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We investigate the evolution of supermassive black hole (SMBH) binaries and the possibility that their
merger is facilitated by ultralight dark matter (ULDM). When ULDM is the main dark matter (DM)
constituent of a galaxy, its wave nature enables the formation of massive quasiparticles throughout the
galactic halo. Here we show that individual encounters between quasiparticles and a SMBH binary can lead
to the efficient extraction of energy and angular momentum from the binary. The relatively short coherence
time of ULDM provides a steady-state population of massive quasiparticles, and consequently a potential
solution to the final parsec problem. Furthermore, we demonstrate that, in the presence of stars, ULDM
quasiparticles can also act as massive perturbers to enhance the stellar relaxation rate locally, replenish the
stellar loss cone efficiently, and consequently resolve the final parsec problem.
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I. INTRODUCTION

Most, if not all, galaxies in the universe host black holes
with masses of 106–1011M⊙ [1,2]. While the details of the
formation and evolution of these supermassive black holes
(SMBHs) and their interactions with the host galaxies are
not well understood, a plausible explanation is based on
hierarchical galaxy formation. In this scenario, during
the merger of smaller galaxies to form the bigger ones,
the SMBHs residing in them sink toward the center of the
merged galaxy via dynamical friction, mainly driven by
weak gravitational interactions with the ambient field of
stars. The gravitational settling of SMBHs to form a bound
pair can take several Gyr, as their separation diminishes
from kiloparsecs to parsecs. After reaching a separation
∼pc, dynamical friction becomes inefficient in “hardening”
the binary by bringing the two SMBHs closer together. In
this phase, the role of three-body interactions between the
binary and individual stars becomes important. A star
which approaches the binary at a distance of the order
of the binary separation (or smaller), interacts strongly with
the binary, and usually is ejected by the slingshot effect at
an average velocity comparable to the orbital velocity of the
binary while removing energy from it [3,4]. Only stars with
sufficiently low angular momentum can intersect the binary
semimajor axis, and they occupy a small region in the phase
space known as the loss cone. Successive encounters of this
kind lead to binary hardening at the cost of depleting the

loss cone. Under efficient stellar hardening, the binary’s
separation can be reduced to ∼10−2 − 10−3 pc, at which
point emission of gravitational waves can take over, resulting
in completion of the merger in less than a Hubble time.
During a merger, the SMBH binary emits nanohertz

gravitational waves, which can be probed by pulsar
timing arrays (PTAs). The latest data released by PTA
collaborations, including the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [5], the
European Pulsar Timing Array (EPTA) along with the
Indian Pulsar Timing Array (InPTA) [6], the Parkes Pulsar
Timing Array (PPTA) [7], and the Chinese Pulsar Timing
Array (CPTA) [8], indicates evidence for a correlated
stochastic gravitational wave signal at nanohertz frequen-
cies. While this signal can be explained by several different
models which usually rely on new physics [9], a cosmic
population of SMBH binaries provides a natural source
[10]. While the new data motivate an explanation based on
mergers of SMBH binaries, the occurrence of these mergers
on a reasonable timescale may be challenging from the
theoretical point of view. In the hardening phase, any e-
folding of shrinkage in binary separation requires ejecting
out a stellar mass of the order of the mass of the binary itself
from the central region of the galaxy [11]. A binary needs
shrinking by a factor of ∼100 at a separation of ∼1 pc to
reach the phase when the emission of gravitational waves
dominates, but after a reduction of the order ∼10 in the size
of the binary, the mass of the loss cone drops below the
mass of the binary and the binary decay stalls. This is the
basis of the final parsec problem [3,11,12] which can only
be overcome if the empty loss cone is replenished at a
sufficiently fast rate.
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There have been some proposed mechanisms for field
stars to diffuse into the loss cone, such as Brownian motion
of the SMBHs due to discrete encounters with stars at the
center of the galaxies [3,4,13], tidal forces in non-spherical
(axisymmetric and triaxial) galaxies [4,14–19], the gas in
the central regions of the postmerger galaxy [20], and
massive perturbers such as molecular clouds and globular
clusters [21,22]. In consideration of NANOGrav 15-year
dataset, any new and universal mechanism that facilitates
the merger of SMBH binaries is intriguing and worthy of
pursuing. In this paper, we examine the effect of dark
matter (DM) halos on the formation of SMBH binaries.
Specifically, we focus on ultralight dark matter (ULDM)
which develops unique features during halo formation that
can possibly ameliorate the final parsec problem.
ULDM is an interesting class of DMmodels in which the

particle DM is a very light boson with a mass in the range
10−25 eV≲mULDM ≲ 1 eV (the lower and upper bounds
on the mass of ULDM can be found in Refs. [23] and [24],
respectively). Subgalactic and small-scale structure prefers
a mass range of 10−22–10−18 eV for ULDM, which has
been shown to be in tension with constraints from the
Lyman-α forest [25–28] and the stellar dispersion of ultra-
faint dwarfs [29,30]. A model-independent lower bound on
the mass of DM produced after inflation and via processes
with finite correlation length was found to be mULDM ≳
10−19 eV [31]. The effect of self-interaction on the mass of
ULDM can be found in Ref. [32]. For recent reviews on
ULDM, see [33,34] and references therein.
The light mass of the ULDM, and consequently its

astrophysically large de Broglie wavelength, leads to huge
occupation numbers of the ULDM density field. Therefore
ULDM is represented as a classical wave (a complex scalar
field), described by a wave function that is governed by the
Schrödinger equation (as the nonrelativistic limit of the
Klein-Gordon equation) for a particle in a gravitational
potential that is sourced by the density of the ULDM field
itself via the Poisson equation. The density of the ULDM
field is proportional to the square of the modulus of the
wave function.
The wave nature of ULDM gives rise to specific, unique

features in aDMhalo compared to classical point particles.A
ULDM halo consists of a central solitonic core of the
size of the de Broglie wavelength with an almost constant
density that represents the ground state solution to the
Schrödinger equation. The excited states, on the other hand,
add up and surround the core as a Navarro-Frenk-White
(NFW) density profile [35]. Therefore, whileULDMmimics
the behavior of cold DM at large scales (larger than the de
Broglie wavelength), it leads to a cored profile at smaller
scales. Thewave interference outside of the core results in the
formation of density fluctuations in the NFW-envelope of
order unity. The fluctuations that appear as granules in
simulations can be described as quasiparticles with an
effective mass contained in a de Broglie volume [35,36]

(for a recent study on the validity of this description,
see [37]). These quasiparticles are stable as long as the
interference pattern is in phase. Therefore, the coherence (the
de Broglie) time (∼ time for a boson to cross the length scale
of a de Broglie wavelength) of wave patterns determines
an effective finite lifetime for the granules [38]. Since the
coherence timescale can be significantly shorter than the age
of the Universe, the quasiparticles developed in the ULDM
halo can effectively replenish the loss cone and provide an
efficient way for the SMBH binary to lose energy through
encounters with them.
The key feature of ULDM that may alleviate the final

parsec problem is the interference patterns, i.e., quasipar-
ticles appearing in the halo which have finite lifetimes that
can be much shorter than the age of the Universe. The
relatively fast coherence timescale may provide an efficient
mechanism to replenish the loss cone by generating random
fluctuations in the gravitational potential around the binary
caused by the formation and disappearance of massive
quasiparticles. In this scenario, dynamical friction from
ULDM alone may account for formation of SMBH binary.
Since dynamical friction from ULDM is suppressed when
the size of the system is less than the de Brogle wavelength,
formation of the binary needs to take place outside of the
solitonic core of the halo.
As we show in this paper, when the coherence time of

