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In this paper, we present the cosmological perturbation formalism for theories within the framework of
affine gravity. These theories are distinguished by their connection, devoid of any metric. Our approach
involves segregating perturbations into symmetric and antisymmetric components (related to torsion),
each further decomposed into irreducible elements, namely scalars, pseudoscalars, vectors, pseudo-
vectors, 2-tensors, and 3-tensors. Finally, we have fully addressed the gauge freedom in this context.
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I. INTRODUCTION

The cosmological model of the Universe is built up
under the precept of isotropy and homogeneity, and
assumes that the theory that explains the gravitational
interactions is General Relativity. Such premise is often
called the cosmological principle, and it is understood as
valid in terms of averages over large portions of the space.
It was soon understood that keeping these condition would
not explain the structure formation on the observable
Universe.
The structure formation then requires departure from

the cosmological principle. Given the complexity of the
Einstein equations, even in the simpler scenarios, the
strategy is to consider perturbations around an isotropic
and homogeneous background, and find the conditions
imposed by the field equations on the perturbations (up to a
certain order). In General Relativity the metric is the field
responsible for mediating the gravitational interaction,
hence one considers that the physical metric, gμν, is a
sum of an isotropic and homogeneous background metric
ḡμν plus a (small) symmetric tensor field hμν,

gμν ¼ ḡμν þ ϵhμν; ð1Þ

where ϵ is an expansion parameter that allows to control
the order of the perturbation.
Moreover, within the framework of the ΛCDM model

(Λ cold dark matter, where the Λ stands for the existence
of a cosmological constant) the observed Universe is

composed mainly of dark energy (69%) and dark matter
(26%) [1], which together constitute the so-called dark
sector of the Universe, two forms of matter whose origin
and nature is still not well understood, nor have been
observed directly. Indeed, we have been able to observe the
effects produced by their possible existence, but without
encountering a direct detection such as in a particle
accelerator.
The necessity of a huge dark sector to comprehend the

Universe within the foundations of the ΛCDM model has
posed the question of whether our theories of gravity and
particles are fundamental or just effective manifestations of
yet-to-be-discovered fundamental ones. This has driven the
formulation of uncountable generalizations of our standard
models, with the addition of exotic types of matter and
interactions from the particle physics point of view, and the
extension of the gravitational sector from the gravitational
counterpart.
Focusing on the branch of extensions of the gravitational

sector, one encounters for example metric models of gravity
which consider higher order in curvature (e.g. Lanczos–
Lovelock gravities [2–5]), but there are also metric-affine
models of gravity (see Refs. [6–8] for detailed reviews), in
which the metric and the affine connection are considered as
independent fields. A modern review of many generalized
gravitational sectors can be found in [9] (see also [10] for a
student friendly introduction). In addition, there exist purely
affine models of gravity [11–24], in which the mediator of
the gravitational interaction comes from the affine con-
nection, and the metric tensor field is not required to build
up the action functional of the model.
In this later construction of gravity, cosmological

solutions have been studied in [25–31]. Nonetheless,
the analysis of perturbations around an exact solution
requires considering perturbations of the affine connection.
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However, to the extent of our knowledge the perturbative
analysis of an affine connection has not been reported
in the literature.
The aim of this paper is to study1 the cosmological

perturbations for the affine connection, which might serve
as a tool to study the inhomogeneities of the Universe in
affine and metric-affine models of gravity.
In the first part of this paper, we summarize some notions

of differential geometry focusing on the objects that we will
use in this paper. In the second part, we will give the
different components of the connection compatible with the
cosmological principle followed by the complete study of
perturbations. Finally, we will address the problem of gauge
freedom and construct gauge invariant quantities as well as
list the different possible gauges. Finally, in the last section
we conclude the paper and state some possible future
directions of this work.

II. BRIEF REVIEW OF DIFFERENTIAL
GEOMETRY

The content of this section is based on Refs. [33–39].
An m-dimensional differential manifold, M, is a topo-

logical space which is locally homeomorphic to Rn with a
differential structure defined by the transition functions.2

The differential structure allows to define a vector
tangent space at each point of the manifold (m∈M),
TmM. Using the tensor product one defines the tensor
space ⊗p TmM over the point m, where the p-times
contravariant tensors live. The set of linear maps from
TmM to the algebraic field R form a vector space dubbed
vector cotangent space, T�

mM, and the tensor product ⊗q

T�
mM defines the space where the q-times covariant tensors

live. Clearly, it is possible to define the space⊗p TmM ⊗q

T�
mM where the ðp; qÞ-tensors live.
The disjoint union of the vector tangent spaces over M

defines the tangent bundle TM, which is a 2m-dimensional
differential manifold, whose sections are the vector fields
on M. A similar construction can be made with the
cotangent spaces yielding the cotangent bundle, T�M,
whose sections are the covector (one-form) fields on M.
The ðp; qÞ-tensor fields are sections on the bundle ⊗p

TM ⊗q T�M over M. A sub-bundle ΛqT�M ⊂⊗q T�M
over M is the bundle whose sections are q-forms, i.e.
completely skew-symmetric ð0; qÞ-tensor fields on M.3

A volume form, ω, is a nowhere vanishing section of
the bundle ΛmT�M, and this is the structure that allows us
to define the integration on the manifold M.
In order to define derivatives of the geometrical objects

onM, e.g. tensor fields, it is required a structure that allows
to compare the objects at different points of M is required.
Such a structure is called a linear connection (in this article
we make no distinction between linear and affine con-
nections, so hereon we shall refer indistinctly to it as the
affine connection), ∇, and it is determined by its compo-
nents, Γμ

