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The matter power spectrum is only weakly constrained on subgalactic scales, while physics beyond the
Standard Model can leave unique imprints, especially on sub-parsec scales. We propose measuring the
arrival-time difference of fast radio bursts (FRBs) along two adjacent sightlines as a new probe to dark
matter substructures on scales down to ∼1 AU. We discuss two observational scenarios in which it may be
possible to place interesting constraints on such models through the monitoring of repeating FRB sources:
(i) By sending radio receivers to space to form a baseline of tens of AU or more and measuring the temporal
variation of the arrival-time difference between receivers. (ii) By measuring the temporal variation of the
arrival-time difference between two lensed images of one strongly lensed repeater. In both scenarios,
obtaining interesting constraints requires correlating the voltage time series to measure the radio signal
arrival time to sub-nanosecond precision. We find that two radio dishes separated by 20 AU may be
sensitive to the enhancement of small-scale structures at ∼10−8M⊙ masses in the QCD axion dark matter
scenario, or from an early epoch of matter domination with a reheating temperature up to 60 MeV. Other
dark matter models, such as those composed of ∼10−13M⊙ primordial black holes produced during
inflation, would also be probed by this method. We further show that a strong lensing situation of multiple
images provides an equivalent ∼2000 AUðσv=103 km s−1Þðδt=10 yrÞ baseline, for a typical velocity of
dark matter substructures σv and an observational time span δ. This is much more sensitive, but with the
uncertainty that intervening decoherence from the interstellar medium may degrade the timing precision,
and that spatial variation in the FRB emission spot may result in confounding signals. We show that the
lensing magnifications of Type Ia supernovae constrain a similar quantity to such FRB timing, with present
limits being equivalent to ruling out the same parameter space that would be probed by a 0.14 AU baseline.
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I. INTRODUCTION

Dark matter (DM) structures on comoving length scales
shorter than tens of kiloparsecs all the way down to the
Solar System scale have only been weakly constrained by
observations [1–6]. Enhanced formation of self-gravitating
structures on these tiny scales than in the cold dark matter
(CDM) scenario may arise from special physical processes
that take place in the early Universe. Examples include an
early epoch of matter domination [7,8], an axion arising
from a Peccei-Quinn phase transition after inflation [9], a
primordial kination era [10], inflationary production of
vector DM [11], and density perturbations from magnetic
fields [12,13]. Therefore, probing such minuscule DM
structures would open up a window into the Universe

before big bang nucleosynthesis and provide opportunities
to discover particle physics beyond the Standard Model.
The only surefire way to detect such structures is via their
gravitational effects.
However, those minuscule DM structures, which collapse

on comoving wave number k≳ 10–1010 Mpc−1, are noto-
riously difficult to detect gravitationally. Femto-, pico-,
and microlensing surveys probe masses of ∼10−12M⊙,
but they are only sensitive to mass clumps of extremely
high densities (≳1015M⊙=pc3) [14–16]. DM substructures
in plausible scenarios, such as the so-called “axion mini-
clusters” expected in the QCD axion DM scenario with a
postinflationary Peccei-Quinn phase transition, are orders
of magnitude more diffuse [17–19]. Recently, there
have been two proposals for detecting the gravitational
effects from DM substructures of asteroid- to planet-scale
masses that may be sufficiently sensitive to motivated
models such as QCD axion miniclusters. One method
exploits the imprint of Shapiro time delays and gravitational
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accelerations imparted by DM substructures in pulsar
timing residuals [20–22]. Another proposal suggests the
use of perturbing effects collectively caused by many
intervening substructures in the microlensing light curves
of highly magnified extragalactic stars [17]. Several other
methods are sensitive to larger but subgalactic substructure
masses. Astrometric weak lensing signatures imprinted in
the proper motion of Galactic stars probe subgalactic
DM subhalos in the Milky Way halo [23–26]. Other probes
that are sensitive to subgalactic, supersolar-mass DM halos
exploit the strong lensing of background galaxies [27–31] or
gravitational waves [32–35]. Additionally, spectral distor-
tions in the cosmic microwave background (CMB) con-
strain small-scale density fluctuations up to wave numbers
k ¼ 104 Mpc−1 [36]. As those methods have not yet been
used to place significant constraints, it is worthwhile to
search for other potential probes.
In this work, we propose the precision comparison of the

arrival times of repeated fast radio burst (FRB) signals
along multiple sightlines from the same FRB source as a
new direct probe for minuscule DM substructures. FRBs
are radio transients with typically millisecond duration
powered by mostly extragalactic sources. While the origin
of FRBs is not yet thoroughly understood, thousands of
them have been discovered [37], with over 50 currently
known to repeat (often on tens-of-hours timescales) [38],
and their propagation effects provide a powerful tool to
study cosmological physics such as the missing baryon
problem, the circumgalactic media of galaxies, the cosmic
reionization history [39–43], and in this work, the dark
matter substructures. This proposal uses two key aspects of
FRBs: they originate from extremely compact sources, and
relative timing of the radio signals can be performed to sub-
nanosecond precision through the coherent analysis of
voltage time series [44].
The required multiple sightlines from a single FRB may

either connect to a constellation of radio receivers in space
separated by astronomical unit (AU) scales, or arise in a
strong lensing situation with multiple lensed images
detected by a single receiver. We show that if one source
repeatedly emits FRBs, one can measure the arrival-time
difference between different sightlines and monitor how this
varies with time as foreground dark matter substructures
move across the field, changing the gravitational time delays
(and with enough detectors, the gravitational time delays
can be separated for a single FRB). This variation can be
distinguished from smooth temporal trends caused by
mundane kinematic effects, long-term dynamics of galactic
structures, or the expansion of the Universe itself [45–48].
We contrast our proposed method with the aforementioned
other proposals to detect structures and show that it has the
potential to be more sensitive.
Specifically, for radio receivers in space, we find that a

0.1 AU separation would constrain new parameter space
for small-scale dark matter clustering, and that a 20 AU

separation is potentially sensitive to QCD axion miniclus-
ters and dark matter minihalos produced from an early
matter-dominated era with a reheating temperature of
60 MeV. There is already a proposal to do Solar System
scale interferometry on FRBs to measure cosmological
distances at subpercent precision [49]; our work adds to
the science case for this potential experiment. The large
fluxes of FRBs allow detections with meter-scale radio
dishes that were commonly used on past outer Solar
System probes (especially when correlating with a large
terrestrial facility to enhance the signal), and the millisecond
duration of FRBs makes data transmission back to Earth
practical [49]. We further show that strong lensing (if the
FRB signal remains phase coherent between lensed images)
would be a way for nature to generate equivalent baselines
of ∼2000 AU, a concept previously used by several other
studies for different applications [45,46,50–54].
This work is organized as follows: In Sec. II, we study

the arrival-time difference from two separate sightlines
under the gravitational influence of intervening DM
substructures. In Sec. III, we calculate the effect of DM
substructures in the scenario of a lensed FRB source with
multiple images. In Sec. IV, we apply the results in
previous sections to physical models such as QCD axion
miniclusters. In Sec. V, we summarize our results and
present conclusions.

II. WEAK LENSING EFFECT BY DARK MATTER
SUBSTRUCTURES FOR TWO-DISH

CONFIGURATION

Before calculating the effect of DM structures on the
arrival-time difference along different sightlines, we start
with a back-of-the-envelope estimate. As illustrated in the
left cartoon of Fig. 1, two separate sightlines will experi-
ence different time delays induced by dark matter sub-
structures due to different impact parameters. Consider two
radio telescopes separated by 100 AU targeting an extra-
galactic point source. The number of DM structures within
the thin cone formed by the source and the baseline
connecting the two dishes is

Nh ¼
πx20Dρ̄m
3Mh

¼ 10

�
10−6M⊙

Mh

��
D

1 Gpc

��
x0

100 AU

�
2

;

ð1Þ

where we assume that all DM substructures have a mass
Mh, where x0 is the separation of the two dishes, ρ̄m is the
mean cosmic DM density today, and D is the comoving
light travel distance to the source. In this crude estimate, we
also assume that DM substructures are smaller in size than
the two-dish separation. As an example, this limit is valid
for x0 ≳ 100 AU for the QCD axion miniclusters that
collapse after the epoch of matter-radiation equality in
the scenario of a postinflationary Peccei-Quinn phase
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transition [55]. The fiducial mass scale Mh ∼ 10−6M⊙ is
motivated by the mass that these miniclusters grow to by
z ¼ 0 in N-body simulations [18]. The Shapiro time delay
induced by individual dark matter objects is

δt ¼ −GMh lnðdh=dh0 Þ; ð2Þ

where dh ∼ dh0 ∼ x0 is the typical perpendicular distance
from the DM structure to the sightline. Note that dh or dh0 is
only an estimate of the impact parameter, which has a
random value dependent on the exact spatial distribution of
DM substructures. Therefore, multiple DM structures cause
a variance in the time-delay difference between the two
sightlines:

Δt ∼
ffiffiffiffiffiffi
Nh

p
δt ¼ 0.1 ns

�
x0

100 AU

�

×

�
Mh

10−6M⊙

�
1=2
�
lnðdh=d0hÞ

2

�
: ð3Þ

This simple estimate assumes the DM structure is smaller
than x0. The calculations we present later will properly
account for the size of DM structures. Our method can be
compared to two other Galactic methods to measure small
DM structures: pulsar timing arrays (PTAs) and astrometry

in the proper motion of Galactic stars. One advantage of
our method is the involvement of cosmological path
lengths, which leads to overall delays that are ∼100 times
larger than in the Galaxy. PTAs are sensitive to residuals
of ∼100 ns [56], and again we expect the Galactic con-
tribution to our Δt to be ∼1% of the total delay. so our
hypothetical experiment should be more sensitive. For
PTAs, astrophysical systematics such as the spin noise
of pulsars and the time variation of the electron density
(or dispersion measure) induced by the solar wind will have
a great impact on the timing precision [57,58]. However, the
FRB timing proposed in this work is intrinsically different
from pulsar timing, because pulsar timing relies on pulsars
being a reference clock, while FRB timing uses the differ-
ence in arrival times between detectors at the ends of
different sightlines. By correlating the electric field at two
different receivers, the dispersion measure difference, which
only enters the correlation as a phase, can be fitted away
with a broad frequency band. Therefore, those astrophysical
systematics that arise from pulsars or solar wind will not be
a concern in our proposal of FRB timing.
To compare with astrometry, the deflection angle is

Δθ ∼ δt=b, where b ∼ 100 AU is the typical impact param-
eter and δt is the Shapiro time delay induced by dark matter
substructures. Therefore, a micro-arcsecond precision on
the deflection is equivalent to a timing precision of 100 ns.

FIG. 1. A cartoon diagram of the physical scenario we study in this work. On the left side, we anticipate two radio dishes in the
Solar System separated by 100 AU, such that they can observe the same FRB source from two sightlines, which we call a “2-Dish
system” in this work. Each sightline will experience different Shapiro time delays from intervening dark matter clumps. Therefore, the
FRB electric-field time series (denoted by the orange pulse curve) will have different times of arrival that can be timed to much better
than the frequency of the radio waves. On the right side, the FRB is strongly lensed, creating two images; hence, we call this a “2-Image
system.” The two images will experience different Shapiro delays from intervening dark matter substructures, and these differences will
vary with time.
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In addition, astrometry uses dark matter substructures in the
Galaxy, so the number of objects will be smaller than
the estimate for cosmological sources. Future surveys like
the Square Kilometre Array (SKA) can reach an angular
resolution of 10 μarcseconds or even 1 μarcsecond to the
brightest stars within 10 years of operation [59]. Another
advantage of probing minuscule DM structures with cos-
mological sources such as FRBs is that those DM structures
are less disrupted in the low-density intracluster [17] or
intergalactic space, but more so in the Galaxy due to tidal
stripping and stellar disruptions [60,61]. The proposal for
the microlensing of magnified stars also uses extragalactic
sources [17], but it is challenging to access its sensitivity,
and currently there is no estimation.
This estimate suggests that a timing precision of ∼0.1 ns

could be interesting for constraining minuscule DM
structures. A radio burst signal can be timed to a precision
of σt ∼ ð2πνÞ−1 SNR−1 by cross-correlating the voltage
time series recorded at two receivers, as long as differential
plasma effects do not decorrelate the voltage time series
between the two sightlines [44]. Through such coherent
techniques, sub-nanosecond timing is regularly done at
gigahertz frequencies. FRBs are bright compact radio
sources that are ideal for this timing experiment. If an
order-unity fraction of the DM orbits inside tiny structures
with masses around 10−6M⊙, we expect to see random
variations in the arrival-time difference. The caveat is that
the effect can be more suppressed than we have estimated
above when the DM structures are larger than the sightline
separation. In the following subsections, we will perform
detailed calculations for the arrival-time difference and
present sensitivities on the matter density power spectrum
more comprehensively.

