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We study dark matter production from mediator decays in scenarios with an epoch of early matter
domination. Particles that mediate interactions between dark matter and the standard model particles are
kinematically accessible to the thermal bath as long as their mass is below the reheating temperature of the
Universe after inflation. Decay of on-shell mediators can then lead to copious production of dark matter
during early matter domination or a preceding radiation-dominated phase. In particular, for mediators that
are charged under the standard model, it can exceed the standard freeze-in channel due to inverse
annihilations at much lower temperatures (often by many orders of magnitude). The requirement to
obtain the correct relic abundance severely constrains the parameter space for dark matter masses above a
few TeV.
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I. INTRODUCTION

While there are many lines of evidence for the existence
of dark matter (DM) in the Universe [1], the identity of DM
is an outstanding problem at the interface of particle
physics and cosmology. Explaining the observed DM
abundance is another challenge that in addition depends
on the details of the thermal history of the early Universe.
Thermal freeze-out in a radiation-dominated (RD) Universe
is a simple and attractivemechanism that canyield the correct
relic abundance if the (thermally averaged) DM annihilation
rate takes the specific value hσannvi ¼ 3 × 10−26 cm3 s−1.
However, in nonstandard cosmological histories, the correct
DM abundance can be obtained for much larger or smaller
values of hσannvi [2,3].
It is known that well-motivated classes of models arising

from string theory generically lead to nonstandard histories
that involve one or more epochs of early matter domination
(EMD) [4]. In general, an EMD phase arises when a
matterlike component dominates the energy density of the
Universe and eventually decays to establish a RD Universe
prior to big bang nucleosynthesis (BBN). The matter
equation of state can be due to coherent oscillations of a

scalar field, like a string modulus, that is displaced from the
minimum of its potential during inflation [5–8]. It can also
arise from long-lived nonrelativistic quanta produced in the
postinflationary Universe [9–12]. In fact, it has been
recently shown that a visible-sector long-lived particle
with a weak-scale mass may achieve this [13,14].
The indirect DM searches have set stringent constraints on

theDMannihilation rate, most notably the recent Fermi-LAT
results from dwarf spheroidal galaxies [15] and Milky Way
satellites [16]. An analysis of these results has pushed the
upper limit on hσannvi below the nominal value of 3 ×
10−26 cm3 s−1 for DM masses below 20 GeV in a model-
independent way [17] (larger masses can be excluded for
specific annihilation channels). The increasingly tighter
experimental bounds therefore warrant studying cases with
a small DM annihilation rate. If hσannvi is very small, inverse
annihilation will never be in thermal equilibrium and DM
production occurs in the freeze-in regime.
Freeze-in production during EMD has been studied in

the literature [18–22] (for a detailed review, see Ref. [23]).
These studies have mostly focused on the latter part of an
EMD epoch where evolution of radiation is nonadiabatic. It
has been noted that earlier stages of the thermal history can
significantly contribute to freeze-in production and thereby
dominate the DM relic abundance (for example, see
Ref. [24]). This is an important consideration because an
epoch of EMD is typically preceded by other phases in the
postinflationary history (notably the RD phase established
at the end of inflationary reheating), especially for the last
epoch of EMD that can end just before BBN.
A period of EMD starting with a non-negligible initial

amount of radiation goes through an adiabatic phase during
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which T ∝ H2=3, as opposed to T ∝ H1=4 in the non-
adiabatic phase. In fact, as we will see, the Universe is
generally in this adiabatic phase for most of the EMD
period, in terms of the temperature evolution. The faster
redshift of temperature in this phase then implies that
particles that mediate DM interactions with the standard
model (SM) particles can be kinematically accessible to the
thermal bath during EMD (or in a preceding phase) even if
they are very heavy. The mediator particles can indeed
reach equilibrium if their couplings to the SM particles are
not too small, and hence their decay can be an important
source of DM production.
In this work, we present a detailed study of the

contribution from on-shell mediator decays to the DM
relic abundance in the freeze-in regime. By paying special
attention to the adiabatic phase of EMD, we will show that
these decays can easily dominate over the standard freeze-
in production from inverse annihilations at much lower
temperatures by many orders of magnitude. In fact,
mediator decays alone can easily lead to DM overproduc-
tion in large parts of the parameter space. As we will see,
the parameter space is tightly constrained for DM masses
above a few TeV. The resulting constraints are milder and
the allowed parameter space will extend to smaller DM
masses if DM and the mediator belong to a hidden sector
with its own gauge symmetry.
The rest of this paper is organized as follows. In Sec. II,

we introduce the general picture for mediator coupling to
DM and SM particles. In Sec. III, we discuss some
important details of EMD epochs. In Sec. IV, we present
our main results and identify the allowed region of the
parameter space in order for mediator decays not to
overproduce DM. We also comment on how our results
are modified in the case of hidden sector DM models. We
conclude the paper in Sec. V. Some details of our
calculations are discussed in the Appendixes.