λ
ρ. The connection contains the information of

how the vector basis changes as one moves on the manifold
M, e.g. if we consider a vector basis fe⃗ρg the components
of the connection are defined as

∂μe⃗ρ ¼ Γμ
λ
ρe⃗λ: ð2Þ

The definition from Eq. (2) induces an action of the
connection over the tensor bundles of any type, and hence
the sections whose action of the affine connection is well
defined (at least over a region) are said to be differential
sections. In particular, infinitely differentiable sections are
called smooth sections, and the set of smooth sections is
denoted by C∞ð⊗p TM ⊗q T�MÞ.
The affine connection serves to define the notion of

parallelism, and as a tool it might be interpreted as the
analogous to the ruler in classical geometry. In addition, the
notion of curvature tensor stands solely on the existence of
this structure. Hence, the notion of curvature,

RðX; YÞZ ¼ ∇X∇YZ −∇Y∇XZ −∇½X;Y�Z; ð3Þ

with X; Y; Z∈C∞ðTMÞ, which can be written in compo-
nents as

Rμν
λ
ρ ¼ ∂μΓν

λ
ρ − ∂νΓμ

λ
ρ þ Γμ

λ
σΓν

σ
ρ − Γν

λ
σΓμ

σ
ρ; ð4Þ

makes sense in affinely connected manifolds, which are
manifolds endowed with an affine structure, ðM;∇Þ. These
affinely connected manifolds are the arena where purely
affine gravitational model are built up.
With a generic affine connection one could define

another tensor quantity called the torsion,

TðX; YÞ ¼ ∇XY −∇YX − ½X; Y�; ð5Þ

for X; Y ∈C∞ðTMÞ, which in components is expressed like

T μ
λ
ν ¼ Γμ

λ
ν − Γν

λ
μ: ð6Þ

A metric tensor field is a differentiable section
of the symmetric sub-bundle S2ðT�MÞ ⊂⊗2 T�M, g∈
C∞ðS2ðT�MÞÞ, which is nondegenerated at each point
p∈M, i.e. at any p if gpðX; YÞ ¼ 0 for every Y ∈TpM
then necessarily X ¼ 0. Every metric tensor field has a

1While completing this work, a paper on a similar topic but
with a different approach has been published [32].

2For every open ball Ui ∈M there exists a continuous
map ϕi with continuous inverse ϕ−1

i such that on the overlap
of two open balls, Ui ∩ Uj ≠ ∅, the transition functions ψ ji ≡
ϕj∘ϕ−1

i ∶Rm → Rm are CkðRmÞ. Customarily, if the order of
differentiability (k) is not specified, it is assumed that the
transition functions are C∞ðRmÞ.

3The bundle ΛqT�M can be understood as the qth exterior
power of the cotangent bundle.
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property called signature, which corresponds to the sign
of its eigenvalues, that has to be consistent all over the
manifold. The metric tensor is the tool that defines
(generalized) distances, and hence an analogous to the
compass in classical geometry.
The metric provides a map from C∞ðTMÞ to C∞ðT�MÞ,

and its inverse (also called dual) is a map in the opposite
direction. These two objects define the musical maps,
which are said to lower and raise the indices.
A metric-affine manifold is a differentiable manifold

equipped with an affine connection and a metric, ðM;∇; gÞ.
Note that in general there is no relation between the affine
and metric structures. However, once the two structures
are given, the affine connection can be decomposed into
irreducible parts compatible with the metric field as
follows: (i) calculate the covariant derivative of the metric
to define the nonmetricity tensor field Qμνλ ¼ ∇μgνλ;
(ii) use the metric to lower the index of the torsion, and
obtain the triple covariant torsion T μνλ ¼ gνσT μ

σ
λ; and

(iii) define the operation

ψfμνλg ¼ ψμνλ − ψνλμ þ ψλμν: ð7Þ
Then, connection can be written as

Γμ
λ
ρ ¼

1

2
gλσð∂fμgσρg þ T fμσρg þQfμσρgÞ; ð8Þ

where the first term on the right-hand side corresponds to
the Levi-Civita connection (which is defined solely by the
metric tensor field, and is the connection that appears in
metric models of gravity like General Relativity), the
second term is known as the contorsion (contains the
information about the torsion), and the third one is called
disformation (encodes the information of the nonmetricity).
The joint contribution of the contorsion and disformation is
often referred to as the distorsion.
According with the decomposition of the affine con-

nection, the affinely connected manifolds can be classified
into classes as depicted in the following commutative
diagram,

ð9Þ

Therefore, from the commutative diagram in Eq. (9) one
reads that affinely connected manifolds ðM;ΓÞ, when

endowed with a metric are characterized by three quantities:
the curvature (R), the torsion (T ), and the nonmetricity (Q).
Particular cases are those in which some of these quantities
vanish, for example manifolds that possesses solely curva-
ture are said to be Riemannian, others characterized by their
torsion are called Weitzenböck, those that posses curvature
and torsion are known as Riemann–Cartan, etc [6,40].
Before ending this section it is worth highlighting that

the logical order of structures in differential geometry is not
the one presented in most textbooks of General Relativity.4

