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We present DE-VAE, a variational autoencoder (VAE) architecture to search for a compressed
representation of dynamical dark energy (DE) models in observational studies of the cosmic large-
scale structure. DE-VAE is trained on matter power spectra boosts generated at wave numbers
k∈ ð0.01–2.5Þ h=Mpc and at four redshift values z∈ ð0.1; 0.48; 0.78; 1.5Þ for the most typical dynamical
DE parametrization with two extra parameters describing an evolving DE equation of state. The boosts
are compressed to a lower-dimensional representation, which is concatenated with standard cold dark
matter (CDM) parameters and then mapped back to reconstructed boosts; both the compression and the
reconstruction components are parametrized as neural networks. Remarkably, we find that a single
latent parameter is sufficient to predict 95% (99%) of DE power spectra generated over a broad range of
cosmological parameters within 1σ (2σ) of a Gaussian error which includes cosmic variance, shot noise,
and systematic effects for a stage IV-like survey. This single parameter shows a high mutual information
with the two DE parameters, and these three variables can be linked together with an explicit equation
through symbolic regression. Considering a model with two latent variables only marginally improves
the accuracy of the predictions, and adding a third latent variable has no significant impact on the
model’s performance. We discuss how the DE-VAE architecture can be extended from a proof of
concept to a general framework to be employed in the search for a common lower-dimensional
parametrization of a wide range of beyond-ΛCDM models and for different cosmological datasets.
Such a framework could then both inform the development of cosmological surveys by targeting
optimal probes, and provide theoretical insight into the common phenomenological aspects of beyond-
ΛCDM models.

DOI: 10.1103/PhysRevD.110.023514

I. INTRODUCTION

Despite its remarkable success in correctly reproducing
cosmological observations, the concordance ΛCDM model
still carries some unresolved questions. In particular, the
nature of its two core components, namely cold dark matter
(CDM) and the cosmological constant Λ, remains a
mystery [1]. For example, assuming Λ as a vacuum energy
density, it is currently unclear how to reconcile its value as
measured by cosmological probes [2] with estimates from
quantum field theory [3], invoking the concept of dark
energy (DE) as the driver of the late-time accelerated
expansion of the Universe. Moreover, in recent years signifi-
cant tensions have emerged between different measurements
of ΛCDM parameters, which could hint at modifications
of the concordance model or could be attributed to exper-
imental systematic effects. These tensions include a ∼5σ
difference between the constraints on the expansion rate

H0 coming from local distance ladder and CMB experi-
ments [4], and a potential discrepancy between the values of
the structure growth parameter S8 measured with large-
scale structure probes and cosmic microwave background
(CMB) experiments [5,6]. Current and upcoming surveys
such as the Vera Rubin Observatory1 [7], Euclid2 [8], the
Nancy Grace Roman Space Telescope3 [9] and the Simons
Observatory4 [10] promise to provide unprecedented in-
sight on the nature of dark matter and dark energy, and will
shed further light on these tensions.
These theoretical issues and observational discrepancies

have motivated a broad variety of alternative models to
ΛCDM (we refer the reader to Refs. [1,11–17] for reviews).
The rich manifold of proposals ranges from dynamical dark
energy and interacting dark sector models to modifications

*davide.piras@unige.ch

1https://www.lsst.org/.
2https://www.euclid-ec.org/.
3https://roman.gsfc.nasa.gov/.
4https://simonsobservatory.org/.
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of general relativity (GR), extra dimensions, and violations
of Lorentz invariance, to name just a few. Attempts
to address the ΛCDM tensions with modifications of
GR also need to comply with stringent tests on small
scales [16,18–22]. On the other hand, such models can
exhibit complex effects that act as screening mechanisms
and suppress local deviations from GR [23–27]; these are
however hard to parametrize, due to their nonlinear nature
(see Ref. [28] for a review). Traditionally, the impact of
the manifold proposals on the matter distribution in the
Universe, as measured by the galaxy correlation function or
its Fourier counterpart (the power spectrum), has been of
particular interest, particularly in light of the aforemen-
tioned upcoming large-scale structure surveys [29–35].
Typically, extensions to ΛCDM introduce additional