ULDM becomes comparable with orbital period of the
SMBH binary, individual encounters between quasipar-
ticles and the binary become important. Our simplified
numerical analysis shows that these individual encounters
can be comparable to individual encounters of the binary
with field stars in hardening it, with one critical difference:
due to the short coherence time, quasiparticles are effec-
tively replenished, and can result in many encounters of
quasiparticles with the binary on the relevant timescale,
while field stars need to be brought back into the loss cone,
which can take a very long time.
For a given black hole mass, a lower bound on the

ULDM mass comes from the prevalence of quasiparticles
and their effect on the dynamical heating of the binary. By
increasing the mass of ULDM, eventually the de Broglie
wavelength becomes comparable with the Schwarzschild
radius of the SMBHs, and therefore ULDM can be treated
as cold particlelike DM; this provides an upper bound on
the mass of ULDM particles.
While mergers of SMBH binaries purely through inter-

actions with ULDM seems promising, a detailed simulation
of the evolution of the SMBH binary near the core, and its
impact on both the core and halo is needed. Our study
provides the ULDM mass range within which the dynami-
cal friction and individual encounters between quasipar-
ticles and SMBH binary can bring black holes close enough
to merge under a Hubble time.
Although solving the final parsec problem solely with

the presence of ULDM seems plausible, a more realistic
scenario would include the interplay between ULDM
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quasiparticles and stars, which could provide an efficient
way to replenish the stellar loss cone on a reasonable
timescale. It is well known that massive perturbers, such as
giant molecular clouds or stellar clusters, expedite local
relaxation by orders of magnitude relative to two-body
stellar relaxation, and consequently replenish the loss cone
efficiently by scattering stars into the orbit of the SMBH
binary [21,22]. The only requirement for efficient accelerated
relaxation by massive perturbers is the existence of a steady
state population of large enough inhomogeneities in the
galactic mass distribution. ULDM fluctuations can provide a
universal class of massive perturbers in all galaxies. The
universality of this new class ofmassive perturbers cannot be
overemphasized; although giant molecular clouds are
common in the disks of spiral galaxies, they do not survive
in elliptical galaxies as a result of a history of major mergers.
Here, we investigate the mass range of ULDM which can
amelioratemergers of SMBHbinaries by replenishing stellar
loss cones efficiently.
The outline of this paper is as follows. In Sec. II we

review the “classical” theory of black hole binary mergers
as driven by interactions with stars. Then, in Sec. III, we
consider the properties of ULDM galactic halos toward
determining the orbital dynamics of black hole binaries
within them. Our main results, including novel simulations
of binary formation and quasiparticle-binary interactions,
are presented in Sec. IV. We discuss our findings and
conclude in Sec. V.

II. BLACK HOLE BINARY EVOLUTION
IN A FIELD OF STARS

Galaxy mergers are expected to lead to the formation of
binary black holes. The three major physical processes that
are involved in the formation and evolution of a binary
black hole to reduce the separation between binary com-
ponents by a few orders of magnitude can be summarized
as follows [39]:
(1) Binary formation: during the merger of galaxies,

black holes sink toward the center of the new larger
galaxy, as a consequence of dynamical friction
caused by many small-angle encounters with stars,
to form a binary.

(2) Hardening of the binary: dynamical friction be-
comes less important and the binary shrinks further
through individual large-angle scatterings with stars
and gravitational slingshot interactions.

(3) Gravitational radiation: when the binary is small
enough, emission of gravitational waves becomes
relevant and drive the binary toward to rapid
coalescence on a reasonable timescale.

In this section, we review these three different phases of
SMBH binary evolution when black holes are surrounded
by a classical medium, e.g., stars.

A. Binary formation: Dynamical friction from stars

If a massive object (star, black hole, or dwarf galaxy,
for example) moves within a sea of small, classical particles
(stars or DM), its gravity deflects the small particles as
they travel past it, creating a wake. The backreaction is a
drag force that slows the massive object’s motion through
the sea. The contribution to this drag force from a single
small particle comes from Rutherford scattering [40];
Chandrasekhar’s formula for dynamical friction [41]
accounts for the entire sea. When the mass of the massive
object is M and its velocity relative to the sea is vM, while
the small particles have mass m and velocity dispersion σ,
this formula is

FDF ¼ −4πG2M2ρ lnΛ
�
erfðXÞ − 2Xffiffiffi

π
p e−X

2

�
vM
v3M

; ð1Þ

where X ¼ vM=ð
ffiffiffi
2

p
σÞ, ρ is the background mass density,

erf is the error function, and lnΛ ≃ ln ðbmax=b90Þ is the
Coulomb logarithm, with the impact parameter correspond-
ing to a deflection angle of 90° given by b90 ¼ GðM þ
mÞ=v2∞ where v∞ is the initial relative velocity of the
encounter, and the maximum impact parameter given by
bmax which is generally equivalent to the size of the system.
Here, we adopt Λ ¼ bmaxσ

2bmax=GM, assuming that the
speed of the massive object through the sea is not
significantly greater than the particle velocity dispersion,
recognizing that the Coulomb logarithm only characterizes
the effects of finite-size of the particle sea with respect to
the radius of influence of the massive object, but does not
rigorously define them (e.g., [40]).
For two black holes with masses M1 and M2 traveling

through a galaxy, the equations of motion can be written as:

M1

d2r1
dt2

¼ −GM1Mgalaxyðr1Þ
r1
r31

−GM1M2

r1 − r2
jr1 − r2j3

þ FDF;1;

M2

d2r2
dt2

¼ −GM2Mgalaxyðr2Þ
r2
r32

−GM1M2

r2 − r1
jr1 − r2j3

þ FDF;2; ð2Þ

where r1 and r2 denote the positions of black holes with
respect to the center of the galaxy, MgalaxyðriÞ is the galaxy
mass enclosed within a sphere of radius ri, and FDF;i

represents the dynamical friction experienced by the ith
black hole during its motion within the galaxy.
Solving Eq. (2) cannot be done analytically in general. But

under some circumstances, the evolution of the distance
between SMBHs can be followed analytically. Assuming
that the density of stars is constant, ρðrÞ ¼ ρ, and by using
Eq. (1), we find the following equation for evolution of the
distance between two SMBHs, r≡ r1 − r2:
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d2r
dt2

þ 4πρG2

ð ffiffiffi
2

p
σÞ3 ln

�
riσ2

GM

��
M1fðX1Þ

dr1
dt

−M2fðX2Þ
dr2
dt

�

þ G

�
4π

3
ρþM1 þM2

r3

�
r ¼ 0; ð3Þ

where fðXÞ ¼ ½erfðXÞ − 2Xffiffi
π

p e−X
2 �=X3, Xi ≡ vi=ð

ffiffiffi
2

p
σÞ, and

ri is the initial size of the binary. The function fðXÞ is a
decreasing function of X which satisfies fðXÞ ≤ fð0Þ ¼
4=ð3 ffiffiffi

π
p Þ. Assuming vi ≪ σ, we replace fðXÞ with fð0Þ in

Eq. (3). Then for SMBHs with the same mass, i.e.,
M1 ¼ M2 ¼ M, we obtain

d2r
dt2

þ 4
ffiffiffiffiffiffi
2π

p

3
ln

�
riσ2

GM

�
ρG2M
σ3

dr
dt

þ G

�
4π

3
ρþ 2M

r3

�
r ¼ 0:

ð4Þ

The coefficient of the second term in Eq. (4) reveals the
timescale of the evolution of the system, τcl, given by

τcl ¼
3

4
ffiffiffiffiffiffi
2π

p 1

ln ½riσ2=ðGMÞ�
σ3

ρG2M
: ð5Þ

To better understand this timescale, we notice that as
long as the mass of the galaxy enclosed by the SMBH
binary orbit is larger than the mass of SMBHs themselves,
i.e., for r > req ≡ ½3M=ð2πρÞ�1=3, Eq. (4) can be approxi-
mated as

d2r
dt2

þ 1

τcl

dr
dt

þ 4π

3
Gρr ¼ 0; ð6Þ

which is equivalent to the equation of motion for a three-
dimensional damped harmonic oscillator with a relaxation
time equal to 2τcl during which r reduces by a factor of e−1.
The same type of equation has been applied to the orbital
decay of a single satellite toward the center of its host
galaxy due to classical dynamical friction [42].
When the size of the system shrinks below req, i.e., for

r < ½3M=ð2πρÞ�1=3, the gravitational force between
SMBHs dominate the gravitational force due to stars,
and consequently Eq. (4) can be approximated as

d2r
dt2

þ 1

τcl

dr
dt

þ 2GM
r3

r ¼ 0; ð7Þ

which simply describes the orbital decay of a two-body
system in the presence of friction. In this phase of binary
evolution, the black holes each independently interact with
the sea of stars. Once the orbits decay to the point where
vM ≳ σ, then close encounters—not interactions with the
swarm of stars—between the SMBH binary and the stars
become important, as we describe next.

