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A sizable magnetic moment for neutrinos would be evidence of exotic physics. In the early
Universe, left-handed neutrinos with a magnetic moment would interact with electromagnetic fields in
the primordial plasma, flipping their helicity and producing a population of right-handed (RH) neutrinos. In
this work, we present a new calculation of the production rate of RH neutrinos in a multicomponent
primordial plasma and quantify their contribution to the total energy density of relativistic species at early
times, stressing the implications of the dependence on the initial time for production. We find that current
cosmological data exclude values of the magnetic moment μ ≳ 1.6 × 10−11μB, while future cosmological
experiments will be able to probe nonthermal production of RH neutrinos, becoming competitive with
stellar limits.
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I. INTRODUCTION

The existence of a sizable neutrino magnetic
moment (NMM) μ is a fascinating possibility, which has
generated a vivid interest in experimental and pheno-
menological communities in the recent years. If equipped
with (transition) magnetic moments, then neutrinos
would couple to photons through the effective Lagrangian
terms,

L ¼ −
1

2
μijψ̄ iσαβψ jFαβ; ð1Þ

where ψ is the neutrino field, F the electromagnetic field
tensor, α, β are Lorentz indices, and i, j are the flavor
indices. The first experimental constraint goes back to
the very neutrino discovery experiment by Cowan and
Reines [1]. Analyzing electron recoil spectra in (anti-)
neutrino electron scattering, the authors derived the bound
μ≲ 10−9μB, where μB ¼ e=2me denotes the Bohr
magneton. Later searches gave considerably stronger con-
straints [2–9]. The current experimental sensitivity is
slightly below 10−11 μB. Although neutrinos with a
Dirac mass are expected to have a magnetic moment
[10], this is predicted to be quite small, μ ≈ 3 × 10−19×
ðmν=1 eVÞμB. Thus, a sizable magnetic moment would be
evidence of exotic physics. Furthermore, even though
several extensions of the standard model predict a
larger neutrino magnetic moment, the predictions change
substantially for Dirac and Majorana neutrinos, with the
latter allowed more naturally to have a large μ [11–14].
Hence, a discovery of a sufficiently large magnetic
moment would also shed light on the nature of the neutrino
field.
A nonvanishing neutrino magnetic moment would have

profound astrophysical and cosmological consequences.
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Stellar evolution provides some of the strongest bounds on
μ. The resulting tree-level neutrino-photon interaction
contributes substantially to several cooling mechanisms
in stars (see, e.g., Ref. [15] for a comprehensive discus-
sion), most notably to the plasmon decay γ → ν̄ν. A recent
analysis of the cooling of red giant stars [16] provided the
constraint μ ≲ 1.2 × 10−12μB, about a factor of 5 below the
current experimental sensitivity.1

Furthermore, for Dirac neutrinos, a nonvanishing mag-
netic moment would induce the production of right-
handed (RH) neutrinos via spin-flip of left-handed (LH)
neutrinos in an external electromagnetic field. For a
supernova, where LH neutrinos are trapped and RH
neutrinos are not, this would imply a very efficient energy
loss mechanism [17–19]. Spin-flip processes may also
play a significant role in the early Universe, given the
large number of charged particles generating electromag-
netic fields required for this process to take place. The
production of RH neutrinos in this case would affect the
predictions of the light-elements’ abundances because of
the increased number of relativistic degrees of freedom
Neff [20–23]. In the past, the above observables were used
to derive the constraint μ≲ 6.2 × 10−11μB [24], a result
considerably less stringent than the current astrophysical
limits. The analysis of Ref. [24], however, did not account
for spin-flip processes in the electromagnetic field gen-
erated by charged particles other than electrons and
positrons. In the early Universe, especially above the
phase transition of the quantum chromodynamics (QCD),
we expect a large number of charged particles and thus
more efficient spin-flip processes. Current and upcoming
cosmological surveys severely constrain Neff , leading to
tighter bounds on μ. A recent analysis in this direction was
performed in Ref. [25]. The study presented a detailed
calculation of the neutrino chirality flipping rate in a
thermal plasma, including a careful and consistent con-
sideration of soft scattering and the plasmon effect in
finite temperature field theories. This analysis found that a
NMM above 2.7 × 10−12μB is excluded by current cosmic
microwave background (CMB) and big bang nucleosyn-
thesis (BBN) measurements of ΔNeff . Here, we revisit and
improve on this calculation of RH neutrino production in
the early Universe, extensively discussing the cosmologi-
cal implications.
In Sec. II, we discuss the thermal field theory methods

employed in the calculation of the rate. In Sec. III, we
discuss the cosmological implications of a sizable NMM.
Moreover, we show that the requirement of not exceeding

the number of effective relativistic species allowed by
cosmological observations results in a strong constraint on
μ. Finally, in Sec. V, we conclude by discussing incoming
cosmological experiments able to probe the freeze-in
regime of RH neutrino production. Two appendices
follow.

