical contribu-
tions emerge from the Gauss-Bonnet term in the Jordan and
Einstein frames.

APPENDIX B: POWER-LAW COUPLING
TO GAUSS-BONNET TERM

Let us now assume the coupling functions in Eq. (2.1)
hold a more general relation as ω ¼ αΩp. When p ¼ 2, the
action in the Jordan frame reads

SJ ¼
Z

d4x
ffiffiffiffiffiffiffiffi
−gJ

p �
Ω2ðϕÞ

�
M2

p

2
RJ þ αR2

GB

�

−
1

2
gJab∇aϕ∇bϕ − VðϕÞ

�
: ðB1Þ

The Einstein frame action is presented in Eq. (2.14).
For ω ¼ αΩp with arbitrary power of p, the third term of

Eq. (2.14) can be written as

8αðp − 2ÞΩp−3∇aΩð∇aΩ∇b∇bΩ −∇bΩ∇a∇bΩÞ: ðB2Þ

Consequently, Eq. (2.14) becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
αΩp½R2

GB þ 8pΩ−2Gab∇aΩ∇bΩ

− 8ðpþ 1ÞΩ−3∇aΩ∇aΩ∇b∇bΩ

þ 8ðp − 2ÞΩ−3∇aΩ∇bΩ∇a∇bΩ

þ 24Ω−4ð∇aΩ∇aΩÞ2�: ðB3Þ

Applying Eqs. (A3) to the last term in the first line, we
obtain

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
αe

p
2

ffiffi
2
3

p
s

Mp

�
R2
GB þ 4p

3M2
p
Gab∇as∇bs

−
pþ 1

3M3
p

ffiffiffi
8

3

r
∇b∇bs∇as∇as

þp − 2

3M3
p

ffiffiffi
8

3

r
∇as∇bs∇a∇bs

�
; ðB4Þ

4The integration by parts of the second term in Eq. (2.11):

−2ω
Z

d4x
ffiffiffiffiffiffi
−g

p
Gab∇a lnΩ2∇b lnΩ2:
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where ðs=MpÞ≡
ffiffiffiffiffiffiffiffi
3=2

p
lnΩ2. The last term vanishes for

p ¼ 2 and we get Eq. (2.17). As a result of conformal
transformation from the Jordan frame to the Einstein frame,
we notice the emergence of new interactions such as the

kinetic coupling between the scalar field and gravity and
the derivative self-interactions of the scalar field. These
interactions certainly would contribute both to the back-
ground and the perturbation dynamics.
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