II. THE SETUP

The main particles that are of interest in this work are the
DM candidate χ and the mediator of its interactions with the
SM particles X. Our focus is on DM production from X
decay, and hence we consider dimension-four operators
that are linear in X and involve χ and the SM particles
(collectively denoted by ψ):

h1O4ðXχψÞ; h2O4ðXχχÞ; h3O4ðXψψÞ: ð1Þ

Here, hi are dimensionless couplings. We assume that X is
charged under the SM gauge group, while χ may or may not
be a SM singlet. All operators in Eq. (1) are invariant under
the SM gauge symmetry and other symmetries that a given
model may possess (for example, the symmetry that is
responsible for stability of DM). For clarity, we consider
some specific forms of operators in Eq. (1) that arise in
well-motivated particle physics models:

(1) X a scalar and χ a fermion. In this case, one can
have the following types of interactions (using the
four-component notation for fermions):

h1Xχ̄ða1 þ b1γ5Þψ þ H:c:;

h2Xχ̄ða2 þ b2γ5Þχ þ H:c:;

h3Xψ̄ða3 þ b3γ5Þψ þ H:c:; ð2Þ

where ψ are the SM fermions.
Supersymmetric extensions of the SM with R-

parity conservation give rise to the first term in
Eq. (2), while R-parity implies a2 ¼ b2 ¼ a3 ¼
b3 ¼ 0. In these models, the lightest supersymmetric
particle is stable and hence a DM candidate (for a
review, see Ref. [25]). Then X can be any scalar
superpartner that is coupled to the neutralino DM.We
note that bothX and χ are charged under theSM in this
case.
Another example is the model with GeV-scale DM

proposed in [26], which gives rise to the first and third
terms in (2) with a1 ¼ b1 ¼ a3 ¼ b3 ¼ 1=2. In this
case X is a color-triplet and isosinglet scalar that is
coupled to the up-type and down-type RH quarks (as
well as DM), and χ is a SM singlet fermion.

(2) X a gauge boson and χ a fermion. In this case, one
can have interactions of the following type:

h1Xμχ̄ða1 þ b1γ5Þγμψ þ H:c:;

h2Xμχ̄ða2 þ b2γ5Þγμχ þ H:c:;

h3Xμψ̄ða3 þ b3γ5Þγμψ þ H:c:; ð3Þ

with ψ denoting the SM fermions. This happens, for
example, when the SM gauge symmetry is extended
and X is a gauge boson of the new symmetries. An
example is the Uð1ÞB−L extension of the SM [27]
(also see Ref. [28]) that leads to the second and third
terms in (3) with b2 ¼ b3 ¼ 0. In this case, the Z0

B−L
is coupled to all SM fermions as well as the RH
neutrinos, the lightest of which can be the DM
candidate [29].1

Equations (2) and (3) are meant as illustrative examples,
rather than a full list, of dimension-four operators in Eq. (1).
The important conclusion is that, when mχ ≪ mX, the first
two operators in Eq. (1) generally result in the following
partial decay width:

ΓX→χ ≃ C1 ×
h2

8π
mX; ð4Þ

1In the supersymmetric B − L model, the lightest RH sneutrino
can be the DM particle (for example, see Refs. [30–32]). In this
case the relevant dimension-four operator has the form
igB−LXμχ

�
∂
μχ þ H:c:, where gB−L is theUð1ÞB−L gauge coupling.
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where h2 ¼ h21 þ h22, and C1 is a factor whose exact value
depends on the nature of X and χ and the details of their
couplings. In the following, we will take C1 ∼ 1. Given that
X is in equilibrium with the thermal bath at T ≥ mX,
because of its SM charges, its decay can lead to copious
production of DM even if h is very small.
The interactions in Eq. (1) also lead to annihilation/

inverse annihilation χχ ↔ ψψ̄ and scattering χψ ↔ χψ
processes mediated by X. The former contributes to χ
production from the thermal bath. However, X decay
typically dominates χ production as long as the Universe
starts at a temperature T ≫ mX so that on-shell X particles
exist in sufficient abundance. This is because Γann ≪ ΓX→χ ,
where Γann ¼ hσannvinχ .
We note that if Γann ≪ HðT ∼mχÞ, the comoving

number density of DM particles produced from X decay
will remain frozen. The annihilation rate at energies E ∼mχ

depends on the dimension of the effective operator χχψψ
and its Lorentz structure. For example, assuming S-wave
dominance, at E ≪ mX we have

hσannvidim−5 ≃ C2 ×
h4

16πm2
X
; ð5Þ

hσannvidim−6 ≃ C2 ×
h4E2

16πm4
X
; ð6Þ

where C2 is a multiplicity factor.
One final comment is in order. In general, nonrenorma-

lizable operators mediated by X can significantly contribute
to production of DM in the freeze-in regime. Such con-
tributions, however, are typically subdominant to X decay
due to the higher order of corresponding operators (see
Appendix B). Our main goal here is to demonstrate that
mediator decays set tight constraints on the parameter space
in order to not overproduce DM. Including additional
contributions can further restrict the allowed regions of
the parameter space.