parameters and functions to describe the effect of the
proposed modification on cosmological observables. A
variety of approaches have been introduced to develop a
common parametrization for the vast space of models (see
Ref. [28] for a review). In particular, in modified gravity
theories the common approach is to assume a phenom-
enological parametrization framework where the late-time
growth is modified with scale- and time-dependent func-
tions, usually dubbed μ and Σ, which affect the Poisson
equation for the gravitational and the lensing potential,
respectively [32]. In order to agnostically test the plethora
of models mapping onto this framework, one must then
deal with large parameter spaces, and has to choose a
parametric form for the additional functions; in turn, this
can lead to suboptimal modeling choices, while any statis-
tical evidence of such a hugely-extended parameter space is
washed away by the large extradimensionality. For in-
stance, ignoring scale-dependencies such as from Yukawa
forces or nonlinear screening effects, only being agnostic
about the time dependence of μ and Σ essentially already
introduces an infinite number of parameters to constrain.
This grows even further if considering dark sector inter-
action models, where each matter species comes with its
own set of μ and Σ functions. Performing Bayesian
inference in such high-dimensional scenarios gives rise to
parameter degeneracies, as well as being extremely com-
putationally expensive due to the curse of dimensionality,
despite recent advances in more efficient sampling tech-
niques like Hamiltonian Monte Carlo [36,37]. Even with-
out taking into account systematic and observational effects
that must be modeled in large-scale structure analyses, the
number of theoretical parameters in ΛCDM extensions can
grow infinitely due to the additional modifications being
considered. Therefore, being parsimonious and finding a
minimal set of parameters to successfully describe beyond-
ΛCDM models is imperative.
Along these lines of research, Ref. [38] explored a data-

driven parameterization of DE models based on principal
component analysis (PCA). Subsequent work has devel-
oped a similar approach within a Bayesian framework [39],

and applied it in the context of weak lensing, spectroscopic
and CMB surveys [40–42]. More recently, machine learn-
ing algorithms have been proposed to distinguish between
different cosmological models. Reference [43] developed
a deep convolutional neural network (CNN) that can
discriminate between five ΛCDM models with different
values of matter abundance Ωm and matter fluctuations σ8
given noisy convergence mass maps, with a better perfor-
mance than skewness and kurtosis. Reference [44] trained
a CNN on convergence maps to classify between different
fðRÞ gravities with massive neutrinos and ΛCDM, while
Ref. [45] developed the Bayesian Cosmological Network
(BaCoN), a Bayesian classifier that was trained to dis-
criminate between either five different cosmological mod-
els, or between ΛCDM and non-ΛCDM, given their
predicted matter power spectrum at different redshifts with
95% accuracy. More generally, machine learning algo-
rithms have shown great capabilities at extracting and
compressing information from large or high-dimensional
cosmological datasets [46–51]
In this paper, we develop a variational autoencoder

(VAE) to find a low-dimensional representation of a
dynamical dark energy model with two additional free
parameters with respect to ΛCDM; we focus on a single
parametrization model of dynamical DE as a proof of
concept, with the aim of extending our approach to a larger
set of beyond-ΛCDM models in future work. We train the
network on the theoretical matter power spectrum boost5

with respect to the ΛCDM prediction, and design its
architecture and loss function to encourage a disentangled
representation of the extra parameters. We investigate how
many latent variables are needed to reconstruct the power
spectra with sufficient accuracy, and investigate the links
between the latents and the known additional parameters
through the information-theoretic metric of mutual infor-
mation (MI) and symbolic regression (SR). The latter
returns a human-readable equation linking cosmological
parameters and latent variables, which can then inform the
development of theoretical works and new cosmological
observables.
The paper is structured as follows. In Sec. II we describe

the power spectrum boosts that we use to train the machine
learning model, which we present in detail in Sec. III. In
Sec. IV, we show the performance of the model with
varying number of latent variables, and use both MI and SR
to extract insight from the latent space. We discuss our
results in Sec. V, and draw our conclusions in Sec. VI.