B. Hardening of the binary

When the mass enclosed by the orbit of the SMBH
binary is comparable to the mass of the binary itself, the
hardening phase of the binary begins. At this stage, the
binding energy (or equivalently, the kinetic energy) per unit
mass of the binary approaches the kinetic energy per unit
mass of the stars in the galaxy, i.e., σ2. Therefore the
semimajor axis of a binary at the beginning of the hard-
ening phase can be defined as:

ah ≡ Gμ
4σ2

; ð8Þ

where μ ¼ M1M2=ðM1 þM2Þ is the reduced mass of the
binary. Once the separation between the black holes drops
below ah, losing energy by dynamical friction becomes
inefficient. Stars that encounter the binary at a distance
∼a≲ ah, are expected to undergo a gravitational slingshot
and be ejected at a velocity v ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM1 þM2Þ=a

p
, which is

the typical orbital velocity of the binary [18].
Each individual encounter between stars of mass M⋆,

and the bound binary with binding energy E¼GM1M2=2a,
leads to a fractional energy change of δE=E ∼ ξM⋆=
ðM1 þM2Þ, where 0.2≲ ξ≲ 1 [43,44]. A noticeable
change in the energy of the binary requires a large number
of stars (of the order of ðM1 þM2Þ=M⋆) encountering the
binary [45]. The cross section for three-body encounters
between the binary and stars can be defined as Σ≡
2πðM1 þM2ÞGa=σ [46]. And therefore, by assuming a
fixed background of stars with density ρ⋆, one obtains the
hardening rate,

d
dt

a−1 ∼ ξπ
Gρ⋆
σ

; ð9Þ

and consequently, the hardening timescale,

τhard ∼
σ

πGρ⋆a
: ð10Þ

Since the hardening timescale increases while the binary is
shrinking, even for a fixed background stellar field, the
binary merger could stall. Worse still, the population of
stars with orbits that get close to the binary are scattered
away; these stars, and the scattering processes that remove
them from their original phase-space positions, define the
loss cone. In the case of hardening with a constant rate, an
overall stellar mass comparable to the mass of the binary is
removed from the loss cone, and is no longer available to
play a role in hardening the binary [47].
Binary hardening by stellar encounters thus depends on

mechanisms that replenish the loss cone. The diffusion of
star by mutual scattering is one possibility. As a measure of
the efficiency of this process, we consider the two-body
relaxation time during which a star’s velocity diffuses by an
amount comparable to the velocity itself. The duration of
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each crossing at a distance r from the center of the galaxy is
given by tcross ¼ r=σ, which leads to following relaxation
timescale in a galaxy with N total stars [40]:

trelax ≃
0.1N
lnN

tcross: ð11Þ

A more accurate relaxation time can be estimated from the
Fokker-Planck equation in terms of the mass of the star,
M⋆, and the local density of stars, ρ⋆ðrÞ, as [40]:

trelax ≃ 0.34
σ3

G2M⋆ρ⋆ðrÞ lnΛ
; ð12Þ

where r is the size of the binary and b≡ bmax is the larger
value of GM⋆=σ2 and the size of the stars. It turns out that
the relaxation time is much longer than the Hubble time and
therefore new dynamical processes are needed to refill the
loss cone efficiently. In the absence of such a mechanism,
the merger stalls.

C. Gravitational radiation and merging

Eventually, when the binary’s semimajor axis is small
enough, the emission of gravitational waves causes the
binary to inspiral and eventually merge. The rate of inspiral
due to gravitational waves is approximately da=dt ∼ −a−3;
the timescale for merger via emission of gravitational
waves with initial separation distance ∼a is

tgr ¼
5

256FðeÞ
c5

G3

a4

M1M2ðM1 þM2Þ
; ð13Þ

where c is the speed of light, e is the eccentricity
and FðeÞ ¼ ð1 − e2Þ−7=2ð1þ 73

24
e2 þ 37

96
e4Þ [48]. For an

equal-mass binary, merger in a Hubble time requires
a≲ 0.05ah [49].

III. SMBH BINARY FORMATION
AND EVOLUTION IN A ULDM HALO

We now explore how the quantum-mechanical pro-
perties of ULDM, as the main DM constituent of a galaxy,
would impact the formation and evolution of a SMBH
binary. We begin by reviewing the formation of a ULDM
halo and its unique features due to the wave nature
of ULDM.
The dynamics of ULDM, as a scalar field of mass

mULDM, can be described by the nonrelativistic limit of the
governing Klein-Gordon equation. This leads to a classical
field description for the ULDM best described by the
Schrödinger equation for a complex scalar field, ψ [50]

iℏ∂tψ ¼
�
−

ℏ2∇2

2mULDM
þmULDMðUψ þ UsatÞ

�
ψ ; ð14Þ

where Uψ is the gravitational potential of the ULDM (self-
gravity) obtained from the Poisson equation,

∇2Uψ ¼ 4πGmULDMjψ j2; ð15Þ

and Usat is the gravitational potential of massive objects
(satellites) moving though the ULDM sea. By including
self-gravity, it is expected that [36] ULDM halos develop a
central soliton as the ground state of the Schrödinger
equation, which is also the densest state of the system.
Numerical studies of the evolution of ULDM halos show
that the radius of the soliton core is of the order of the de
Broglie wavelength of the velocity dispersion (σ) of ULDM
with mass mULDM, i.e., ƛσ ¼ ℏ=ðmULDMσÞ [51].
The wave nature of ULDM gives rise to interference

between different modes within the halo. Since the density
of ULDM in the halo is proportional to the squared
modulus of the wave function, the interference fringes
can be interpreted as quasiparticles with an effective mass
contained in a de Broglie volume, given by [36]

meff ∼ ρƛ3σ; ð16Þ

where ρ is the local density of the ULDM halo. These
quasiparticles can also be understood as density fluctua-
tions in the halo which are correlated over a length scale of
the order of the de Broglie wavelength. The size of the
soliton core is also of the order of the de Broglie wave-
length. The interference between different modes within the
ULDM halo, which is responsible for appearance and
disappearance of quasiparticles, introduces a new time-
scale, the coherence (de Broglie) time that characterizes the
interval during which the interference is in phase. The
coherence timescale can be estimated by using the fact that
ƛσ ∼ 2π=k where k represents a typical momentum mode.
This leads to a difference in energy of different modes
which is of the order of δE ∼ k2=ð2mULDMÞ ∼ kσ=2 and can
be converted into a timescale [33]. The coherence timescale
can be defined as [33]

τc ≡ 2π
ƛσ
σ

¼ 2πℏ
mULDMσ

2
: ð17Þ

Note that the prefactor 2π is arbitrary and sometimes is
omitted (e.g., in Ref. [38]).
The temporal correlation function inside and outside of

the core, evaluated in [38], shows that beyond the solitonic
core (a distance of ∼3.5rc where rc is radius of the core),
temporal correlation drops. This is a manifestation of the
enhanced coherence/stability of the core relative to the
quasiparticles in the halo around it; roughly speaking, one
can assign a finite lifetime of order of coherence timescale
to the quasiparticles [38].
In this context, we explore the mechanisms by which

SMBHs can lose energy to the ULDM halo, allowing them
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to form a binary and eventually merge. More specifically,
we focus on dynamical friction from ULDM and direct
encounters of ULDM quasiparticles with the SMBH binary.
Finally, we explore conditions under which SMBH binaries
in ULDM potentially can merge in less than a Hubble time.