III. EARLY MATTER DOMINATION:
GENERALITIES

In this work, we consider EMD that starts at some point
after the completion of inflationary reheating. The matter
component ϕ carries an energy density ρϕ, and its decay at
the rate Γϕ feeds the radiation energy density ρr. The
evolution of ρr and ρϕ is governed by the following system
of Boltzmann equations:

dρr
dt

þ 4Hρr ¼ Γϕρϕ;

dρϕ
dt

þ 3Hρϕ ¼ −Γϕρϕ; ð7Þ

where the Hubble rate H is set by the total energy
density ρtot ¼ ρϕ þ ρr.
We take the moment when ρϕ ¼ ρtot=2 to be the onset of

the EMD epoch. We denote the Hubble rate and the
temperature at this time by HO and TO, respectively.
Given that ρr ¼ ρtot=2, we have

HO ¼
�
π2g�O
45

�
1=2

�
T4
O

M2
P

�
1=2

; ð8Þ

where MP is the reduced Planck mass and g� counts the
relativistic degrees of freedom at the time indicated by the
subscript. Note that in the most extreme case we have TO ≃
Treh (where Treh is the inflationary reheat temperature). The
EMD epoch that starts at H ≃HO consists of two phases.
Adiabatic phase. In this phase, the initial radiation

dominates over that produced from ϕ decay. As a result,
T ∝ a−1, with a being the scale factor, similar to RD even
though the Universe is in an EMD epoch where a ∝ t2=3.
During this stage, the relation between H and T follows:

H ≃
�
π2g3=4� g1=4�O

90

�1=2 T3=2T1=2
O

MP
: ð9Þ

This phase eventually ends when the temperature drops to
the following value:

T tr ≃
�
g4�Rg�O
g5�

�
1=20

ðT4
RTOÞ1=5: ð10Þ

Nonadiabatic phase. There is a transition to the non-
adiabatic phase at T tr where radiation produced by ϕ decay
becomes dominant over the preexisting amount. During
this stage, we have

H ≃
5g�
6g1=2�R

�
π2

30

�
1=2

�
T4

T2
RMP

�
; ð11Þ

which implies that T ∝ a−3=8. This stage extends all the
way from T ≃ T tr to the end of the EMD epoch when
H ∼ Γϕ and T ≃ TR.
This discussion holds even if some nonradiation com-

ponent with an equation-of-state parameter 0 < w ≤ 1
makes the dominant contribution to ρtot=2 at the onset of
EMD, provided that it is not converted into radiation. Note
that a component withw > 0 is redshifted faster than matter,
and hence will become increasingly subdominant during
EMD without any need to decay to radiation. If it feeds
radiation, on the other hand, entropy will increase at a faster
rate during EMD thereby leading to a shorter adiabatic phase
and a higher T tr than what is mentioned above.
To illustrate the relative duration of the two stages of

EMD, we consider two generic possibilities regarding the
origin of such an epoch: coherent oscillations of a scalar
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field that is displaced from the minimum of its potential,
and nonrelativistic particles produced from the ther-
mal bath.
(1) Coherent oscillations. Consider a scalar field ϕ with

mass mϕ (a notable example is string moduli [4]). If
mϕ ≪ Hinf , where Hinf is the Hubble rate during inflation,
then ϕ can be significantly displaced from the minimum of
its low-energy potential during inflation. It typically starts
to oscillate about this minimum when H ≃mϕ and its
coherent oscillations behave like nonrelativistic particles of
mass mϕ. If the Universe is RD at this time, and the initial
fractional energy density of ϕ is α, coherent oscillations
start to dominate when the Hubble expansion rate is

HO ≃ α2mϕ: ð12Þ

This signals the start of an EMD epoch when the temper-
ature reaches the following value:

TO ≃ α

�
45

π2g�O

�
1=4

ðmϕMPÞ1=2: ð13Þ

On the other hand, if the Universe is still dominated by
inflaton oscillations when H ∼mϕ, we will instead have

HO ≃ α2Hreh; ð14Þ

whereHreh < mϕ is the Hubble rate when a RD Universe is
established after inflationary reheating. Therefore, given
that α≲ 1,2 the temperature at the onset of the EMD epoch
follows:

TO ≲
�

45

π2g�O

�
1=4

ðmϕMPÞ1=2: ð15Þ

(2) Nonrelativistic quanta. Consider a (bosonic or
fermionic) particle ϕ from decay or scattering processes
in the thermal bath. The produced quanta become non-
relativistic at T ∼mϕ. If the fractional energy density of ϕ
at this time is α, its quanta dominate the Universe when the
Hubble expansion rate is

HO ∼ α2
�
π2g�mϕ

45

�1=2 m2
ϕ

MP
: ð16Þ

We note that α≲ g−1�mϕ
, with the maximum occurring when

ϕ reaches thermal equilibrium. Thus, in this case, we have

TO ≲
�
g3�mϕ

g�O

�1=2

mϕ: ð17Þ

To get a feeling of the relative duration of the adiabatic
and nonadiabatic phases, let us consider the mϕ ≃
102–106 GeV mass range. The upper and lower limits
correspond to the cases when ϕ is a string modulus [6,7]
and a weak-scale visible sector particle [13,14], respec-
tively. Equations (15) and (17) then give us

TO∼1010−1012 GeV ðCase1Þ;
TO∼1−104 GeV ðCase2Þ; ð18Þ

where we have used g� ∼Oð100Þ as in the case of the SM.
We therefore see that TO can be within a vast range
spanning many orders of magnitude.
The important point is that T tr is in general not extremely

larger than TR. It follows from Eq. (10) that T tr=TR scales
as ðTO=TRÞ1=5. For example, for TR ∼ 10 MeV, we find

T tr∼100−300GeV ðCase1Þ;
T tr∼0.03−10GeV ðCase2Þ; ð19Þ

We see that while TO is typically much higher in case 1, see
Eq. (18), in both cases the majority of the EMD epoch is
spent in the adiabatic phase T tr ≲ T ≲ TO.

IV. RESULTS

We consider the evolution of the χ number density
produced from the decay of X in the bath, as described by
the following Boltzmann equation [18,21,33,34]:

dnχ
dt

þ 3Hnχ ¼ ΓX→χ
neqX
neqχ

K1ðmX=TÞ
K2ðmX=TÞ

ðneqχ − nχÞ; ð20Þ

where Ki are the modified Bessel functions of the second
kind. The superscript “eq” denotes the corresponding
equilibrium number density. Note that X reaches equilib-
rium with the thermal bath at T ≫ mX due to its SM
charges. nX will follow its equilibrium value at T < mX if
annihilation to the SM particles is efficient or in the
presence of an efficient decay mode via the hXψψ term
in Eq. (1).
In general, the χ number density will become frozen at

some time in the cosmological history. Depending on the
values of the parameters, this can occur in any of the phases
described in the previous section. Furthermore, the freezing
process may proceed as a freeze-in, where χ never achieves
equilibrium with the bath, or a freeze-out, where the
production rate is sufficient to reach equilibrium, with χ
subsequently decoupling.
We can analytically estimate the abundance of χ pro-

duced from X decay, expressed as the number density
normalized by the entropy density nχ=s, in the following
way (see Appendix A for details). We first define the2In realistic situations, we typically have α ≳Oð10−2Þ [8].
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temperature of the background bath at the time when the χ
number density freezes as Tf . Beyond this point the number
density is only redshifted with expansion as nχ ∝ a−3. We
express the number density nχ at this time as

nχðTfÞ ¼ FðγχÞneqχ ðTfÞ; ð21Þ

where the function FðγχÞ accounts for the possibility of not
reaching equilibrium, with γχ ≡ ΓX→χ=HðT ¼ mXÞ. We
will typically consider Tf ≫ mχ such that the equilibrium
number density above is given by the relativistic expression
proportional to T3

f .
In general, the χ number density produced from X decay

can become frozen at different stages of the cosmological
history described in the previous section.
(1) TR < mX ≲ T tr. In this case, nχ freezes during the

nonadiabatic phase of EMD, and the final DM abundance is
given by

�
nχ
s

�
NA

≃ 0.53
gχg�R
g2�f

FðγχÞ
�
TR

Tf

�
5

; ð22Þ

where gχ is the number of degrees of freedom in χ.
(2) T tr < mX ≲ TO. In this case, nχ freezes during the

adiabatic phase of EMD and the DM relic abundance
follows:

�
nχ
s

�
A
≃ 0.28

gχ
g�f

FðγχÞ
�
TR

TO

�
: ð23Þ

(3) TO < mX ≲ Treh. In this case, nχ freezes during the
RD phase preceding the EMD epoch. Given that the frozen
nχ and s are both redshifted ∝ a−3 during this RD phase
and the adiabatic phase of EMD alike, we have