II. DATA

As highlighted in the introduction, deviations from the
ΛCDM model modify the expected matter distribution in

5While the power spectrum is not directly observable, it serves
as an observational proxy for our proof-of-concept study, given
its aforementioned importance in cosmological analyses.
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the Universe. Consequently, a particular quantity of interest
given forthcoming surveys is the matter power spectrum
(the Fourier transform of the 2-point matter correlation
function), computed at different wave numbers k and
redshifts z. We focus on the power spectrum boost Bðk; zÞ,
defined as

Bðk; zÞ ¼ Pb-ΛCDM
δδ ðk; zÞ
PΛCDM
δδ ðk; zÞ ; ð1Þ

where PΛCDM
δδ ðk; zÞ is the matter power spectrum predicted

by ΛCDM (with constant dark energy density), while
Pb-ΛCDM
δδ ðk; zÞ represents the corresponding quantity in a

beyond-ΛCDM scenario. As a proof of concept, in this
work we focus on dynamical dark energy with time-varying
equation of state, adopting the most common para-
metrization [52,53]

wðaÞ ¼ w0 þ ð1 − aÞwa; ð2Þ

where a is the scale factor, which introduces two extra para-
meters: w0 and wa. We refer to this model as w0waCDM;
ΛCDM is recovered for w0 ¼ −1 and wa ¼ 0, with current
constraints being statistically consistent with the ΛCDM
values of these parameters [54,55]. We reiterate that, while
in this work we only focus on a single beyond-ΛCDM
model, in future work we plan to train our proposed frame-
work with multiple classes of nonstandard models, as well
as with different cosmological probes.
We generate all matter power spectra using the Code for

Anisotropies in the Microwave Background (CAMB, [56]),
using HMCode to compute the nonlinear corrections
[57–59], in 400 bins in the k-range ð0.01–2.5Þ h=Mpc
and for four redshift values z∈ ð0.1; 0.48; 0.78; 1.5Þ, moti-
vated by a Euclid-like survey. We vary five CDM cosmo-
logical parameters: the matter (Ωm) and baryon energy
density (Ωb), the dimensionless Hubble parameter (h),
the primordial amplitude ðAsÞ and the scalar spectral
index ðnsÞ. We consider a uniform range for all cosmo-
logical parameters, with the intervals reported in Table I.
These correspond to five standard deviations around the
Planck 2018 constraints [60] with each standard deviation
matching Euclid pessimistic forecast results using a com-
bination of weak lensing and spectroscopic galaxy cluster-
ing [61], as in Ref. [45]. We additionally clip these ranges
for Ωb, w0 and wa as indicated in Table I to avoid numerical
instabilities of CAMB.
We assume the same Gaussian noise model on the power

spectra as in Ref. [45], which is based on the expected error
for a Stage IV survey like Euclid [62–64]:

σðk; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4π2

k2ΔkVðzÞ
�
Pδδðk; zÞ þ

1

n̄ðzÞ
�

2

þ σ2sys

s
; ð3Þ

where VðzÞ is the survey volume, n̄ðzÞ represents shot
noise, Δk ¼ 0.055 h=Mpc is the bin width, and σsys ¼
5 Mpc=h is a constant term added in quadrature to account
for any systematic effects. The values for VðzÞ and n̄ðzÞ are
reported in Table II of Ref. [45]. The corresponding noise
on the boosts σBðk; zÞ is obtained via linear error propa-
gation from Eq. (1). We produce a total of 105 boosts; we
reserve 10% of them to validate the model while training,
and another 10% to test our model after training. The
remainder is used to train the machine learning model.
Generating the dataset is a one-time overhead that took
Oð1Þ hour on a single CPU core; in the future, we will
extend our framework to multiple beyond-ΛCDM models
by obtaining the theoretical power spectrum predictions
with the efficient ReACT package [65,66], or the corre-
sponding emulator [67].