A. Dynamical friction in a ULDM halo

For a pointlike satellite of mass Msat in a ULDM halo
with density ρ and mass m per particle, moving with
velocity v ¼ vẑ in the halo rest frame, there is an exact
time-independent solution to Eq. (14), which is basically
the scattering by a Coulomb potential, given by [36]

ψðrÞ ¼ ffiffiffi
ρ

p
eπβ=2þiz=ƛjΓð1− iβÞjM

�
iβ;1;

i
ƛ
ðr− zÞ

�
; ð18Þ

where β ¼ GMsat=ðv2ƛÞ, ƛ ¼ ℏ=ðmULDMvÞ is the de
Broglie wavelength associated with the relative velocity
of the satellite and the ULDM medium, and Mða; b; xÞ is
the Kummer function or confluent hypergeometric function

of the first kind. The wave function, or equivalently the
density of the ULDM, can be used to calculate the
dynamical friction (the gravitational force of the pointlike
satellite on the sea of ULDM) by integrating over a
spherical region surrounding the satellite [36].
In reality, rather than a single plane wave, a wave packet

corresponding to a distribution of velocities should be
ascribed to the ULDM medium [52,53]. Although an exact
evaluation of the dynamical friction sourced by ULDM
demands numerical solutions, for some limiting cases one
can obtain analytical expressions as leading terms of
expansions of the drag force. The parameter of interest
in the expansion is the de Broglie wavelength of ULDM.
For small enough ULDM mass corresponding to a de
Broglie wavelength greater than the size of the binary
system, ƛσ ≫ b, the ULDM background can be treated as a
constant density, while for high ULDM mass where
ƛσ ≪ b, we approach the classical limit of ULDM.
Dynamical friction, for these two extreme regimes, can
be expressed as [36,52,53]

FDF ¼ −4πρG2M2
vrel
v3rel

8<
:

Cinð2b=ƛσÞ þ sin ð2b=ƛσÞ
2b=ƛσ

− 1 b ≪ ƛσ;

ln ½b=ðƛσ=2Þ�
�
erf

�
vrelffiffi
2

p
σ

�
−

ffiffi
2
π

q
vrel
σ e−

1
2
ðvrelσ Þ2

�
b ≫ ƛσ;

ð19Þ

where CinðxÞ ¼ R
x
0 dtð1 − cos tÞ=t is the cosine integral.

When the size of the system is smaller than the de
Broglie scale, the wave nature of ULDM can suppress
dynamical friction by smoothing the tail of the particle
phase-space distribution in the wake formed behind the
massive object passing through the sea of ULDM. For the
choice of parameters that are consistent with the wave limit
of ULDM (b ≪ ƛσ), dynamical friction decreases signifi-
cantly. This suppression of dynamical friction by ULDM
with low mass (m ∼ 10−22 eV) has been used to explain the
survival of globular clusters against sinking to the center of
Fornax dwarf spheroidal galaxy [36,53]. Comparing
Eq. (19) with Eq. (1) shows that when the size of the
system is much larger than the de Broglie wavelength of the
ULDM (b ≫ ƛσ), dynamical friction sourced by ULDM
follows the form of the classical result, but with a differ-
ence; the wave nature of ULDM introduces a softening
scale of the order of the de Broglie wavelength [52].
When the separation distance between black holes is

larger than the ULDM de Broglie wavelength, a timescale
similar to Eq. (5) can be found for evolution of a binary
of equal mass black holes in ULDM due to dynamical
friction as

τ ¼ 3

4
ffiffiffiffiffiffi
2π

p 1

ln ½ri=ðƛσ=2Þ�
σ3

ρG2M
: ð20Þ

B. Direct ULDM quasiparticle encounters
with a SMBH binary

As the orbital separation of a SMBH binary shrinks over
time, it may approach the de Broglie wavelength, ƛσ of
ULDM particles. Then, the approximation of dynamical
friction from Eqs. (2) and (19), with each binary partner
independently plowing through an unperturbed sea of
ULDM, breaks down. We thus consider situations where
the binary partners jointly stir the particle sea. We focus on
fluctuations of ULDM that yield massive quasiparticles
which interact directly with the binary. Our goal is to
determine how ULDM quasiparticels, in the absence of
stars, impact the hardening phase of a SMBH binary and
the final parsec problem. Specifically, we are interested in
individual encounters between ULDM quasiparticles and
the SMBH binary, analogous to three-body inteactions
between the binary and stars. This problem is complicated,
requiring a separate analysis. Here, we solve a simplified
scenario to explore the relevance of this mechanism to the
orbital evolution of an SMBH binary.
In our simplified analysis, we represent a ULDM

quasiparticle as a wave function ψ that is spatially compact,
with a spherically symmetric Gaussian waveform (standard
deviation parameter, R), that modulates the amplitude of an
otherwise plane-wave solution with de Broglie wavelength
λ ¼ R. The packet is initially propagating toward the binary
with speed v0 ¼ ℏ=mULDM=ƛ, where mULDM is the mass of
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an individual ULDM particle. The binary itself consists of
two equal-mass point particles (M1 ¼ M2), initially on a
circular orbit with semimajor axis a0. The wavefunction
evolves according to the time-dependent Schrödinger
equation with the potential set by the gravity of the binary.
Each black hole experiences a Newtonian gravitational
force from its partner and from the wave packet, whose
mass density is meff jψ j2, where meff is the total mass of the
quasiparticle. We ignore the self-gravity of the wave
packet.
To illustrate encounters between a quasiparticle and an

SMBH binary, we adopt black hole masses M1 ¼ M2 ¼
5 × 106 M⊙, and a circular binary orbit with initial orbital
separation of a0 ¼ 1 pc and randomly chosen phase and
orientation. The quasiparticle’s total mass,meff is 1% of the
total binary mass, and the mass of the individual ULDM
particles is set to m ≈ 3 × 10−19 eV. The de Broglie wave-
length of the particles and the spatial extent of the initial
quasiparticle are 2πƛ ¼ R ¼ 0.2 pc. The quasiparticle is

aimed at the binary center of mass with a packet speed of
v0 ≈ 100 km=s when outside of the binary’s gravitational
influence. With these initial conditions, we solve for the
evolution of the wave packet and the binary together. The
Appendix provides the details of our calculations.
Figure 1 illustrates our results for one of a suite of 200

simulations, each with a unique binary orbital phase and
orientation. In the figure, the wave function scatters off of
one binary partner only to diffract off of the other black
hole as it swings around in its orbit. Much of the wave-
function is lost to regions outside the computational
domain after this first encounter; the rest lingers near the
binary and will eventually be ejected as well. Presumably,
some small fraction of the quasiparticle becomes bound
by—and accreted onto—the black holes.
Throughout each simulation, we track the change in

semimajor axis of the binary in response to the quasipar-
ticle’s gravitational influence. Figure 2 summarizes the
results: at 1 pc separation, an equal-mass binary (total mass