A. Arrival-time difference introduced
by dark matter substructures

Radio waves passing through the fluctuating gravita-
tional potential Φ generated by DM substructures are
subject to the Shapiro time delay Δt ¼ ð2=c3Þ R Φdx,
where x is the comoving coordinate along the line of
sight. This time delay depends on the realization of random
DM substructures. Along two slightly different sightlines,
the time delay is expected to be also slightly different. This
time-delay difference has a variance

σ2 ¼ 4

c6
Var
�Z

Ds

0

dxΦðx; x⊥Þ −
Z

Ds

0

dxΦðx; 0Þ
�
; ð4Þ

where x⊥ represents the transverse offset between the two
sightlines, and Ds is the comoving distance of the FRB
source. In the case of an FRB source, the distance along the
sightline is cosmological, and the transverse offset of
interest here is on much smaller length scales, comparable
to the sizes of DM substructures. Therefore, fluctuations in
the gravitational potential perpendicular to the sightline are

the source of the variance of the arrival-time difference.
Also, we do not have to include diffraction effects
because, for our fiducial specifications, the Fresnel scale
∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dsλ=ð2πÞ

p
∼ AU is at least somewhat smaller than the

dark matter substructures or characteristic sightline sepa-
rations x⊥ we study in this work. The variance in Eq. (4) in
principle could be measured if we measure the arrival-time
difference toward many different one-off FRB sources in
the sky. A more practical method would be to target a
repeating FRB source and measure the arrival-time differ-
ence at different times corresponding to the occurrence of
multiple FRBs. Since DM substructures are expected to
have a velocity component transverse to the sightlines,
measuring the arrival-time difference at different times will
sample different intervening substructure realizations.
Later in this section, we will show that this temporal
variation of the arrival-time difference between two sight-
lines is a powerful probe of DM substructures, especially
on scales much smaller than kiloparsecs. The comoving
space power spectrum of the gravitational potential Φ is
related to the matter overdensity power spectrum through

PΦðkÞ ¼
ð4πGρ̄ma2Þ2

k4
PδðkÞ; ð5Þ

where ρ̄m is the cosmic mean matter density at a given
cosmic time. The variance of the arrival-time difference
can be expressed in terms of the correlation function of the
gravitational potential:

σ2 ¼ 8

c6

Z
Ds

0

dx1

Z
Ds

0

dx2ðhΦðx1; 0ÞΦðx2; 0Þi

− hΦðx1; 0ÞΦðx2; x⊥ÞiÞ; ð6Þ

where x1 and x2 are line-of-sight comoving coordi-
nates. Since correlation functions are invariant under
spatial translations, we have used hΦðx1; 0ÞΦðx2; 0Þi ¼
hΦðx1; x⊥ÞΦðx2; x⊥Þi to simplify the expressions. The
correlation function is the Fourier transform of the power
spectrum

hΦðx1;0ÞΦðx2;x⊥Þi ¼
Z

d3k
ð2πÞ3PΦðkÞ

×exp½−ikkðx1 − x2Þ− ik⊥ · x⊥�; ð7Þ

where we have decomposed the wave vector k into the
line-of-sight component kk and the transverse component
k⊥. The tremendous length scale along the line of sight
means that large kk values contribute little to the integral.
Thus, under the so-called Limber approximation, we may
neglect the kjj dependence of PΦ and evaluate the line-of-
sight integral as a Dirac δ function [62]:
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hΦðx1;0ÞΦðx2;x⊥Þi¼
Z

d2k⊥
ð2πÞ2PΦðk⊥ÞδDðx1−x2Þe−ik⊥·x⊥ : ð8Þ

Using this result, the time-delay difference has a variance

σ2 ¼ 8

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
d2k⊥
ð2πÞ2

1

k4⊥
Pδðk⊥; zÞð1 − e−ik⊥·x⊥Þ;

¼ 8

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

1

k3⊥
Pδðk⊥; zÞð1 − J0ðk⊥x⊥ÞÞ ð9Þ

for an FRB source at redshift zs. The second line is derived
by integrating out the angular component of k⊥, which
gives the Bessel function.
If the source of the fluctuating gravitational potential has

a relatively long spatial correlation length, such that
k⊥x⊥ ≪ 1, we may Taylor-expand the Bessel function as
1 − J0ðk⊥x⊥Þ ¼ ðk⊥x⊥Þ2=4 − ðk⊥x⊥Þ4=64þ � � �. Indeed,
the leading term in this expansion, which scales as
∝ x2⊥, is degenerate with the angular position of the source
in the absence of a fluctuating gravitational potential. This
corresponds to an arrival-time difference that scales linearly
with x⊥, or equivalently one that varies linearly with the
angle. The contribution to the variance comes from a linear
delay across the field, and a linear delay is indistinguishable
from a slightly different direction of the source. We cannot
break the degeneracy without the measurement of FRB
repeaters that contain time variation signals, which forces
us to consider higher-order terms on x⊥.
We therefore have to study the next-order term, which

scales as ∝ x4⊥. In fact, in many cosmology scenarios of
interest, potential fluctuations of low wave numbers make
important contributions to Eq. (9), so that Taylor expansion
of the Bessel function is justified. The consideration of the
next-order term leads to the following quartic contribution1:

σ24 ¼
1

8c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

k⊥Pδðk⊥; zÞx4⊥: ð10Þ

For a crude estimate in the case of an FRB source, we
may assume that the matter power spectrum does not vary
substantially with redshift and that the FRB is at a comoving
distance Ds. The transverse offset between the two sight-
lines x⊥ has a maximal value x0 on Earth and vanishes on
the FRB source; it varies along the sightline according to

x⊥ ¼ x0DðzÞ=DðzsÞ, where DðzÞ is the comoving distance
from Earth at redshift z. With these simplifications, we
derive the expression

σ24 ≈
1

40c6
ð4πGρ̄mÞ2x40Ds

Z
dk⊥
2π

k⊥Pδðk⊥; 0Þ: ð11Þ

A larger transverse separation x0 will lead to a more
detectable effect (the time-delay signal is proportional to
x20). The overall contribution of this higher-order term (the
quadrupole term or the circularly symmetric term) in
Eq. (11), where the delay scales quadratically in jx⊥j, is
suppressed due to the small dish separation. However, this
suppression can be alleviated by looking at the temporal
change to the arrival-time difference if we detect repeating
FRBs, as we will see in the next subsection. In other
words, we can use the measurement of repeating FRBs to
break the degeneracy on the leading order with the source
angle.2 Additionally, the movement of dark matter sub-
structures can effectively increase the baseline length, and
the variance of the arrival-time difference can be enhanced
by a factor of ðx0=½vδt�Þ2, where δt is the duration over
which the repeating FRB is observed and v is the velocity
of dark matter substructures. Even though observing the
quartic contribution in Eq. (10) is less sensitive except for
extremely large baselines, it has the advantage that it does
not require the FRB to repeat and can be used as a cross-
check of the method we discuss next.

B. Time variance of weak lensing effect
with repeating FRBs

We now extend our calculation to time-variable signals.
We can measure the arrival-time differences between the
two sightlines at multiple epochs by targeting a repeating

1This quartic contribution from small structures is degenerate
with the effect of curvature of the wavefront [49]. However,
wavefront curvature can be largely removed using our precise
cosmological constraints to predict distance from the FRB
redshift or by concentrating on more distant FRBs. Furthermore,
our effect creates a quadrupolar delay in angle with respect to the
baseline vector that can be distinguished from wavefront curva-
ture with enough detectors.

2This does additionally require an absolute measurement of the
angle to the FRB, which necessitates knowing the overall
rotational orientation of the array and not just the relative
positions of the receivers. This requires using other FRBs to
set the reference frame—or, possibly, precise two-way ranging to
measure the distances between the array elements and terrestrial
receivers whose positions are extremely well modeled.
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FRB source. This will be the primary observable we study
here. Currently, 50 FRB sources have been found to repeat
on Oð10 hrÞ timescales, and the detected number of
repeating sources is growing quickly [63]. The change
in the gravitational potential with time arises from the
inevitable motion of the DM substructures; over a time
interval δt, the effect of this motion is equivalent to shifting

the transverse spatial coordinate of Φ the sightline probes
by an amount v⊥δt. We may assume that the dominant
velocity of the DM substructures relative to the sightlines
results from the local motion of the large-scale structure,
which is coherent over a comoving distance ∼50 Mpc. We
can calculate the variance of the arrival-time difference over
a time interval δt:

σ2t ¼
4

c6
Var

�Z
Ds

0

dxΦðx; x⊥Þ −
Z

Ds

0

dxΦðx; 0Þ −
Z

Ds

0

dxΦðx; x⊥ þ v⊥δtÞ þ
Z

Ds

0

dxΦðx;v⊥δtÞ
�
: ð12Þ

The above expression vanishes if δt ¼ 0. For a unique transverse velocity v⊥, we can calculate

σ2t ðv⊥Þ ¼ −
4

c6

Z
Ds

0

dx1

Z
Ds

0

dx2
�
4hΦðx1; 0ÞΦðx2; x⊥Þi þ 4hΦðx1; 0ÞΦðx2;v⊥δtÞi − 4hΦðx1; 0ÞΦðx2; 0Þi

− 2hΦðx1; 0ÞΦðx2; x⊥ þ v⊥δtÞi − 2hΦðx1; 0ÞΦðx2;−x⊥ þ v⊥δtÞi
�

¼ 4

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
d2k⊥
ð2πÞ2

1

k4⊥
Pδðk⊥; zÞ

�
4þ 2e−ik⊥·ðx⊥þv⊥δtÞ þ 2e−ik⊥·ð−x⊥þv⊥δtÞ

− 4e−ik⊥·x⊥ − 4e−ik⊥·v⊥δt
�

¼ 8

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
d2k⊥
ð2πÞ2

1

k4⊥
Pδðk⊥; zÞ

�ð1 − eik⊥·x⊥Þð1 − e−ik⊥·v⊥δtÞ þ ð1 − eik⊥·x⊥Þð1 − eik⊥·v⊥δtÞ�: ð13Þ

In reality, the DM substructure velocity v⊥ involved in the above expression varies along the sightline. The peculiar motion
of the large-scale structure is coherent over distances of tens of megaparsecs, while the FRB source is at a cosmological
distance. The sightline therefore samples different coherent patches of the large-scale velocity field. This justifies taking the
statistical average of the above expression with respect to the distribution of v⊥. Accounting for large-scale linear matter
overdensity modes, the velocity is drawn from a Gaussian distribution with a standard deviation of σv ≈ 600

ffiffiffiffiffiffiffiffi
2=3

p
km s−1

at low redshifts, where
ffiffiffiffiffiffiffiffi
2=3

p
accounts for only the transverse component of the velocity vector.3 By integrating σ2t ðv⊥Þ

over the Gaussian distribution of v⊥, we derive

σ2t ¼
16

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
d2k⊥
ð2πÞ2

1

k4⊥
Pδðk⊥; zÞð1 − eik⊥·x⊥Þ

Z
d2v⊥
2πσ2v

exp

�
−

v2⊥
2σ2v

�
ð1 − e−ik⊥·v⊥δtÞ

¼ 16

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
d2k⊥
ð2πÞ2

1

k4⊥
Pδðk⊥; zÞð1 − eik⊥·x⊥Þð1 − e−k

2⊥σ2vδt2=2Þ

¼ 16

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

1

k3⊥
Pδðk⊥; zÞð1 − J0ðk⊥x⊥ÞÞð1 − e−k

2⊥σ2vδt2=2Þ: ð14Þ

In the limit of k⊥x⊥ ≪ 1, which applies to scenarios in which small-scale DM substructures have sizes much larger than the
transverse separation between the two sightlines, the variance has a simpler expression:

σ2t ¼
4

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

1

k⊥
Pδðk⊥; zÞð1 − e−k

2⊥σ2vδt2=2Þx2⊥: ð15Þ

If potential fluctuation modes of short wavelengths are not a dominant contribution—i.e., if k⊥σvδt ≪ 1, the time-delay
difference Δt between the two sightlines as a function of time t can be expanded as a Taylor series:

3We neglect the contribution from local collapsed structures here, which would increase somewhat the dispersion.
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Δt ¼ a0 þ a1tþ a2t2 þ � � �. The expansion coefficients, encoding information about the DM substructures, can be
measured accurately with sufficiently many well-measured FRB repetitions. The leading term (constant term a0),
independent of δt, is described by Eq. (9) when expanding the Bessel function, which is degenerate with the source angular
location. The next term is related to the variance of the time derivative on the arrival-time difference, which is expressed as

σ2t0 ¼
4

c6

Z
d2v⊥
2πσ2v

exp

�
−
v2⊥
2σ2v

�
Var

�
∂

∂t

�Z
Ds

0

dxΦðx; x⊥ þ v⊥tÞ −
Z

Ds

0

dxΦðx; v⊥tÞ
��

¼ 8

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

1

k3⊥
Pδðk⊥; zÞð1 − J0ðk⊥x⊥ÞÞ

Z
d2v⊥
2πσ2

exp

�
−
v2⊥
2σ2v

�
ðk⊥ · v⊥Þ2

¼ 8

c6
ð4πGρ̄mÞ2σ2v

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

1

k⊥
Pδðk⊥; zÞð1 − J0ðk⊥x⊥ÞÞ: ð16Þ

The integrand here is as sensitive to higher-wave-number
(larger k⊥) modes of potential fluctuations as the higher-
order term [the term that is ∝ x4⊥ when expanding the
Bessel function J0ðk⊥x⊥Þ] in Eq. (10). However, it can be
shown that the time derivative term will be more sensitive
to higher-wave-number modes than the term described by
Eq. (10) if σvδt > x0. In other words, if the transverse
spatial separation between the two sightlines is limited by
the available technologies to realize a long spatial base-
line, we can compensate for that by observing over a long
time baseline, during which the sightlines sweep DM
substructures across a much longer distance. For refer-
ence, σvδt ≈ 100 AU if we monitor a repeating FRB
source for one year (δt ¼ 1 yr), which is equivalent to
a spatial baseline between the Earth and the outer Solar
System. One can compare the time-varying signal in
Eq. (16) to the higher-order term in Eq. (10) and find
that they reach the same sensitivity to small-scale potential
fluctuations when σvδt ¼ x0. Therefore, we can be more
sensitive to small-scale DM structures by exploiting the
time variation of the arrival-time difference with ten years
of observation of repeating FRBs, compared to the static
method, that uses higher-order terms, since it is very
challenging to realize a 1000 AU spatial baseline. The
measurement of the time derivative can be even more
accurate if a large number of repeating events are observed
for the same FRB source and a common trend is measured.
The caveat is that many other physical effects, including
the expansion of the Universe in real time [45], might
cause the arrival-time difference to vary linearly with time.
Therefore, arrival-time differences that vary over shorter
timescales would be more interesting signals of small-
scale DM structures.
While the linear trend induced by DM substructures

must dominate other confounding effects to be detectable,
assuming this is the case, then if the signal falls primarily in
only one logarithmic bin of wave number k, we can
measure the matter power spectrum on that scale to a
precision of

δPδðkÞ ≈
2πδt2m=N

1
c6
ð4πGρ̄mÞ2x20Dsσ

2
vδt2k2

; ð17Þ

where N is the number of repeating events minus 1 (we
need to measure at least one burst to fit the mean value of
the arrival-time difference) and δtm is the FRB timing
precision, which we argue can reach the sub-nanosecond
scale at high frequencies by cross-correlating voltage time
series. Note that the above expression is valid only
if σvδtk ≪ 1.
Consider fiducial parameter values corresponding to an

interferometry setup on the Solar System scale. We find the
numerical results

δPδðkÞk3
2π2

≈ 8.5 × 102
�

N
100

�
−1
�

k
pc−1

��
δt

10 yr

�
−2

×

�
δtm

0.1 ns

�
2
�

Ds

1 Gpc

�
−1
�

x0
100 AU

�
−2
: ð18Þ

As we can see in Appendix B, the amplitude of the
dimensionless power spectrum of axion miniclusters at
present day can easily reach 106, since it is already of order
unity at matter-radiation equality and will continue to grow
according to the calculations using the halo model. The
sensitivity for sufficient high-k Fourier modes with
σvδtk⊥ ≳ 1 cannot be calculated from the previous expres-
sions. For that, we have to study the temporal power
spectrum of the arrival-time difference in Eq. (24), which
will be discussed later in Sec. II C.
In principle, we will not only measure the rate at which

the time-delay difference varies linearly with time, but also
measure the correction piece with a quadratic dependence
on time. Such measurement will allow us to focus on
contributions from higher-k modes of potential fluctua-
tions, since higher-kmodes make more contributions to the
integral. The variance of the quadratic derivative can be
expressed as
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σ2t00 ¼
4

c6

Z
d2v⊥
2πσ2v

exp

�
−

v2⊥
2σ2v

�
Var

�
∂
2

∂t2

�Z
Ds

0

dxΦðx; x⊥ þ v⊥tÞ −
Z

Ds

0

dxΦðx; v⊥tÞ
��

¼ 24

c6
ð4πGρ̄mÞ2σ4v

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

k⊥Pδðk⊥; zÞð1 − J0ðk⊥x⊥ÞÞ: ð19Þ

Again, if we restrict the scenario to the regime k⊥x⊥ ≪ 1,
the above expression can be approximated as

σ2t00 ≈
6

c6
ð4πGρ̄mÞ2σ4v

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

k3⊥Pδðk⊥;zÞx2⊥: ð20Þ

The above result shows that the quadratic time derivative
term will be more sensitive to higher-k modes. Adopting
the same assumption that the Pδ is only nonzero in a single
logarithmic bin of k, we derive the following sensitivity to
the matter power spectrum from σt00 :

δPδðkÞ ≈
2πδt2m=N

3
c6 ð4πGρ̄mÞ2x20Dsσ

4
vδt4k4

: ð21Þ

Here, N refers to the number of repeating events minus 2
(we need to measure two bursts to fit both the mean value
and the first derivative of the arrival-time difference).
Again, this result cannot be applied to modes of arbitrarily
high k but must be restricted to k⊥σvδt ∼ 1. We will study
the temporal power spectrum [Eq. (24)] of the arrival-time
difference to overcome the limitation of this expansion
scheme based on the wave number. For now, the sensitivity
for the matter power spectrum numerically evaluates to

δPδðkÞk3
2π2

≈ 1.1× 106
�

N
100

�
−1
�

k
10 pc−1

�
−1
�

δt
10 yr

�
−4

×

�
δtm

0.1 ns

�
2
�

Ds

1 Gpc

�
−1
�

x0
100 AU

�
−2
: ð22Þ

Noticeably, the sensitivity based on the term with a
quadratic time dependence is better for higher-k modes.
In Fig. 2, we plot the sensitivity on the matter power

spectrum for the 2-Dish configuration, from measuring
dΔt=dt and d2Δt=dt2, whereΔt is the arrival-time difference
along two sightlines. The 2-Dish system refers to radio
receivers in space that create separate sightlines for the same
FRB source, which are separated by x0 ¼ 20 AU (left) and
x0 ¼ 0.14 AU (right). The sensitivity curves are calculated
for the following fiducial parameter values: FRB timing
precision δtm ¼ 0.1 ns, comoving distance to the source of
Ds ¼ 3 Gpc (or z ≈ 1), characteristic dispersion of peculiar
velocity of the DM structures σv ¼ 500 km=s, time span of
observing repeating FRB sources δt ¼ 10 yr, and the
number of δtm-timed radio bursts N ¼ 100. The matter
power spectrum expected from the standard ΛCDM cos-
mology is also plotted in Fig. 2, though we must emphasize

that the high-k regime (k > 10 Mpc−1) is poorly con-
strained. The black dashed curve in Fig. 2 is the linear
matter power spectrum in ΛCDM cosmology, while the blue
dashed curve is the nonlinear matter power spectrum
obtained from the HaloFit model [64,65]. Note that the
nonlinear power spectrum has been extrapolated to an
extremely high-wave-number regime, well beyond the wave
numbers that the HaloFit model has not been calibrated to
simulate. Our observational probe constrains the nonlinear
power spectrum. The blue region is excluded by current
observations from CMB [66–69] and the Lyman-alpha
forest [70]. (The blue triangular region is currently excluded
by limits on CMB spectral distortions.) The gray region is
the sensitivity forecast for the 2-Dish system we study in this
work. Technically, this system requires four dishes to
constrain their positions via GPS techniques, although
the other dishes are not necessarily as large as those in
the 2-Dish system we are relying on to detect FRBs. The
sensitivities of the 2-Dish system to dΔt=dt and d2Δt=dt2
are calculated using Eqs. (17) and (21), respectively.
We find that the current limit on supernova lensing

magnifications provides a limit on the matter power
spectrum that is equivalent to the 2-Dish configuration
with a x0 ¼ 0.14 AU baseline, as discussed in Appendix C.
Thus, the gray region above the red curve in the right panel
in Fig. 2 should be considered as a current limit on the
nonlinear matter power spectrum. Supernova lensing
already provides comparable, if not better, sensitivity to
the CMB spectral distortion for a wide range of wave
numbers. It is worth noting that the comparison to CMB
spectral distortions is not so direct, as the observable we
proposed in this work is at low redshift (z ∼ 1), while CMB
distortions are sensitive to the matter power spectrum before
recombination, which is still in the linear regime. Therefore,
our proposal will probe the nonlinear matter power spec-
trum, which requires some forward modeling to extrapolate
the primordial linear matter power spectrum to the current
Universe. Section IV discusses this modeling in the context
of motivated small-scale enhancements in the matter power.
Large-scale structures in the ΛCDM cosmology that have

tens or even hundreds of wavelengths still affect the first
time derivative of the arrival-time difference from the
gradient field of their gravitational potential (as seen by
the 2-Dish linear running somewhat parallel to the matter
power spectrum in Fig. 2). This means that baselines much
longer than x0 ¼ 0.14 AU will detect the ΛCDM contri-
bution and not be able to probe the potential high-k
enhancements we are interested in. The way to avoid this
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large-scale sensitivity is to measure the second time
derivative of the arrival-time difference, as it will only be
sensitive to the matter overdensity modes at higher k with
the ΛCDM contribution efficiently filtered out. The sensi-
tivity to the second time derivative is shown by the orange
curves in Fig. 2.
The expansion of the time-delay difference in terms of the

first derivative, the second derivative, or even higher-order
derivatives is only valid when the dominant modes satisfy
kσvδt ≪ 1. When k is larger than 1=ðσvδtÞ, the temporal
power spectrum of the arrival-time difference is the appro-
priate observable that preserves the full information. This
changeover in constraining method is reflected by the kinks
in the sensitivity curves, where the higher k beyond the kink
uses the temporal power spectrum to constrain the matter

power spectrum (which will be discussed in the next
subsection). Practically, the highest wave number that such
FRB timing may probe is given by the repeating rate of
FRBs, which for some of the most prolific repeaters is
∼1=ð10Þ hr−1 [63], divided by the velocity of the dark
matter substructure, σv, which yields k ∼ 1012 Mpc−1.

