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We explore the asymptotic future evolution of holographic dark energy (HDE) models, in which the
density of the dark energy is a function of a cutoff scale L. We develop a general methodology to determine
which models correspond to future big rip, little rip, and pseudo rip (de Sitter) evolution, and we apply this
methodology to a variety of well-studied HDE models. None of these HDE models display little rip
evolution, and we are able to show, under very general assumptions, that HDE models with a Granda-
Oliveros cutoff almost never evolve toward a future little rip. We extend these results to HDE models with
nonstandard Friedman equations and show that a similar conclusion applies: little rip evolution is a very
special case that is almost never realized in such models.
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I. INTRODUCTION

The unexpected discovery of the universe’s late-time
acceleration was a major surprise for the field of cosmology
[1]. Since then, extensive research has been conducted to
explain this expansion phenomenon. The cosmological
expansion problemhas been approached fromvarious angles,
including conventional methods such as the cosmological
constant [2–4], as well as more unconventional theories such
asmodified gravity [5–7] and scenarios involving scalar fields
driving late-time cosmic acceleration [8–14]. Furthermore,
various approaches within the realm of quantum gravity have
also contributed to addressing the cosmic-accelerationpuzzle.
These range from braneworld cosmology in string theory to
theories such as loop quantum cosmology and asymptotically
safe cosmology [15–25]. However, these efforts have high-
lighted certain discrepancies that suggest the limitations of
our current understanding of the universe, with one of the
most famous being the Hubble tension. This tension refers to
disagreements in the values of the Hubble constant measured
through detailed cosmic microwave background maps, com-
bined with baryon acoustic oscillations data and data from
Supernovae Type Ia (SNeIa) [26–28]. Therefore, the present
epoch of the universe has presented us with a broad spectrum
of questions and appears poised to become a domain where
advanced gravitational physics will pave theway for a deeper
comprehension of cosmology.
In the extensive array of proposed solutions for address-

ing the dark energy (DE) problem, one notable hypothesis
is the holographic principle [29,30], which holds signifi-
cance in the context of quantum gravity. The core concept

of the holographic principle suggests that the entropy of a
system is not determined by its volume but rather by its
surface area [31]. Drawing inspiration from this idea,
Cohen et al. [32] proposed that in a quantum field theory,
a short-distance cutoff is interconnected with a long-
distance cutoff due to the limitation imposed by the
formation of a black hole. In other words, if ρ represents
the quantum zero-point energy density caused by a short-
distance cutoff, the total energy within a region of size L
should not exceed the mass of a black hole of the same
size. Therefore, this leads to the inequality L3ρ ≤ LM2

pl.
The maximum allowable value for the infrared cutoff
(LIR) is the one that precisely satisfies this inequality.
Consequently, we have the relationship

ρ ¼ 3c2L−2; ð1Þ
where c is an arbitrary parameter, and we are working in
mPl ¼ 1 units.
This holographic concept has found wide application in

cosmology, particularly in describing the late-time dark
energy era, and is commonly referred to as holographic dark
energy (HDE) (for an extensive review, see [33]). From this
perspective, the infrared cutoff, LIR, has its origins in
cosmology and is the IR cutoff for a particular HDE model.
Various other works have explored holographic dark energy
from various aspects in recent years [33–53]. In recent years,
various other alternative forms of HDE have been proposed
in recent decades. For example, Tsallis HDE models are
based on Tsallis’ corrections to the standard Boltzmann-
Gibbs entropy and are obtained after applying these correc-
tions to black hole physics, resulting in the equation

ρΛ ¼ 3c2L−ð4−2σÞ; ð2Þ
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where σ is the Tsallis parameter, which is considered to be
positive [54], andwe recover simple HDE in the limit σ → 1.
On the other hand, Barrow’s modification of the Bekenstein-
Hawking formula led to the creation of BarrowHDEmodels,
and such models are described by the energy density

ρΛ ¼ 3c2LΔ−2; ð3Þ

whereΔ is the deformation parameter [55], which can have a
maximum value of Δ ¼ 1, while in the limit of Δ → 0, one
recovers the simpleHDE.There arevarious othermodels too,
such as the Renyi HDE [56]