FIG. 1. Snapshots of a dark quasiparticle scattering with a binary black hole. The black holes each have a mass of 5 × 106 M⊙. The
quasiparticle, with a total mass of 1% of the combined black hole mass, starts at time t ¼ 0 just to the left of the region shown in the
snapshots, progressing in increasing time from left to right, then top to bottom. The color map shows the logarithm of jψ j, down to 10−4
times its initial peak. Thus the initial wave function is more compact than might appear visually in the upper left plot, while in the lower
right plot, little of the quasiparticle remains in the vicinity of the black holes. The nuances of the quasiparticle-binary interaction can be
seen in this animation: [54].
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107M⊙) loses on average about da=dm ∼ 10−7 pc=M⊙ per
encounter with a ULDM quasiparticle. We compare this rate
of loss of orbital energy to that caused by stars on orbits that
are similar to the quasiparticle. For this purpose we use the
Python function solve_ivp in the SciPy.integrate
module. We ran a thousand trials of stars launched to loosely
sample the spread in the quasiparticlewave packet in position
and speed. Using the same force smoothing scale and
duration as for the quasiparticle simulations, we obtain a
much broader spread in outcomes of da=dm, with the mean
inspiral rate that is a few times slower than with quasipar-
ticles. Reducing the force smoothing and increasing the
simulated time of the encounters enhances binary inspiral.
The mean binary inspiral from quasiparticle scattering is
closer to these “high-resolution” results.
The spread in binary inspiral rates, da=dm, from the

quasiparticle simulations is much less than from individual
stars. This outcome can be roughly understood from the
perspective that a quantum mechanical orbit effectively
samples many individual stellar orbits simultaneously.
Then, the inspiral from a single quasiparticle interaction
will be closer to the average da=dm from many single-star
encounters.
The quasiparticle-binary simulations presented here

demonstrate that ULDM may well push SMBH binaries

inward from parsec-scale orbital separation. However, there
are several important caveats to this analysis: First, in this
preliminary work, we explore a single type of encounter
between a quasiparticle and an equal-mass binary, varying
only the orientation and phase of the binary. A more com-
prehensive analysis to test the robustness of our results
would cover a much broader parameter space that includes
binary masses and separation, as well as quasiparticle pro-
perties (m,R, v0, starting location relative to the binary, etc.).
The second caveat is that our numerical method is

limited in its spatial and dynamical resolution. Our numeri-
cal experiments with variations of grid sizes and force
smoothing indicate that we have robustly simulated binary
inspiral (da=dm < 0), however details matter to the exact
outcome. Force smoothing in particular generates a com-
paratively shallow potential well that can affect quantum
mechanical scattering on the scale of the computational
grid. Future work with more sophisticated algorithms
(multigrid/adaptive mesh refinement or specialized coor-
dinates, for example) would better resolve the quasiparti-
cle-binary interactions.
A final word of caution is that we have taken advantage

of a scaling relations between the mass of the scatterer, the
number of scattering encounters, and the binary inspiral
rate by using an unrealistically large quasiparticle mass

FIG. 2. Histogram showing the change in binary semimajor axis for encounters with ULDM quasiparticles and classical point
particles. The change in semimajor is given per encounter with a unit mass scatterer, either a ULDM quasiparticle (magenta histogram)
or a point particle (cyan and blue histograms). The simulation times and force smoothing scales are identical for the ULDM
quasiparticles and the point particles represented by the cyan histogram. The vertical lines show median values. Comparing these cases,
we find that ULDM is more effective per unit (quasiparticle) mass than point particles in driving binary inspiral. If we integrate the point
particles for longer time and with less force smoothing (blue histogram), then the effect of point particles on binary inspiral is closer to
that of ULDM.
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(10% of the binary mass), and dividing the inspiral rate by
that amount, e.g., Fig. 2. This choice balances the need to
be in a low-mass regime where the binary inspiral rate per
encounter is strictly proportional to the scatterer’s mass,
along with numerical limitations of measuring orbital
changes from small scattering events. By varying scatterer
masses (quasiparticles and point particles), we have con-
firmed that our choice does not negatively impact our
results.
Despite limitations, the calculations presented here

reveal the potential importance of ULDM scattering with
a black hole binary when the de Broglie wavelength is
comparable to, or modestly less than, the binary separation.
At least, our results are a hopeful call for more detailed
numerical studies. Meanwhile, with the main result that
ULDM, similar to stars, can drive binary inspiral, we next
consider the main advantage of ULDM over a stellar
population toward the merger of a SMBH binary.

C. SMBH binary mergers in ULDM: Challenges
and opportunities

The classical limit of dynamical friction from ULDM,
i.e., when b ≫ ƛσ , inherits the wave behavior of ULDM
mildly; as one can see from Eq. (19), the Coulomb
logarithm includes de Broglie wavelength as the softening
scale. This simple fact tells us that dynamical friction via
ULDM by itself, may be able to reduce the size of the
SMBH binary after hardening. A successful merger needs a
reduction of the size of the binary by a factor of ∼100 in
less than a Hubble time. To this end, the size of the system
should stay larger than the de Broglie wavelength until
the emission of gravitational waves takes over, i.e.,
0.01ah ≫ ƛσ. The effect of dynamical friction on hardening
the binary becomes less efficient when the individual
encounters between the binary and the constituent particle
of the surroundings (e.g., a field star) lasts longer than one
orbital period [39], which is given by TðrÞ¼2πr3=2=

ffiffiffiffiffiffiffiffi
GM

p
.

In the ULDM case, one can think of the coherence time, or
equivalently, the lifetime of quasiparticles, as the encounter
time between the binary and the individual quasiparticles.
Hardening of SMBH binary, solely by dynamical friction,
requires Tð0.01ahÞ ≫ τc, which implies that the binary
encounters many quasiparticles during each revolution and
therefore experiences dynamical friction. These two con-
ditions, i.e., 0.01ah ≫ ƛσ and Tð0.01ahÞ ≫ τc are consis-
tent with each other and point to a region of the parameter
space within which the individual encounters between the
quasiparticles and the SMBH binary may not be important.
In general, close encounters between ULDM quasipar-

ticles and a SMBH binary can play a role in hardening the
binary. As we showed in Sec. III B, these encounters are
able to extract energy from the binary in an efficient way
which is comparable with field stars. Regarding relaxation,
according to Eq. (11), since the quasiparticles can be
massive, we expect a reduction in the two-body relaxation

time. The more accurate estimate of the two-body relax-
ation time in the halo of ULDM of massmULDM is obtained
as [55]

trelax ≃
m3

ULDMσ
6

G2ℏ3ρ2ðrÞ lnðr=ƛσÞ
; ð21Þ

which is still too long to replenish the loss cone in a Hubble
time. However, since the coherence timescale can be much
shorter than the Hubble time, the relatively rapid appear-
ance of quasiparticles can be understood as a way of
replenishing the loss cone efficiently.
Under reasonable assumptions, we can find the range of

ULDM mass and SMBH mass corresponding to different
regimes of interactions between a SMBH binary and ULDM
halo. Without loss of generality and for simplicity, we focus
on equal-mass SMBH binary, i.e., M1 ¼ M2 ¼ M.
To form a binary and start the hardening phase, SMBHs

need to become close enough (a ∼ ah). As we mentioned in
Sec. III A, when the de Broglie wavelength of ULDM is
larger than the separation distance between the SMBHs, the
dynamical friction is suppressed and even the formation of
the binary may stall. To avoid this obstacle, we require
that the binary forms outside of the solitonic core: ah > ƛσ.
This leads to the following lower bound on the mass of
the ULDM:

mULDM >
8ℏσ
GM

: ð22Þ

Below this limit, it is not clear, however, whether three-body
encounters between individual quasiparticles and the almost
formed SMBH binary can replace the weak dynamical
friction and start the hardening phase. Even if they can,
by lowering the mass of the ULDM, and increasing the size
and consequently the mass of quasiparticles, we face another
lower bound; large enough quasiparticles can inject energy
into the binary and even break up the binary [52]. To avoid
heating up the binary with quasiparticles, the black holes
must be heavier than the quasiparticles, i.e., meffðahÞ < M,
or in terms of the halo profile, ρðrÞ, we demand