�
nχ
s

�
RD

≃ 0.28
gχ
g�f

FðγχÞ
�
TR

TO

�
: ð24Þ

If γχ ≪ 1, production of χ will not be strong enough to
reach equilibrium and the number density of χ saturates to
nχ ≈ 7γχn

eq
χ . The temperature at the time of χ freeze-in in this

case falls roughlywithin the rangemX=10≲ Tf ≲mX=5. On
the other hand, if equilibrium is reached, we have γχ ≳ 1 and
FðγχÞ ¼ 1, with the temperature at χ freeze-out not being
limited to the previous range.
In the case that χ reaches equilibrium in the nonadiabatic

phase (or maintains it through the transition from the
adiabatic phase), we can estimate the decoupling temper-
ature using the rhs of the Boltzmann equation, Eq. (20):

ΓX→χ
gXm2

X

gχm2
χ

K1ðmX=TfÞ
K2ðmχ=TfÞ

≈ 3HðTfÞ; ð25Þ

where we have made use of neqχ ðTÞ ¼
ðgχ=2π2Þm2

χTK2ðmχ=TÞ, and similarly for neqX ðTÞ.3 Using
this to find Tf , which we identify as the decoupling temper-
ature in this case, we can obtain the abundance at the end of
EMD ðnχ=sÞR for cases where χ remains relativistic and in
equilibrium in the nonadiabatic phase at temperatures below
mX. We note that if equilibrium is reached during the
adiabatic phase, but equilibrium is not maintained through
the transition (i.e., decouplingoccurs beforeT tr), then there is
no dependence on the decoupling temperature, as seen in
Eq. (23) above.
With Tf determined, we can now compare the frozen χ

abundance to the observed DM relic abundance in order to
constrain such scenarios:

nχ
s
≲
�
nχ
s

�
obs

≃ 4 × 10−10 ×
1 GeV
mχ

: ð26Þ

Here, we only require that DM is not overproduced from X
decays. Underproduction may be compensated for by other
sources that create χ (for example, direct decay of ϕ or
inverse annihilations).
We numerically solve the Boltzmann equations for the

background energy densities, given by Eq. (7) together with
the equation for the DM number density produced from X
decay, Eq. (20). We would like to emphasize that while
ΓX→χ is essentially an input in (20), it can be calculated
within the particle physics models mentioned in Sec. II
according to Eq. (4). In particular, the model in [14]
provides an explicit example where decay of a scalar X
is the main source of GeV-scale fermionic DM and also
produces long-lived particles that are responsible for a
period of EMD [13].
In Figs. 1–3 we show contours in the TO −mX plane that

achieve the observed DM relic abundance for the values of
the parameters shown in each figure. The region above and
to the right of a given contour corresponds to under-
production of DM. In Fig. 1 we vary TR for fixed h andmχ .
In Fig. 2 we vary the DM mass mχ while keeping h and TR

fixed. In Fig. 3 we vary h for fixed values of TR and mχ .
The vertical dashed line denotes the current LHC limit on

new particles charged under the SM, which we loosely take
to be mX ≳OðTeVÞ.4 One could also constrain TO by
considering the absolute upper bound TO < Treh where
Treh ≲ 10−1ðHinfMPÞ1=2.5 The current Planck bounds [37]

3Given that gχ ¼ 1 (3=4) for a single bosonic (fermionic)
degree of freedom, we take gχ ¼ 1 in our numerical calculations
(and similarly for gX).

4The exact bound depends on the SM charge assignment of X
(for example, colored versus colorless particles).

5This upper bound is saturated in the case of instant reheating
and thermalization. The exact value of Treh depends on the details
of reheating (for reviews, see Refs. [35,36]) and can be much
lower than this upper bound.
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on the tensor-to-scalar ratio correspond toHinf ≲ 1013 GeV,
which results in a very weak limit Treh ≲ 1015 GeV. Other
considerations can significantly tighten this bound. For
example, the recently proposed trans-Planckian censorship
conjecture of the swampland program sets an upper limit of
ðHinfMPÞ1=2 ≲ 109 GeV in order for modes with sub-
Planckianwavelength to not exit the horizonduring inflation.

This would result in TO < 109 GeV thereby removing the
very top of the TO −mX plane. Model-dependent bounds on
Hinf lead to similar restrictions.
The diagonal dashed line shows where TO ¼ mX.