II. RH NEUTRINO PRODUCTION RATE

Neutrinos with a magnetic moment interact with the
surrounding plasma through current-current interactions
with the electromagnetic fields generated by charged
particles. Information about the medium and its electro-
magnetic fluctuations is encoded in the imaginary part of
the photon polarization tensor Πμν, obtained at one loop by
summing over loops with all the charged particles in a
plasma. Reference [24] calculated the net RH neutrinos
production rate Γ in a hot plasma using the thermal field
theory approach,

Γ ¼ μ2

2π

Z
∞

0

dk k
Z

∞

−∞
dk0θ

�
−K2ðK2 þ 4pk0 þ 4p2Þ�

ϵðk0Þ
K4

k2

�
ϵðk0Þ

e
jp0þk0 j

T þ 1
þ ϵðp0 þ k0Þ

e
jk0 j
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�

×
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1þ k0

p
þ K2

4p2

�
ATðKÞ −

�
1þ k0

2p

�
2

ALðKÞ
�
;

ð2Þ

where ðp0; pÞ is the neutrino four-momentum, K ¼ ðk0; kÞ
the photon four-momentum, T the temperature of the
thermal bath, θ the Heaviside theta function, ϵ the
sign function, and the sources of electromagnetic fields
are encoded in the photon spectral functions AT;L,
defined as

AT;LðKÞ ¼ −
1

π

ImΠT;L

jK2 − ReΠT;Lj2 þ jImΠT;Lj2
; ð3Þ

in terms of the transverse ΠT and longitudinal ΠL compo-
nents of the photon polarization tensor. In a single
component plasma with a fermion of mass mf and charge
ef the photon polarization tensor is given by [26]

ΠLðmf; efÞ ¼ −
K2

k2
uμuνΠμν;

ΠTðmf; efÞ ¼ −
1

2
ΠL þ 1

2
gμνΠμν; ð4Þ

where gμν is the metric tensor, uμ the plasma four-velocity,
which in the rest frame reduces to uμ ¼ ð1; 0; 0; 0Þ,
while

1Different observables could be sensitive to different combi-
nations of the elements of the magnetic moment matrix μij. For
example, terrestrial experiments using reactor sources (electron
antineutrinos) are sensitive to the μei components. On the other
hand, bounds based on energy loss in stars, such as the one in
Ref. [16], are sensitive to all of the combinations of μij.
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uμuνΠμν ¼ e2f

Z
dqq2

2Eqπ
2

1

eEq=T þ 1

�
2 −

ð2Eq þ k0Þ2 − k2

4qk
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�
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�
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k20 − k2 − 2ðEqk0 − qkÞ

��
; ð5Þ

and

gμνΠμν ¼ 2e2f

Z
dqq2

2Eqπ
2

1

eEq=T þ 1

�
2þ k20 − k2 þ 2m2

f

4qk
ln

�
k20 − k2 þ 2ðEqk0 − qkÞ
k20 − k2 þ 2ðEqk0 þ qkÞ

�

−
k20 − k2 þ 2m2

f

4qk
ln
�
k20 − k2 − 2ðEqk0 − qkÞ
k20 − k2 − 2ðEqk0 þ qkÞ

��
; ð6Þ

with Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

f

q
the energy of the fermion in the loop.

