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A model of baryogenesis is introduced where our usual visible Universe is a 3-brane coevolving with a
hidden 3-brane in a multidimensional bulk. The visible matter and antimatter sectors are naturally coupled
with the hidden matter and antimatter sectors, breaking the C/CP invariance and leading to baryogenesis
occurring after the quark-gluon era. The issue of leptogenesis is also discussed. The symmetry breaking
spontaneously occurs due to the presence of an extra scalar field supported by the Uð1Þ ⊗ Uð1Þ gauge
group, which extends the conventional electromagnetic gauge field in the two-brane universe. Observa-
tional consequences are discussed.
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I. INTRODUCTION

While the standard model of particle physics and the
concordance model of cosmology have achieved predictive
success, there are still puzzling data that require interpre-
tation. These include for instance the observations of dark
matter and dark energy [1], as well as the matter-antimatter
asymmetry [2–4]. Our Universe is mainly empty space,
with a mean baryonic matter density about one proton per 4
cubic meters. However, such a value is extremely large
and the absence of antimatter raises significant questions.
Indeed, shortly after the initial moment of the big bang,
particles and antiparticles should have been in thermal
equilibrium with the photon bath. As the Universe
expanded, matter and antimatter should have almost com-
pletely annihilated once the global temperature dropped
below the mass energy of each particle. Nevertheless,
a large baryon-antibaryon asymmetry is observed, with
the visible Universe today dominated by matter rather than
antimatter [2–4]. This is the baryogenesis problem. Those
unresolved issues, coupled with the quest for a unified
theory of fundamental interactions, have motivated exten-
sive theoretical work, resulting in a diverse landscape of
models that challenge new experimental projects aimed
at testing new physics [1,2,5–8]. In this context, many

theoretical works suggest that our visible Universe
could be a three-dimensional physical entity (a 3-brane)
embedded in a ð3þ N; 1Þ-spacetime (N ≥ 1) known as the
bulk [9–15]. Hidden 3-branes may coexist alongside our
own in the bulk. This leads to a rich phenomenology
encompassing both particle physics and cosmology [7].
Some studies propose that hidden branes could host dark
matter, or that interactions between branes could account for
dark energy [16–21]. In addition, many scenarios suggest
that the big bang was triggered by a collision between
our visible brane and a hidden one [22–33]. Previous
research has highlighted that braneworld scenarios or dark
matter models involving sterile particles could explain
baryogenesis [34,35].
Moreover, numerous theoretical predictions have emerged

regarding hidden or dark sectors, allowing phenomena such
as neutron-hidden neutron transitions n − n0 [8,36]. Over the
past decade, this phenomenology has prompted efforts to
constrain these scenarios through neutron disappearance/
reappearance experiments [37–43]. Specifically, a neutron n
in our visible brane can transmute into a hidden neutron
n0, effectively swapping into a hidden brane [44–47],
depending on a specific coupling constant g between visible
and hidden sectors. The theoretical study of this brane
phenomenology [44–47] has been complemented by exper-
imental tests over the past two decades [37–41], particularly
through passing-through-wall neutron experiments [38,39],
which have provided stringent bounds on the coupling
constant g [40,41].
In the present paper, assuming previous theoretical

results [45–47], one shows how a two-brane universe
provides a solution to the baryogenesis issue after the
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phase transition from quark-gluon plasma to hadron gas. In
particular, the violation of the C/CP symmetry naturally
arises in the two-brane universe model through the occur-
rence of a scalar field resulting from the splitting of the
electromagnetic gauge field on each brane. Because
of the scalar field, a dressed coupling constant g then
replaces the bare coupling constant g. The coupling
constant ḡ describing the n̄ − n̄0 transition between the
antineutron and hidden antineutron sectors then differs
from g. Consequently, n̄ − n̄0 transitions would occur at a
different rate than n − n0 transitions with an asymmetry
allowing the current baryon-antibaryon ratio with respect to
the Sakharov conditions [2,48].
The study is organized as follows. In Sec. II, one provides

a brief overview of the theoretical framework used here and
previously introduced in literature [36,44–47], and which
enables the study of particle dynamics in a two-brane
universe. In Sec. III, one shows how the electromagnetic
gauge field Uð1Þ ⊗ Uð1Þ in a two-brane universe naturally
replaces the Uð1Þ gauge field, and how an additional
pseudoscalar field then arises. The properties of the vacuum
state and of the fluctuations of this new field are clarified in
Sec. IV. One then shows and discusses how this field breaks
theC/CP symmetry in Sec.V, also introducing the interbrane
coupling Hamiltonian. Next, in Sec. VI, it is shown that the
coupling constant ḡ between the antineutron and hidden
antineutron sectors must then differ from g. Both coupling
constants g and ḡ are naturally affected by the scalar field,
leading to the expected conditions for baryogenesis. In
Sec. VII, from the interbrane coupling Hamiltonian, one
introduces the Boltzmann equations relevant to describe the
baryogenesis in a two-brane universe. Finally, before con-
cluding, the results obtained from these equations are shown
and discussed in Sec. VIII. One shows thus the relevance of
the mechanism inducing the C/CP violation to explain
baryogenesis in the context of braneworld scenarios. One
also discusses the ways to observationally constrain the
present baryogenesis model.