ρΛ ¼ 3d2

8πL2
ð1þ πδL2Þ−1; ð4Þ

where δ is constant which can have positive or negative
values, and for which the limit δ → 0 reduces it to the simple
HDE scenario (1). We also have the Kaniadakis HDE given
by [57]

ρΛ ¼ 3c2L−2 þ 3k2L2; ð5Þ

where k is a constant constrained as −1 < k < 1, and again
for k → 0 we recover the conventional HDE paradigm (1).
There are other HDE models besides these, but (1)–(5)
describe a wide variety of HDE models to investigate
alongside the usual HDE model.
In recent times, a substantial body of literature has

emerged focusing on the exploration of various types of
singularities that may arise in the future evolution of the
universe. The detection of late-time acceleration has
significantly propelled such investigations [58–77]. A
particularly interesting class of such future events are rip
scenarios, where the universe may proceed toward
progressive disintegration in various capacities. The central
question addressed in this paper is the determination of
which of the various rip scenarios can take place in a
universe with holographic dark energy, and this is what we
shall answer in this work. This question leads to the
examination of a new way to approach rip scenarios, given
the properties of HDE models. In Sec. II we demonstrate a
generalized Friedmann equation that applies to these HDE
models and derive conditions under which a future rip
would occur in such models. In Sec. III we apply those
conditions to study big rip [78] and little rip [79] evolution
in a variety of HDE models. In Sec. IV we examine HDE
scenarios in non-general relativity (GR) cosmologies, such
as the Chern-Simons and Randall-Sundrum type II brane-
world. Our conclusions are summarized in Sec. V. Our
main conclusion is that little rip evolution is very difficult to
achieve in any of these scenarios.

II. RIP CONDITIONS WITH THE HDE
FRIEDMANN EQUATION

Various future rip scenarios have been discussed in the
literature. Some of these scenarios take place in finite time
while others require infinite time. One can summarize the
various scenarios as follows:

(i) Big rip (Type I singularity): Awell-known scenario,
where for t → tf, where tf is finite, we have both the
effective energy density and pressure density of the
universe diverging, ρeff → ∞, peff → −∞, while we
also have a diverging Hubble parameter H → ∞
[78]. This results in a scenario of universal destruc-
tion, where everything within the universe under-
goes progressive disintegration [78].

(ii) Little rip: Here, the density, pressure, and Hubble
parameter become infinite as t → ∞ [79]. In this
case all bound structures are eventually ripped apart
but there is no finite time singularity.

(iii) Pseudo rip: In this case H increases monotonically
as t → ∞, but it is bounded from above by the value
H∞ so that H → H∞ as t → ∞ [80]. This is
equivalent to asymptotic de Sitter expansion.

Consider first the little rip. In Ref. [79], three types of
parametrizations were examined and conditions were
determined under which they led to a little rip. The three
parametrizations involved the scale factor as a function of
time aðtÞ, pressure as a function of density pðρÞ, and
density as a function of the scale factor ρðaÞ. We will
summarize those conditions briefly here.
As we are dealing with future scenarios, we will assume

that the universewill eventually be dominated by dark energy
so that the energy density and pressure will be given by ρDE
andpDE, so from here onwardwewill drop the subscript.We
assume for now the standard Friedmann equation

H2 ¼ ρ

3
; ð6Þ

with the continuity equation

ρ̇ ¼ −3Hðρþ pÞ: ð7Þ

(These assumptions will be modified for the case of HDE
models.)
Consider first the case where a is a specified function of

t. To avoid a big rip, we require aðtÞ to be a nonsingular
function for all t. Expressing a as

a ¼ egðtÞ; ð8Þ

where gðtÞ is nonsingular, the density is defined by Eq. (6)
as ρ ¼ 3ðȧ=aÞ2 ¼ 3ġ2. The condition for ρ to increase with
a is dρ=da ¼ ð6=ȧÞġ g̈ > 0, satisfied if

g̈ > 0: ð9Þ
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Therefore, all little rip models follow Eq. (8), with a
nonsingular g satisfying (9).
When the pressure is defined as a function of density, we

consider an equation of state given by

p ¼ −ρ − fðρÞ; ð10Þ

where fðρÞ > 0 ensures ρ increases with the scale factor.
To determine the existence of a future singularity, we
integrate Eq. (7) to yield