Note that this formalism includes all the effects proportional
to μ2, as plasmon decay and electron-positron annihilation in
neutrino-antineutrino pairs, spin-flip transitions, and Cher-
enkov processes [24]. Among these, plasmon decay is
negligible in the early Universe [25]. In a multicomponent
plasma, the full polarization tensor is obtained by summing
Eqs. (5) and (6) over all the species f:

ΠT;L ¼
X
f

ΠT;Lðmf; efÞ: ð7Þ

Our study extends the previous results [24], valid for a
monocomponent plasma of massless electrons, to the more
realistic case of a multicomponent primeval plasma, includ-
ing finite mass effects. We underline that the numerical
integration of the production rate in Eq. (2) is stiff when the
photon approaches the on-shell condition. In this limit, the
imaginary part of the polarization tensor vanishes,
ImΠT;L → 0, and Eq. (3) reduces to a Dirac delta function
δðK2 − ReΠT;LÞ. Therefore, we can replace the integration
over the photon energy with just the contribution
coming from the on-shell photon. This is at the origin of
the peak in the production rate Γ at low values of the neutrino
momentum (p=T ≪ 1) shown in the upper panel of Fig. 1.
However, this affects only slightly our results, which depend
mostly on large momenta. As expected, the rate increases
with the number of charged species in the plasma, as
encoded by the effective number of entropy degrees of
freedom g�;sðTÞ. We find that α−1μ−2T−3Γðp=TÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g�;sðTÞ
p

is approximately constant for T ≳ 10 MeV.
In the lower panel of Fig. 1 we show the full shape of

hΓi=ðαμ2T3Þ, obtained by averaging over a thermal neu-
trino distribution. The series of drops below T ≈ 100 GeV
are due to changes in g�;sðTÞ. Our calculation smoothly
interpolates between different temperatures, leading to
hΓi ¼ 1.91αμ2T3, where the brackets denote a thermal
average over a plasma containing only electrons at
T ¼ 10 MeV, and hΓi ¼ 6.04αμ2T3 at T ¼ 100 GeV.
This result can be compared to [25], which evaluated the

RH neutrino production rate using a different approach,
obtaining hΓi ¼ 6.47αμ2T3.

III. COSMOLOGICAL IMPLICATIONS

The phase-space distribution function for RH neutrinos
fRðt; qÞ of comoving momentum q ¼ ap, with a the

FIG. 1. Upper panel: production rate Γ for RH neutrinos as a
function of the neutrino momentum in terms of p=T, for different
values of temperature. The lines are a linear interpolation between
the values of p=T at which the rate is computed, marked by
circles. Lower panel: thermally-averaged production rate hΓi as a
function of temperature. The solid curve shows a linear inter-
polation between the values of T at which the rate is computed,
marked by circles.
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cosmological scale factor, evolves according to the
Boltzmann equation [24]:

∂tfR ¼ −ΓðfR − feqÞ; ð8Þ
where feqðt; qÞ is the (local) equilibrium distribution
function. We take feq to be the distribution function of
the left-handed neutrinos fν, which are kept in thermal
equilibrium with the primordial plasma at temperature T by
the weak interactions

feq ≃ fν ¼
1

exp
	

q
aT



þ 1

: ð9Þ

The evolution equation is solved for fR over a grid of
values of the comoving momentum, together with the
initial condition fRin ¼ 0, i.e., no initial population of RH
neutrinos.
The initial integration time, corresponding to a tempera-

ture T in, can be chosen freely and may affect the outcome.
The integration always ends at Tfin ¼ 10 MeV as, at lower
temperatures, the spin-flip rate becomes rapidly negligible,
and no more RH neutrinos are produced.
The ratio hΓi=H, H being the Hubble parameter, scales

as μ2T in the radiation-dominated era, for constant effective
number of entropy degrees of freedom g�;s. Thus, the
production of RH neutrinos is dominated by the high-
temperature regime, and our results might depend on the
initial time chosen for the integration. Defining the decou-
pling temperature Td through hΓi=HjTd

¼ 1, RH neutrinos
quickly thermalize roughly at the initial time, if T in ≫ Td,
and their final abundance will be independent of T in. In this
case, the abundance relative to active neutrinos depends
only on entropy injections in the plasma happening at
T ≲ Td. Note that since hΓi=H ∝ T, it takes some time for
decoupling to complete, and significant entropy injection to
the RH component can take place even at T < Td. On the
other hand, if T in ≲ Td, then the abundance of RH
neutrinos depends on T in, since their production happens
out-of-equilibrium, in a “freeze-in” kind of process, with
T in setting the time interval during which RH neutrinos can
be efficiently produced. Both regimes are correctly cap-
tured by solving the Boltzmann equation, as discussed in
Appendix A. The extra contribution2 ΔNeff to Neff due to
the population of a single species of RH neutrinos at a given
time is obtained as