II. THEORETICAL FRAMEWORK
OF THE FERMION DYNAMICS
IN A TWO-BRANE UNIVERSE

Braneworld physics and cosmology can present a
complex landscape of models, making their study chal-
lenging. However, over the past two decades, it has
been shown [44–47] that this study can be simplified
through a mathematical and physical equivalence between
two-brane universes and noncommutative two-sheeted
spacetimes. The reader is encouraged to consult the cited
references [45–47,49] for the demonstrations of this
equivalence not depicted here, for the sake of clarity.
To be more precise, let us consider a two-brane universe

in a ð3þ N; 1Þ-bulk (N ≥ 1). Each brane has a thickness
M−1

B along extra dimensions—with MB the brane energy
scale—and d is the distance between both branes in the

bulk. Then, at the sub-GeV-scale, the quantum dynamics of
fermions in the two-brane universe is the same as in a two-
sheeted spacetime M4 × Z2 described with noncommuta-
tive geometry [45–47,49].
The phenomenological discrete spacetime M4 × Z2

replaces the physical continuous ð3þ N; 1Þ-bulk (N ≥ 1)
with its two branes [45–47]. At each point along the
discrete extra dimension Z2, there is a four-dimensional
spacetimeM4 endowed with its own metric. EachM4 sheet
describes each braneworld considered as being separated
by a phenomenological distance δ ¼ 1=g, with g the bare
coupling constant between fermionic sectors. g is a function
against MB, d and also the mass of the fermion under
consideration [45–47]. The function can also depend on
the bulk properties (i.e., dimensionality and compactifica-
tion). For instance, for a neutron and a M4 × R1 bulk,
one gets [46,47]

g ∼
m2

Q

MB
e−mQd; ð1Þ

where mQ is the mass of the quark constituents in the
neutron—i.e., the mass of the quarks up and down dressed
with gluons fields and virtual quarks fields such that mQ ¼
mup ¼ mdown ¼ 327 MeV [50–53].
The effective M4 × Z2 Lagrangian for the fermion

dynamics in a two-brane universe is [45–47]

LM4×Z2
∼ Ψ̄ði=D −mÞΨ: ð2Þ

Labeling (þ) [respectively, (−)] our brane (respectively, the
hidden brane), one writes Ψ ¼ ðψþ

ψ−
Þ where ψ� are the wave

functions in the branes (�) and m is the mass of
the bound fermion on a brane, here the quark constituent.
The derivative operators acting on M4 and Z2 are Dμ ¼
18×8∂μ (μ ¼ 0, 1, 2, 3) andD5 ¼ igσ2 ⊗ 14×4, respectively,
and the Dirac operator acting on M4 × Z2 is defined as
=D ¼ ΓNDN ¼ ΓμDμ þ Γ5D5 where Γμ ¼ 12×2 ⊗ γμ and
Γ5 ¼ σ3 ⊗ γ5. γμ and γ5 ¼ iγ0γ1γ2γ3 are the usual Dirac
matrices and σk (k ¼ 1, 2, 3) the Pauli matrices.
Equation (2) is characteristic of fermions in noncommu-
tative M4 × Z2 two-sheeted spacetimes as introduced by
other authors [54–61].
One refers to the terms proportional to g as geometrical

mixing [45–47]. The present approach serves as a valuable
tool for investigating the phenomenology of braneworlds
and exploring their implications within realistic experi-
mental settings [37–41].
In the following sections, one shows how the violation of

C/CP symmetry naturally arises from the M4 × Z2 frame-
work, using the scalar field that emerges from the splitting
of the electromagnetic gauge field. Therefore, it is neces-
sary to consider Uð1Þ ⊗ Uð1Þ instead of Uð1Þ.

MICHAËL SARRAZIN and CORALINE STASSER PHYS. REV. D 110, 023520 (2024)

023520-2



III. GAUGE FIELD AND EXTRA
SCALAR FIELD

In a two-brane universe, the electromagnetic field is
described by the effective Uð1Þþ ⊗ Uð1Þ− gauge field in
the M4 × Z2 spacetime [45]. Here, Uð1Þþ is the gauge
group associated with the photon field localized on our
brane, while Uð1Þ− is the gauge group of the photon field
localized on the hidden brane. This is not merely a corollary
of the M4 × Z2 description, but a demonstrated conse-
quence when examining the low-energy dynamics of
fermions in the two-brane system1 [45]. The group repre-
sentation is therefore

G ¼ diagfexpð−iqΛþÞ; expð−iqΛ−Þg: ð3Þ
Looking for an appropriate gauge field such that the gauge
covariant derivative is =DA → =Dþ iq=A with the following
gauge transformation rule:

=A0 ¼ G=AG† −
i
q
G½=D;G†�; ð4Þ

with q the fermion charge—one gets the most general form
of the electromagnetic potential:

=A ¼
�

γμAþ
μ ϕγ5

−ϕ�γ5 γμA−
μ

�
: ð5Þ

Thanks to seminal works on noncommutative geometry
by Connes, followed by other authors [54–61], attempts
have been made to derive the standard model of particle
physics using a two-sheeted spacetime. In this context, the
scalar field was associated with the Higgs field. However, in
the present study, one does not consider such a hypothesis.
Instead, one refers to the interpretation of the scalar field as
demonstrated in our previous works, where the M4 × Z2

approach is derived as an effective limit of a two-braneworld
in a continuous bulk [45]. Then, one can assume the
presence of an extradimensional component of the electro-
magnetic gauge field Uð1Þ in the bulk, and ϕ [see Eq. (5)]
represents this additional component dressed by fluctuating
fermionic fields in the bulk [45]. However, as a proof of
principle, in the present model one uses the definition of the
field strength used by Connes et al. [54–61], one sets

F ¼ fi=D; =Ag þ e=A=A; ð6Þ

modulo the junk terms [54–61], with e here the electro-
magnetic coupling constant. The gauge field Lagrangian
being defined as L ¼ − 1

4
TrfF ;Fg, from Eq. (6) one

gets [54–61]

L ¼ −
1

4
FþμνFþ

μν −
1

4
F−μνF−

μν

þ ðDμhÞ�ðDμhÞ − e2

2
ðjhj2 − 2η2Þ2; ð7Þ

with F�
μν ¼ ∂μA�

ν − ∂νA�
μ [A�

μ are the electromagnetic four-
potentials on each brane ð�Þ� and where the Lorenz gauge
and the field transversality are imposed, aswell aswhere one
has set

Dμ ¼ ∂μ − ieðAþ
μ − A−

μ Þ ð8Þ

and [54–61]

h ¼
ffiffiffi
2

p
ðϕþ iηÞ; ð9Þ

with η ¼ g=e. h is a scalar field with a quartic self-
interaction, such that a vacuum state h0 is characterized by

h0 ¼ η
ffiffiffi
2

p
eiθ; ð10Þ

i.e., up to a phase θ, the nature of which will be clarified in
the next section.