ƛ3σρðahÞ < M: ð23Þ

The binary should encounter at least one quasiparticle during
one complete revolution at the beginning of the hardening
phase. To this end, the coherence time of the ULDM needs
to exceed the orbital period, T. Therefore, we require
TðahÞ < τc, which leads to the following upper bound on
the mass of the ULDM:

mULDM <
8

ffiffiffi
2

p

π

ℏσ
GM

; ð24Þ

which is in strong tension with the bound in Eq. (22). After
formation of a SMBH binary outside of the solitonic core
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(ah > ƛσ), the quasiparticles may decrease the size of the
binary by some factor, but a sizable reduction by almost two
orders of magnitude brings the binary close to the solitonic
core. The fate of the binary at this point depends on the
interaction between the binary and the core. If the binary’s
tidal force pulls apart the core, black holes can keep losing
energy to the quasiparticles and get closer. On the other hand,
if the core persists, the binary may enter the core before
getting small enough to start emitting GWs and therefore
they may stall there.
From a theoretical point of view, the ability of a ULDM

halo to extract energy froma secondary system can be related
to the gravitational cooling process, which is basically
emission of mass and energy to infinity [56–59]; a ULDM
halo can absorb energy from the SMBH binary by adjusting
its ownprofile (puffing up). In a recent paper, SMBHbinaries
inside ULDM halos have been studied numerically [60]. As
the initial condition of the simulation, the SMBH binary is
assumed to be inside the solitonic core, with a separation of a
few parsecs. This study does not explore the formation phase
of the binary. For their chosen benchmark values of the black
hole and ULDM masses, dynamical friction is already
suppressed prior to formation of the binary, and the quasi-
particles are heavier than the black holes, which can lead to
injection of energy into the binary black hole system. While
the formation of the binary and its subsequent evolution to a
separation of a few parsecs just by interacting with ULDM is
not addressed and would likely be problematic, the study
does demonstrate, for the parameters chosen, that a binary
can lose energy to a halo efficiently via gravitational cooling.
Some other possible complexities of the dynamics of a single
SMBH inside a solitonic core, which may be generalized to
two or more SMBHs, have been studied in Ref. [61]. The
possible accretionof a solitonic core by its resident blackhole
is also studied in Ref. [62] under the assumption of spherical
symmetry.
If we treat quasiparticles as stars, then, as discussed in

Sec. II B, for a merger to occur on a reasonable timescale,
an SMBH binary should interact with at least a collection of
quasiparticles with overall mass of the order of the mass of
the binary itself. This requires at least M=meffðahÞ encoun-
ters to happen in a Hubble time. In other words,

τUniv:
τc

≳ M
meffðahÞ

; ð25Þ

where τUniv. denotes the age of the Universe.
By increasing the mass of ULDM, at some point the de

Broglie wavelength becomes comparable with the
Schwarzschild radius of the SMBHs, RS ¼ 2GM=c2. In
the limit ƛσ ≲ RS, the minimum impact parameter, or
equivalently, the softening scale, coincides with RS and
therefore ULDM can be treated as cold DM. In this case,
the final parsec problem persists, as long as the system is
spherically symmetric. This condition provides an upper

bound on the mass of ULDM, given by

mULDM ≲ ℏc2

2GMσ
: ð26Þ

Deviations from spherical symmetry may lead to efficient
refilling of the cold DM loss cone. However, it remains
unclear whether constant interactions between a binary and
cold DM particles can give rise to a merger in a Hubble
time. We leave an accurate analysis of this case for
future work.

IV. RESULTS

Here we present our results. First, we identify regions of
the ðMBH; mULDMÞ parameter space within which the
SMBH binary can merge in less than a Hubble time, then
we consider the interplay between ULDM and stars in
solving the final parsec problem.

A. SMBH binary in ULDM

In Fig. 3, we present the regions of the ðMBH; mULDMÞ
parameter space that correspond to different regimes of
interactions between a SMBH binary of equal mass and
ULDM halo, as discussed in detail above. In the left panel
of Fig. 3 we assume an isothermal profile for the halo
outside of the solitonic core, given by

ρIsoðrÞ ¼
σ2

2πGr2
; ð27Þ

and in the right panel we assume an NFW profile, given by
[63]

ρNFWðrÞ ¼ ρs
rs
r

�
1þ r

rs

�
−2
: ð28Þ

Here, σ is the dispersion velocity and is assumed to be equal
to 100 km=s for both profiles,1 ρs ¼ 0.184 GeV=cm3, and
rs ¼ 24.42 kpc [64]. In each panel of Fig. 3, the gray
shaded region at the bottom is where the effective mass of
quasiparticles is larger than the mass of SMBHs; in this
region, as we discussed in Sec. III C, quasiparticles can heat
up the binary and prevent the merger. Within the gray
shaded region at the top, the de Broglie wavelength of
ULDM becomes smaller than the Schwarzschild radius of
the SMBHs so that ULDM can be treated as cold particle-
like DM, and therefore the wave nature of ULDM cannot
alleviate the final parsec problem. Between these two gray
regions, the wave nature of ULDM can play an important
role in the mergers of SMBH binaries. A combination of
dynamical friction and individual encounters between
quasiparticles and the binary can harden the binary,

1We also investigated σ ¼ 200 km=s, and the results are not
qualitatively different. For brevity, we focus here on
σ ¼ 100 km=s.
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allowing it to reach the stage where emission of gravita-
tional waves takes over and the two black holes merge.
Since transitioning from efficient dynamical friction to
individual encounters does not occur sharply, we compare
the coherence time (or equivalently the lifetime of quasi-
particles) to the orbital period to distinguish the two
regimes: roughly speaking, if the orbital period of the
binary is longer than the coherence time, the binary
interacts with several quasiparticles and therefore experi-
ences dynamical friction, otherwise individual encounters
play the dominant role.
To demonstrate the importance of individual encounters

with quasiparticles, in Fig. 3, we display contours of ah ¼
ƛσ (purple solid) and ah=100 ¼ ƛσ (purple dashed). Above
the purple solid contour, the size of the binary at formation
is larger than ƛσ , and above the purple dashed contour, the
binary is larger than 100ƛσ when it forms. We also compare
the orbital period with the coherence time at binary
formation: along the orange solid and dashed lines,
TðahÞ ¼ τc and Tðah=100Þ ¼ τc, respectively. Below the
orange solid line, which includes ah ¼ ƛσ, we have
TðahÞ < τc and therefore individual encounters are impor-
tant. Similarly, below the orange dashed line, which

contains ah=100 ¼ ƛσ , we have Tðah=100Þ < τc and there-
fore dynamical friction cannot describe the interactions
fully. If individual encounters between quasiparticles and
the SMBH binary can extract energy efficiently from it, a
sufficient number of encounters between the binary and
quasiparticles can lead to a merger in under a Hubble time.
Within the blue shaded region in Fig. 3, the SMBH binary
does not encounter a sufficient number of quasiparticles.
The dark and light yellow shaded areas show the lower
bounds on the mass of ULDM from the Lyman-α forest
[28] and from the stellar dispersion of ultrafaint dwarf
galaxies [30] (which is comparable with the model-inde-
pendent bound from Ref. [31]), respectively.
If ULDM constitutes only a fraction f of the total relic

abundance of DM, rather than the entire amount, then the
mass of the quasiparticles meff , which is proportional to the
local density of ULDM, will decrease by a factor of f and
therefore all the limits in the ðMBH; mULDMÞ parameter
space which depend on meff will change accordingly; the
limits from heating the binary by quasiparticles (the gray
region at the bottom of Fig. 3) weaken by a factor of f1=2,
and the limits from insufficient encounters (the blue region
in Fig. 3) strengthen by a factor of f1=3. The presence of a