III. MODEL

In order to obtain a compressed representation of dark
energy power spectrum boosts, we employ a β-variational
autoencoder (β-VAE, [68–70]). A schematic view of our
DE-VAE model is reported in Fig. 1.
In particular, our model is made of two blocks, an encoder

and a decoder, both parametrized as three layers of 1-D
convolutional neural networks. After each convolutional
layer, we apply the same trainable activation function as
the one described in Ref. [71] and batch normalization [72],
to make training more stable. In the encoder, the convolu-
tional layers are followed by a dense layer with linear
activation function, whose output is a set of 2d variables,
where d is the size of the so-called latent space. These
variables represent the mean and the standard deviation of d
Gaussian distributions. We vary d in our analysis from d ¼ 1
to d ¼ 3, and report the corresponding results in Sec. IV.

TABLE I. Minimum and maximum for the uniform ranges used
to sample the cosmological parameters when generating the
matter power spectra. These are centered around the Planck 2018
best-fit values [60] with a standard deviation from a pessimistic
Euclid forecast [61]. We further limit the Ωb, w0 and wa ranges to
½−2.4; 1.9�, ½−3.1; 3.1� and ½−5; 0.9� standard deviations, respec-
tively, to avoid any numerical instabilities of the Boltzmann
solver we use to generate the power spectra (CAMB [56]).

Parameter Min Max

C
D
M

Ωm 0.27 0.36
Ωb 0.01 0.08
h 0.65 0.69
As 2.08 × 10−9 2.31 × 10−9

ns 0.93 1.01

E
x
te
n
si
o
n

w0 −1.3 −0.7
wa −1.6 0.3
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We sample one point from each latent distribution, and
concatenate the latent variables with the five CDM param-
eters (described in Sec. II and Table I), to encourage the
model to find a representation only of the extension to the
ΛCDM model. The concatenated vector is fed through
the decoder to obtain a reconstructed version D̃ of the input
data D. The complete model is then trained by optimizing
the loss function

L ¼
����D − D̃

σB

����
2

þ βDKL

�
pðzjDÞjjN ð0; 1Þ�; ð4Þ

where j · j represents the l2 norm, DKL½·jj·� indicates the
Kullback-Leibler (KL) divergence between two distribu-
tions, N ð0; 1Þ is a multivariate standard Gaussian distri-
bution, β is a real parameter that we tune to achieve
independent latent variables, and pðzjDÞ is the conditional
distribution of the latent variables given the input data. We
assume that pðzjDÞ is the product of d independent
Gaussian distributions, namely

pðzjDÞ ¼
Yd
i¼1

pðzijDÞ ¼
Yd
i¼1

N
�
μiðDÞ; σiðDÞ	; ð5Þ

where the means μi and standard deviations σi are the
output of the encoder given the input data D. With this
choice, the KL divergence can be computed analytically as

DKL½pðzjDÞjjN ð0; 1Þ� ¼ 1

2

Xd
i¼1

�
σ2i þ μ2i − 1 − 2 log σi

	
:

ð6Þ

Our model thus has to balance the two components of the
loss: while the first part aims to achieve a good recon-
struction error weighted by the uncertainty on the power
spectrum boost, the second piece encourages a disen-
tangled latent space, namely a set of independent latent
variables, each carrying information about the relevant
parameters used to predict the boosts.
The training procedure is analogous to Refs. [73,74]. We

set a batch size of 256, and a starting learning rate of 10−3;
we train the model until the validation loss does not improve
for 50 consecutive epochs, then decrease the learning rate by
a factor of 10, and repeat until the learning rate reaches 10−6.
Our model is trained using the ADAM optimizer [75].
To quantify the dependence between the latent variables

and the cosmological parameters, we estimate their mutual
information (MI), an information-theoretic measure of the
dependence between random variables. Given two random
variables with joint probability density pðx; yÞ, their MI is
defined as