a ¼ a0 exp

�Z
dρ

3fðρÞ
�
; ð11Þ

and Eq. (6) yields

t ¼
Z

dρffiffiffiffiffi
3ρ

p
fðρÞ : ð12Þ

For a big rip singularity to occur, the integral in Eq. (12)
must converge. If we take a power law for fðρÞ, namely

fðρÞ ¼ Aρα; ð13Þ

we find that a future singularity can be avoided for α ≤ 1=2.
In the third scenario, ρ is an increasing function of the

scale factor a. We aim to find upper and lower bounds on
the growth rate of ρðaÞ to determine if a big rip singularity
occurs. Defining x≡ ln a, we can express Eq. (6) as

t ¼
Z ffiffiffiffiffiffiffiffiffi

3

ρðxÞ

s
dx; ð14Þ

and the condition to avoid a future big rip singularity is

Z
∞

x0

1ffiffiffiffiffiffiffiffiffi
ρðxÞp dx → ∞: ð15Þ

Specific models for the little rip are discussed then in
[79]. Note, however, that general HDE models cannot be
treated with any of the parametrizations discussed in
Ref. [79] and presented here, because the standard
Friedmann equation does not apply to them. This will
lead to a different parametrization that can be examined in
the context of little rip and big rip models.
Consider the choice for the IR cutoff scale L. An early

suggestion was to consider a cutoff scale given by
L → H−1. This choice aimed to alleviate the fine-tuning
problem by introducing a natural length scale associated
with the inverse of the Hubble parameter H. However, it
was found that this particular scale resulted in an equation
of state approaching zero, failing to contribute significantly
to the current accelerated expansion of the universe. An
alternative approach involved utilizing the particle horizon
as the length scale. This alternative resulted in an equation

of state parameter higher than −1=3. However, despite this
modification, the challenge of explaining the present
acceleration remained unresolved. Another option consid-
ered the future event horizon as the length scale. Although
the desired acceleration regime can be achieved in this case,
this approach raises problems with causality, posing a
significant obstacle to its viability.
To circumvent these difficulties, the Granda-Oliveros

cutoff was proposed in Ref. [36]. This cutoff is defined by
the equation

L ¼ ðαH2 þ βḢÞ−1=2; ð16Þ
where α and β represent model parameters on the order of
unity. The Granda-Oliveros cutoff successfully overcomes
the issues encountered by previous proposals, providing a
more robust framework for addressing the fine-tuning
problem and explaining the accelerated expansion of the
universe.
Combining this cutoff with Eq. (1), we obtain a

nonstandard form for the Friedman equation, namely

H2 ¼ c2ðαH2 þ βḢÞ: ð17Þ

Clearly, the mathematical framework derived in Ref. [79]
cannot be straightforwardly applied here.
We can generalize this equation to

H2 ¼ fðH; ḢÞ: ð18Þ

The simple HDE with the Granda-Oliveros cutoff is a
special case of Eq. (18). In fact, if one goes to non-GR
cosmologies, then in some cases the most general
Friedmann equation can take the form

SðHÞ ¼ fðH; ḢÞ: ð19Þ

Note that SðHÞ here would be a function of the given
background gravitational theory. For example, in the case
of GR it would simply be SðHÞ ¼ H2, while for non-GR
scenarios it can be much more involved as we shall see. We
will return to Eq. (19) later; for now we will consider the
evolution described by Eq. (18). For most cases of interest,
it will be possible to isolate the Ḣ term, allowing us to write

Ḣ ¼ gðHÞ; ð20Þ

where the function gðHÞ is derived from Eq. (18). [Note
that the function g here has no connections with the
function g in Eq. (8)]. Then we obtain

Z
Hf

Hi

dH
gðHÞ ¼

Z
tf

ti

dt: ð21Þ

Thus, for cosmologies which satisfy (18) [or (19)] a new set
of conditions determines whether a particular cosmological
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scenario allows for rip events. Those conditions are as
follows:

(i) Big rip: For the big rip we require that at some finite
time tf, we have Hf → ∞ as t → tf. So for the big
rip to occur in the context of Eq. (18) or (19) we
must have

Z
Hf

Hi

dH
gðHÞ → finite; as Hf → ∞: ð22Þ

So a big rip occurs when the integral in (21)
converges to a finite value as Hf → ∞.