Therefore, the most fundamental structure is the exterior
algebra (induced by the tensor bundle), which introduces
the concept of volume, and the latter allows to define the
integration operation on the manifold. A second (addi-
tional) structure, which allows the comparison of geomet-
rical objects based at different points of the manifold, is the
affine structure induced by the connection. Finally, a third
(independent) structure that introduces a consistent way to
measure over the manifold is the metric structure induced
by a metric tensor field.5

III. COSMOLOGICAL PRINCIPLE
AND GEOMETRICAL OBJECTS

In this section we restrict ourselves to four-dimensional
manifolds, and we assume that the coordinate system is
spherical with coordinates xμ ¼ ðt; r; θ;φÞ.
The cosmological principle requires isotropy and homo-

geneity along a three-dimensional submanifold, which
in our case would be parametrized by the coordinates
xi ¼ ðr; θ;φÞ.
Isotropy ensures that our three-dimensional submani-

fold is indistinguishable under rotations, while homo-
geneity ensures that under translation of the origin of
coordinates the submanifold is also indistinguishable.
Clearly, the cosmological principle associates a six-
dimensional (continuous) symmetry group with the
three-dimensional submanifold. There are three possible
choice of the symmetry group: (i) the Euclidean group E3;
(ii) the orthogonal group SOð4Þ; or (iii) the orthogonal
group SOð3; 1Þ.6 The Killing vectors associated with these
groups can be written explicitly as follows,

J1 ¼
�
0 0 − cos θ cot θ sinφ

�
; ð10Þ

J2 ¼
�
0 0 sin θ cot θ sinφ

�
; ð11Þ

4Schrödiger presents it in the right order in his book [14].
5It is possible to give a notion of distance along a given

autoparallel curve using the affine structure. However, that notion
cannot be extended consistently to other autoparallel curves.

6The group SOð2; 2Þ has been left out the list because it would
change the signature when acting in the three-dimensional
submanifold.

MODEL FOR COSMOLOGICAL PERTURBATIONS IN AFFINE … PHYS. REV. D 110, 023522 (2024)

023522-3



J3 ¼
�
0 0 0 1

�
; ð12Þ

P1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2

p �
0 sin θ cosφ cos θ cosφ

r − sinφ
sin θ

�
; ð13Þ

P2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2

p �
0 sin θ sinφ cos θ sinφ

r − cosφ
sin θ

�
; ð14Þ

P3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κr2

p �
0 cos θ − sin θ

r 0
�
; ð15Þ

where the parameter κ is given by

κ ¼

8><
>:

1 SOð4Þ
0 E3

−1 SOð3; 1Þ
: ð16Þ

It is well known that an n-dimensional maximally
symmetric space possesses nðnþ 1Þ=2 Killing vectors
[41]. Therefore, the isotropic and homogeneous three-
dimensional submanifold described above is maximally
symmetric. Using the Lie derivative it is straightforward to
show that on the maximally symmetric submanifold the
symmetries determine a metric sij and a connection γi

j
k

(for a description of the method, see Ref. [42]). The
induced metric is given by

sij ¼

0
BB@

1
1−κr2 0 0

0 r2 0

0 0 r2sin2θ

1
CCA; ð17Þ

the symmetric part of the connection by

γr
r
r ¼

κr
1 − κr2

; γθ
r
θ ¼ κr3 − r;

γφ
r
φ ¼ ðκr3 − rÞsin2θ; γðrθθÞ ¼

1

r
;

γφ
θ
φ ¼ − cos θ sin θ; γðrφφÞ ¼

1

r
;

γðθφφÞ ¼
cos θ
sin θ

; ð18Þ

and the additional torsional terms are (up to a multipli-
cative factor)

γ½ijk� ≡ Sijk ¼
ffiffiffi
s

p
sjlεilk: ð19Þ

The ansätze of the four-dimensional connection is
written in terms of the three-dimensional geometrical
objects as follows [28,42,43],

Γt
t
t ¼ f; ΓðitjÞ ¼ gsij;

ΓðtijÞ ¼ hδij; ΓðijkÞ ¼ γðijkÞ;

Γ½tij� ¼ pStij Γ½ijk� ¼ qSijk;

¼ −pδij; ð20Þ

where f, g, h, p, and q are functions of time, which are
determined when one requires the field equations to be
satisfied (and hence their values are model dependent).
Similarly, it is possible to determine the form of the most

general four-dimensional metric compatible with the cos-
mological principle,

gμν ¼ NðtÞ2δtμδtν þ aðtÞ2sijδiμδjν: ð21Þ

It is worth highlighting a couple of points here: (i) The
metric in Eq. (21) will not be used in the analysis presented
in the following section; and (ii) the signature of the metric
might be encoded in the function N. Interestingly, even if
some affine models, like the polynomial affine model of
gravity, do not require a pre-existing fundamental metric
field for its formulations, it is possible to find connection
descendent metrics in the space of solutions.

IV. ANALYSIS OF PERTURBATIONS

In standard cosmology, which is based on General
Relativity (a metric model of gravity), one starts consid-
ering an isotropic and homogeneous background, and the
departure from the cosmological principle is treated via
perturbation theory (see for example Refs. [44–47]).
Mathematically, one proposes that the expansion of the

metric as in Eq. (1) is enlarged with a similar expansion for
the energy-momentum tensor, from which we obtain the
linearized field equations [48],

d
dϵ

ðGμνðgÞÞjϵ¼0 ¼
d
dϵ

ðTμνðg; ρ; pÞÞjϵ¼0: ð22Þ

Secondly, using the natural splitting between the time and
spatial coordinates, the metric perturbation is separated in a
(3þ 1)-decomposition as,7

hμν → fhtt; hti; hijg:

Moreover, each of these parts can decompose further
into longitudinal and transverse components, according
to the Helmholtz decomposition, which is written as
follows [49,50]8:

7Remember that since the general metric g has to be sym-
metric, the tensor field h is symmetric too. Hence, hti ¼ hit.