ΔNeffðTÞ ¼
R
dpp3fRðp; TÞR
dpp3fνðp; TÞ

: ð10Þ

In Fig. 2, we show the evolution of ΔNeffðTÞ for
different values of μ setting the initial temperature to
T in ¼ 100 GeV. On each curve, we mark with a small
circle the corresponding decoupling temperature. There are
no circles on the curves for μ ¼ 10−12μB and μ ¼ 10−9μB,
as those lie outside the temperature range shown in the plot
(at higher and lower temperatures, respectively). For the
largest values of μ in the plot, ΔNeff quickly reaches a
saturation limit corresponding to a thermal abundance at
the photon temperature. The drop in ΔNeffðTÞ at later times
is due to entropy injection in the plasma happening after the
decoupling of RH neutrinos (particularly evident is the drop
at the QCD phase transition, TQCD ≈ 150 MeV). In this
regime, the final abundance is thus basically set by the
decoupling temperature.
For lower values of μ (μ≲ 10−11μB for T in ¼ 100 GeV),

RH neutrinos do not have enough time to thermalize. In this
regimeΔNeff decreaseswith decreasingμ due both to entropy
production and a smaller RH population. As expected,ΔNeff
becomes negligibly small for vanishing μ. In the plot we also
include the case forμ ¼ 10−11μB andT in ¼ 1 GeV, shownas
a dashed red line. The lower initial temperature implies that,
despite the rapid initial growth, ΔNeff remains significantly
smaller than the contribution obtained for the samevalue ofμ,
but with T in ¼ 100 GeV (solid red line).
In the following, we take the “late-time” value of

ΔNeffðTÞ as the one relevant for cosmological observations.
ΔNeffðTÞ is constant for T ≲ 10 MeV since no significant
production of RH neutrinos takes place after that time, and
the comoving density of active neutrinos does not change in
the limit of instantaneous decoupling.3 We then use
ΔNeffðT ¼ 10 MeVÞ as the late-time value of ΔNeff .

FIG. 2. Evolution of ΔNeff due to the population of a single
species of RH neutrinos, as per Eq. (10). The solid lines are
obtained for T in ¼ 100 GeV and different values of μ, while the
dashed line for μ ¼ 10−11μB and T in ¼ 1 GeV. The dots mark the
values of the decoupling temperature Td.

2In the standard cosmological model, the number of relativistic
degrees of freedom beyond photons is given by active neutrinos
only. The predicted value is Neff ¼ 3.044 [27–31], and we define
ΔNeff ≡ Neff − 3.044.

3Neutrino decoupling is not instantaneous, implying that
neutrinos actually benefit from a small fraction of entropy release
from electron-positron annihilation. Neglecting this effect does
not change significantly our results.
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IV. CONSTRAINTS ON THE NMM

In Fig. 3 we report the late-time value of ΔNeff as a
function of μ for different initial temperatures
(T in ¼ 100 MeV in black, T in ¼ 100 GeV in red, T in ¼
300 GeV in blue), in the case of one (dashed lines) or three
(solid lines) species of RH neutrinos. We can identify three
main regions, depending on the size of μ. As expected, in
the limit of very large μ, the RH population remains
coupled to the active neutrino species until late times,
hence providing a large contribution to Neff . For lower
values of μ, RH neutrinos are still in thermal equilibrium
with the plasma at early times, but the decoupling happens
earlier. In this scenario, RH neutrinos are efficiently diluted
by entropy production, and their contribution to Neff is
smaller. For even smaller values of μ, RH neutrinos are
never in thermal equilibrium with the active species. A
residual nonthermal population can then develop and
contribute very feebly, yet nonvanishingly, to Neff . As
further discussed in Appendix B, the results that we obtain
for Neff in both the limits of large and small μ are different
from the ones obtained in Ref. [25], since we do not employ
the instantaneous decoupling approximation, nor do we
assume a priori that RH neutrinos are in thermal equilib-
rium with the primeval plasma. Precisely, since Γ=H scales
linearly with T, sizable entropy transfer from the Standard
Model (SM) plasma to the RH neutrinos can take place for
quite some time after the decoupling, implying that the
approximation of instantaneous decoupling is particularly
crude. Thus, neglecting entropy production happening after
decoupling can severely underestimate the value of ΔNeff
associated to a given value of the NMM. Concerning the
assumption of thermal equilibrium, one might argue that
since Γ=H increases at high temperatures, the condition for
equilibrium Γ=H ≫ 1 can always be met at some very early