IV. VACCUM STATE PHASE
AND FLUCTUATIONS

Before proceeding, it is necessary to discuss the out-
comes arising from the dynamics of the field h around a
vacuum state h0. The fluctuations of h around h0 can be
conveniently described by introducing the auxiliary fields
ðφ; θÞ, such that

h ¼
ffiffiffi
2

p
ðηþ φ=2Þeiθ: ð11Þ

Regarding the auxiliary fields ðφ; θÞ, the electromagnetic
gauge transformation (4) can be written as2

�
φ0 ¼ φ

θ0 ¼ θ þ eðΛþ − Λ−Þ
: ð12Þ

Using now Eq. (11), the gauge covariant derivative (8) of h
in the Lagrangian (7) becomes

Dμh ¼
ffiffiffi
2

p
eiθ
�
1

2
ð∂μφÞ

þ iðηþ φ=2Þ�ð∂μθÞ − eðAþ
μ − A−

μ Þ
��

: ð13Þ

1It is noteworthy that the phenomenology of the gauge group
Uð1Þ ⊗ Uð1Þ also manifests in other contexts beyond brane
physics [54–63].

2From the gauge transformation rule (4), the electromagnetic
vector potentials follow the usual transformation rule A�0

μ ¼
A�
μ þ ∂μΛ�, and the field h follows the gauge transformation rule

h0 ¼ h expðieðΛþ − Λ−ÞÞ. The transformations (12) are equiv-
alent to this gauge transformation for the field h.
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The Goldstone boson field θ could be eliminated by a
Brout-Englert-Higgs mechanism [64–66] but then would
lead to a photon mass—in the Lagrangian (7)—that is
difficult to reconcile with current observations (see
Ref. [67] and references within). Another possible mecha-
nism—i.e., gauge choice—is a dynamical compensation of
the fluctuations of the field θ by the photon fields A�

μ

such that

θ ¼ e
Z

ðAþ
μ − A−

μ Þdxμ; ð14Þ

making θ an effective degree of freedom, driven by the
photon fields A�

μ , with Eq. (14) verifying the gauge
transformations (12) and (4). Then the Lagrangian (7)
becomes

L ¼ −
1

4
FþμνFþ

μν −
1

4
F−μνF−

μν

þ 1

2
ð∂μφÞð∂μφÞ −

1

2
m2

φφ
2; ð15Þ

with3 mφ ¼ 2g. As a result, the scalar field φ describes a
new massive scalar boson. In the following, the fluctuations
φ of the field h can be neglected as h is dominated by η. At
most, the effective number of degrees of freedom will
increase by one unit—due to the scalar boson—without
significant impact in the rest of our analysis. In the
following sections, without loss of generality and for
illustrative purpose, the phase θ will be considered as
constant.

V. SCALAR FIELD-INDUCED C/CP
VIOLATION AND INTERBRANE

COUPLING HAMILTONIAN

Writing now the two-brane Dirac equation including the
gauge field from Eqs. (2), (4), and (5) one gets 
iγμð∂μþ iqAþ

μ Þ−m igcγ5

ig�cγ5 iγμð∂μþ iqA−
μ Þ−m

!
Ψ¼ 0; ð16Þ

with

gc ¼ gþ iqϕ0; ð17Þ

here with ϕ0 ¼ ηðeiθ − iÞ [see Eqs. (9) and (10)] as the
scalar field is on a vacuum state. Indeed, small perturba-
tions φ ðφ ≪ ηÞ around the vacuum state do not affect the
baryogenesis model and correspond to a scalar field

propagating along the branes. It must be underlined that
in our previous work [45], the role of the scalar field was
neglected—such that gc ¼ g�c ¼ g—while here one
explores its consequences. It is then convenient to write
gc as

gc ¼ geiα; ð18Þ

with

g ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2zð1þ zÞð1 − sin θÞ

p
; ð19Þ

where z ¼ q=e and

tan α ¼ z cos θ
1þ zð1 − sin θÞ : ð20Þ

Then, thanks to a simple phase rescaling Ψ → TΨ, with
T ¼ diagfeiα=2; e−iα=2g, one gets from Eq. (16) 
iγμð∂μþ iqAþ

μ Þ−m igγ5

igγ5 iγμð∂μþ iqA−
μ Þ−m

!
Ψ¼ 0: ð21Þ

Then, g becomes the effective coupling constant between
the visible and the hidden sectors for the fermion dressed by
the scalar field. Now, let us consider the standard procedure
for obtaining the Pauli equation from the Dirac equation in
its two-brane formulation (21). By doing so, one can derive
the interbrane coupling Hamiltonian for a fermion (see
Refs. [36,45]):

W ¼ ε

�
0 u

u† 0

�
; ð22Þ

where

ε ¼ gμjAþ −A−j; ð23Þ

with A� the local magnetic vector potentials in each
brane [36,45], μ the magnetic moment of the fermion,
and u a unitary matrix such that u ¼ ie · σ with
e ¼ ðAþ −A−Þ=jAþ −A−j. The phenomenology related
to W is explored and is detailed elsewhere [36–41,44–47].
From the Hamiltonian (22), one can show that a particle
should oscillate between two states: One localized in
our brane and the other localized in the hidden world [45].
While such oscillations are suppressed for charged
particles [34,36,68], they remain possible for composite
particles with neutral charge such as neutrons or antineu-
trons [34,36,68], for which the above coupling has the same
form. This could result in the disappearance [37] or
reappearance of neutrons, allowing for passing-through-
walls neutron experiments, which have been conducted in
the past decade [38–41]. Such phenomena would appear as
a baryon number violation.