(ii) Little rip: For the little rip we require that Hf → ∞
as t → ∞. Then for the little rip to occur in the
context of (18) or (19) we must have

Z
Hf

Hi

dH
gðHÞ → ∞; as Hf → ∞: ð23Þ

Hence, for the little rip the integral in (21) diverges
as Hf → ∞.

(iii) Pseudo rip: For the pseudo rip we have H → Hf as
t → ∞, where Hf is some finite value. So for the
pseudo rip to occur in the context of our generalized
Friedmann equations we require

Z
Hf

Hi

dH
gðHÞ → ∞; as Hf → finite value: ð24Þ

Hence, for the pseudo rip we need the integral in
(21) to diverge for a finite Hf.

From the point of view of HDE scenarios, conditions
(22)–(24) provide a general view of the future rip status of
any HDE paradigm with the Granda-Oliveros cutoff. It
should also be noted that there are certain geodesic issues
with the big rip singularity which may be quite trouble-
some, but these have been discussed at length elsewhere
[81–83] and here we do not comment further on them.
For the sake of completeness we shall also mention that

there are other interesting rip possibilities such as the quasi
rip [84] and little sibling of the big rip [85], but we do not
consider them here. Along with the rip scenarios, there are
other possibilities such as the big brake singularity [86,87].
The big brake is a special case of a sudden singularity [88],
which is characterized by a diverging pressure density in a
finite time, while the big freeze scenario [89] is charac-
terized by diverging pressure and energy densities in finite
time. These are interesting cases but are beyond the scope
of this paper.

III. BIG RIP AND LITTLE RIP
IN HDE PARADIGMS

In this section, we will assume the Granda-Oliveros
cutoff [Eq. (16)] throughout and consider the fate of various

proposed HDE models. We start by considering the
simplest HDE scenario, given in (1), which gives the
Friedmann equation in the form

H2 ¼ c2ðαH2 þ βḢÞ: ð25Þ

Isolating Ḣ in this scenario we see that

Z
Hf

Hi

βc2dH
H2ð1 − αc2Þ ¼

βc2

1 − αc2

�
1

Hi
−

1

Hf

�
¼

Z
tf

ti

dt: ð26Þ

Clearly, Hf → ∞ for a finite value of tf, so this scenario
leads to a big rip for all cutoff parameters α, β, and c. Note
that here we are not saying that if tf is finite, then Hf can
never be finite, but what we are trying to emphasize is that
Hf diverges for a finite tf in the future, which signifies a
big rip scenario.
Now consider the Tsallis model for which

fðH; ḢÞ ¼ c2ðαH2 þ βḢÞð2−σÞ; ð27Þ

from which we get

Z
Hf

Hi

βdH

½ðH=cÞ2=ð2−σÞ − αH2� ¼
Z

tf

ti

dt: ð28Þ

The Barrow model [Eq. (3)] yields a similar expression for
fðH; ḢÞ, corresponding to

fðH; ḢÞ ¼ c2ðαH2 þ βḢÞð2−ΔÞ=2; ð29Þ

from which we have

Z
Hf

Hi

βdH

½ðHcÞ4=ð2−ΔÞ − αH2� ¼
Z

tf

ti

dt: ð30Þ

Note that both the Tsallis and Barrow models correspond
to a general evolution of the form

Ḣ ¼ ð1=βÞ½ðH=cÞn − αH2�; ð31Þ

so

Z
Hf

Hi

βdH
½ðH=cÞn − αH2� ¼

Z
tf

ti

dt; ð32Þ

although the allowed values for n will be quite different for
these two models. We will examine the general evolution
given by Eq. (32) and then work backwards to apply it to
the Tsallis and Barrow models.
While the integral in Eq. (32) can be derived exactly in

terms of hypergeometric functions, this result does not
yield much insight. Instead, note first that Eq. (32) allows
for two different sets of solutions, depending on the sign of
Ḣ. Solutions with Ḣ < 0 in Eq. (31) cannot evolve toward a
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future rip singularity, so we will consider only the case
where Ḣ > 0. Then in Eq. (32), the integral will converge
whenever n ≥ 2, indicating a big rip singularity at a finite
time. For n < 2, H goes to a finite value as t → ∞,
corresponding to a pseudo rip.
Now we can compare these results to the Tsallis and