C. Temporal power spectrum

Our approach of measuring derivatives of the arrival
times brings in higher wave number information with
increasing order. A different approach that captures all this
information in a single statistic is to measure the temporal
correlation function or power spectrum of the time-delay
measurements. The temporal correlation function of the
time-delay difference is

hΔtð0ÞΔtðδtÞi ¼
Z

d2v⊥
2πσ2v

exp

�
−

v2⊥
2σ2v

�	�Z
Ds

0

dxΦðx; x⊥Þ −
Z

Ds

0

dxΦðx; 0Þ
�

×
�Z

Ds

0

dxΦðx; x⊥ þ v⊥δtÞ −
Z

Ds

0

dxΦðx; v⊥δtÞ
�


¼ 8

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

1

k3⊥
Pδðk⊥; zÞð1 − J0ðk⊥x⊥ÞÞ

Z
d2v⊥
2πσ2v

exp

�
−v2⊥
2σ2v

�
e−ik⊥·v⊥δt

¼ 8

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

1

k3⊥
Pδðk⊥; zÞð1 − J0ðk⊥x⊥ÞÞe−k2⊥σ2vδt2=2: ð23Þ
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FIG. 2. The sensitivity of the 2-Dish system to the nonlinear matter power spectrum from measurements of the time-varying arrival-
time difference of repeating FRBs with antennas separated by x0 ¼ 20 AU (left panel) or by x0 ¼ 0.14 AU (right panel). The blue-
shaded region has been excluded by current observations such as CMB [66,67], galaxy formation, and the Lyman-alpha forest [70]. The
blue triangular exclusion region at higher wave numbers is from constraints on CMB spectral distortions [66]. The gray region would
potentially be excluded by this hypothetical 2-Dish system. Note that the 2-Dish system probes the nonlinear matter power spectrum in
the late Universe, while observations like CMB distortions probe the matter power spectrum in the early Universe when it was still linear.
In the right panel, the gray region should already be excluded by supernova lensing, since it is equivalent to a 0.14 AU baseline, as
discussed in Appendix C. The linear matter power spectrum in ΛCDM is plotted as the black dashed curve as a reference, and the
nonlinear power spectrum is the blue dashed curve, which uses the HaloFit model [64,65]. The red solid curve is the detection threshold
found by measuring the first derivative of the time-delay difference, whose variance is calculated in Eq. (17), and the orange solid curve
represents the sensitivity by measuring the second derivative of the time delay difference calculated in Eq. (21). The matter power
spectrum above the solid curves is detectable. The ΛCDM contribution is still significant in the first-derivative measurement but is much
more suppressed in the second-derivative term. The fiducial values of parameters in this plot are δtm ¼ 0.1 ns, Ds ¼ 3 Gpc,
σv ¼ 500 km=s, δt ¼ 10 yr, and N ¼ 100. At high-k modes, the slope of the solid curves turns around (∝ k1=2), which is caused by the
failure of the expansion of time-delay differenceΔt ¼ a0 þ a1tþ a2t2 þ � � �when kσvδt ∼ 1, where all orders of derivatives will matter,
and one should study the temporal power spectrum [cf. Eq. (24)] to obtain the sensitivity.
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The correlation function is exponentially damped for
k⊥σvδt≳ 1. However, we can always measure the temporal
power spectrum on a shorter timescale to get around this
suppression. The temporal power spectrum can be calcu-
lated as the Fourier transform of the correlation function:

PtðωÞ ¼
Z

dðδtÞeiωδthΔtð0ÞΔtðδtÞi

¼ 8
ffiffiffiffiffiffi
2π

p

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

×
Z

dk⊥
2π

1

k3⊥
Pδðk⊥; zÞð1 − J0ðk⊥x⊥ÞÞ

×
1

k⊥σv
exp

�
−

ω2

2k2⊥σ2v

�
: ð24Þ

Information about the high-k modes is contained in high-ω
values in the temporal power spectrum.
Assuming that the errors in timing various bursts behave

as white noise with variance δt2m, the uncertainty in
estimating the temporal power spectrum is set by δPtðωÞ ¼
πδt2m=ð

ffiffiffiffiffiffiffi
Nm

p
ω0Þ for ω < ω0, where ω0 ¼ πN=δt is the

highest frequency determined by the FRB repeating period,
and Nm ≈ σvδtk is the number of modes that can be used to
constrain the signal. (This expression would be exact if the
FRBs from a repeater were periodic.) Since this sensitivity
does not depend on ω, we can extract information about the
high-k modes from the high-frequency part of the temporal
power spectrum. By measuring the temporal power spec-
trum of the arrival-time variation, we can expand J0 in
Eq. (24) in small k⊥x⊥, which yields for the leading order
the sensitivity to PδðkÞ per logarithmic k of

δPδ ≈
2πδt2m=N

1
c6 ð4πGρ̄mÞ2x20Ds

ðσvδtkÞ1=2: ð25Þ

This sensitivity will match the result in Eq. (21) when
σvδtk ∼ 1, but it scales differently with k. Note that the
parameter space of interest satisfies k⊥x⊥ ≪ 1, so we can
still expand the Bessel function. This expression only holds
for ðσvδtÞ−1 < k ≪ x−10 , which is a relatively narrow range
for our fiducial x0 ¼ 20 AU. (The lower bound of this range
is from the finite observation duration, which is not
accounted for in our above expressions.) We also note that
x0=c is similar to the tens of hours repetition time for FRBs,
which is roughly the maximum wave number where the
power spectrum can be measured. The sensitivity of a PtðωÞ
measurement to the matter power spectrum numerically
evaluates to

δPδðkÞk3
2π2

≈ 1.1 × 104
�

N
100

�
−1
�

k
100 pc−1

�
7=2
�

δt
10 yr

�

×

�
δtm

0.1 ns

�
2
�

Ds

1 Gpc

�
−1
�

x0
100 AU

�
−2
: ð26Þ

The sensitivity on the dimensionless matter power spectrum
from measuring the temporal power spectrum scales as k7=2.

III. WEAK LENSING EFFECT WITH STRONGLY
LENSED FAST RADIO BURSTS

In the previous section, we performed calculations for
an observational configuration with two radio dishes
separated on the Solar System scale (the 2-Dish configu-
ration). Another configuration that could enable us to
achieve the same goal of offset sightlines is the observation
of a single repeating FRB source that has multiple images
due to strong lensing by astrophysical lenses (such as a
galaxy or a galaxy cluster). The rate of such events is
expected to be significant, with more FRBs detected in the
future. The strong lensing probability for FRBs at z > 1 is
∼10−4, and the apparent repeater fraction of CHIME-
discovered FRBs is 2 × 10−2 [63]. Assuming these num-
bers, and if SKA phase 2 achieves > 107 FRBs, as some
forecasts suggest [53], one would expect to detect tens of
strongly lensed repeating FRBs per year, with the caveat
that we need to detect FRBs and FRB repeaters at z > 1 for
a large strong lensing rate, and the redshift distribution of
repeating FRBs is only weakly constrained (and there is
some evidence that the discovered repeaters are from lower
redshifts than nonrepeating FRBs). Therefore, one would
expect to detect tens of strongly lensed repeating sources
with years of operation of SKA phase 2.
As illustrated in the right cartoon of Fig. 1, the strongly

lensed FRB source will have at least two lensed images,
toward which the two light paths probe slightly different
regions of the Universe and experience different Shapiro
time delays from DM substructures. This situation can be
thought of as weak lensing effects superimposed on the
strong lensing effects, as DM substructures do not perturb
light propagation strongly enough to form additional lensed
images. The arrival-time difference corresponding to the
two lensed images can be measured to high precision, just
like in the case of the 2-Dish configuration, and one can
look for variation in the arrival-time differences between the
lensed images of the repeated bursts. Reference [51]
explored some astrophysical applications of this effect,
but they only assumed a conservative FRB timing precision
at the millisecond level, which is orders of magnitude worse
than the sub-nanosecond timing precision achievable
through a time-series correlation analysis. For the rest of
this section, we will discuss the arrival-time difference
arising from dark matter substructures in strong lensing
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systems. Then, we will discuss possible concerns from
decoherence effects on the multiple images.

A. Weak lensing effects in strong lensing systems

Now, we study the weak lensing effects from small-scale
potential fluctuations on a gravitationally lensed FRB
source with two lensed images (referred to as the “2-
Image system” hereafter). We assume that the radio waves
following the different light paths of the two images remain
phase coherent, and a timing accuracy at the sub-nanosec-
ond level is achievable. The dominant contribution to the

arrival-time difference between the two images comes from
strong lensing, but it is often not possible to model the
strong gravitational lens very accurately. Therefore, we
need to monitor a repeating FRB source to extract useful
information about DM substructures. As for the time-
varying arrival-time difference, the leading-order contribu-
tion is essentially what we have calculated in Sec. II, except
that in the 2-Image system there is a much longer transverse
(∼kpc) baseline between the widely separated light paths
corresponding to the two lensed images. The variance of
the arrival-time difference is simply given by

σ2t ¼
16

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

1

k3⊥
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≈
16

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

1

k3⊥
Pδðk⊥; zÞð1 − e−k

2⊥σ2vδt2=2Þ

≈
16

c6
ð4πGρ̄mÞ2

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

1

k3⊥
Pδðk⊥; zÞ

�
k2⊥σ2vδt2

2
−
k4⊥σ4vδt4

8
þ � � �

�
; ð27Þ

where the second line approximates 1 − J0ðk⊥x⊥Þ ≈ 1, as
for widely separated sightlines k⊥x⊥ ≫ 1. Therefore, the
variance of the arrival-time difference has no dependence
on the image separation. The reason behind this is that the
DM substructures intervening the two light paths will be
uncorrelated. The temporal variation of the arrival-time
difference simply comes from the motion of DM sub-
structures near the light paths. It is worth noting that the
linear term on δt2 will be more sensitive to DM structures at
larger scales, while the quadratic term has the same
behavior as the 2-Dish system with a ∼σvδt (1000 AU
for the fiducial value) baseline. To see this, we apply the
same calculation for the second derivative in the 2-Image
scenario, and take the long baseline limit

σ2t00 ¼
24

c6
ð4πGρ̄mÞ2σ4v

Z
zs

0

cdz
HðzÞ

Z
dk⊥
2π

k⊥Pδðk⊥; zÞ: ð28Þ

This leads to a sensitivity on the matter power spectrum:

δPδðkÞ ≈
2πδt2m=N

24
c6
ð4πGρ̄mÞ2Dsσ

4
vδt4k2

: ð29Þ

The above expression can be compared to the sensitivity
coming from the first time derivative of the arrival-time
variation for the 2-Dish system, as discussed in Eq. (17).
The sensitivity of the 2-Image configuration is equivalent
to a 2-Dish configuration with a baseline of 2000 AUðδt=
10 yrÞðσv=103 km s−1Þ. Note that the second time deriva-
tive term in the 2-Image scenario has the same k scaling as
the first derivative term in the 2-Dish system. Likewise,
when we expand the 2-Image signal to the third time

derivative (cubic term), it has the same k scaling as the
second time derivative term discussed in Eq. (21).
The difference in the k scaling, for kx0 < 1, results from
the fact that the two sightlines to the two receiver dishes
probe similar potential fluctuations, while in the strong
lensing scenario, potential fluctuations near the two
widely separated light paths are uncorrelated. Lower time
derivatives of the arrival-time difference are more con-
taminated by long-wavelength modes in the ΛCDM
scenario. This limitation can be circumvented by meas-
uring higher-order time derivatives of the arrival-time
difference.
It might seem like the strong lensing scenario is superior

in sensitivity and that there is no need for VLBI in space.
However, as we will discuss later in this section, in the
strong lensing scenario, the signal is likely to be more prone
to the decoherence effect or scattering effect, depending on
the properties of the FRB emission sources. These effects
may substantially degrade the sensitivity in the strong
lensing scenario.
There is also an effect in the arrival time at second order

in DM potential fluctuations. Due to DM potential fluctua-
tions everywhere along the path, the otherwise straight light
paths from the source to the strong lensing plane, and from
that plane to the observer, are not exactly extremized light
paths and hence are perturbed. In Appendix A, we estimate
that such correction to the arrival time can provide a signal
comparable to a 5 AU baseline, which is subdominant.