3For the sake of clarity, we omitted the contributions
−ð1=2Þemφφ

3 and −ð1=8Þe2φ4 in Eq. (15) since we consider
the small fluctuations such that φ ≪ η. These terms could
obviously be reintroduced as corrections.
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The interbrane coupling Hamiltonian W for the anti-
fermion can be obtained through the charge conjugation
q → −q in Eqs. (22) and (19). One labels ḡ the coupling
constant between the visible and the hidden sectors for the
antifermion. For the antiparticle the sign change μ → −μ
due to the charge conjugation can be effectively eliminated
through a relevant phase rescaling in Eq. (22). It is not the
case for the coupling constant. When ϕ ¼ 0, we have
g ¼ g, and the antiparticle also exhibits ḡ ¼ g. However, in
the case where ϕ ≠ 0, one finds g → ḡ ≠ g (with ḡ; g > 0),
and this disparity cannot be canceled: the interbrane
coupling magnitude differs between the particle and the
antiparticle. Then, the presence of a scalar field in the two-
brane universe breaks the symmetry between ḡ and g. It
must be underlined that such an asymmetry would be
hidden from us in our visible world, except for experiments
involving neutron and antineutron disappearance and/or
reappearance [38–41]. The state of the art of this kind of
experiment [37–41] for the neutron requires nuclear reactors,
thus implying there is little hope for convincing experiments
using antineutrons. Nevertheless, in Sec. VIII, one will
suggest a way to get observational constraints for the present
scenario by testing other consequences induced by the
scalar field.

VI. NEUTRON AND ANTINEUTRON
INTERBRANE COUPLING CONSTANTS

The two-brane Dirac equation (21) can be fundamentally
derived [46,47] to describe quarks within baryons (or
mesons). But, Eq. (19) cannot be directly applied to
characterize the neutron [46,47] or the antineutron as they
are not pointlike particles. To address this issue, the well-
known quark constituent model [50–53] is pursued as
outlined elsewhere [46,47]. In this context, assuming that g
(respectively, μ̂n) represents the coupling constant (respec-
tively, the magnetic moment operator) of the neutron, the
quark constituent model [50–53] is employed, and one gets

gμ̂n ¼
X
q

μ̂qgq; ð24Þ

where gq (respectively, μ̂q) refers to the coupling constant
(respectively, the magnetic moment operator) of each quark
constituting the neutron with μ̂n ¼

P
q μ̂q. The magnetic

moment of the neutron μn is then calculated by taking the
expectation value of the operator μ̂n, and one gets [50]

μn ¼ hn;↑jμ̂jn;↑i ¼ 4

3
μd −

1

3
μu; ð25Þ

where—without loss of generality—one has considered the
neutron with spin up such that [50]

jn;↑i ¼ 1ffiffiffiffiffi
18

p ð−2jd;↑ijd;↑iju;↓i

þ jd;↑ijd;↓iju;↑i þ jd;↓ijd;↑iju;↑i
þ permutationsÞ; ð26Þ

with ju;↕i and jd;↕i the quark up and the quark down
wave functions, respectively, either with spin up ↑ or down
↓. Also, one gets

μu ¼
2

3

eℏ
2mu

and μd ¼ −
1

3

eℏ
2md

: ð27Þ

Usingmu¼md ¼mQ¼ 327MeV [50–53], one obtains [50]

μn ¼ −
2

3

eℏ
2mQ

: ð28Þ

Doing the same for g μ̂n, one deduces from Eq. (24)

gμn ¼
4

3
gdμd −

1

3
guμu: ð29Þ

Next, one divides Eq. (29) by Eq. (28), and one gets

g ¼ 2

3
gd þ

1

3
gu: ð30Þ

FromEqs. (19) and (30), one deduces the explicit expression
for the coupling constant g between thevisible and the hidden
sectors:

g
g
¼ 2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 4 sin θ

p

þ 1

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29 − 20 sin θ

p
: ð31Þ

Doing the same for the antineutron, one gets the related
coupling constant ḡ between the visible and the hidden
sectors:

ḡ
g
¼ 2

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17 − 8 sin θ

p

þ 1

9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ 4 sin θ

p
: ð32Þ

In the following, one defines the asymmetry of the interbrane
coupling constants of the neutron and antineutron as

δ ¼ Δg
g

¼ jḡ − gj
ḡþ g

; ð33Þ

and one gets

δ¼ j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi5þ4sinθ
p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

29−20sinθ
p

−2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17−8sinθ

p j
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5þ4sinθ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
29−20sinθ

p þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17−8sinθ

p ; ð34Þ
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which does not depend on the expression of g and therefore,
not on the bulk dimensionality. In Fig. 1, the normalized
coupling constants for the neutron, g=g, and the antineutron,
ḡ=g, are illustrated against the scalar field phase θ in the
vacuum state fromEqs. (31) and (32). In the sameway, Fig. 2
displays the asymmetry Δg=g plotted against θ from
Eq. (34). The upper red and lower blue dashed lines bound
the values of the asymmetry δ, which are compatiblewith the
observed imbalance of the baryon-antibaryon populations
today. This will be shown and discussed in Sec. VIII
[see Eq. (57)].

VII. BARYON PHENOMENOLOGY
IN THE EARLY TWO-BRANE UNIVERSE

Usually, the Boltzmann transport equation [69,70] leads
to the Lee-Weinberg equations [71] that govern the density
of relic particles in the expanding universe. The density of
baryonsnB (respectively, antibaryonsnB̄) thus obeys [69,70]

∂tnB þ 3HnB ¼ −hσaviðnBnB̄ − nB;eqnB̄;eqÞ; ð35Þ

with H the Hubble parameter, σa the baryon-antibaryon
annihilation cross section, v the relative velocity between
particles, and h� � �i the thermal average at temperature T.
Quantities nB;eq and nB̄;eq are at the thermal equilibrium and
are described by the Fermi-Dirac statistics. Without baryon-
antibaryon asymmetry, one would have nB ¼ nB̄, and the
same expression would occur for antibaryons through the
nB ↔ nB̄ substitution. Under such conditions, particles
would simply annihilate until the expansion of space froze
the process by reducing the probability of collision between
particles and antiparticles. Then, baryons and antibaryons
would have the same density in the Universe (therewould be
no asymmetry) but lower by many orders of magnitude than
the current observed values. However, the current imbalance
in the observed universe between baryons and antibaryons
—with a large photon population—suggests an early asym-
metry. One actually observes [3]