FIG. 3. Different regions of the ðMBH; mULDMÞ parameter space correspond to different regimes of interactions between a SMBH
binary of equal mass and ULDM halo. Left (right) panel corresponds to the isothermal (NFW) profile with σ ¼ 100 km=s. In each panel
of, the gray shaded region at the bottom shows where the effective mass of quasiparticles is larger than the mass of SMBHs and binary
formation and merger can stall due to absorption of energy from halo. Within the gray shaded region at the top, the de Broglie
wavelength of ULDM is smaller than the Schwarzschild radius of the SMBHs and ULDM can be treated as cold particlelike DM.
Between these two gray regions, ULDM wave nature can play an important role in merger of SMBH binary. The purple solid (dashed)
line corresponds to contour of ah ¼ ƛσ (ah=100 ¼ ƛσ). The orange solid (dashed) line marks TðahÞ ¼ τc (Tðah=100Þ ¼ τc). Below the
orange solid line, which includes ah ¼ ƛσ , we have TðahÞ < τc and therefore individual encounters are important. Similarly, below
the orange dashed line, which contains ah=100 ¼ ƛσ , we have Tðah=100Þ < τc and therefore dynamical friction cannot describe the
interactions fully. Within the blue shaded region in Fig. 3, SMBH binary does not encounter a sufficient number of quasiparticles. The
dark and light yellow shaded regions show the lower bounds on the mass of ULDM from the Lyman-α forest [28] and from the stellar
dispersion of ultrafaint dwarf galaxies [30] (which is comparable with the model-independent bound from Ref. [31]), respectively.
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second DM component can also affect the formation of the
solitonic core of ULDM. It has been shown that for a
mixture of ULDM and cold DM particles (particles with a
negligible wavelength) which interact with each other
gravitationally, the ULDM core persists until f is reduced
to 0.1; below this threshold, the core does not form [65].

B. SMBH binary in ULDM, inclusion of stars

So far, we reviewed the evolution of SMBH binaries due
to solely stellar dynamics, and we also discussed the
possible effects of ULDM on SMBH binaries in the
absence of stars. A more realistic and interesting case
includes both stars and ULDM, and the role that the
dynamics between them plays in the merger of SMBH
binaries. One of the proposed solutions to the final parsec
problem is refilling the loss cone by scattering stars off the
massive perturbers in galaxies [21,22]. A steady state
population of massive perturbers such as molecular clouds,
or globular clusters can capture scattered stars and return
them back to the central region of galaxies. In this regard,
ULDM quasiparticles are unique astrophysical objects in
that they naturally appear throughout the halo and are
particularly effective as massive perturbers near the center
of a galaxy, where the local density is high.
Massive perturbers can accelerate the stellar relaxation

locally by several orders of magnitude [21,22]. Basically a
population of massive perturbers that are much more
massive than individual stars can easily dominate the
relaxation process by gravitational scattering within the
region that contains them. Consider a test star of mass M⋆
moving with relative velocity v at a distance of the order of
the capture radius, rc ∼GMp=v2 of a population of pertur-
bers with mass Mp and number density np. The rate of
encounters between the test star and massive perturbers is
npvσp⋆ where σp⋆ ∼ r2c is the capture cross section.
Therefore the relaxation time due to scattering off the
massive perturbers is given by tr ∼ ðG2=v3ÞnpM2

p.
Including all the encounter distances by integrating over
them decreases the relaxation time by a Coulomb logarithm
factor which in general depends on the size of the system
and the size of the perturbers. It has been shown that the
ratio of the second moments of the mass distributions of
massive perturbers and stars roughly determines the
amount of relaxation acceleration due to perturbers
[21,22]. In other words, we have

tr;⋆
tr;p

∼ μ2 ≡ npM2
p

n⋆M2
⋆
; ð29Þ

where tr;⋆ is the relaxation timescale due to stellar two-
body scattering, tr;p is the relaxation timescale due to
scattering of stars off the massive perturbers, and nðp;⋆Þ and
Mðp;⋆Þ are the number density and mass of the perturbers
and stars, respectively.

In astrophysical contexts, massive perturbers such as
giant molecular clouds or globular clusters, located within a
few hundred parsecs of a galactic center, can replenish the
loss cone efficiently [21]. Massive perturbers in the mass
range ∼104–107M⊙, with μ2 ∼ 105–107, can lead to a
SMBH binary merger within a Hubble time over a wide
range of black hole masses [22].
By the same reasoning, quasiparticles in a ULDM halo,

within the right range of mass and number density, can
scatter stars back to the loss cone. The big difference
between quasiparticles in a ULDM halo and traditional
massive perturbers is their ubiquity; provided that ULDM
constitutes the dominant component of DM in the
Universe, then the quasiparticles appear in every halo
and consequently in every galaxy, while traditional per-
turbers lack this universality. For instance, while giant
molecular clouds are common in the disks of spiral
galaxies, they do not survive in elliptical galaxies as a
result of a history of major mergers.
To find out in which part of the parameter space

quasiparticles can enhance the relaxation rate noticeably,
we evaluate the parameter μ2 in a region of the size of ah
enclosed by the SMBH binary. Hence, we obtain

μ2 ¼
ndBm2

eff

n⋆M2
⋆

∼
meff

M⋆

R ah
0 drr2ρULDMðrÞR ah

0 drr2ρ⋆ðrÞ
; ð30Þ

where ndB is the number density of quasiparticles. For the
stellar density we assume an isothermal distribution,

ρ⋆ðrÞ ¼
σ2

2πGr2
; ð31Þ

and for the mass of quasiparticles we use the local density
profile of ULDM to evaluate the mass enclosed in a de
Broglie volume, following Eq. (16). To be more conser-
vative, we evaluate the mass of quasiparticles at r ¼ ah.
While heavy enough quasiparticles can act like massive
perturbers, they can also heat up the SMBH binary. So the
accelerated relaxation rate due to quasiparticles is efficient
as long as the quasiparticles are not heavier than the black
holes, i.e.meff < MBH. When the mass of the quasiparticles
become comparable to the black hole mass or larger, one
needs to analyse the system more carefully to find out the
overall effect of the quasiparticles on the binary, which will
be a combination of heating it up and refilling the loss cone
with stars. The quasiparticles are most effective when their
lifetime becomes comparable to the orbital period of the
SMBH binary, i.e. TðahÞ ∼ τc.
The black dashed contours in Fig. 4 depict the μ2

parameter which represents the local enhancement in
the stellar relaxation rate in the galaxy. The left (right)
panel corresponds to an isothermal (NFW) profile with
σ ¼ 100 km=s. Within the orange shaded region, the life-
time of quasiparticles is less than the orbital period of the
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binary, and their impact in scattering stars back to the loss
cone is not maximal. The black dotted contours show the
mass of a quasiparticle at ah. As in Fig. 3, the dark and light
yellow shaded regions show the lower bounds on the mass
of ULDM from the Lyman-α forest [28] and from the stellar
dispersion of ultrafaint dwarf galaxies [30] (which is
comparable with the model-independent bound from
Ref. [31]), respectively. If ULDM constitutes only a
fraction f of the total relic abundance of DM, as we
argued in previous subsection, limits from heating the
binary by quasiparticles (the gray region at the bottom of
Fig. 4) weaken by a factor of f1=2. The local enhancement
in stellar relaxation rate, i.e. parameter μ2, which is
proportional to m2

eff , is reduced by a factor of f2.
Here, we comment briefly on the effect of traditional

cold DM subhalos on the final parsec problem: One might
imagine that a massive cold DM subhalo could serve as the
massive perturber, effecting the phase space adequately that
the loss cone can be replenished. As of the writing of this
paper, we find no evidence in the literature that cold DM
subhalos would be effective as massive perturbers. For a
virialized halo, the virial radius for a subhalo of the size
required to serve as a massive perturber would exceed the
size of the binary black hole system by several orders of
magnitude (though cold DM subhalos may have a central
density cusp). Furthermore, the number density of large
enough subhalos in the inner ∼100 pc is expected to be so

low [66] that it seems extremely unlikely that cold DM
subhalos could serve as effective massive perturbers.
Nonetheless, detailed simulations could shed further light
on this possibility.