B. Decoherence and scattering effects between sightlines

Realizing the method we propose requires that the
FRB radio signals that travel along different sightlines
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have phase-coherent voltage time series to allow cross-
correlation. We now examine the plausibility of this
assumption for both the 2-Dish configuration and the
2-Image scenario. The most outstanding issue of phase
decoherence likely comes from the interstellar medium
(ISM) of the Milky Way. The ISM can cause pulse delay
and broadening along sightlines to individual radio
receivers in space. This is known as the scattering effect,
which is induced by density inhomogeneities in the
interstellar plasma. Observations of pulsars and FRBs
away from the Galactic disk suggest a scattering time of
δtsc ≃ 30 nsðν=GHzÞ−4ðsin bÞ−2.5, where b is the Galactic
latitude of the sightline [e.g., [49]]. Pulse delay and
broadening are typically on this timescale. If the scatter-
ing-induced time delay is significant (δtsc > 1=ν), radio
waves travel along multiple geometric paths with signifi-
cant phase differences, resulting in decoherence in the
voltage time series. To have δtsc < ν−1, observations need
to be carried out at ν≳ 3 GHz to suppress ISM
decoherence. For our fiducial 0.1 ns timing accuracy,
we would require δtsc < 0.1 ns; otherwise, the timing
error worsens by scattering. See Ref. [49] for more
extensive discussions on the scattering effects on FRB
observations in the context of space interferometry on the
Solar System scale. Finally, scattering in the lens itself
could be important, since the light paths may pass close to
the denser lens center and its host galaxy’s ISM.
Another requirement for phase coherence is that the

FRB source must remain unresolved to the baseline
spanned by the two sightlines. This requires the source
size to satisfy lFRB < λ=θE, where θE is the angular
separation of two sightlines with respect to the source
and λ is the wavelength of the radio wave. In the case of the
2-Dish configuration, we expect an angular separation as
small as θE ¼ x0=Ds ∼ 10−12, and so lFRB > 1013 cm,
which should be easily satisfied [49]. The scattering effect
in the host galaxy may make the effective size of the
emission region larger, but again, this is a sufficiently small
effect for the 2-Dish system for even the most host-galaxy-
scattered FRBs that have been discovered [49].
The requirements are more stringent for the case of

strongly lensed FRBs for FRB timing: The angular
separation of the two images must be θE ∼ 10−6 radians
to not resolve the source, requiring the FRB source size to
be smaller than ∼107 cm if observed in the gigahertz
range. The size requirement can be satisfied if each FRB
event has a source comparable to or more compact than the
size of a neutron star (∼10 km). Since the size of the FRB
emission region is not fully understood, this condition may
be violated in other models, and we would not have two
strongly lensed images that remain coherent with each
other. Therefore, the determination of the FRB emission
mechanism will confirm whether lensed FRBs can remain
coherent over two paths. See Ref. [53] for a similar
discussion on the decoherence of strongly lensed FRB

images from cosmic strings. Even if the emission spot of
each FRB burst is sufficiently small, there may be spatial
variation in the exact location of the emission spot relative
to the hosting compact object (e.g., if FRB bursts are
sourced by a neutron star) from burst to burst. See Ref. [51]
for a discussion on random variations in the arrival-time
difference due to such spatial variation in the emission-
spot location of individual bursts in the strong lensing
situation. For typical strong lensing parameters, random
spatial variation of the emission spot over distances
≳100 km can produce ≳ns random noises in the
arrival-time difference, which may be relevant for FRBs
from a neutron star. Even if the emission size of the FRB
source is small, the effective image size will be larger with
multipath diffractive propagation from electron inhomo-
geneities in the host galaxy, which imposes an additional
requirement on how unscattered the FRB source needs to
be. See Ref. [71] for discussions on the decoherence effect
in the host galaxy with a scattering screen model. The
scattering effect in the host galaxy needs to be suppressed
to avoid a large effective emission region by either
observing at high frequencies (≳5 GHz) or looking at
unscattered FRBs. Some FRBs may reside in galaxies that
are evacuated of their ISMs, or be far enough in the
galactic outskirts to be essentially unscattered by their host
galaxy. There are some FRBs where the limits on scatter-
ing are smaller than a microsecond at 1 GHz [72,73].
When the delay caused by the scattering screen in the host
galaxy is less than 1=ν, it will behave refractively and will
not substantially enlarge the image. If the scattering delay
is sufficiently small, the lens will not resolve the source,
and the FRB can be treated the same as light that travels
through the host galaxy with multiple paths, and hence
would remain coherent through the host galaxy over the
lensed pathways.
Another potentially confounding effect is microlensing

from stars intervening in the sightlines; however, this
should be negligible, as discussed in Ref. [53]. For
solar-mass objects like stars, their impact parameters to
the sightlines are much greater than their size. Therefore,
the main effect comes from their mass but not their
compactness. On average, the fractional cosmic matter
density in stars is small compared to that in DM.

IV. PHYSICAL APPLICATIONS TO ENHANCED
DARK MATTER SUBSTRUCTURES

In the previous sections, we have shown that precision
timing of repeating FRBs can be used to probe the matter
power spectrum on very small scales, realized either with a
very long interferometry baseline of the Solar System size
or with a strongly lensed FRB source with multiple lensed
images. The matter power spectrum on scales k >
10 Mpc−1 is only weakly constrained by existing obser-
vations. Matter clustering in the standard ΛCDM cosmol-
ogy is usually below the detection threshold at high k due to
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the lack of dense structures on small scales. On the other
hand, there are well-motivated models of nonstandard
early-Universe dynamics in which the formation of DM
substructures on minuscule scales is enhanced. Measuring
the matter power spectrum on such scales will be a strong
test of the ΛCDM cosmology, and it provides new
discovery opportunities for new physics about the nature
of the DM and the thermal history of the very early
Universe. Models featuring an enhanced matter power
spectrum on minuscule scales usually involve interesting
cosmological dynamics in the early Universe, because the
size of the self-gravitating structures formed is related to the
horizon length at early times when nontrivial dynamics
occurred. Axion DM from a postinflationary Peccei-Quinn
phase transition, early matter domination with a low
reheating temperature, and vector DM produced during
inflation are the most important model examples that give
rise to the formation of DM substructures on small scales.
In the following, we apply the calculations we have
performed in previous sections to these models to depict
the future discovery opportunity with precision FRB
timing.

A. Axion miniclusters

The axion particle is a solution to the strong CP problem
and may account for the DM [74–81]. Currently, the
allowed parameter space of the axion is broad, and axions
not intended to solve the strong CP problem are referred to
as axion-like particles, which have broader parameter space.
If the Peccei-Quinn symmetry breaking is after inflation, the
axion field will take different values in different horizon
patches before the critical time when the axion acquires its
mass. The inhomogeneity in the axion field value will
convert to matter density fluctuations, since there is an
energy transfer from the QCD vacuum to axion matter
density, leading to the formation of axion miniclusters when
axion dark matter starts to dominate the energy density
budget of the Universe [9,55,82]. This production mecha-
nism of axion relic density is known as the vacuum
misalignment mechanism. During the evolution of axion
fields after the symmetry breaking, topological defects such
as axion strings will also form in the postinflationary
scenario, which will eventually dissipate and contribute
to the axion relic density [83–86]. This will also extend the
matter power spectrum expected from the vacuum misalign-
ment mechanism to subhorizon scales due to the structure
of strings, leading to a smaller characteristic minicluster
mass [83,87]. There are other scenarios of axion physics that
can also lead to enhanced substructures on small scales,
such as the kinetic misalignment mechanism [88–90], the
large misalignment mechanism [91], a nonstandard thermal
history [92,93], and inflated domain walls that reenter the
horizon [94–96].
The cosmological evolution of axion miniclusters

in the postinflationary scenario has been studied using

semianalytic techniques [15,97–100] and N-body simu-
lations [18,19,61,101,102], which suggest that an order-
unity fraction of the axion DM will be locked in axion
miniclusters, motivating astrophysical searches for those
DM substructures. In the following, we will focus on the
vacuum misalignment mechanism that results in a white-
noise matter power spectrum at the scale of the horizon
size when axions obtain mass from their potential. The
linear matter overdensity has a characteristic variance on a
scale corresponding to a comoving wave number k:

Δ2ðk; zÞ ¼D2
1ðzÞAosc

�
k
kosc

�
3

; k < kosc; ð30Þ

where D1ðzÞ is the growth function normalized at matter-
radiation equality and Aosc ∼Oð1Þ is the amplitude of the
white-noise power spectrum, which is taken to be Aosc ¼ 1
in this work. The exact value of Aosc is degenerate with
kosc, since the initial minicluster mass is the only relevant
parameter. The size of the density fluctuation is expected
to fall off fast at k > kosc. Simulations of axion string
dynamics show that strings will contribute significantly to
the axion density fluctuations, leading to a smaller Aosc and
a cutoff at high k, which effectively lowers the mass of the
initial axion miniclusters. For the QCD axion, kosc can be
related to the axion mass ma [83,103]:

1

kosc
¼ 0.036 pc

�
50 μeV
ma

�
0.17

; ð31Þ

where the numerical power-law index accounts for the
temperature dependence of the axion mass during the
establishment of the axion relic abundance around the time
of QCD phase transition. Therefore, the comoving scale
corresponding to the QCD axion is extremely small, but
the growth of density fluctuations on these scales and the
later formation of bound structures do result in potential
fluctuations even on the AU scales that our proposed
method can probe.
We estimate the nonlinear matter power spectrum

predicted in the axion DM model and compare it to the
reach of our proposed method as discussed in previous
sections. Since the dimensionless matter power spectrum
almost starts with nonlinear values at matter-radiation
equality, we adopt the halo model to calculate the nonlinear
matter power spectrum. As discussed in Appendix B, the
halo model extends the nonlinear matter power spectrum
further, to even smaller scales, by accounting for the
density profiles of the axion miniclusters. The axion
miniclusters are expected to be incorporated into the larger
DM structures, so we integrate over the ΛCDM halo mass
function and populate the large halos with axion mini-
clusters as subhalos. According to the halo model, the one-
halo term from the axion miniclusters inside large halos is
the dominant contribution to the nonlinear power spectrum
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on small scales. In the halo model, the density field is
expressed in terms of halos as building blocks. The Fourier
transform of the halo density profile weighted by the halo
mass function gives the correlation function of the density
field, and thus the nonlinear matter power spectrum.
We now discuss the scales that contribute most to the

detectable signal. In Eq. (16), we have shown that
σt0 ∝

R
dkkPδðkÞ. Therefore, the integral is sensitive to a

wide range of scales at k > kosc, for which our modeling
finds that PδðkÞ ∝ k−2, as shown in Fig. 6. This k−2 scaling
owes to the density profile of halos and their mass function.
Therefore, we expect that the 2-Dish system or the 2-Image
system will mostly probe the high-k tail (k≳ kosc) of the
matter power spectrum enhanced by axion miniclusters. In
Fig. 3, the variance of the first time derivative of the arrival-
time difference is plotted as a function of kosc. Results for
both the 2-Dish configuration and the 2-Image scenario are
plotted. For a smaller kosc, the axion miniclusters have larger
masses and are more detectable. As can be seen in Fig. 3, the
2-Dish configuration with a 20 AU baseline is sufficiently
sensitive for QCD axion miniclusters of a wide range of
masses. In other words, the nonlinear power spectrum
calculated from axion miniclusters is within the reach of
FRB timing for the whole range of QCD axion parameters.
In Fig. 4, we plot the sensitivity to the nonlinear matter

power spectrum and compare it to the expectation from
axion miniclusters. As shown in Fig. 4, the high-k portion of
the nonlinear matter power spectrum from axion miniclus-
ters is above the detection limit. This is in agreement with
our previous discussion that the k≳ kosc portion of the

matter power spectrum has the dominant contribution to the
signal. It is worth noting that axion miniclusters may have
totally different masses if our consideration is not restricted
to the QCD axion. An axion-like particle that starts to
oscillate at later times will correspond to a smaller kosc, and
thus more massive miniclusters. Those models will be more
detectable in general. As an example, in Fig. 4 we show
the result for a slightly larger minicluster mass, M0 ¼
ð4=3Þπρ̄mð1=k3oscÞ ¼ 1.67 × 10−7M⊙, or kosc ¼ 1 pc−1,
with the green dashed curve. This scenario is significantly
above the detection threshold of the 2-Dish configuration.
The sensitivity presented here can be alternatively applied

to the scenario of the DM comprising asteroid- to planet-
mass primordial black holes (PBHs), which source a white-
noise initial matter power spectrum on length scales larger
than the inter-PBH separation, the same as in the case of
axion DM with a Peccei-Quinn phase transition after
inflation. The PBHmass plays the role of the axion minihalo
mass, and PBHs become gravitationally bound in PBH
clusters. However, PBH clusters could also have contribu-
tions at very high-k values from the lensing of individual
PBHs in the cluster, which can potentially enhance observ-
able effects. For example, PBHs with M ∼ 10−13M⊙ are
currently not constrained by microlensing and might be
detectable with the 2-Dish configuration. The 2-Image
system, if the two images remain coherent, is equivalent
to a 2-Dish system with a 2000 AU baseline and can be even
more sensitive to PBH clusters. The 2-Image scenario may
be so sensitive that the ΛCDM halos will have a significant
contribution to observables of low-order time derivatives.