Extending the contours to the region below this line
assumes that the Universe is in a RD phase from T ¼
TO all the way up to T ≃mX. This will not be the case ifmX
exceeds the reheating temperature after inflation Treh, or if
there is another epoch of EMD at H > HO. Thus, the
dependence on the details of the thermal history above TO
requires the mX > TO half-plane to be treated with some
care.
A general feature seen in all figures is that each contour

starts as a vertical line at sufficiently small mX. Along the
vertical segments the bulk of DM production takes place in
the nonadiabatic phase corresponding to mX ≪ T tr where,
see Eq. (22), the DM relic abundance is independent from
TO. The vertical segment starts to turn atmX ∼ T tr. We note
that in Fig. 2 the turning points are stacked on top of each
other around values of mX within the same order of
magnitude (unlike Fig. 1). This is because T tr is much
more sensitive to TR than TO as can be seen in Eq. (10).
Since TR is fixed in Fig. 2, the change in T tr for different
contours is rather minimal, while this is not the case in
Fig. 1. The more significant dependence of T tr on TR also
explains the apparently missing vertical segment in the
contours for TR ¼ 10 and 100 MeV in Fig. 1. In this case,
T tr is smaller than the range of mX shown in that figure.
Another visible feature in all figures is the presence of a

plateau beyond mX ∼ T tr, where the contours continue as a
horizontal line for some range of mX. Along this segment,
DM production from X decay occurs in the adiabatic phase.
According to Eq. (23), the relic abundance has no

FIG. 2. The TO −mX plane for varied DM mass mχ with other
parameters held fixed. As in Fig. 1, solid contours correspond to
the observed DM relic abundance, with the region above (below)
a given contour being allowed (constrained).

FIG. 3. The TO −mX plane for varied coupling h with other
parameters held fixed. As in Fig. 1, solid contours correspond to
the observed DM relic abundance, with the region above (below)
a given contour being allowed (constrained).

FIG. 1. The TO −mX plane for varied EMD end temperature
TR with other parameters held fixed. Solid contours show
parameter combinations that achieve the observed DM relic
abundance. The region above (below) a given contour corre-
sponds to underproduction (overproduction) and is therefore
allowed (constrained). The diagonal dashed line shows TO ¼
mX for reference, while the vertical dashed line sits at
mX ¼ 1 TeV.
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dependence on mX as long as FðγχÞ ¼ 1 (happening for
γχ ≳ 1). Note that in the adiabatic phase, see Eq. (9),
γχ ∝ ðmXTOÞ−1=2. This implies that for sufficiently small
values of TO, we have γχ ≳ 1 all the way up to mX ¼ TO.
Assuming a RD phase prior to EMD, γχ ∝ m−1

X for
mX > TO. It will therefore drop below 1 at some value
of mX, beyond which DM production is not in equilibrium
and the contour has a negative slope. This behavior is seen
for contours with smaller values of TR (mχ) in Fig. 1
(Fig. 2). Increasing TO results in a smaller value for γχ
during the EMD epoch, in which case DM production can
drop out of equilibrium during the adiabatic phase of EMD.
The contour then starts to fall at mX < TO and keeps doing
so for mX > TO (but with a different slope due to the
different dependence of γχ on mX). This is the behavior
seen for contours with larger values of TR (mχ) in
Fig. 1 (Fig. 2).
An additional feature seen in Fig. 3 is the asymptotic

behavior of the contours as h increases. In fact, the flat
horizontal segment of contours with sufficiently large h
starts at the same TO and mX. This is because once γχ ∼
Oð1Þ at T tr, χ reaches thermal equilibrium during the
adiabatic phase of EMD. Further increasing h only extends
the plateau toward larger values of mX when γχ falls below
1 again.
Given that the region below and to the left of each

contour is ruled out as it gives rise to DM overproduction,
we can draw some important conclusions about the allowed
parts of the TO −mX plane:

(i) The constraint mX ≳OðTeVÞ does not severely
restrict regions with DM underproduction unless
TR ≪ 1 GeV and/or h ≪ 10−5. It mainly affects
regions where DM is overproduced, which are
already ruled out.

(ii) The parameter space significantly opens up in the
lower half-plane TO < mX. However, in this part the
main contribution to the DM relic abundance comes
from the pre-EMD phase that requires detailed
knowledge of the postinflationary thermal history.

(iii) Cases with mχ > OðTeVÞ are essentially ruled out
unless TO and mX are (well) above 1010 GeV (see
Fig. 2). This is only marginally possible in models
with large TO (like modulus-driven EMD), and not
viable in models with intermediate values of TO,
see Eq. (18).

We would like to note that throughout the allowed
parameter space shown in Figs. 1 and 2, the expressions
given in Eqs. (5) and (6) result in hσannvi≲ 10−43 cm3 s−1.
The most extreme case in Fig. 3, corresponding to h ¼
10−3 and mX ¼ 1 TeV, results in hσannvi ≃ 10−37 cm3 s−1.
This is still small enough to be in the freeze-in regime [20].
It also results in an annihilation rate for χ that satisfies
Γann ≪ H at temperatures T ≲mχ , which ensures that the
comoving number density of χ remains frozen upon

production from X decay. In Appendix B, we discuss
DM production from inverse annihilations and find that in
large regions of the parameter space it can be completely
neglected. In cases with mχ < TR and mX ≫ T tr, this
contribution becomes significant and may even give rise
to the correct abundance while X decays lead to DM
underproduction.