MIðx; yÞ ¼
Z
x

Z
y
pðx; yÞ ln pðx; yÞ

pðxÞpðyÞ ; ð7Þ

where pðxÞ and pðyÞ indicate the marginal distributions,
and ln indicates the natural logarithm, so that MI is
measured in natural units (nat). The MI between two
variables is zero if and only if the two variables are
independent; we refer the reader to Ref. [76] for a complete
review of MI and its properties. We employ the GMM-MI
library [77], which provides a robust and efficient estimator
of MI and includes the uncertainty due to the finite sample
size, to obtain MI estimates. We also use GMM-MI to
ensure that the latent variables are disentangled: we tune β
until we reach a MI between latent variables ofOð10−3Þ nat

FIG. 1. Schematic view of the DE-VAE model employed in this work. The input data consist of power spectrum boosts, as defined in
Eq. (1), produced at four different redshift bins and for wavenumbers k∈ ð0.01–2.5Þ h=Mpc. These boosts are compressed by an
encoder, parametrized with convolutional neural networks, to a set of disentangled latent variables (in red). These variables are then
concatenated with CDM parameters (in blue) and transformed back to power spectrum boosts through the decoder. All model details are
reported in Sec. III.
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or less. Finally, in the case d ¼ 1 we further search for an
explicit connection between the latent variable and the
ðw0; waÞ parameters using symbolic regression, which fits
multiple analytic equations to the data through genetic
algorithms, as implemented in the PySR library [78].

IV. RESULTS

We first report the accuracy of the reconstructed test
power spectra Pb-ΛCDM

δδ ðk; zÞ when varying the number of
latent variables from d ¼ 1 to d ¼ 3. We compute the
predicted spectrum Pb-ΛCDM;pred

δδ ðk; zÞ by multiplying the
output of the decoder, considered noiseless, by PΛCDM

δδ ðk; zÞ;
we then compare the predicted and true power spectra,
assuming the uncertainty on the power spectra to be as
in Eq. (3). In Fig. 2, we show the 68, 95, and 99 percentiles
of the statistical significance,

Significanceðk; zÞ ¼
��Pb-ΛCDM;pred

δδ ðk; zÞ − Pb-ΛCDM
δδ ðk; zÞ��

σðk; zÞ ;

ð8Þ

which represents the accuracy of the prediction in units of
the power spectrum error across the test set, with σðk; zÞ
given by Eq. (3). We also ensure that when d > 1 the latent
variables are disentangled, i.e. that their MI is Oð10−3Þ nat
or less. Even in the case d ¼ 1, we encourage a regularized
latent space by setting β ¼ 0.01.
The trained model has a similar performance in all three

cases. With one latent variable (d ¼ 1, top panel), the
percentile plot shows that 95% of the model predictions
fall within less than 2σ of the observational error for all
wave numbers and redshift bins, with a particularly good
performance at z ¼ 0.48. Adding a second latent variable

FIG. 2. Percentile accuracy for the DE-VAE model trained with different numbers of latent variables d: (a) d ¼ 1, (b) d ¼ 2, and
(c) d ¼ 3. These results are obtained for wave numbers k∈ ð0.01–2.5Þ h=Mpc and redshift values z∈ ð0.1; 0.48; 0.78; 1.5Þ. The
significance is computed using Eq. (8), which compares the test power spectra with the predictions from the model, assuming both the
predicted and the ground truth power spectra have the same error as in Eq. (3). The plots show that 99% of the model predictions fall well
within 1σ (2σ) of the observational error for most (all) cases. The dashed horizontal lines in each panel correspond to 3σ.
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(d ¼ 2, middle panel) only marginally improves the model
accuracy, which is consistent with the case of three latent
variables (d ¼ 3, bottom panel). This suggests that adding
a third independent latent variable has no impact on the
model’s performance: this is in line with the expectations,
given that only two additional parameters are used to
generate the training data.
To further interpret these results, in Fig. 3 we report the