2 Image (2000 AU)

2 Dish (20 AU)
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FIG. 3. Variance of the first time derivative of the arrival-time difference for the 2-Dish configuration and 2-Image system (which is
equivalent to a 2000 AU baseline), as calculated in Eq. (16) as a function of kosc, which is the comoving Hubble scale at the time when
the axion acquires its mass. The blue band corresponds to the axion mass range from 5 μeV to 500 μeV, which is the estimated mass
range that leads to the correct DM relic abundance in the scenario of the QCD axion with a Peccei-Quinn phase transition after inflation.
The green dashed curve is δtm=

ffiffiffiffi
N

p
, which is the noise floor for a timing precision of tm ¼ 0.1 ns per measurement and N ¼ 100

measurements. The fiducial value we take for the dish separation is x0 ¼ 20 AU.
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Similarly to the 2-Dish configuration, we can use higher-
order time derivatives to filter out contributions from low-k
modes. In any case, the nonstandard minuscule DM sub-
structures are still detectable as long as they dominate the
signal. The confounding signal from the standard ΛCDM
halos is only a concern when we want to probe the matter
power spectrum far below the predicted signal strengths
from QCD axion miniclusters.
Currently, the most stringent constraint on the isocurva-

ture initial matter power spectrum from axion miniclusters
or PBH clusters comes from the Lyman-alpha forest, which
requires kosc > 1600 Mpc−1 [104]. FRB interferometry
will be orders of magnitude more sensitive to minuscule
DM substructures. Another advantage of our probe is that
DM substructures are more significantly disrupted inside
galaxies due to frequent gravitational encounters with
passing stars [61], while the intergalactic substructures
we study here can evade dynamic destruction by stars in
galaxies.

B. Early matter domination

The standard ΛCDM model of cosmology has been a
great success in explaining current observations, ranging
from big bang nucleosynthesis (BBN) at early times to

large-scale structure formation at late times. Inflation
solves the horizon and flatness problems of the hot big
bang cosmology and generates curvature perturbations as
the seeds for large-scale structure formation. However, a
remaining obscure component of the physical cosmology
model is the reheating process with the thermal history
before BBN, which evades all current observations. The
most stringent bound on the maximal temperature of
radiation domination comes from the thermal production
of neutrinos. If the Universe is radiation-dominated at a
temperature of ∼3 MeV or higher, thermal neutrino
production is sufficient to produce the correct abundances
of light elements [105–108]. There are no observational
constraints on the thermal history at temperatures above
3 MeV.
On the other hand, nonstandard thermal history, such as

an early epoch of matter domination or a first-order phase
transition, is required to explain the asymmetry between
baryons and antibaryons, which is an outstanding puzzle in
cosmology. It is also possible to generate the baryon
asymmetry at a temperature of MeV scale with meson
decays in an epoch of early matter domination [109–113].
Since the energy density of matter scales as a−3 while that of
radiation scales as a−4, matter will always dominate the
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FIG. 4. The sensitivity of measuring the time variation of the arrival-time difference of repeating FRBs with the 2-Dish configuration
or the 2-Image scenario. In the 2-Image scenario, the repeating FRB source is strongly lensed with multiple images. The nonlinear
matter power spectrum in the standard ΛCDM cosmology is plotted as a black dashed curve. The 2-Dish sensitivity is calculated
assuming a dish separation of 20 AU. The matter power spectrum above the orange curve can be probed with the 2-Image scenario,
while the matter power spectrum above the red curve can be probed with the 2-Dish configuration, using the second-order time
derivative (2-Dish-Quadratic) of the arrival time difference. Note that the cubic term in the 2-Image system is equivalent to the quadratic
term in the 2-Dish case. The magenta and green dashed curves show the matter power spectra arising from axion miniclusters (AMCs),
with the magenta dashed curve displaying the spectrum expected from the QCD axion. The green dashed curve has a larger axion
minicluster mass than the QCD axion minicluster, which is more detectable. We found that the QCD axion miniclusters will be
detectable by the 2-Dish configuration with a 20 AU baseline.
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energy density budget as long as it is stable. In the early
Universe, if there are long-lived scalar fields such as
stabilized moduli in string theories [114–116], those scalar
fields can dominate the energy density before they decay.
This can be perfectly consistent with current constraints
from the light-element abundances produced during BBN,
as long as those scalar fields reheat the Universe to a
temperature above 3 MeV.
Such nonstandard thermal history will have unique

effects on structure growth. During matter domination,
subhorizon modes of matter density fluctuations grow
linearly with the scalar factor. For modes that enter the
horizon during the early matter domination (k≳ arhHrh),
the growth of matter perturbation after early matter domi-
nation can be written as [7]

δdm ≈
2

3

k2

a2rhH
2
rh

Φ0; ð32Þ

where arh and Hrh are the scale factor and the Hubble
parameter at reheating, respectively, which is the end of
early matter domination. Φ0 is the initial amplitude of
potential perturbation before the onset of early matter
domination. Since we discuss adiabatic fluctuations that
are amplified during early matter domination, the matter
density perturbations will follow the potential perturbation.
A larger value of k corresponds to earlier horizon entry and
thus more linear growth. If k≲ arhHrh, those modes remain
superhorizon and will not grow during early matter
domination. The scalar factor at horizon entry scales as

aH ∝ k−2, because the Hubble scales as H ∝ a−3=2 during
matter domination, and therefore the ratio of momentum to
the horizon scale k=ðaHÞ will behave as ka1=2. This
justifies the k2 dependence on the growth function in
Eq. (32). Note that we still need the transfer function in
the late Universe to extrapolate the result from the early
Universe to the current Universe.
In Appendix B, we discuss the mass function of DM

minihalos produced from an early epoch of matter domi-
nation and the corresponding nonlinear matter power
spectrum. In Fig. 5, we present the sensitivity of our
proposed method to the matter power spectrum as calcu-
lated in previous sections, as well as the nonlinear matter
power spectrum due to DMminihalos from the early matter
domination. As shown in Fig. 5, the 2-Dish system with a
separation of 20 AU will be able to probe early matter
domination with a reheating temperature of 60 MeV, which
is above the lowest allowed value of reheating temperature,
∼3 MeV. The 2-Image system, which only requires the
observation of one strongly lensed FRB repeater, can
potentially probe early matter domination up to a reheating
temperature of 600 MeV. For such high reheating temper-
atures, contributions from ΛCDM halos might dominate
the signal. To improve, we can study higher-order time
derivatives or the temporal power spectrum of the arrival-
time difference, which is sensitive to higher-k modes.
Therefore, we may learn more about the thermal history
of the early Universe before BBN by measuring the
gravitational effects of minuscule DM substructures.
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FIG. 5. The sensitivity of various probes on the matter power spectrum from early matter domination. All the sensitivity curves are the
same as in Fig. 4. Here, we present two more curves that correspond to the nonlinear power spectrum of dark matter minihalos from early
matter domination. The reheating temperatures considered are 10 MeVand 60 MeV. Higher reheating temperatures will produce lighter
dark matter minihalos, which are more challenging to detect. The green dashed curve, corresponding to a reheating temperature of
60 MeV, is within the reach of the 2-Dish system with a 20 AU baseline.
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V. CONCLUSION

In this work, we have proposed a new probe of DM
substructures using a precision comparison of the arrival
times of repeated FRB radio signals along two offset
sightlines. Owing to gravitational time delays and the
cosmological motion of minihalos—moving 100 AU per
year in projection—as long as there are structures on such
scales, there should be slight arrival-time variations that we
showed may be detectable with coherent timing of the FRB
signals. We have shown that the new probe is sensitive to a
population of collapsed minuscule DM structures from
subgalactic masses all the way down to 10−13M⊙. The
multiple sightlines toward a single FRB source may be
realized with a constellation of radio receivers in space
separated by 0.1–100 AU, or in a strong lensing situation
with a single receiver recording the FRB signals from
multiple lensed images. We have calculated the arrival-time
difference and have quantified the temporal variation that is
gravitationally induced by intervening DM substructures.
Our first proposal involves performing radio interferom-

etry with baselines on the Solar System scale, which
requires sending radio dishes to deep space with separations
of at least tens of AU, as required to start constraining the
most motivated QCD axion and EMD models. The position
of the dishes would have to be accurately calibrated using
three other receivers using trilaterations—this ambitious
mission would also measure the parallax distance to FRBs
and hence the cosmic expansion history, with tens-of-AU
baselines potentially providing subpercent distance con-
straints [49]. We have shown that there will be a simulta-
neous interesting science case for such a mission.
Measuring the linear variation of arrival-time differences
between two dishes is sensitive to the larger halos present in
the vanilla ΛCDM model, but it would also rule out larger
parsec-to-AU–scale enhancements in the matter power
spectrum. Measuring the quadratic change of these time
differences (or even the power spectrum of these
differences) isolates the parsec-scale and smaller enhance-
ments, even reaching the sensitivity required for motivated
QCD axion and EMDmodels. A related technique, which is
somewhat less sensitive, but that does not require repeti-
tions, is to use the geometry of arrival-time differences from
a constellation of ≥ 4 receivers separated by tens of AU. We
further showed that the magnifications of Type Ia supernova
is sensitive to the same signal as our linear signal (and with
the sensitivity of a 0.14 AU baseline)—using existing limits
on the magnification of these sources to place new con-
straints on the matter power spectrum.
Our second approach uses strongly lensed repeating

FRB sources, which connect to the observer via multiple
separated light paths. Finding strongly lensed repeating
FRBs is hopeful with the increased sensitivity of the
upcoming radio surveys and a rapidly growing catalog
of detected FRB sources. Future surveys like SKA may
detect tens of strongly lensed FRBs each year, and some of

these may eventually be found to repeat. We have shown
that observing two lensed images of a single source enables
a sensitivity to minuscule DM structures similar to that of
radio dishes with a baseline of 2000 AU. While not
requiring Solar System–scale baselines, the challenges to
this method are that a lensed repeating FRB source would
need to be discovered in the first place, and precision
subtraction of atmospheric delays (or going to space) would
be required. For both approaches, radio wave coherence
along the two disparate paths through the MilkyWay’s ISM
requires observing at ν≳ 3 GHz, but the strong lensing
approach would be further challenged by ISM scattering
decoherence within the lens. The lensing scenario also
requires the location of the FRB emission site to not vary
relative to the neutron star’s position beyond ≲100 km.
Both approaches would be sensitive to DM substructures

even at scales k ∼ 108 Mpc−1, and the 2-Dish system with a
separation of 20 AU can eventually probe miniclusters in
the QCD axion DM model (with initial mass ∼10−13M⊙).
DM minihalos produced from an epoch of early matter
domination with a reheating temperature < 60 MeV can
also potentially be probed with this 2-Dish configuration,
providing a unique gravitational probe to the cosmic
thermal history before BBN. More aggressive proposals,
such as a 1000 AU baseline or the strongly lensed FRB
repeaters, can even probe a reheating temperature of
500 MeV. Primordial black hole (PBH) DM with masses
of ∼10−13M⊙ would also be probed by our method with a
20 AU baseline in the 2-Dish system, since it produces a
very similar white-noise matter power spectrum to axion
miniclusters, and in this mass range PBH DM is currently
not ruled out by microlensing [117]. Longer baselines or
strongly lensed FRBs can probe even lighter PBH dark
matter, leading to better sensitivities to the most challeng-
ing mass range of PBH dark matter.
Compared to two other proposals that probe the small-

scale matter power spectrum, pulsar timing arrays [22] and
the astrometry of Galactic stars [20,23], our method has the
potential to provide the most stringent constraints on
extremely small scales (k≳ 108 Mpc−1), which is owed
to the advantage of observing FRB sources at cosmological
distances and the superior timing precision possible with
radio interferometry. In future works, we plan to further
compare with these proposals and with the proposal of
using the extreme magnification of extragalactic lensed
stars in Ref. [17].
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APPENDIX A: PATH DEFLECTION
ON 2-IMAGE TIMING