8Beware of the difference between the covariant derivative,Di,
and the tensor component of the decomposition, D̂ij.
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htt ¼ Ê;

hti ¼ DiF̂ þ Ĝi;

hij ¼ Âsij þDiDjB̂þ 2DðiĈjÞ þ Ĥij; ð23Þ

where Di denotes the three-dimensional Riemannian
covariant derivative (i.e. the derivative compatible with
the three-dimensional metric field sij), the functions Â, B̂,
Ĉi, Ê, F̂, Ĝi, and Ĥij depend on the whole set of coor-
dinates xμ ¼ ðt; x⃗Þ, and also Ĥij ¼ Ĥji, Ĥ

i
i ¼ DiĤ

i
j ¼

DiĈ
i ¼ DiĜ

i ¼ 0. In Eq. (23) the covariant derivative is
defined with the symmetric connection γ whose compo-
nents were defined in Eq. (18). It is worth highlighting that
for a torsion-free connection, the double covariant deriva-
tive of a scalar is symmetric, i.e. DiDjB̂ ¼ DjDiB̂.
From Eq. (23), one reads that the perturbation of the

metric tensor possesses four scalar components, two trans-
verse three-dimensional (co)vectors, and a symmetric,
traceless three-dimensional ð0

2
Þ-tensor.

A similar treatment can be achieved with the perturbation
of the affine connection. First, we propose that the generic
connection is given by the sum of an isotropic and
homogeneous background connection (Γ̄μ

λ
ν) plus a small

perturbation (Cμ
λ
ν), i.e.

Γμ
λ
ν ¼ Γ̄μ

λ
ν þ ϵCμ

λ
ν: ð24Þ

Since the perturbation C is the difference between two
connections, then it is a tensor field, Cμ

λ
ν ∈C∞ðTM ⊗2

T�MÞ.
The scalar-vector-tensor decomposition of the C field is

given by the components, Ct
t
t, Ct

i
t, Ci

t
t, Ct

t
i, Ci

t
j, Ct

i
j,

Cj
i
t, and Ci

j
k, originating a scalar component, three vector

fields, three 2-tensor fields and one 3-tensor field. The
number of contributions to the components of the sym-
metric part of the affine connection or to the torsion (skew-
symmetric part) is shown in Tab. I.
In order to simplify the typesetting along the article, we

shall introduce the following notation:

Σμνλ ¼
1

2
ðCμνλ þ CλνμÞ;

Λμνλ ¼
1

2
ðCμνλ − CλνμÞ: ð25Þ

However, we have to remark that without loss of generality
we might relate the original terms of the perturbation with
those with lower indices as follows,

Cμtν ≡ Cμ
t
ν; Cμiν ≡ sijCμ

j
ν; ð26Þ

given that the irreducible components shall be parametrized
by unrelated terms in the former case, while they would be
related by the three-dimensional spatial metric in the latter
(as shown in Sec. IV B).
A detailed analysis of the decomposition of third-order

tensors is presented in Refs. [51,52]. However, we shall
briefly discuss some of the results before proceeding to the
Helmholtz decomposition. We remind the reader that in the
following the discussion focus on the three-dimensional
submanifold. Firstly, it should be highlighted that from the
scalar-vector-tensor decomposition above, the sole novel
term (not in the standard metric perturbation theory)
corresponds to the rank 3-tensor, so we shall mainly focus
in this term. Additionally, since these geometrical objects
lie on the three-dimensional submanifold, one can use the s
metric to lower the contravariant (three-dimensional) index,
reducing the problem to analyzing the decomposition of
completely covariant tensor field on the submanifold.

A. SOð3;RÞ decomposition of the perturbation

1. SOð3;RÞ decomposition of Cijk

A general covariant 3-tensor of GLð3;RÞ might be
expressed as a sum of the Young irreducible components,

ð27Þ

Note that if one restricts oneself to perturbations of the
connection that preserves the torsion-free condition of the
connection, only the first two Young diagrams are allowed,
and the number of perturbative degrees of freedom is
reduced to eighteen.
The cosmological principle induces the existence of the

metric sij in the three-dimensional submanifold, endowing
it with an SOð3;RÞ structure. Therefore, the components in
Eq. (27) decompose further

TABLE I. Number of contributions of each term in the scalar-
vector-tensor decomposition, to the symmetric and skew-
symmetric components of the affine perturbation.

Terms Symmetric (Σ) Skew-symmetric (Λ)

Cttt 1 0
Ctit 3 0
Citt; Ctti 3 3
Citj 6 3
Cijt; Ctji 9 9
Cijk 18 9

Total components: 40 24
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10GL3
→ 7SO3

⊕ 3SO3
;

8GL3
→ 5SO3

⊕ 3SO3
;

1GL3
→ 1SO3

; ð28Þ

yielding the expected content: a spin 3 field, two spin 2
fields, three spin 1 fields, and a scalar field. The above can
be verified using the strategy explained in Appendix A.