Barrowmodels. For the Tsallis model, the big rip condition,
n ≥ 2 corresponds to 1 ≤ σ < 2. Thus, a future big rip is
possible in the Tsallis HDE model for this parameter range.
In the Barrow model, Δ is restricted to lie in the range
0 < Δ ≤ 1, which corresponds to 2 < n ≤ 4. Thus, the
Barrow model can also lead to a future big rip singularity.
The Renyi model (4) is the case in which fðH; ḢÞ takes

the form

fðH; ḢÞ ¼ d2

8π
ðαH2 þ βḢÞ

�
1þ πδ

ðαH2 þ βḢÞ
�
−1
; ð33Þ

from which we can get the integral

Z
Hf

Hi

βdH

H2
h�

4π
d2 − αþ 4π

d2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2δ

2H2

q �i ¼
Z

tf

ti

dt: ð34Þ

This integral can be expressed analytically, but it is easy to
see that as long as Ḣ > 0, the integrand on the left-hand
side will scale as dH=H2 as H → ∞, giving a convergent
integral and a future big rip, independent of the model
parameters.
Finally, consider the Kaniadakis model (5). The

Kaniadakis model (5) is the case in which fðH; ḢÞ takes
the form

fðH; ḢÞ ¼ c2ðαH2 þ βḢÞ þ k2

ðαH2 þ βḢÞ ð35Þ

from which we derive

Z
Hf

Hi

2βc2

H2

�
1 − 2αc2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4k2c2

H4

q � dH ¼
Z

tf

ti

dt: ð36Þ

We see that for the case in which Ḣ > 0, the integral over
the Hubble parameter always converges, leading to a future
big rip.
The HDE models we have examined here generically

evolve toward a future big rip, and in no case do we see
evolution toward a little rip. We now demonstrate a general
result: HDE models with the Granda-Oliveros cutoff do not
evolve toward a little rip except for very special choices of
the functional form for ρΛðLÞ. Consider a general form for
ρΛ as a function of L:

ρΛ ¼ fðLÞ; ð37Þ

with L given by Eq. (16). We have examined various
proposals for fðLÞ; now we allow it to be a free function.
Then we have H2 ¼ fðLÞ, and using the Grand-Oliveros
cutoff we get

f−1ðH2Þ ¼ ðαH2 þ βḢÞ−1=2; ð38Þ
where f−1 is the inverse function corresponding to fðLÞ.
Our integral relation between H and t becomes

Z
Hf

Hi

βdH
½f−1ðH2Þ�−2 − αH2

¼
Z

tf

ti

dt: ð39Þ

Now consider the asymptotic behavior of the integrand in
the limit of large H. If ½f−1ðH2Þ�−2 increases faster than H2

as H → ∞, the integral will converge, corresponding to a
big rip. If ½f−1ðH2Þ�−2 increases more slowly than H2, then
the denominator in Eq. (39) will go to zero at some finite
value of H, so that H will approach a constant as t → ∞.
This corresponds to a pseudo rip, or equivalently, asymp-
totic de Sitter evolution.
The one possibility of a little rip corresponds to the case

where ½f−1ðH2Þ�−2 evolves as αH2 þ gðHÞ as H → ∞,
where

R
dH=gðHÞ diverges. However, such behavior is

rather contrived and does not correspond to any models
proposed thus far in the literature. As an example, the
simplest case producing a little rip is ½f−1ðH2Þ�−2 ¼
αH2 þ kH, where k is a constant. Working backwards,
this corresponds to

ρΛ ¼ 3

α

�
1

L2
− k

�
: ð40Þ

Thus, the little rip is not a possible future evolution except
for a very small class of Granda-Oliveros HDE models. We
note that the cutoff form needed in (40) is within the realm
of the generalized Nojiri-Odintsov cutoff [34,51,90] where
the HDE energy density in general could have the form

ρ ¼ 3c2LðH; Ḣ; Ḧ;…Lp; Lf; L̇p; L̇f…Þ; ð41Þ

where Lp and Lf refer to the particle horizon and future
event horizon

Lp ¼ a
Z

t

0

dt
a
; Lf ¼ a

Z
∞

a

dt
a
: ð42Þ

In general, it is possible to have HDE models in which the
density could be of the form (41), but it can be difficult to
motivate a particular form for the function in (41).