YB − YB̄ ¼ ð8.8� 0.6Þ × 10−11; ð36Þ

where YX ¼ nX=s is the comoving particle density, i.e., the
particle density nX related to the entropy density s, itself
proportional to the photon population [69,70]. As the
temperature of the universe decreased, a baryonic asymme-
try could have precluded the complete annihilation of all
matter and antimatter, resulting in a very small excess of
matter over antimatter. The baryogenesis process supposes
that the three Sakharov conditions [48] are satisfied: Baryon
number violation, C-symmetry andCP-symmetry violation,
and interactions out of thermal equilibrium. Currently, C/CP
violation processes known in physics are too weak in
magnitude to explain baryogenesis, and solutions are
expected from attempts to build a grand unified theory.
However, for now, the origin of the imbalance between
matter and antimatter is still unknown, despite the existence
of many hypotheses [2–4,72].
In previous sections, it was emphasized that the neutron

and antineutron could be the portal inducing the baryo-
genesis right after the phase transition from quark-gluon
plasma to hadron gas (QGPHG). Keeping the Sakharov
conditions in mind, we propose to discuss the magnitude of
the asymmetry between g and ḡ and its consequences in a
baryogenesis scenario. Between the QGPHG transition
(T0 ≈ 160 MeV) and the end of baryon-antibaryon anni-
hilation (T ≈ 20 MeV), we need to explain the similarities
of the temperatures in each brane, a condition necessary as

FIG. 1. Normalized coupling constant for neutron g=g (black
line) and antineutron ḡ=g (red dashed line) against the scalar field
phase θ in the vacuum state.

FIG. 2. Asymmetry δ ¼ Δg=g against the scalar field phase θ in
the vacuum state. Upper red dashed line: upper limit on the
asymmetry compatible with baryogenesis as shown in Sec. VIII
[see Eq. (57)]. Lower blue dashed line: lower limit compatible
with baryogenesis [Sec. VIII, Eq. (57)].

MICHAËL SARRAZIN and CORALINE STASSER PHYS. REV. D 110, 023520 (2024)

023520-6



shown later. This could be possible if the branes had
collided during the initial stage of the big bang, regardless
of the underlying mechanisms during the collision of the
branes [22–33].
Let us consider the matter (or antimatter) exchange

between two branes: the one corresponding to our visible
universe and a hidden one. The process is described
through the Hamiltonian (22) added to a Hamiltonian
H0 describing the neutron (or antineutron) in each brane
such that

H ¼ H0 þW; ð37Þ

with H0 ¼ diagfEþ; E−g and E� ¼ E0;� þ VF;�, where
E0;�are the eigenenergies of the particle in vacuum in either
its visible state or its hidden state due to the gravitational
potentials of each brane, and VF;� are the Fermi potentials
of the materials through which the particle travels [38,41].
The visible or hidden states of matter (or antimatter) are
quantum states, but not eigenstates of (22). Therefore, the
Lindblad equation formalism [73] is necessary to describe
the dynamics of quantum states that change a visible
neutron n into a hidden one n0 (or a visible antineutron
n̄ into a hidden one n̄0)—and vice versa—as a result of
interactions with many scatterers X (i.e., nþ X ↔ n0 þ X).
This equation extends the Liouville–Von Neumann equa-
tion related to the density matrix ρ—and allows the study of
the evolution of a quantum system (the neutron or anti-
neutron) interacting with two environments that are not in
thermal equilibrium [73], i.e., a set of scatterers X in our
brane and a set of scatterers X0 in the hidden brane. For the
two-brane universe, the Lindblad equation can be written as

∂tρþ
3

2
fH; ρg ¼ i½ρ;H� þ LðρÞ; ð38Þ

where fA; Bg ¼ ABþ BA defines the anticommutator,4

with H ¼ diagfHþ; H−g and H� the Hubble parameters
in each brane. The Lindblad operatorLðρÞ is defined as [73]

LðρÞ ¼
X
m

Γm

�
CmρC

†
m −

1

2
fρ; C†

mCmg
�
; ð39Þ

where Cm (m ¼ �) are the jump operators describing the
wave function reduction process either into the visible or
into the hidden branes when the system interacts with its
environment.5 Then, Γþ (respectively, Γ−) describes the
collisional rate between the neutron (or antineutron) and the

environment in the brane þ (respectively, in the brane −)
when it is assumed to be in this brane. In the following, T is
the temperature in our visible braneworld and T 0 in the
hidden braneworld, such that

κ ¼ T
T 0 ; ð40Þ

where κ is a constant parameter. Setting σ the usual
elastic cross section σ ¼ σðnþ X ⟶ nþ XÞ, one gets
Γþ ¼ hσvinX and Γ− ¼ hσvi0nX0 ,6 where [74]

hσvi ¼
Z Z

d3v1d3v2fTðv1ÞfTðv2Þσjv1 − v2j

¼ x3=2

2
ffiffiffi
π

p
Z

∞

0

dvv2e−xv
2=4σv; ð41Þ

with x ¼ m=T the usual parameter [69,70] used to follow the
primordial particle dynamics, and m a mass reference, here
equals the typical mass of the nucleon: 939 MeV=c2. One
also uses x0 ¼ m=T 0 ¼ κx.
Setting

ρ ¼
�

ρþ x − iy

xþ iy ρ−

�
; ð42Þ

Eq. (38) for unpolarized fermions becomes

8>>>><
>>>>:

∂tρþ ¼ −3Hþρþ þ 2εy

∂tρ− ¼ −3H−ρ− − 2εy

∂tx ¼ −ð3H þ ΓÞx − ΔEy
∂ty ¼ −ð3H þ ΓÞyþ ΔEx − εðρþ − ρ−Þ

ð43Þ

with ΔE ¼ Eþ − E−, H ¼ ðHþ þH−Þ=2, and Γ ¼
ðΓþ þ Γ−Þ=2 and where ΔE, Γ, and ε can depend on time.
Of course, ε is given by Eq. (23)where the coupling constant
g between the visible and the hidden sectors of the neutron
acts (see Secs. Vand VI). Here, because of the isotropy and
the homogeneity of the universe in both branes, and because
of the strong collisional dynamics,7 Γ ≫ H > ΔE. This
allows for the stationary phase approximation [38,40,41]:
∂tx≈∂ty≈0, and the system (43) can be conveniently
recast as

�
∂tnn þ 3Hþnn ¼ −γðnn − nn0 Þ
∂tnn0 þ 3H−nn0 ¼ −γðnn0 − nnÞ

; ð44Þ
4The term ð3=2ÞfH; ρg arises from the covariant derivatives

in the Dirac equation for a universe with two spacetime sheets
(or branes) endowed with their own tensor metric: gð4Þ�;μν ¼
diagð1;−a2�ðtÞ;−a2�ðtÞ;−a2�ðtÞÞ with scale factors a� such that
H� ¼ ð∂ta�Þ=a� are the Hubble parameters in each brane.

5Cþ ¼ diagf1; 0g and C− ¼ diagf0; 1g.

6h� � �i0 is the thermal average at T 0.
7The Fermi potential writes as VF ¼ ð2πℏ2=mÞbnX withm the

neutron mass and b the scattering length on a free nucleon
(b ≈ 0.73 fm). Then, Γ ≫ VF leads to hσvi ≫ ð2πℏ=mÞb, which
is verified in the present work.
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with γ the neutron transition rate between branes such that

γ ¼ 2ð3H þ ΓÞε2
ð3H þ ΓÞ2 þ ΔE2

; ð45Þ

and where one used nn ¼ n0ρþ and nn0 ¼ n0ρ− with n0 the
global neutron population in the two-brane universe [38,41].
Since Γ ≫ H > ΔE, one gets γ ∼ 2ε2=Γ.
During the period of interest, the coupling parameter ε

depends only on the typical amplitude A of the magnetic
vector potentials related to primordial magnetic fields [75],
then8 A ¼ A0ðx0=xÞ, with A0 ≈ 4.0 × 108 T.m. the typical
amplitude at T ¼ T0, i.e., at the QGPHG transition [75,76].
Then

ε ¼ ε0
x0
x
; ð46Þ

with9 ε0 ¼ gμnA0.
For antineutrons, a set of equations similar to Eq. (44)

can be derived—with nn̄ and nn̄0—but where γ̄ ¼ 2ε̄2=Γ̄—
with ε̄0 ¼ ḡμn̄A0—and where Γ̄ will be conveniently
defined in details below. ḡ is, of course, the coupling
constant between the visible and the hidden sectors for the
antineutron as defined in Secs. V and VI.
The system of equations (44) now allows us to extend

Eq. (35). The right-hand side of Eq. (35) for neutrons (or
antineutrons) can be written for both brane þ and brane −
and must be added to the right-hand sides of the two
expressions in system (44) for each brane.
In the period of interest, the universe is composed of

various baryons, mesons, leptons, and neutrinos. However,
we consider that the dynamics of nucleons primarily
depends on their equilibrium with the lightest leptons
and related neutrinos. Electrons, positrons, neutrinos,
and antineutrinos are relativistic and in thermal equilibrium
with the photon bath. Therefore, ne− ¼ ne−;eq ¼ neþ ¼
neþ;eq ¼ nl;eq (the same is true for the hidden brane). At
equilibrium, above the threshold temperature of the elec-
tron-positron plasma, the populations of protons and
neutrons follow: nn;eq ¼ np;eqðmn=mpÞ3=2 expð−Δm=TÞ
(with Δm ¼ mn −mp) as neutrons contribute to the

protons population mainly through nþ eþ → pþ ν̄ and
as protons contribute to the neutrons population through
pþ e− → nþ ν. During the period of interest, as a fair
approximation, we assume np;eq ¼ nn;eq and np̄;eq ¼ nn̄;eq
and the same for the hidden brane, but also nn ¼ np ¼
ð1=2ÞnB, nn̄ ¼ np̄ ¼ ð1=2ÞnB̄, nn0 ¼ np0 ¼ ð1=2ÞnB0 , and
nn̄0 ¼ np̄0 ¼ ð1=2ÞnB̄0 . Writing then the system (44) includ-
ing the Lee-Weinberg equations for each particle species—
and for particles and antiparticles—and assuming the above
hypothesis, one easily obtains

dYB

dx
¼ −hσBB̄;aviη

s
Hx

ðYBYB̄ − YB;eqYB̄;eqÞ

− ð1=2Þ γη
Hx

ðYB − YB0 Þ; ð47Þ

dYB̄

dx
¼ −hσBB̄;aviη

s
Hx

ðYBYB̄ − YB;eqYB̄;eqÞ

− ð1=2Þ γ̄η
Hx

ðYB̄ − YB̄0 Þ; ð48Þ

dYB0

dx
¼ −hσBB̄;avi0η0

κs0

H0x0
ðYB0YB̄0 − YB0;eqYB̄0;eqÞ

− ð1=2Þ γκη
0

H0x0
ðYB0 − YBÞ; ð49Þ

dYB̄0

dx
¼ −hσBB̄;avi0η0

κs0

H0x0
ðYB0YB̄0 − YB0;eqYB̄0;eqÞ

− ð1=2Þ γ̄κη
0

H0x0
ðYB̄0 − YB̄Þ; ð50Þ

where we have introduced the comoving particle densities:
YB ¼ nB=s, YB̄ ¼ nB̄=s, YB0 ¼ nB0=s0, and YB̄0 ¼ nB̄0=s0
with s and s0 the entropy densities in each brane. We have
also proceeded to the variable changing t → x such that
ðHþ;H−Þ→ ðH;H0Þ [see Eq. (53)] with the relations [69,70]
dx=dt ¼ Hx=η and dx0=dt ¼ H0x0=η0 in each brane, where

η ¼ 1 −
x
3q�

dq�
dx

; ð51Þ

with q� the effective number of degrees of freedom defined
for the entropy density such that [69,70]

s ¼ 2π2

45
m3q�x−3: ð52Þ

While η is often close to 1 during most of the radiation era, it
is not the case shortly after the QGPHG transition as pions
and muons annihilate between 160 MeV and 100 MeV
leading then to a fast change of q� against x. In the sameway,
since the period of interest is radiatively dominated, the
Hubble parameter is defined through [69,70]

8The magnetic vector potential is given by A0 ∼ B0L0 with
B0 ≈ 104 T the field strength at the QCD phase transition time
(i.e., at T0) [76] and L0 the maximal coherence length of the
magnetic field at the same epoch, i.e., L0 ∼H−1 [76] with H the
Hubble parameter.