2. SOð3;RÞ decomposition of the other components

The components of the perturbation tensor C in the
first three rows of Table I have a trivial SOð3;RÞ
decomposition,

1 → 1GL3
→ 1SO3

; ð29Þ

3 → 3GL3
→ 3SO3

; ð30Þ

3 → 3GL3
→ 3SO3

: ð31Þ

The nontrivial ones are

6 → 6GL3
→ 5SO3

⊕ 1SO3
; ð32Þ

9 → 6GL3
⊕ 3GL3

→ 5SO3
⊕ 1SO3

⊕ 3SO3
: ð33Þ

3. Summary: SOð3;RÞ decomposition

The results from the last sections are summarized in
Table II.

B. Helmholtz decomposition of the perturbation

The final piece in the standard cosmological perturbation
theory is the Helmholtz decomposition of the perturbative
components from which originates the results in Eq. (23).
In this section, we develop the Helmholtz decomposition
for the perturbation tensor C.

Before presenting explicit formulas for the Helmholtz
decomposition of the field C, we would argue that the
Helmholtz decomposition is equivalent to the decomposi-
tion of representations of SOð3;RÞ into irreducible repre-
sentations of SOð2;RÞ (some details of this decomposition
are presented in Appendix B).
Consider the components of the metric perturbation, hμν,

and their Helmholtz decomposition as shown in Eq. (23).
The component htt is a scalar of SOð3;RÞ, i.e. htt ¼ 1SO3

,
but the trivial representation of SOð3;RÞ yields the trivial
representation of SOð2;RÞ,

htt ¼ 1SO3
→ 1SO2

¼ Ê: ð34Þ

Similarly, the component hti is a vector of SOð3;RÞ, i.e.
hti ¼ 3SO3

. However, the representation 3SO3
decomposes

nontrivially into irreducible representations of SOð2;RÞ
according to Eq. (B4), yielding

hti ¼ 3SO3
→ 1SO2

⊕ 2SO2
¼ DiF̂ þ Ĝi: ð35Þ

Finally, the component hij is a symmetric 2-tensor of
SOð3;RÞ, i.e. hij ¼ 5SO3

þ 1SO3
. Then, its decomposition

into irreducible representations of SOð2;RÞ yields

hij ¼ 5SO3
þ 1SO3

→ 1SO2
⊕ 2SO2

⊕ 2SO2
⊕ 1SO2

¼
�
DiDj −

sij
3
D2

�
B̂þ 2DðiĈjÞ þ D̂ij þ

sij
3
Â: ð36Þ

In the last line of Eq. (36), D2 should be understood
as sijDiDj.
From the information in Table II and Appendix B, one

can read the number of fields in the Helmholtz decom-
position of the affine connection, which are summarized in
Table III.
Therefore, we can now write the Helmholtz decompo-

sition of the tensor C, following the spirit of Eqs. (34)–(36).
The component Σttt is an SOð3;RÞ scalar, and therefore

cannot be decomposed further. Hence,

TABLE II. Summary of irreducible representations of
SOð3;RÞ obtained from the irreducible components of the affine
perturbation tensor C, in terms of its symmetric (Σ) and skew-
symmetric (Λ) parts.

Term Components GLð3;RÞ SOð3;RÞ
Σttt 1s 1GL3

1SO3

Σtit 3s 3GL3
3SO3

Σtti 3s 3GL3
3SO3

Λtti 3a 3GL3
3SO3

Σitj 6s 6GL3
5SO3

⊕ 1SO3

Λitj 3a 3GL3
3SO3

Σtij 9s 6GL3
⊕ 3GL3

5SO3
⊕ 1SO3

⊕ 3SO3

Λtij 9a 6GL3
⊕ 3GL3

5SO3
⊕ 1SO3

⊕ 3SO3

Σijk 18s 10GL3
⊕ 8GL3

7SO3
⊕ 3SO3

⊕ 5SO3
⊕ 3SO3

Λijk 9a 6GL3
⊕ 3GL3

5SO3
⊕ 1SO3

⊕ 3SO3

TABLE III. Number of scalars (T0), vectors (T1), 2-tensors
(T2), and 3-tensors (T3), obtained from the Helmholtz decom-
position of the irreducible components of the affine connection.

Component T0 T1 T2 T3

1s 1
3s 1 1
3a 1 1
6s 2 1 1
9a 3 2 1
18s 4 4 2 1
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Σttt ¼ 1SO3
→ 1SO2

¼ A: ð37Þ

The components Σtit, Σtti, Λtti, and Λitj are SOð3;RÞ
vectors, and each of them decomposes into a scalar
(longitudinal) component and a transverse vector,

3SO3
→ 2SO2

⊕ 1SO2
; ð38Þ

written explicitly as,

Σtit ¼ DiBþ Ci; ð39Þ

Σtti ¼ DiDþ Ei; ð40Þ

Λtti ¼ DiB̃þ C̃i; ð41Þ

Λitj ¼
ffiffiffi
s

p
εijksklðDlD̃þ ẼlÞ; ð42Þ

where X i, defined as X i ¼ sijX j for X i ∈ fCi; Ei; C̃i; Ẽig,
satisfiesDiX i ¼ 0. Hereon, whenever it is said that a tensor
is transverse it should be understood as the later relation. In
order to simplify notations, perturbations originating from
the antisymmetric component of the connection ðΛijkÞ will
be denoted with a tilde, whereas perturbations derived from
the symmetric component of the connection ðΣijkÞ will be
expressed without a tilde.
The component Σitj decomposes just like the perturba-

tion hij of the metric tensor, because it contains both the

symmetric and traceless rank 2-tensor (5SO3
) and its trace

(1SO3
). The explicit Helmholtz decomposition is given by

Σitj ¼
sij
3
F þ

�
DiDj −

sij
3
D2

�
Gþ 2DðiHjÞ þ Iij; ð43Þ

where Iij is symmetric and traceless, and both Hi and Iij
are transverse.
The components Σtij and Λtij, which correspond to

the 9s and 9a representations of GLð3;RÞ respectively,
are obtained as the sum of a 5SO3