Aside from the major effect we discussed in the main text
about arrival-time difference in the 2-Image system, there
will be secondary effects because of the path deflection
induced by the spatial variance of weak lensing effects. In
this section, we will quantitatively calculate the path
deflection caused by dark matter substructures and show
that this effect is subdominant. According to Fermat’s
principle, weak lensing effects from gravitational potential
fluctuations caused by DM substructures, on top of strong
lensing, perturb the light path in such a way that the light
travel time is extremized. We first revisit the standard
formalism of strong lensing before we treat the additional
weak lensing effect. The time delay is the sum of geometric
and Shapiro terms:

tðθÞ ¼ 1þ zd
c

ddds
dds

�
1

2
ðθ − βÞ2 − ψðθÞ

�
; ðA1Þ

where ψ is the lensing potential and zd is the redshift of the
strong lensing plane. The image and source angular
positions are denoted by θ and β, respectively. We define
dd, ds, and dds to be the angular diameter distances from the
Earth to the lens, from the Earth to the source, and from the
lens to the source, respectively. These should not be
confused with the comoving distances involved in dis-
cussions in previous sections. The ray equation is obtained
by finding paths of extremized travel time following
Fermat’s principle:

ðθ − βÞ − ∇θψ ¼ 0: ðA2Þ

We treat the weak lensing effect from DM substructures as
a perturbation to strong lensing. It is straightforward to
include the extra Shapiro time delays, twðθÞ, due to DM
substructures and study the resultant change of the light
path. The new time delay is thus written as

tðθÞ ¼ 1þ zd
c

ddds
dds

�
1

2
ðθ − βÞ2 − ψðθÞ

�
þ twðθÞ: ðA3Þ

We approximate that the small potential fluctuations
induced by the DM substructures do not lead to substantial
curvature of the light path away from the strong lensing
plane. The gradient of twðθÞ can be calculated in the same
way as we studied for the 2-Dish configuration, since it is
directly related to the gradient field of the gravitational
potential, except that the straight light path intersects the
strong lensing plane at a revised location. The new ray
equation is obtained by including the spatial derivative
of twðθÞ:

1þ zd
c

ddds
dds

ððθ0 − βÞ − ∇θψÞ þ ∇θtw ¼ 0; ðA4Þ

where θ0 represents the perturbed light path intersecting the
strong lensing plane after the effect of DM substructures is
included. The path change, θ0 − θ, satisfies the equation

 
ðθ0− θÞ− ðθ0 − θÞ ·∇θ∇θψ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

profile dependent

!
1þ zd
c

ddds
dds

¼−∇θtw: ðA5Þ

The exact change depends on the profile of the strong lens,
but we will later express the major conclusion in a lens-
independent way. The above equation can be recast into the
form

θ0 − θ ¼ −
�
1þ zd

c
ddds
dds

�
−1
A−1ðθÞ · ∇θtw; ðA6Þ

where AðθÞ is the 2 × 2 strong lensing ray deformation
matrix and has components AijðθÞ ¼ δij −∇i∇jψðθÞ. This
shows that the change in the image position is given by
δθi ¼ ðA−1ÞijðαwÞj, where αw ¼ ∇θtw is the extra ray
deflection due to weak lensing.
We are interested in the arrival-time difference between

the perturbed path and the unperturbed path. Since the
value of tðθÞ depends on the strong lens and is not known
precisely, the effect is only observable as a time-varying
effect because the moving DM substructures transit the
light paths over time. The arrival-time difference is

tðθ0Þ − tðθÞ ¼ 1þ zd
c

ddds
dds

�
1

2
ðθ0 þ θÞ − β − ∇θψ −

1

2
ðθ0 − θÞ · ∇θ∇θψ

�
· ðθ0 − θÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

strong lensing

þ ðθ0 − θÞ · ∇θtw|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
weak lensing

: ðA7Þ

Applying the original lens equation for the undisturbed path in Eq. (A2), the above equation can be simplified as
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tðθ0Þ − tðθÞ ¼ 1þ zd
c

ddds
dds

�ðθ0 − θÞ2
2

−
1

2
δθiδθj∇i∇jψ

�
þ ðθ0 − θÞ · ∇θtw; ðA8Þ

where δθ ¼ θ0 − θ. Now, we can use Eq. (A5) to determine the relation between the strong lensing term and the weak
lensing term:

tðθ0Þ − tðθÞ ¼ 1þ zd
c

ddds
dds

�ðθ0 − θÞ2
2

−
1

2
δθiδθj∇i∇jψ−ðθ0 − θÞ2 þ δθiδθj∇i∇jψ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

weak lensing

�

¼ 1

2
∇θtw · ðθ0 − θÞ ¼ −

1

2

�
1þ zd

c
ddds
dds

�
−1
∇θtw · A−1 · ∇θtw: ðA9Þ

The change in the arrival time, tðθ0Þ − tðθÞ, is therefore
proportional to ðαwÞiðαwÞjðA−1Þij, and therefore is a cor-
rection of the second order in the weak lensing effect. It can
also be seen that when the image has a large magnification
factor, A is close to a singular matrix, and hence tðθ0Þ −
tðθÞ is amplified by roughly the strong lensing magnifica-
tion factor. Therefore, observable effects in the arrival time
are greatly enhanced for a highly magnified FRB source,
which leads to a better sensitivity to DM substructures.
The above result also enables us to directly apply

previous calculations for the Shapiro time delay from
DM substructures along two straight sightlines to the
observable signal in the scenario of a multiply imaged
repeating FRB source. Note that over the time span of
observations, which is usually on the order of years, the
strongly lensed FRB source will remain strongly lensed,
since it will not move over a large distance on the length
scale of galaxy lensing or galaxy cluster lensing.
For an example, we consider a strong lens profile

described by the singular isothermal sphere (SIS), where
ψ ∝ jθj. The lens equation that determines δθ can be
decomposed into a perpendicular component and a paral-
lel component with respect to β in the 2D lens plane.
The time delay fluctuation induced by line-of-sight DM
substructures is

δθ⊥
�
1 −

jθj
jθ − βj

�
¼ −∇⊥tw; δθk ¼ −∇ktw; ðA10Þ

tðθ0Þ − tðθÞ ¼ −
1

2

�
1þ zd

c
ddds
dds

�
−1
ðð∇⊥twÞ2

×

�
1 −

jθj
jθ − βj

�
−1

þ ð∇ktwÞ2Þ: ðA11Þ

The gradient of the weak lensing Shapiro time delay tw
has already been calculated [Eq. (14)]. The variance is
simply given by the angular derivatives of the arrival-time
difference:

Varð∇θtwÞ ¼ σ2t D2
s=x20: ðA12Þ

When we measure the arrival-time difference between
two lensed images, the variance doubles. For Gaussian
variables, 2ðVarð∇⊥twÞÞ2 ¼ Varðð∇⊥twÞ2Þ. Therefore, the
time variance of the two-image time delay can be
estimated from Eq. (A11) as

σ22i ≈ Var

�
1

2Ds
ð∇⊥twÞ2

�
¼ 1

4

4σ4t D2
s

x40
¼ σ4t D2

s

x40
: ðA13Þ

Therefore, we expect to see the arrival-time variation with
a variance

σ2i ≈
4

c6
ð4πGρ̄mÞ2D2

s

Z
dk⊥
2π

1

k⊥
Pδðk⊥; zÞð1 − e−k

2⊥σ2vδt2=2Þ

≈
4

c6
ð4πGρ̄mÞ2D2

s

Z
dk⊥
2π

1

k⊥
Pδðk⊥; zÞ

×

�
k2⊥σ2vδt2

2
−
k4⊥σ4vδt4

8
þ � � �

�
: ðA14Þ

In the second line, the ellipsis represents higher-order
terms we omit in the Taylor expansion of the exponential
factor. However, the expansion will break down if
kσvδt ∼ 1, and we will have to use the temporal power
spectrum defined in Eq. (24).
The measurement of the time-varying time-delay differ-

ence will be affected by the movement of the lens system,
which is expected to cause the arrival-time difference to
change linearly over time [51]. As we see in the above
expression of the time delay, it will be useful to instead
consider terms with higher-order temporal dependence for
which mundane effects associated with long timescales are
suppressed. The effect from the peculiar acceleration of the
FRB source or that of the Earth is not significant enough to
induce a time-delay change over weeks. The geometric
time delay caused by FRB accelerations will have a second
derivative on time as ∼x0δẍFRB=Ds, where δxFRB is the
change in the FRB source location. This rate is suppressed
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by the small ratio between the sightline separation and the
source distance. For δẍFRB ∼ 10−10 m=s2, this corresponds
to a time-delay change of only ∼10−17 s over a month.
Considering this secondary effect only, we can derive the

constraints on the matter power spectrum as a function of
the Fourier wave number k by assuming that one loga-
rithmic bin of k dominates PδðkÞ at a time. The sensitivity
on the matter power spectrum is given by

δPδðkÞ ≈
2πδtm=

ffiffiffiffi
N

p
2
c6
ð4πGρ̄mÞ2D2

sσ
2
vδt2k2

; ðA15Þ

where N is the number of well-timed radio bursts, δtm is
the accuracy of the FRB timing, Ds is the comoving
distance of the FRB source, σv is the characteristic velocity
of dark matter structures, and δt is the observation time.
For the second-order effect discussed here, the sensitivity
of a 2-Image system is equivalent to that of a 2-Dish
system with a separation x0 ¼ N−1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Dsδtm
p

∼ 5 AU.
(The 2-Image system refers to strongly lensed FRBs with
two images that provide two sightlines for free to the same
FRB source.) It is worth noting that we cannot distinguish
the second-order effect from the first-order effect, and thus
this only indicates that the effect we calculate here is
subdominant.