time. This argument, however, requires to be addressed
more carefully. There are several reasons why an extrapo-
lation to very high energies might be inappropriate. First,
from a strictly observational point of view, we have no
information about the cosmic thermal history above the
BBN energy scale. Second, new physics might play a role
above the electroweak scale, altering the thermal evolution
of the plasma. Finally, our effective description of the
neutrino-photon coupling induced by the NMM is expected
to break down at some high energy scale, that depends on
the physics inducing the NMM. Thus, it is not granted that
one can always take T in large enough for thermal equilib-
rium to be established. Solving the Boltzmann equation
with vanishing initial RH population, we are able to
describe the scenario in which thermal equilibrium is
established, as well as the scenario in which the interactions
are not strong enough to generate a thermal population. In
Fig. 3 we mark with small circles the values of μ that yield
hΓi=H ¼ 1 at the initial temperature. To the right of the
circles, hΓi=H > 1 at T in, corresponding to the thermal
regime. All curves overlap in the right part, where the final
abundance of RH neutrinos is independent of T in since
Td ≪ T in. Conversely, the region to the left of the circles
traces the freeze-in regime, hΓi=H < 1 at T in.
With our approach we are able to smoothly compute the

value of ΔNeff as a function of the NMM and compare it
with observations to set constraints. The horizontal dashed
lines in Fig. 3 represent the 95% Bayesian credible upper
bounds on ΔNeff from a combination of current cosmo-
logical data (observations of CMB anisotropies from
Planck, combined with BAO, from a compilation of
large-scale-structure surveys [32], and BBN data [33])4

and the expected 2σ sensitivity on ΔNeff from future
CMB surveys (SO [34] and CMB-S4 [35]). Assuming
T in ¼ 100 MeV (black line in Fig. 3) current measure-
ments probe the thermal regime and imply

μ < 2.1 × 10−11μB ðPlanckþ BAOÞ;
μ < 1.6 × 10−11μB ðPlanckþ BBNÞ: ð11Þ

However, the value of T in is somewhat arbitrary and can
affect the final abundance. Values of T in > 100 MeV can
be safely assumed, provided that other particle species
heavier than electrons and positrons are included in the
plasma. Therefore, it is necessary to follow the RH neutrino
thermalization across a large temperature range, from T in to
today, by properly taking into account the charged particle
species contributing to the RH neutrino production. At this
regard, the formalism discussed in Sec. II and the use of the
Boltzmann equation allow us to accurately reconstruct the
evolution of ΔNeff due to the population of RH neutrinos

FIG. 3. The late-time value of ΔNeff due to the population of
three (solid) or one (dashed) species of RH neutrinos as a function
of μ for different initial temperatures, enlarged in the region
where ΔNeff < 0.5. The horizontal dashed lines indicate the
current 95% bound (Planck þ baryon acoustic oscillations (BAO)
and Planckþ BBN) and the 2σ sensitivity of future experiments
(Simons Observatory (SO) and CMB-S4). The dots mark the
values of μ giving hΓi=H ¼ 1 at T ¼ T in.

4The current 95% credible interval for Neff from Planckþ
BAO is Neff ¼ 2.99þ0.34

−0.33 [32] and for Planckþ BBN is Neff ¼
2.83� 0.38 [33].
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produced starting from T in > 10 MeV. This represents the
main improvement of this work compared to previous
literature [24]. Taking T in ¼ 100 GeV (red line) as our
benchmark, current bounds become

μ < 9.1 × 10−12μB ðPlanckþ BAOÞ;
μ < 2.6 × 10−12μB ðPlanckþ BBNÞ: ð12Þ

Future cosmological data will instead go deep into the
freeze-in regime, for three RH neutrino families, and test
values as low as μ ¼ 1.7 × 10−12μB (SO) and μ ¼ 1.2 ×
10−12μB (CMB-S4). The formalism developed here allows
us to constrain even such low values of the neutrino
magnetic moment, which do not lead to the establishment
of a thermal population of RH neutrinos. A detailed
comparison with the results obtained in the previous
literature can be found in Appendix B.