V. SUMMARY

In this paper we have explored the evolution of SMBH
binaries in galaxies with ULDM halos. As a result of the
wave nature of ULDM, and the consequent interference of
its excited modes, density fluctuations in the DM halo
appear as massive quasiparticles. The lifetime of these
quasiparticles is defined by their coherence time, which is
much shorter than the Hubble time. To exploit the wave
nature of ULDM in resolving the final parsec problem, the
de Broglie wavelength of ULDM must be longer than the
Schwarzschild radius of the SMBHs. To avoid suppression
of dynamical friction from ULDM and achieve a successful
formation of the binary, SMBH should start the hardening
phase outside of the solitonic core. When the mass of the
quasiparticles are comparable to the mass of SMBHs or
larger, they heat up the binary instead of extracting energy
from it. By applying these considerations, we have mapped
out the mass ranges of ULDM and SMBHs within which
dynamical friction from ULDM together with individual
encounters between quasiparticles and the SMBH binary
may lead to a merger of the binary in under a Hubble time.

FIG. 4. The estimated local enhancement in stellar relaxation rate in galaxy due to quasiparticles of ULDM. Left (right) panel
corresponds to the isothermal (NFW) profile with σ ¼ 100 km=s. In each panel, the gray shaded region shows where the effective mass
of quasiparticles is larger than the mass of SMBH. The black dashed contours display μ2 parameter which represents the local
enhancement in stellar relaxation rate. Within the orange shaded region, the lifetime of quasiparticles is less than the orbital period and
the impact of them is not maximal. The black dotted contours show the mass of a quasiparticle at ah. The dark and light yellow shaded
regions show the lower bounds on the mass of ULDM from the Lyman-α forest [28] and from the stellar dispersion of ultrafaint dwarf
galaxies [30] (which is comparable with the model-independent bound from Ref. [31]), respectively.
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Because the lifetime of the quasiparticles is typically longer
than the orbital period of the binary at the beginning of the
hardening phase, the role of individual encounters between
quasiparticles and the binary in shrinking the size of the
binary becomes important. On the basis of preliminary
simulations, we predict that quasiparticles can indeed be as
efficient as field stars in extracting energy from the binary
during individual encounters; ULDM quasiparticles have a
key advantage over field stars in that their appearance is
inevitable and there is therefore no need to replenish the
loss cone.
By adding stars to this scenario, ULDM quasiparticles

can resolve the final parsec problem in a completely novel
way; they can act as universal massive perturbers to
enhance the local stellar relaxation rate by scattering stars
back into the loss cone. The importance of this new class of
massive perturbers can be understood better in connection
with elliptical galaxies, which lack regular massive per-
turbers such as molecular clouds as a result of a history of
major mergers.
The main goal of this study is to explore the role of

ULDM in the merger of SMBH binaries. We considered a
parameter space of DM properties, halo structure, and black
hole masses to identify conditions where ULDM can
facilitate the formation of binaries as well as drive their
subsequent evolution. Scenarios for ULDM as a catalyst for
mergers—either through direct interactions or by stirring
up the phase space of stars—are promising avenues for
future work on SMBH binaries as the gravitational universe
opens to us.
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APPENDIX: NUMERICAL APPROACH

To assess the outcome of an ULDM quasiparticle
interacting with a SMBH binary, we developed a simple
code to solve the Schrödinger equation with a binary black
hole potential, along with a solution to the binary orbit in
the presence of ULDM mass distribution. The computa-
tional domain is triply periodic, spanning a cube with
length L ¼ 8 pc on each side, and centered at the origin of
a rectilinear coordinate system with coordinates (x, y, z).
The binary, represented as classical, Newtonian n-body

particles, has a total mass M1 þM2 ¼ 107M⊙, a center of
mass at the origin, and an initial orbital separation of
a0 ¼ 1 pc. The binary’s phase and orientation (direction of
its angular momentum vector) are chosen at random. The
wave function ψ is defined with real and imaginary parts on
a regular grid with N3

L ¼ 10003 points. Its mass, Mψ is 1%
of the total binary mass, while the mass of the ULDM
particles that compose it is m ≈ 3 × 10−19 eV. We choose
the quasiparticle’s packet size and de Brogie wavelength so
that initially R ¼ λ ¼ 0.2 pc, and its initial central location
is near the domain edge at ð−L=2; 0; 0Þ approximately 4 pc
from the binary. Its propagation speed is v0 ≈ 170 km=s in
the þx direction toward the origin, consistent with a
quasiparticle that had a speed of 100=km=s, representative
of the ULDM bulk, but that has fallen into the gravitational
well of the black hole binary.
We step the quasiparticle-binary system forward in time

using a finite-difference PDE solver for ψ and an ODE
solver for the binary partners. The grid-based finite
differences approximate space and time derivatives in the
Schrödinger equation; the spatial differences depend on the
grid spacing, ΔL ¼ 0.008 pc, while the time step, Δt, is
bounded by ΔL2=4ℏ, per the Courant condition for
numerical stability. A leapfrog scheme advances the real
and imaginary parts of ψ in time, with Reψ and Imψ
staggered by half a time step. The particle trajectories are
calculated with a 6th-order symplectic integrator [67], with
time steps that are smaller than the finite-difference steps so
the interaction between the field and the black holes is
updated with every change to ψ . The forces between the
black holes and the field are softened on a scale of 0.016 pc,
twice the grid spacing.
Our code, written in C++ and using OpenMP for paralle-

lization, is available upon request to the authors.
We apply this evolution algorithm to a suite of

initial conditions. Each simulation is evolved for a time
t ¼ 1.5L=v0, approximately twice the binary orbital period.
After the start of a simulation, and after the quasiparticle
had traveled approximately a quarter of the way to the black
hole pair, an algorithm is turned on that strongly attenuates
the wavefunction in a boundary layer of about l ¼ 0.02 pc
width from each face of the cubic computational domain.
There, ψ is artificially suppressed each time step, reduced
by a factor of expð−Δr=lÞ where Δr is the distance
between a grid location and the nearest edge of the domain.
Otherwise, wave function components that are scattered
outward would wrap around in the triply periodic computa-
tional domain to repeatedly scatter off the binary. There are
elegant ways of imposing radiative boundary conditions,
but this method is simple, numerically stable, and does
what we want: it allows outgoing waves to effectively leave
the computational domain.
Our final suite of simulations consists of 200 runs.

Each run, with 10003 grid points, requires approximately
10 hours on a 40-core computational node. Figure 1 shows
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example snapshots of the quasiparticle-binary interaction in
one simulation. In the figure, the wave function scatters off
of one binary partner only to diffract off of the other black
hole as it swings around in its orbit. Much of the wave-
function is lost to regions outside the computational

domain after this first encounter; the rest lingers near
the binary and will eventually be ejected as well.
Presumably, some small fraction of the quasiparticle is
bound by the binary and will eventually accrete onto the
black holes.
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