, 3SO3
, and 1SO3

, whose
Helmholtz decomposition is given explicitly by

Σtij ¼
ffiffiffi
s

p
εijksklðDlJ þ KlÞ þ

sij
3
L

þ
�
DiDj −

sij
3
D2

�
M þ 2DðiNjÞ þOij; ð44Þ

and

Λtij ¼
ffiffiffi
s

p
εijksklðDlJ̃ þ K̃lÞ þ

sij
3
L̃

þ
�
DiDj −

sij
3
D2

�
M̃ þ 2DðiÑjÞ þ Õij; ð45Þ

where all the tensor quantities are symmetric, traceless,
and transverse.
The components Σijk and Λijk, corresponding to the 18s

and 9a representations of GLð3;RÞ decompose as follows:

Σijk ¼
3

5
ðsðijDkÞPþ sðijQkÞÞ þ

�
DðiDjDkÞ −

2

5
D2sðijDkÞ −

1

5
sðijDkÞD2

�
R

þDðiDjSkÞ −
1

5
D2sðijSkÞ −

1

5
sðijDmDkÞSm þDðiTjkÞ þ Uijk þ

1

2

ffiffiffi
s

p
spqðεijpδrk þ εkjpδ

r
i Þ

×

��
DqDr −

1

3
sqrD2

�
V þ 2DðqWrÞ þ Xqr þ

ffiffiffi
s

p
εqrmsmnðDnY þ ZnÞ

�
; ð46Þ

and

Λijk ¼
ffiffiffi
s

p
εijkÃþ 1

2

ffiffiffi
s

p
spqð2εikpδrj þ εijpδ

r
k − εkjpδ

r
i Þ

×

��
DqDr −

1

3
sqrD2

�
Ṽ þ 2DðqW̃rÞ þ X̃qr þ

ffiffiffi
s

p
εqrmsmnðDnỸ þ Z̃nÞ

�
; ð47Þ

where all the tensor quantities, as in the previous cases, are symmetric, traceless, and transverse.

In summary, the perturbations have been decomposed
into fourteen scalars, six pseudoscalars, ten transverse
vectors, five transverse pseudovectors, four transverse
and traceless 2-tensors, two transverse and traceless pseudo
2-tensors, and finally one transverse and traceless 3-tensor.
This decomposition becomes crucial when examining the

dynamics of a parity-preserving theory. For instance, when
expanding the action to the second order of perturbations,
the absence of terms like AJ is certain because it would
violate parity, ensuring that scalars and pseudoscalars do not
mix. Conversely, terms like ϵijkð∂iCjÞKk can appear and
therefore leading to the mixing of vector and pseudovector
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perturbations, highlighting the potential for interaction in
this context.

Scalars A; B;D; F;G; L;M;P; R; Y; B̃; L̃; M̃; Ỹ
Pseudoscalars J; V; Ã; D̃; J̃; Ṽ
Vectors Ci; Ei; Hi; Ni; Qi; Si; Zi; C̃i; Ñi; Z̃i
Pseudovectors Ki;Wi; Ẽi; K̃i; W̃i
2-tensor Iij; Oij; Tij; Õij

Pseudo 2-tensor Xij; X̃ij

3-tensor Uijk

V. GAUGE INVARIANCE

The next step in the analysis is to find the set of adequate
variables to describe the perturbations, i.e. combinations of
the perturbations that are invariant under general coordinate
transformations [45–47].
Following a similar procedure for the metric perturba-

tions, it is straightforward to show that the gauge trans-
formation of the affine perturbations is given by

δCμ
λ
ν ¼ £ξΓμ

λ
ν

¼ ξσRσμ
λ
ν þ∇μ∇νξ

λ −∇μðTν
λ
σξ

σÞ: ð48Þ

After a simple but rather lengthy calculation, one
obtains the transformation rules for the components of
the perturbation,

δCt
t
t ¼ ̈ξt; ð49Þ

δCt
i
t ¼ ̈ξi þ 2hξ̇i; ð50Þ

δCt
t
i ¼ Diξ̇

t þ gsijξ̇
j − ðh − pÞDiξ

t; ð51Þ

δCi
t
t ¼ Diξ̇

t − ðhþ pÞDiξ
t þ gsijξ̇

j; ð52Þ

δCi
t
j ¼ DiDjξ

t þ 2gskðiDjÞξk

− gqð2skjSikl þ skiSjkl þ sklSikjÞξl
þ sijðġξt − gξ̇tÞ − qSikjDkξ

t; ð53Þ

δCt
j
i ¼ Diξ̇

t þ δji∂tððh − pÞξtÞ − qSijkξ̇
k; ð54Þ

δCi
j
t ¼ Diξ̇

t þ δji∂tððhþ pÞξtÞ þ qSijkξ̇
k; ð55Þ

δCi
k
j ¼ DiDjξ

k þ κðδkl sij − δki sljÞξl − gsijξ̇
k

þ q̇Sikjξt þ ðhþ pÞδki Djξ
t þ ðh − pÞδkjDiξ

t

− qðSiljDlξ
k þ 2Slk½iDj�ξlÞ: ð56Þ

In order to read the transformation rules of the compo-
nents of the perturbations under coordinate transformations,
we have to decompose the spatial generator of the trans-
formation into its longitudinal and transverse components,