IV. GENERALIZING TO NON-GR COSMOLOGIES

So far we have considered the HDE models in the
framework of the standard Friedman equation, correspond-
ing to Eq. (18). Here, we will extend our argument to
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several proposed models in which the Friedman equation is
modified, resulting in an expression of the form given
in Eq. (19).
As a first example, we consider the Chern-Simons

cosmology, which corresponds to [91]

SðHÞ ¼ H2 − γH4; ð43Þ

where γ is a free parameter for the model, which takes
positive values. In the context of the simple HDE model
[Eq. (1)] with the Granda-Oliveros cutoff, we get the
integral

Z
Hf

Hi

βc2dH
H2ð1 − γH2 − c2αÞ ¼

Z
tf

ti

dt: ð44Þ

Again, this can be integrated exactly, but we are
interested in the asymptotic behavior of the integral. We
see that the integral diverges for a finite value of Hf. Thus,
these models evolve generically to a pseudo rip (asymptotic
de Sitter expansion).
Another important model with a nonstandard Friedman

equation is the RS-II braneworld which corresponds
to [92–95]

fðH; ḢÞ ¼ c2ðαH2 þ βḢÞ
�
1þ 3c2

2λ
ðαH2 þ βḢÞ

�
; ð45Þ

which gives

Z
Hf

Hi

3c2βdH

λ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6H2

λ þ 1

q
− 1

�
− 3c2αH2

¼
Z

dt: ð46Þ

Again, we see that the integral on the left-hand side
diverges at finite H, so that these models also evolve to
asymptotic de Sitter expansion.
While there are essentially an infinite number of non-

standard Friedman equations that one might conceivably
incorporate into the HDE framework, we can show, rather
surprisingly, that we expect little rip evolution to be rather
rare in all of these cases as well. Consider a generic
evolution of the form

gðH2Þ ¼ ρΛ ¼ fðLÞ; ð47Þ

where L is taken to be given by the Granda-Oliveros cutoff.
Then we can write

f−1ðgðH2ÞÞ ¼ ðαH2 þ βḢÞ−1=2; ð48Þ

and we get

Z
Hf

Hi

βdH
½f−1ðgðH2ÞÞ�−2 − αH2

¼
Z

tf

ti

dt: ð49Þ

Then our argument carries over from the previous section
exactly as it did to Eq. (39). Except for very special choices
of f and g, asymptotic little rip evolution is impossible.
Note that if one were to consider α ¼ 2β, then one recovers
the Ricci holographic dark energy model [96], and our
conclusions remain unchanged even in this HDE paradigm,
further illustrating the generality of these results.

V. CONCLUSIONS

In this work we have considered a very general approach
to future rip scenarios with holographic dark energy. Using
this new methodology, we have shown how to determine, in
a simple way, whether specific HDE models correspond to
little rip, big rip, or future asymptotic de Sitter (pseudo rip)
evolution. All of the specific models we have examined
correspond to a future big rip or de Sitter evolution, with
none of them yielding a little rip.
More generally, in HDE models with a Granda-Oliveros

cutoff, it is possible to show that little rip evolution is a very
special case, requiring a rather contrived choice for ρΛ as a
function of the cutoff L. This result arises mathematically
because L for the Granda-Oliveros cutoff is a sum of Ḣ and
H2, so that Ḣ always enters into the evolution equations in
the form of this sum.
Rather surprisingly, this result carries over to HDE

models with nonstandard Friedman equations, such as
the Chern-Simons or Randall-Sundrum type II braneworld
cosmologies. Even when one allows for an arbitrary
relationship between H2 and ρΛ, the specific form for L
with the Granda-Oliveros cutoff renders it difficult to
construct models corresponding to a little rip.
While we have considered primarily HDE models with

the Granda-Oliveros cutoff, it would be interesting to
investigate how general our results are. It may be that
the little rip is a very special case, requiring particular fine-
tuning in any cosmological model. This question is worthy
of further exploration.
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