MI values between the latent variables, and between the
latent variables and the dynamical dark energy parameters
w0 and wa. We refer to each latent variable as A, B, or C,
with a subscript to indicate the dimensionality of the latent
space. In the case with d ¼ 1, the single latent variable
Ad¼1 shows a high MI (i.e. significantly higher than 0) with
both w0 and wa, suggesting that Ad¼1 carries information
on a combination of the two dark energy parameters. This
single variable is effectively capable of predicting dynami-
cal dark energy power spectra, with 95% of the predictions
falling within 1σ of the observational error, increasing to
99% for z > 0.1, as we showed in the upper panel of Fig. 2;
we further explore the links between these variables in
Sec. IVA. When training a model with two disentangled
latents (Ad¼2 and Bd¼2), these show a significant MI with
both w0 and wa, with Ad¼2 in particular capturing most of
the information content. Moreover, Ad¼2 has a high MI
with Ad¼1: this hints at the fact that, when allowing an extra
latent variable, the model only learns small corrections on

top of the d ¼ 1 model, as demonstrated by the slightly
improved accuracy in the middle panel of Fig. 2 as well.
Training a model with a third disentangled latent variable
(Cd¼3) shows no advantage, since Cd¼3 carries no infor-
mation content about the DE parameters, and is completely
independent from all other latent variables. This is con-
firmed in the bottom panel of Fig. 2, where we show that
adding a third latent variable has minimal impact on the
accuracy of the prediction of the model.

A. Symbolic regression in latent space

We further investigate the link between the dynamical
DE parameters (w0, wa) and the single latent variable Ad¼1

using symbolic regression. Without a direct link, given w0

and wa one would need to create the corresponding power
spectrum boost and pass it through the encoder to get the
corresponding latent variable. By obtaining an explicit
equation, we can both bypass the encoder (which we could
achieve with another neural network, too), and reuse the
parametrization in other contexts, e.g. for studies looking at
other observables beyond the power spectrum, as well as
for the development of new theoretical models.
We fit PySR with default parameters on a subset of 104

training data points; we tested that the results do not change
when increasing the number of iterations, or when using
more data. The best equation we obtain according to the
PySR score (0.92 on the test set), which balances the
equation’s accuracy and its complexity, is

Ad¼1ðw0; waÞ ¼ w2
0 þ

ewaþcosðw0Þ

w0

þ ecosð1Þ − 1: ð9Þ

Note that we have manually rescaled the equation so that,
for ΛCDM, Ad¼1ðw0 ¼ −1; wa ¼ 0Þ ¼ 0. We show the 3D
distribution of points for the test set, together with the graph
of Eq. (9), in Fig. 4. If we use this equation to predict the
value of the latent variable instead of the encoder, the 99%
level of the power spectrum predictions can reach up to 5σ
deviations for the test set described in Table I; this is to be
expected, since symbolic regression tends to sacrifice
accuracy in favor of simpler expressions [78]. However,
if we restrict ourselves to spectra generated within three
standard deviations of the Planck best-fit values (instead
of five as the training and test data),6 we show that this
equation actually achieves an acceptable performance, with
the percentile accuracy shown in Fig. 5. We also tested that
we obtain the same equation if we allow all parameters
(CDMþ DE) to be given as input variables to predict Ad¼1,
further confirming that the latent variable only depends on
the DE parameters.

FIG. 3. Mutual information (MI) between dark energy (DE)
parameters w0 and wa and latent variables. We consider the
DE-VAE model trained with different numbers of latent variables
d, and indicated with the letters A, B, or C. When d ¼ 1, the only
latent variable Ad¼1 shows a high MI (i.e., significantly higher
than 0) with the DE parameters. Adding a second disentangled
variable (Ad¼2 and Bd¼2) slightly improves the predictions of the
power spectrum (as shown in Fig. 2), and still shows a significant
MI with the DE parameters. When d ¼ 3, the third latent variable
(Cd¼3) is essentially unused, showing no MI with either the DE
parameters or any other latent variables. All values lower than
0.01 nat are indicated with a zero, while we omit the MI values
in the gray squares. All MI uncertainties are negligible in this
instance.