A. Scenarios with hidden sector DM

In this section, we consider the case where X and χ are
part of a hidden sector with its own gauge symmetry and
temperature that can be distinct from those of the visible
sector. The Boltzmann equations in this case are slightly
modified to include the radiation energy density of the
hidden sector (HS):

dρVSr
dt

þ 4HρVSr ¼ Brϕ→VSΓϕρϕ;

dρHSr
dt

þ 4HρHSr ¼ ð1 − Brϕ→VSÞΓϕρϕ; ð27Þ

where superscripts denote the relevant sector and Brϕ→VS is
the branching fraction for ϕ decays to the visible sector. In
order to guarantee a RD Universe that is compatible with
observations, we need to have ρVSr ≫ ρHSr at the end of
EMD. This implies that ϕ must decay predominantly to the
visible sector, and hence Brϕ→VS ≃ 1.
There are two major differences between this case and

that considered in the previous sections:
(1) mX does not need to be restricted to being larger than

OðTeVÞ. This is because X is a hidden-sector
particle, and hence it can easily evade the LHC
bounds. All that is required for our analysis to be
valid in this case is that mX ≫ mχ .

(2) Given that ϕ decay must mainly reheat the visible
sector, the amount of radiation injected to the hidden
sector does not necessarily dominate over the initial
radiation therein. As a result, the nonadiabatic phase
of EMD may be shortened or even nonexistent as far
as the hidden sector is concerned.

In order to solve the Boltzmann equations in Eq. (27), we
need to set the initial values of ρHSr and ρVSr as well as the
value of Brϕ→VS. Here, we consider a case where radiation
is almost entirely in the hidden sector prior to EMD. This,
for example, is the case in the model of high scale SUSY
discussed in [38,39]. We also use the current observational
limits from PLANCK 2018 on dark radiation in the form of
ΔNeff using the full TT;TE;EEþ lowEþ lensingþ BAO
data [40] to set a lower bound on Brϕ→VS. These conditions
yield a maximally constraining case for the configuration of
the HS in that it is initially dominant and reheated to the
maximum amount allowed by observations. An initially
subdominant HS, as well as a shorter or even absent
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nonadiabatic phase, results in weaker constrains in the
TO −mX plane.
In Fig. 4 we show contours for different values ofmχ that

yield the correct DM relic abundance for the benchmark
with TR ¼ 1 GeV and h ¼ 10−5. We note that the vertical
segments of the contours have shifted to the left, compared
with Fig. 1, or completely disappeared. This is a conse-
quence of having Brϕ→HS ≡ 1 − Brϕ→VS ≪ 1. Combined
with the removal of the mX ≳OðTeVÞ constraint, this
results in a significant opening up of the allowed parameter
space for small values of mX in comparison with Fig. 1.

V. CONCLUSION

We presented a detailed study of mediator production
and decay and their contribution to the DM relic abundance
in scenarios with an epoch of EMD. Special attention was
paid to mediators that are charged under the SM gauge
group and decay during early stages of EMD (or before
its onset).
We showed that decay of on-shell mediators can totally

dominate over the standard freeze-in contribution from
inverse annihilations that happen at much lower temper-
atures. The requirement of not overproducing DM then
leads to stringent constraints on the parameter space,
demonstrated in Figs. 1–3, for DM masses above a few
TeV. Additional information on the scale of inflation Hinf ,
or an upper bound on it, will further restrict the allowed
parameter space in favor of small DM masses.
The situation will be more relaxed if the DM candidate

and mediators belong to a hidden sector with its own gauge

symmetries. The absence of collider bounds on the media-
tor mass combined with a subdominant reheating of the
hidden sector (as required by observational bounds) opens
up new regions of the parameter space in this case as seen
in Fig. 4.
While mentioning some specific examples of cosmo-

logical histories with EMD and DM candidates, we
remained largely agnostic about the particle physics origin
of DM and the underlying model governing the cosmo-
logical history in this work. Our results can therefore be
used by both phenomenologists and early Universe model
builders to constrain DMmodels for a given thermal history
and vice versa. They can also be used to pinpoint the
parameters of a top-down high energy physics model that
describes evolution of the early Universe from inflation to
BBN and explains DM.
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APPENDIX A: DM ABUNDANCE
FROM X DECAY