APPENDIX B: HALO MODEL
FOR THE NONLINEAR POWER SPECTRUM

A challenge of making predictions for our FRB timing
observable is that it probes nonlinear modes. Enhancements
in linear power can be destroyed by nonlinear evolution.
However, it has been shown that on small enough scales,
some enhancements are sufficient to survive [e.g., [18]],
often as dense microhalos in larger halos. Here we attempt
to predict the power spectrum of such enhancements, with a
focus on postinflation axion and early matter domination
models.
To reliably predict if enhanced DM substructures can be

probed with FRB timing, we calculate the nonlinear power
spectrum using the halo model in place of the linear power
spectrum. On scales smaller than the DM halo size, the one-
halo term should dominate the matter power spectrum,
which is given by

P1hðkÞ ¼ 1

ρ̄2

Z
dMM2

dnðMÞ
dM

jũðkjMÞj2; ðB1Þ

where ũðkjMÞ is the Fourier transform of the mass density
profile at a halo mass M, which we take to be the Navarro-
Frenk-White (NFW) profile, and nðMÞ is the halo mass
function. The Fourier transform of the density profile can
be calculated from the integral

ũðkjMÞ ¼ 4π

Z
∞

0

uðrjMÞ sin kr
kr

r2dr; ðB2Þ

where uðrjMÞ is the halo density profile divided by M. We
would like to study NFW profiles that are truncated at the
virial radius rvir; otherwise, the halo mass is logarithmi-
cally divergent. Therefore, the density profile can be
expressed as

uðrjMÞ ¼ 1

4πrr2sð1þ r=rsÞ2
�
lnð1þ cÞ − c

1þ c

�
−1
; ðB3Þ

where c ¼ rvir=rs is the halo concentration parameter and
rs is the NFW scale radius. The median concentration
parameter c is a function of halo mass and redshift. For
axion miniclusters, we use the mass-concentration relation
in Ref. [18].
The halo mass function of the axion miniclusters, which

form following initial white-noise density fluctuations, can
be analytically calculated using the Press-Schechter for-
malism [17], or using a modified Sheth-Tormen mass
function calibrated by N-body simulations [18]. The
overdensity variance of the relevant white-noise power
spectrum is

σðMÞ ¼ D1ðzÞ
�
3πAosc

2

M0

M

�1
2

; ðB4Þ

where D1ðzÞ is the growth function normalized at matter-
radiation equality, and M0 ¼ ð4π=3Þρ̄=k3osc is the initial
axion minicluster mass, and Aosc is the amplitude of the
axion perturbations at the horizon size.
Recent simulations of axion string network evolution

suggest that Aosc ≈ 0.03, and that the matter power spec-
trum can be extended to subhorizon scales until the
amplitude ΔðkÞ reaches order unity [83,84]. This effect
from string dynamics can be well captured by absorbing the
departure of Aosc from unity through a redefinition of kosc,
which results in a smaller effective axion minicluster mass
M0. Note that we have only considered the white-noise
power spectrum produced by the vacuum misalignment
mechanism, which dominates the power spectrum on small
scales. However, the population of axion miniclusters will
eventually be affected by the formation of larger CDM
halos, which will be discussed later. The mass function of
the axion miniclusters can be calculated using the Press-
Schechter theory:

dnðMÞ
dM

¼
ffiffiffi
2

π

r
ρ̄

M2

���� d ln σd lnM

���� δc
σðMÞ exp

�
−

δ2c
2σðMÞ2

�
: ðB5Þ

Note that the one-halo term can reproduce the white-noise
linear power spectrum in the low-k limit. In this case,
ũðkjMÞ ¼ 1, and the power spectrum is given by
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P1hðkÞjk→0 ¼
1

ρ̄2

Z
dMM2nðMÞ ¼ 1.66×

4π

3

D2
1ðzÞ
k3osc

: ðB6Þ

This has exactly the same scaling as the linear power
spectrum expected from axion white-noise spectrum after
applying the linear growth function, where Plinear ¼
2π2D1ðzÞ2=k3osc. There is a mismatch in the normalization
factor, which is expected, since the one-halo term cannot
account for the entirety of the density fluctuations at large
scales. However, since the relevant scales for us are smaller
than the sizes of the massive CDM halo, the one-halo term
from axion miniclusters is the term that dominates the
power spectrum on the small scales that contribute most to
the signal.
Now we are ready to use the white-noise-only mass

function to obtain the full mass function of axion mini-
clusters and the corresponding nonlinear power spectrum.
Since axion miniclusters formed at earlier times will
eventually be incorporated into massive CDM halos formed
from adiabatic fluctuations, the full mass function in the
late Universe should account for this effect. Here we
assume that the axion miniclusters stop merging with each
other once they fall into massive CDM halos as discussed in
Ref. [18]. Therefore, the full mass function accounting for
the incorporated halo is

dnf
dM

ðzÞ ¼ ð1 − fCDMcol ðzÞÞ dnWN

dM
ðzÞ

þ
Z

z

zeq

dz0
dfCDMcol ðz0Þ

dz0
dnWN

dM
ðz0Þ; ðB7Þ

where dnWN=dM is the white-noise-only mass function of
axion miniclusters and fCDMcol is the collapse fraction of
massive CDM halos, which is calculated according to the
adiabatic initial density fluctuations from inflation. This
mass function accounts for axion miniclusters absorbed by
larger CDM halos at different redshifts. It provides a good
benchmark model for the realistic nonlinear matter power
spectrum of axion miniclusters. We use the Press-Schechter
theory to calculate the collapse fraction of massive CDM
halos, which gives

fCDMcol ðzÞ ¼ erfc

�
δcffiffiffi

2
p

σCDMðMminÞDðzÞ

�
; ðB8Þ

where σCDMðMÞ is the rms of the filtered initial overdensity
field without including the contribution of the white-noise
spectrum from axion string network evolution, and Mmin
corresponds to the least massive CDM halo that can host
axion miniclusters, which is set to 10−2M⊙ in the calcu-
lation. Since σCDMðMÞ only depends onM logarithmically,
the result is not very sensitive to our choice of Mmin.
Inserting this mass function back into Eq. (B1), we can
calculate the nonlinear matter power spectrum induced by
axion miniclusters on very small scales.
The nonlinear matter power spectrum is shown in Fig. 6.

The nonlinear matter power spectrum is slightly suppressed
from the linear extrapolation at k≲ kosc, but it can extend to
k > kosc, since the internal density profiles of axion
miniclusters introduce power on small scales. Since
1=kosc is roughly the size of the smallest axion minicluster

1 halo term
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FIG. 6. The nonlinear matter power spectrum due to axion miniclusters, calculated from the one-halo term in the halo model. The
results are plotted in terms of the dimensionless variables k=kosc and k3oscPðkÞ, so that the results shown here can be applied to all
nonlinear matter power spectra arising from an initial white-noise power spectrum of an arbitrary amplitude in the same cosmology. At
small-k values, the nonlinear power spectrum approaches a constant and behaves in the same way as a white-noise power spectrum. At
high-k values, the nonlinear power spectrum decreases faster than k−2.
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formed from the white-noise linear power spectrum, it is
not surprising that the true power spectrum is extended to
k > kosc once the miniclusters form. However, there might
be a physical cutoff in the nonlinear power spectrum, which
is related to the formation of axion stars [118,119]. A peak
of sufficiently large density will lead to the formation of
Bose-Einstein condensate states called axion stars, which
will be unstable to axion self-interaction if the density
exceeds some critical value. In this work, we conservatively
take 104kosc to be a fiducial cutoff on the nonlinear power
spectrum, with the caveat that there could be interesting
additional power at higher k values than our observable
could probe. However, the nonlinear power spectrum
decreases much faster at higher k, as shown in Fig. 6,
which means the effects may be difficult to detect. The
decreasing matter power spectrum at high k is caused by the
mass density profile, whose Fourier transform ũðkjMÞ
saturates in the low-k limit.
The same calculation can be applied to the scenario of

early matter domination [7]. The characteristic length scale
of DM minihalo collapse produced during an early epoch
of matter domination is related to the comoving horizon
size when the Universe is at the reheating temperature TRH:

kRH ¼ 0.01 pc−1
�

TRH

1 MeV

��
10.75

g�SðTRHÞ
�

1=3
�
g�ðTRHÞ
10.75

�
1=2

:

ðB9Þ

This corresponds to a characteristic DM minihalo mass
MRH ¼ ð4π=3Þρ̄=k3RH. The rms of the linear matter over-
density fluctuations, extrapolated to the present epoch and

filtered over a length scale corresponding to the collapse of
minihalos of mass M, can be expressed as σðM ≲MRHÞ ¼
2.3ðM=MRHÞ−0.66.
The nonlinear matter power spectrum in the scenario of

early matter domination is shown in Fig. 7. The shape of the
nonlinear power spectrum is largely similar to that in the
scenario of axion miniclusters, except for the overall
amplitude at the characteristic comoving wave number,
kosc or kRH, which corresponds to the comoving horizon
size at the epoch of axion oscillation or at reheating,
respectively. The amplitude difference is understandable,
since the axion miniclusters collapse from large inhomo-
geneity sourced by axion isocurvature perturbations, while
early matter domination only causes an extra amount of
growth for the inflationary adiabatic initial fluctuations.

APPENDIX C: SUPERNOVA LENSING

The variance of the distance modulus of Type Ia super-
novae is affected by the weak lensing of intervening matter
and given by [e.g., [120]]

σ2cos ¼
225πΩ2

mH4
0

4½lnð10Þ�2
Z

χs

0

dχ½1þ zðχÞ�2 χ
2ðχs − χÞ2

χ2s

×
Z

∞

0

dk
2π2

kPδðk; zðχÞÞ; ðC1Þ

where χ is the comoving distance to the source. The k
weighting in the integrand of the k integration is the same
as in the linear term in Eq. (15). Type Ia supernovae are
standard candles, so any variance induced externally by

1 halo term
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FIG. 7. The nonlinear matter power spectrum due to DMminihalos produced in a scenario of early matter domination, calculated from
the one-halo term in the halo model. The results are plotted in terms of the dimensionless variables k=kRH and k3RHPðkÞ, with kRH given
by Eq. (B9). At small-k values, the nonlinear power spectrum approaches a constant and behaves as a white-noise power spectrum. At
high-k values, the nonlinear power spectrum decreases faster than k−2, which is qualitatively similar to the case of axion miniclusters.
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weak lensing is constrained to be less than how well their
luminosities can be standardized. In particular, present
observations of Type Ia supernovae constrain any addi-
tional dispersion to σ2cos < ð0.1Þ2 [120]. The weak lensing
contribution from the standard ΛCDM matter power
spectrum is almost detectable as σ2CDM ¼ ð0.05Þ2 [120].
Any additional weak lensing contribution from matter
lumpiness on very small scales could be ruled out by such
observations.
Assuming supernovae are roughly located at z ¼ 1, we

can translate the bound on σ2cos to a constraint on the
dimensionless matter power spectrum in a logarithmic bin:

δPδðkÞk3
2π2

≈ 4.4 × 105
�

k
kpc−1

�
: ðC2Þ

Compared to the sensitivity of the 2-Dish configuration as
shown in Eq. (18), and assuming 0.1 ns timing, δt ¼ 10 yr,
Ds ¼ 1 Gpc andN ¼ 100, the constraint given by Eq. (C2)
is comparable to our sensitivity to a linear time variation in
the FRB arrival time difference for a spatial baseline of
0.14 AU. The supernova constraint is valid only on length
scales larger than that of the supernova photosphere weeks
after the explosion, which corresponds to k≲ 104 pc−1. A
related analysis of the constraints on the matter power
spectrum from weak lensing of supernovae was performed
in Ref. [121], with a focus on power enhancments at
lower wave numbers. We focus on higher wave numbers,
where enhanced nonlinear power can survive via dense
microhalos.
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(2020).
[18] H. Xiao, I. Williams, and M. McQuinn, Phys. Rev. D 104,

023515 (2021).
[19] B. Eggemeier, J. Redondo, K. Dolag, J. C. Niemeyer, and

A. Vaquero, Phys. Rev. Lett. 125, 041301 (2020).

[20] J. A. Dror, H. Ramani, T. Trickle, and K.M. Zurek, Phys.
Rev. D 100, 023003 (2019).

[21] H. Ramani, T. Trickle, and K. M. Zurek, J. Cosmol.
Astropart. Phys. 12 (2020) 033.

[22] V. S. H. Lee, A. Mitridate, T. Trickle, and K. M. Zurek, J.
High Energy Phys. 06 (2021) 028.

[23] K. Van Tilburg, A.-M. Taki, and N. Weiner, J. Cosmol.
Astropart. Phys. 07 (2018) 041.

[24] C. Mondino, A.-M. Taki, K. Van Tilburg, and N. Weiner,
Phys. Rev. Lett. 125, 111101 (2020).

[25] S. Mishra-Sharma, K. Van Tilburg, and N. Weiner, Phys.
Rev. D 102, 023026 (2020).

[26] C. Mondino, A. Tsantilas, A.-M. Taki, K. Van Tilburg,
and N. Weiner, Mon. Not. R. Astron. Soc. 531, 632
(2024).

[27] S. Birrer, A. Amara, and A. Refregier, J. Cosmol. As-
tropart. Phys. 05 (2017) 037.

[28] Y. D. Hezaveh et al., Astrophys. J. 823, 37 (2016).
[29] L. Dai, T. Venumadhav, A. A. Kaurov, and J. Miralda-
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