6In this case as well, we further limit the ranges ofΩb and wa to½−2.4; 1.9� and ½−3; 0.9� standard deviations, respectively, to
avoid numerical instabilities, as we describe in Table I.
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V. DISCUSSION AND OUTLOOK

Using our DE-VAE framework, we demonstrated that a
single variable is sufficient to accurately predict the theo-
retical matter power spectrum for a particular beyond-
ΛCDM model with two additional free parameters.

The architecture benefits from its representation learning
formulation, which allows us to explore the lower-
dimensional latent space and obtain further insight on the
nature of the training data. We showcased the use of mutual
information as an effective tool to interpret the latent space;
moreover, we employed symbolic regression (SR) to obtain
an analytic equation linking the cosmological parameters
with the latent variable. We envision that our framework
can be employed and extended in the following ways.

(i) Given observational constraints on the matter power
spectrum, it is possible to use the DE-VAE decoder
within a Markov chain Monte Carlo (MCMC)
algorithm to sample the posterior distribution of
the latent space (and CDM) parameters, and thus
effectively classify the observed spectrum as either
in agreement with ΛCDM or not. The value of the
latent variable corresponding to ΛCDM can be
obtained by passing constant unitary boosts at all
redshifts and wave numbers through the encoder.
It would then be straightforward to constrain the
latent parameter Ad¼1 and assess the statistical
significance of any deviations from ΛCDM directly
in latent space.

(ii) The particular latent variable we found with
DE-VAE and the corresponding parametrization
obtained using SR are optimized for a Euclid-like
power spectrum analysis, and capture a particular
degeneracy of the w0waCDM model in predicting
theoretical matter power spectra (indicated in red in
Fig. 4). We reiterate that in our framework we are
not considering systematic and observational effects
from which we are not necessarily independent:
these would in principle require training a different
VAE for each choice of nuisance parameters, and
could introduce different degeneracies based on
redshift, scale and other gravitational effects. On
the other hand, our goal is to capture degeneracies at
the theory level, both within a single model and
across multiple ΛCDM extensions. The latent var-
iable we found for w0waCDM in this work can be
interpreted in the same vein as S8 ¼ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
,

i.e. as a parameter constructed to be particularly
well-constrained by a certain dataset. Given that our
neural architecture is easily adaptable to different
input data, it will be therefore interesting to train our
framework on other probes (e.g. on CMB spectra or
weak lensing maps). While this would require to
produce a new dataset (possibly including additional
observational effects) to train another VAE, it could
yield a latent variable capturing an orthogonal
degeneracy with respect to the one we found in this
work, and therefore highlight which summary sta-
tistics should be targeted to break degeneracies when
constraining beyond-ΛCDM models. By analyzing
different datasets and considering sky maps rather

FIG. 4. Scatter plot of w0, wa and the d ¼ 1 latent variable for
the test set points (blue), together with the graph of the symbolic
regression equation reported in Eq. (9) (orange). While only
accurate within the 2σ level for 95% of the predictions on a
restricted dataset (see Fig. 5), the learned analytic expression can
be used to bypass the encoder and predict the value of the latent
variable given w0 and wa. The red line shows the intersection
between the symbolic regression and Ad¼1 ¼ 0 planes; the latter
plane describes a degeneracy with ΛCDM, which we further
discuss, together with broader applications of our framework,
in Sec. V.

FIG. 5. Same as Fig. 2(a), but with the latent variable predicted
using Eq. (9) from w0 and wa, and tested on 1000 boosts
generated within three standard deviations of the fiducial Planck
values (instead of the five standard deviations considered in the
rest of this work).
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than 2-point functions, we aim to obtain results
which are complementary with respect to the matter
power spectrum, as well as retain the information
that is lost when compressing the full field into
summary statistics [44]. In turn, this can inform the
development of future cosmological missions, that
could then target these particular parameters and
probes to maximize their performance.