9Since ε ¼ gμnjAþ −A−j, one considers that Aþ ¼ A0ðx0=xÞ
and A− ¼ A0ðx0=x0Þ and the fact that Aþ and A− should have
different orientations in various domains of the early universe.
Then, one uses ε ¼ gμnhjAþ −A−ji with hjAþ −A−ji, the
averaged value over all the possible relative directions between
Aþ and A−. One shows hjAþ−A−ji¼Aþð2=πÞð1þ1=κÞ×
Eð 4κ

ð1þκÞ2Þ∼Aþ for 1 < κ < 3. EðxÞ is the complete elliptic
integral of the second kind.
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H ¼ 2π
ffiffiffi
π

p

3
ffiffiffi
5

p m2

MP
g1=2� x−2; ð53Þ

with g� the effective number of degrees of freedom defined
for the energy density, and where MP is the Planck mass.
Both functions g� and q� can be fitted from exact compu-
tations [77], and one can set g� ¼ q� [69,70,77]. The
equilibrium state of the comoving particle densities is
defined as [69,70]

YX;eq ¼
45

2π4

ffiffiffi
π

8

r
gX
q�

x3=2e−x: ð54Þ

In Eqs. (47) to (50), hσBB̄;avi and hσBB̄;avi0 appear as the
average rate of baryon-antibaryon annihilation with σBB̄;a ¼
ð1=4Þðσnn̄;a þ σpp̄;a þ σnp̄;a þ σpn̄;aÞ. One also defines

2Γ ¼ hσBBvisYB þ hσBB̄visYB̄

þ hσBBvi0s0YB0 þ hσBB̄vi0s0YB̄0 ð55Þ

and

2Γ̄ ¼ hσBB̄visYB þ hσBBvisYB̄

þ hσBB̄vi0s0YB0 þ hσBBvi0s0YB̄0 ð56Þ

with σBB¼ð1=2ÞðσnpþσnnÞ and σBB̄¼ð1=2Þðσnp̄þσnn̄Þ.10
Equations (47) to (50) are stiff equations. They have no
analytical solutions, but they can be solved numerically by
using a linear multistep method based on the backward
differentiation formula (BDF) approach.11 The results of
computations are shown and discussed in the next section.

VIII. RESULTS AND DISCUSSION

In the following, one sets MB ¼ MP following recent
bounds [40,41,46].
Figure 3 shows the behaviors of the comoving densities

YB, YB̄, YB0 , and YB̄0 for κ ¼ 1.1 (i.e., T 0 is lower than T by
9.1%), with coupling but without asymmetry (δ ¼ 0). YB
and YB̄ (respectively, YB0 and YB̄0 ) in the visible brane
(respectively, in the hidden brane) are indistinguishable.
For the sake of comparison, one shows the comoving
densities for uncoupled branes (see caption), which are the
expected solutions of Eq. (35). Although YB and YB0 (or YB̄
and YB̄0) initially have different dynamics due to different
temperatures in each brane, when x ≈ 5 all the densities
converge to share the same behavior. This describes the
thermalization of the two branes, which occurs due to their

coupling through neutron and antineutron exchanges.
However, the lack of asymmetry (i.e., ḡ ¼ g ¼ g) cannot
lead to baryogenesis.
In Fig. 4, all the Sakharov conditions are present: the

coupling between both branes leads to baryon number
violation, the two branes are not in thermal equilibrium
(here κ ¼ 1.1), and an asymmetry resulting in C/CP viola-
tion is introduced [in the present example δ ¼ 4.06 × 10−4;
see Eq. (33) in Sec. VI]. Such conditions lead to baryo-
genesis and the current asymmetry between baryons and
antibaryons.
Figure 4 provides an explanation of the baryon-

antibaryon asymmetry mechanism. Early after QGPHG
transition (before x ¼ 10), due to C/CP violation, the
swapping of antineutrons toward another brane is enhanced
compared to neutrons. Since the hidden brane has a lower
temperature than the visible brane, the net balance from the
matter-antimatter exchange between both branes promotes
a decrease in antineutrons in our brane and an increase in
the hidden brane. As a result, and because of the neutron-
proton equilibrium (and the antineutron-antiproton equi-
librium) the antibaryon content decreases in our brane
while the baryon content tends to dominate (as shown by
the orange dashed line). In contrast, in the hidden brane the
antibaryon content increases while the baryon content tends
to decrease (see the pink dotted line).
In a late time after the QGPHG transition (after x ¼ 10),

as soon as the baryonic matter widely dominates the
content of our visible brane, and because of a higher

FIG. 3. Comoving densities YB (superimposed with YB̄) and YB0

(superimposedwithYB̄0 ) against x for two coupled braneworlds but
with no asymmetry (δ ¼ 0) and for κ ¼ 1.1. Upper (respectively,
lower) gray dotted line corresponds to YB and YB̄ (respectively, to
YB0 and YB̄0 ) when branes are uncoupled. All the curves are
superimposed when κ ¼ 1 and without coupling (not shown).
Black dashed line is the current asymmetry given by Eq. (36).