ξi → Diψ þ ζi where Diζ
i ¼ 0; ð57Þ

and when possible to separate the symmetric and skew-
symmetric part of the transformations, to identify the
variation of the irreducible components of Σ’s and Λ’s.
From Eqs. (37) and (49) one obtains directly that

δA ¼ ̈ξt; ð58Þ

since δCttt ¼ δA.
Similarly, Eqs. (39) and (50) yield the variations,

δB ¼ ψ̈ þ 2hψ̇ ; ð59Þ

δCi ¼ ζ̈i þ 2hζ̇i: ð60Þ

Next, one has to combine the transformations in
Eqs. (51) and (52) to get the transformations of Σt

t
i and

Λt
t
i. From these combinations one reads the variations

δD ¼ ξ̇t − hξt þ gψ̇ ; ð61Þ

δEi ¼ gsijζ̇
j ð62Þ

δB̃ ¼ pξt; ð63Þ

δC̃i ¼ 0: ð64Þ

The transformation in Eq. (53) has to be separated into
symmetric and skew-symmetric parts. The skew-symmetric
part yields directly the variations associated with the
irreducible components of Λitj, as follows:

δD̃ ¼ qξt; ð65Þ

δẼi ¼ 0: ð66Þ

However, the symmetric part has to be decomposed further
to take out its trace. Hence, one gets the variations

δF ¼ 3ġξt − 3gξ̇t þD2ðξt þ 2gψÞ; ð67Þ

δG ¼ ξt þ 2gψ ; ð68Þ

δHi ¼ gζi; ð69Þ

δIij ¼ 0: ð70Þ

From Eqs. (54) and (55) one would get the variation of
the irreducible components of Σtji and Λtji, after consid-
ering their symmetrization and the skew symmetrization.
The variations obtained from Σtji are

δðDlJ þ KlÞ ¼ −
1

2
ffiffiffi
s

p slkϵkijDiζj; ð71Þ
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δL ¼ 3ðḣξt þ hξ̇tÞ þD2ψ̇ ; ð72Þ

δM ¼ ψ̇ ; ð73Þ

δNi ¼
1

2
ζ̇i; ð74Þ

δOij ¼ 0; ð75Þ

while the ones obtained from the skew symmetric are

δJ̃ ¼ qψ̇ ; ð76Þ

δK̃i ¼ qsijζ̇
j; ð77Þ

δL̃ ¼ −3ðṗξt þ pξ̇tÞ; ð78Þ

δM̃ ¼ 0; ð79Þ

δÑi ¼ 0; ð80Þ

δÕij ¼ 0: ð81Þ

Finally, from Eq. (56) one obtains the variations for the
irreducible components of Σikj and Λikj. Following a
procedure similar to the previous one, one obtains that
the variations of the components of Σikj are

δP ¼ D2ψ þ 4

3
κψ þ 10

3
hξt −

5

3
gψ̇ ; ð82Þ

δQi ¼
2

3
κζi þ

1

3
D2ζi −

5

3
gζ̇i; ð83Þ

δR ¼ ψ ; ð84Þ

δSi ¼ ζi; ð85Þ

δTij ¼ 0; ð86Þ

δUikj ¼ 0 ð87Þ

δV ¼ 0; ð88Þ

δWi ¼
1

3

ffiffiffi
s

p
ϵijkDjζk; ð89Þ

δXij ¼ 0; ð90Þ

δY ¼ 4

3
κψ −

2

3
hξt −

2

3
gψ̇ ; ð91Þ

δZi ¼
2

3
κζi þ

1

3
D2ζi −

2

3
gζ̇i: ð92Þ

While the components of the Λikj vary as follows:

δÃ ¼ q̇ξt þ 1

3
qD2ψ ; ð93Þ

δṼ ¼ 4

3
qψ ; ð94Þ

δW̃i ¼
2

3
qζi; ð95Þ

δX̃ij ¼ 0; ð96Þ

δỸ ¼ 2

3
pξt; ð97Þ

δZ̃i ¼ 0: ð98Þ

In addition to the obvious gauge-invariant tensors of rank
two and three, we observe that the perturbation V for the
symmetric part and the perturbations M̃; C̃i; Ẽi; Ñi; Z̃i of the
antisymmetric part are also gauge invariant. This observa-
tion implies that 24 components of the perturbations are
gauge invariant, leaving 40 components whose transforma-
tions are detailed in the preceding equations. Specifically,
29 components pertain to the symmetric part of the
perturbation, while 11 components belong to the antisym-
metric part. Of course the gauge freedom can be used to
reduce them to 36 components. In the upcoming discussion,
we will elaborate on different potential gauges by setting
specific variables to zero. In our context, this flexibility will
be exclusively applied to the gravitational sector, as we are
not taking into account matter fields.
We can leverage the freedom associated with the time