To estimate the final abundance of χ particles produced
by decay of X during EMD, we consider the redshifted
number density of χ from the time that its comoving value
becomes frozen, marked by T ¼ Tf, to the end of EMD
when T ¼ TR, after which point entropy injection ceases:

nχðTRÞ ¼ nχðTfÞ
�
af
aR

�
3

¼ nχðTfÞ
�
HR

Hf

�
2

; ðA1Þ

with

nχðTfÞ ¼ FðγχÞneqχ ðTfÞ ¼ FðγχÞ
ζð3Þ
π2

gχT3
f ; ðA2Þ

assuming T ≫ mχ . Taking TR to be when ρϕ ¼ ρr at the
end of EMD, to better match numerical results, we have

HR ¼
�
π2g�R
45

�
1=2 T2

R

MP
: ðA3Þ

FIG. 4. The TO −mX plane for varied DM mass mχ , with other
parameters held fixed, for the case that X and χ are in a hidden
sector. The hidden sector is taken to be dominant in the RD period
before EMD, and is partially reheated during EMD to the amount
allowed by PLANCK 2018 constraints on dark radiation
from ΔNeff .
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(1) T tr < Tf < TO. In this case the comoving χ number
density freezes during the adiabatic phase and the Hubble
rate at that time is therefore given by

Hf ¼
�
π2

45
g�f

�
1=2 T3=2

f T1=2
O

MP
; ðA4Þ

where we have used a factor of 2 for ρϕðTOÞ ¼ ρrðTOÞ, and
g�T3 ∝ a−3. After normalizing by the entropy density at
TR, this gives

�
nχ
s

�
A

dec
≈ 0.28FðγχÞ

gχ
g�f

�
TR

TO

�
: ðA5Þ

(2) TR < Tf < T tr. The number density freezes during
the nonadiabatic phase and the corresponding Hubble rate
is given by

Hf ¼
1ffiffiffi
6

p
�

5πg�f
6

ffiffiffiffiffi
10

p
g1=2�R

�
T4
f

T2
RMP

; ðA6Þ

where we have taken Γϕ ¼ ffiffiffi
3

p
HR to match our numerical

results. After normalization, this gives

�
nχ
s

�
NA

dec
≈ 0.53FðγχÞ

gχg�R
g2�f

�
TR

Tf

�
5

: ðA7Þ

APPENDIX B: PRODUCTION FROM INVERSE
ANNIHILATIONS

Freeze-in production of DM from inverse annihilations
can happen in three different regimes.
(1) mχ > T tr. In this regime, inverse annihilations during

the adiabatic phase of the EMD epoch (or whatever phase
precedes it) will be the dominant source. In fact, as shown
in [24], the main contribution comes from the highest
temperature at which the expressions in Eqs. (5) and (6)
remain valid, namely T ∼mX. The relic abundance from
inverse annihilations with mX < TO then follows [14,24]:

�
nχ
s

�
A

ann
∼ 10−1

gχ
g3=2�mX

hσannviðE ∼mXÞMPTR

�
mX

TO

�
3=2

:

ðB1Þ

If instead TO < mX, one can obtain a similar expression
based on the type of dominant energy density before EMD.
(2) TR < mχ ≲ T tr. In this case, the main contribution

from inverse annihilations arises in the nonadiabatic phase
of EMD (at T ∼mχ=4) giving rise to the following (for
example, see Ref. [20]):

�
nχ
s

�
NA

ann
∼
g3=2�R gχ
g3�mχ=4

hσannviðE ∼mχ=4ÞMPTR

�
TR

mχ

�
6

: ðB2Þ

(3) mχ ≲ TR. In this case, production from inverse
annihilations is most efficient in the RD phase after
EMD. The abundance is set at T ∼ TR. and can be
estimated as

�
nχ
s

�
RD

ann
∼ 10−1

gχ
g3=2�R

hσannviðE ∼ TRÞMPTR: ðB3Þ

Note that the value of hσannvi at the relevant temperature in
each case should be used, which is important when it is not
a constant, see Eq. (6).
The values ofmX,mχ , TR, and TO determine the relevant

regimes for DM production from inverse annihilations and
X decay (discussed in Appendix A). To compare the
contribution of inverse annihilations with that from X
decay, we express hσannvi in terms of the particle-physics
parameters using Eqs. (5) and (6) as an example. Inverse
annihilations become most pronounced in the regime where
mχ < TR and mX > T tr. In this case, the number density of
DM particles produced from X decay has undergone the
highest redshift by the time inverse annihilations become
efficient. For the parameter combinations shown in
Figs. 1–3, we find that inverse annihilations contribute
more than the observed DM abundance only in the regions
where decay production also overproduces DM, with one
exception. For h ¼ 10−3 in Fig. 3, inverse annihilations in
the nonadiabatic phase lead to Ωχh2 ∼ 0.1 for mX ≈ 1 TeV
and large values of TO, essentially coinciding with the
contour from decay production. For larger values ofmX the
abundance from inverse annihilation decreases.
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