10Cross sections for baryon interactions can be fitted using
σ ¼ σ0 þ αc=vþ βc2=v2 with parameters obtained from liter-
ature [78–82], with hσvi¼ ð4= ffiffiffi

π
p Þcσ0=

ffiffiffi
x

p þαcþðβc= ffiffiffi
π

p Þ ffiffiffi
x

p
.

11The ordinary differential equation system under consider-
ation is solved with a PYTHON code using the BDF mode of the
function solve_ivp of the SCIPY module (https://scipy.org).
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temperature than in the hidden brane, baryons from our
brane feed the hidden brane, allowing for annihilation of
antibaryons until the matter-antimatter ratios reach the
same values in both branes (the pink dash-dot-dotted
and orange dashed lines after x ¼ 15).
It should be noted that a positive asymmetry (δ > 0)

favors a two-brane universe dominated by baryons, while
an opposite asymmetry (δ < 0) leads to a universe domi-
nated by antibaryons in a comparable but reversed pro-
portion (not shown). Also, for κ < 1, the roles of the visible
and hidden brane are simply reversed.
Figure 5 shows the magnitude of C/CP violation δ [see

Eq. (33) in Sec. VI] against κ, for which one gets the value
of YB − YB̄ observed today [see Eq. (36)] from computa-
tions. For κ ¼ 1 and κ ≳ 3, no value of δ can account for the
observed imbalance between baryons and antibaryons.
However, a wide range of values for δ allows for the
imbalance of the baryon-antibaryon populations today
observed as shown in Fig. 5. Thus, one gets (see Fig. 5)

4 × 10−5 < δ < 4 × 10−2: ð57Þ

These values have been reported in Fig. 2. The upper
red dashed line represents the upper limit δ ¼ 4 × 10−2

compatible with the baryon-antibaryon imbalance, while
the lower blue dashed line represents the lower limit
δ ¼ 4 × 10−5 allowing baryogenesis. As explained in
Sec. VI, Fig. 2 shows how the magnitude of C/CP violation

δ depends on phase θ [see also Eq. (34)], which is related
to the electromagnetic fields in each brane [see Eq. (14)].
The values of θ that are compatible with baryogenesis
span a range of 177 degrees. From a random point of
view, there is a very high probability—almost a 1 in 2
chance—that the scalar field phase θ can promote baryo-
genesis. Moreover, from an observational point of view,
as the values of YB − YB̄ must fluctuate as θ, then
YB − YB̄ must vary when the primordial magnetic fields
fluctuate following Eq. (14). Subsequently, an important
and challenging astrophysical endeavor would be the
measurement of the baryon asymmetry, YB − YB̄, across
diverse areas of the observable universe. These data could
then be associated with potential fluctuations in primor-
dial magnetic fields to provide constraints on the current
theoretical model. We do not develop this topic here as it
is far beyond the scope of the present paper, and we let it
for future work.
The dynamics of leptogenesis is driven by baryogenesis

to maintain thermodynamic balance. As Yp;eq ≈ Yn;eq, the
neutron density decreases due to matter exchange between
branes, which causes the proton population to also decrease
in order to restore equilibrium. Therefore, Yp ¼ Yn. This
occurs through proton-electron capture, which is thermo-
dynamically favored. As a result, the electron density also
decreases while the neutrino density increases. One gets
Ye− ¼ Ye−;eq − ðYn;eq − YnÞ and Yν¼Yν;eqþðYn;eq−YnÞ.
The same process occurs for antiparticles, but antiproton-
positron capture is favored. This causes the positron
density to decrease while the antineutrino density
increases. One gets: Yeþ ¼ Yeþ;eq − ðYn̄;eq − Yn̄Þ and Y ν̄ ¼
Y ν̄;eq þ ðYn̄;eq − Yn̄Þ.

FIG. 4. Comoving densities YB, YB̄, YB0 , and YB̄0 against x with
κ ¼ 1.1, and a coupling between the two braneworlds with an
asymmetry δ ¼ 4.06 × 10−4. The orange dashed line is the
difference between populations of baryons and antibaryons.
The pink line is the difference between populations of hidden
baryons and hidden antibaryons. The pink dash-dot-dotted line is
for YB0 − YB̄0 > 0, while the pink dotted line is for the opposite.
The black dashed line is the current asymmetry given by Eq. (36).

FIG. 5. Magnitude of the asymmetry δ inducing the imbalance
between baryons and antibaryons observed today, against the
ratio κ between the temperature in our visible braneworld and the
temperature in the hidden braneworld.
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By comparing the particle and antiparticle populations,
one deduces Ye− − Yeþ ¼ ð1=2ÞðYB − YB̄Þ and Yν − Y ν̄ ¼
−ð1=2ÞðYB − YB̄Þ. This means that YL − YL̄ ¼ 0; i.e., the
global leptonic number is zero. Furthermore, positrons and
antiprotons will be annihilated in such a way that each
remaining proton charge is compensated by an electron
charge, thereby maintaining the global neutrality of the
Universe.

IX. CONCLUSION

Thanks to the low-energy limit of a two-brane universe—
resulting in a noncommutative two-sheeted spacetime—it
has been demonstrated that the exchange of matter between
the two branes does not occur at the same rate for antimatter.
This discrepancy arises from a violation of the C/CP
symmetry induced by a pseudoscalar field that emerges
due to the extension of the electromagnetic gauge field in
the two-brane system. This provides a straightforward
physical mechanism allowing baryogenesis to occur after

the quark-gluon era without stringent parameter constraints
in cosmological braneworld scenarios. Slight fluctuations of
the baryon-antibaryon comoving asymmetry, related to
primordial magnetic fluctuations, could be a signature of
themodel. To constrain the latter, it is suggested to attempt to
measureYB − YB̄ fluctuations in correlationwith primordial
magnetic field fluctuations. Scenarioswith definitions of the
field strength different from that used in the present paper
could also be explored in futurework, both theoretically and
experimentally. Ultimately, a thorough analysis of the
dynamics involving additional particles—such as other
baryons, mesons, and leptons—is planned to enrich the
description of baryogenesis.
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