coordinate to eliminate one of the seven perturbations
ðG;P; Y; Ã; B̃; D̃; ỸÞ. Additionally, the transformation in
the space coordinate allows us to choose ψ strategically,
eliminating one of these five perturbations ðF;G;R; Ã; ṼÞ.
Finally, the freedom associated with ζi enables the removal
of one perturbation from the set ðHi; Si;Wi; W̃i; DiJ þ KiÞ
giving a total of 165 different gauges.9 We see that one
particularly interesting gauge will be to set J ¼ Ki ¼ 0 with
ζi, Eq. (71), because J is a pseudoscalar which transforms
via a vector, producing therefore a mixing term.
Finally, let us notice that for a background with zero

torsion, indicating p ¼ q ¼ 0, the following fields remain
invariant ðÃ; B̃; D̃; J̃; L̃; Ṽ; Ỹ; K̃i; W̃iÞ. This implies the
invariance of the tensor Λijk. Such invariance is a conse-
quence of the well-known Stewart–Walker lemma, which

9While we have considered a generic spacetime, it is important
to note that in specific cases, the number of invariant quantities
may vary. For instance, if the solution is torsion free, i.e.
p ¼ q ¼ 0, this condition implies the existence of new invariant
quantities.
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asserts that a tensor is gauge invariant if it vanishes in the
background [53].

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have assumed that the structure of our
spacetime is solely characterized by the connection. Within
this framework, a pivotal undertaking is the development of
a comprehensive cosmological perturbation formalism. By
presuming a background consistent with a homogeneous
and isotropic universe, the perturbations manifest through
the connection. Given the absence of a metric, we contend
with a total of 64 fields associated with the connection.
Despite the nontensorial nature of the connection, the
perturbation itself is a tensor, and we have effectively
decomposed it into two distinct parts: a symmetrical portion
and an antisymmetrical component, corresponding to tor-
sion. This decomposition facilitates the further breakdown
of the perturbation into 40 components for the symmetrical
part and 24 components for the antisymmetric part. It is
noteworthy that, in line with General Relativity, where
torsion is assumed to be zero, we retrieve the standard 40
components.
The various fields associated with the connection

undergo decomposition into irreducible components, akin
to the Helmholtz decomposition in the conventional cos-
mological framework. Furthermore, mirroring the principles
of General Relativity, we use the freedom to perform a
coordinate transformation to simplify our problem. We have
meticulously derived the complete set of transformations,
yielding a total of 165 potential gauges in the general case.
In a subsequent paper, we will delve into specific problems
and explore which gauges prove advantageous for simplify-
ing algebraic calculations.
Finally, we observe that when the antisymmetric part of

the connection is zero in the background, its perturbation
becomes gauge invariant—a manifestation of the Stewart–
Walker lemma.
In a subsequent paper, we will investigate the dynamics

of a specific model within this formalism.
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APPENDIX A: IRREDUCIBLE
REPRESENTATIONS OF SOð3;RÞ USING

YOUNG TABLEAUX

In theoretical physics the Young tableaux techniques
to calculate the irreducible representations of groups
SUðN;CÞ are extensively used [54]. However, the compu-
tation of irreducible representations of SOðN;RÞ does
require additional strategies, due to the possibility of
extracting traces with respect to its invariant symmetric
2-tensor.
For the particular case of the group SOð3;RÞ—whose

algebra is soð3Þ ≃ suð2Þ—one can use the local isomor-
phism with its covering group SUð2;CÞ to find its
irreducible representations through the Young tableaux
technique.
The trick is to build the representations starting from

the products of the three-dimensional representation of
SUð2;CÞ, which is depicted by the tableau .
Hence, the tensor product of two fundamental represen-

tations of SOð3;RÞ is obtained by

ðA1Þ

which correspond to the traceless symmetric, skew-
symmetric, and trace components respectively.
Similarly, a generic rank 3-tensor of SOð3;RÞ decom-

poses into the following irreducible parts,

ðA2Þ

APPENDIX B: FROM SOð3;RÞ TO SOð2;RÞ
The irreducible representations of SOð3;RÞ (over real

vector spaces) have dimension ð2lþ 1Þ for l∈N, and the
(conjugacy) classes of the group are constituted by all
elements that rotate by a certain angle θ. The character of
the (conjugacy) class of elements characterized by the
angle θ in the irreducible representation labeled by l is
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χðlÞSO3
ðθÞ ¼ 1þ 2ðcosðθÞþ cosð2θÞþ � � �þ cosðlθÞÞ: ðB1Þ

The all irreducible representations of SOð2;RÞ (over real
vector spaces) with the exception of the trivial representa-
tion, are two dimensional and labeled by l∈N�. Explicitly,
an element characterized by the parameter θ in the
irreducible representation labeled by l has the form

DðlÞðgðθÞÞ ¼
�
cosðlθÞ − sinðlθÞ
sinðlθÞ cosðlθÞ

�
; ðB2Þ

and its character is

χðlÞSO2
ðθÞ ¼ 2 cosðlθÞ: ðB3Þ

The embedding of SOð2;RÞ into SOð3;RÞ yields
the decomposition of irreducible representations of the
latter in terms of irreducible representations of the former as
follows:

ð2lþ 1ÞSO3
¼ 1SO2

þ 2SO2
þ � � � þ 2SO2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
l times

; ðB4Þ

where there is a representations 2SO2
for each value

l0 ∈ ½1; 2;…;l�.
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