(iii) When repeating the entire analysis using the
EuclidEmulator2 [EE2, [79] ] instead of
HMCode, we find that one latent variable is still
sufficient to predict the nonlinear matter power
spectra with good accuracy. While the equation
found by SR when using the EE2 to generate the
training data is different due to the stochasticity of
the genetic algorithm, we verified that Eq. (9) still
provides a decent fit to the mapping between
ðw0; waÞ and the latent variable. Moreover, we note
that the degeneracy direction expressed by Eq. (9) is
aligned with constraints obtained with the linear
matter power spectrum [80], where it is expected
that w0waCDM models with identical linear growth
factors yield indistinguishable linear power spectra.
The degeneracy is then partially preserved since
quasilinear effects can be described as a function of
the linear power spectrum to a good extent [81]. The
degeneracy captured by our approach is thus robust
to the choice of the nonlinear model, while being in
agreement with results at the linear level. It can
therefore be traced back to a theoretically well-
understood phenomenological source, which proves
the result to be both meaningful and interpretable.
While for the particular model considered in this
work this degeneracy is known, it suggests that
similar (and perhaps more complex) degeneracies,
which are theoretically interpretable, can be identi-
fied in the larger model space. They can then be
utilized for new theoretically- and phenomenologi-
cally informed parametrizations.

(iv) By showcasing the validity of our approach with a
single model for which the underlying ground truth
is known, we anticipate being able to train an
analogous model on a broader variety of spectra
obtained assuming different beyond-ΛCDMmodels,
including Hu-Sawicki fðRÞ [82] and dark sector
interactions [83], to be used as training data. The
power spectrum predictions for these models can be
efficiently obtained with the ReACT package [65–67].
In this way, we expect to capture a common low-
dimensional parametrization of a multitude of
beyond-ΛCDM scenarios; in turn, this can be used
to facilitate the exploration of beyond-ΛCDM mod-
els when performing MCMC analyses, and inform
the theoretical development of models which try
to unify these different extensions. This highlights

another advantage of our framework, since perform-
ing an MCMC analysis on each of these models
separately would clearly require many more itera-
tions than running a single MCMC on the common
extension found in latent space.

VI. CONCLUSIONS

We developed DE-VAE, a framework to search for a
compressed representation of beyond-ΛCDM (Λ cold dark
matter) models using representation learning. As a first
proof-of-concept study, we focused on dynamical dark
energy (DE) as a straightforward extension to the ΛCDM
cosmological model. In particular, we considered the
archetypal two-variable parametrization of the DE equation
of state, and produced the corresponding matter power
spectrum boosts as in Eq. (1). These boosts were used
as training data of a β-variational autoencoder (β-VAE)
model, summarized in Fig. 1, where we encouraged a
d-dimensional disentangled compressed representation
independent from CDM parameters.
We found that a single latent variable, in combination

with five CDM parameters, can predict the power spectra
of dynamical DE at different redshifts and up to k ¼
2.5 h=Mpc within a 1σ (2σ) error for 95% (99%) of the
data; the error, reported in Eq. (3), is computed combining
cosmic variance, shot noise and possible systematic effects
for a Stage IV-like survey. This single latent variable shows
a high mutual information (MI) with the parameters of
the DE equation of state, confirming that the DE-VAE
has learned a meaningful representation of the boosts.
Adding a second independent latent variable only margin-
ally improves the prediction accuracy, with both latent
variables showing a significant MI with the DE parameters.
Finally, we trained a model with d ¼ 3 and showed that the
third independent latent variable has noMI with other latent
variables and with the DE parameters, confirming that it
has no significant impact on the prediction accuracy. In the
d ¼ 1 case, we also demonstrated the use of symbolic
regression to obtain an explicit equation linking the DE
parameters and the latent variable, which can be used to
facilitate the power spectrum prediction by skipping the
encoder compression, and which sheds further light on the
nature of the latent variable.
We highlighted a range of applications and future

developments of our framework. To mention a few, these
include applying DE-VAE to different cosmological data-
sets, to explore which probes should be targeted by next-
generation surveys to break parameter degeneracies, as
well as training the architecture on multiple extensions of
ΛCDM, to shed light on their common aspects and inform
the development of the underlying theories. We will
explore these avenues in future work. The DE-VAE
architecture and the data generated to train and test the
model are available upon request.
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