V. DISCUSSION AND CONCLUSIONS

In this work, we have revisited the calculation of the RH
neutrino production in the early Universe, extensively
discussing the cosmological implications and computing
current bounds and sensitivities of future cosmological
surveys on the neutrino magnetic moment μ. As mentioned
in Sec. IV, one key aspect of the cosmological analysis
presented here is that the choice of T in is somehow
arbitrary: it can be as large as the highest reheating
temperature TRH currently allowed by the nonobservation
of primordial B-modes in the CMB. Assuming a perfectly
efficient reheating and instantaneous thermalization of
standard model particles after inflation, T in ∼ TRH ∼
V1=4 < 1.6 × 1016 GeV [36], V being the energy density
at inflation.
In the thermal regime, the final RH abundance only

depends on the value of g�;s at decoupling, and increasing
T in above 100 GeV does not change the Planckþ BAO
bound on μ, while it slightly affects the Planckþ BBN
bound, assuming no other species beyond the particle
content of the standard model; compare the red and blue
lines in Fig. 3. The freeze-in abundance is instead propor-
tional to μ2T in for constant g�;s, as shown in Appendix A.
The future sensitivity on μ will then increase for
T in > 100 GeV, scaling as 1=

ffiffiffiffiffiffi
T in

p
.5 Note, however, that

the effective interaction Lagrangian in Eq. (1) will break
down above some energy threshold determined by the
physics governing the magnetic moment, and other
assumptions made in our calculation could fail for
T in ≫ 100 GeV. For example, several theories beyond
the standard model predict new degrees of freedom that

could contribute to g�;s at those temperatures. Furthermore,
the spin-flip rate in Eq. (2) assumes thermal equilibrium of
the standard model plasma. Though possible (see, e.g.,
Refs. [37–39]), a quick, effectively instantaneous, thermal-
ization of the standard model plasma after reheating is not
guaranteed, as it depends on the details of the inflation
model. A careful extension of the formalism laid down in
this work is therefore required to project the sensitivity on μ
in the regime T in ≫ 100 GeV.
Moreover, it cannot be excluded that the Universe

underwent other reheating episodes beyond the one asso-
ciated to the end of inflation. In fact, the latest of such
reheating events can happen at a temperature TRH as low as
a few MeV without contradicting available observations
[40]. The final abundance is reduced for T in ∼ TRH ≤ Td,
resulting in looser constraints on μ; see, e.g., the T in ¼
100 MeV curve in Fig. 3. Our choice of T in ¼ 100 GeV
amounts to assume a standard thermal history at
T ≤ 100 GeV and that the physics responsible for the
generation of neutrino magnetic moment lies at or above
the electroweak scale.
In order to better understand the role of the initial

temperature, in Fig. 4 we plot current constraints and
discovery potentials for μ assuming that production of RH
neutrinos begins at an arbitrary energy scaleΛ≡ T in. There
are two main ways to interpret this plot. If one assumes that
the physics generating the magnetic moment lies well

FIG. 4. Current constraints (blue) and discovery potential of
future experiments (orange) in the ðΛ; μÞ plane, where Λ is the
energy scale at which production of RH neutrinos begins. The red
dashed line separates the regions of thermal and nonthermal
production. The yield of RH neutrinos is practically independent
of Λ above this line. The blue dotted line shows the prediction
μ ∼mX=ð16π2Λ2Þ for the magnetic moment generated by new
physics at the scale Λ, mediated by a charged heavy fermion with
mass mX ¼ 1 GeV [41].

5We have explicitly checked that when deriving constraints
on μ using the rates computed at 103 GeV, we find μ < 4.3 ×
10−13μB for CMB-S4, in line with the expected

ffiffiffiffiffi
10

p
improvement.
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above the energy scale associated to reheating, then Λ can
be identified with TRH. Otherwise, Λ can be identified with
the scale of the new physics itself. Note that in this case the
constraints shown in Fig. 4 are conservative, since we are
neglecting any production that might have occurred at
T > Λ. The red dashed line in the figure separates the
regions of thermal and nonthermal production6 and clearly
shows how next generation experiments will probe the
nonthermal regime. In Fig. 4 the blue regions are probed by
current data (Planckþ BAO, Planckþ BBN). It is possible
to note that these exclusion regions are independent of Λ
when crossing the dashed red line, denoting the condition
of equilibrium. Reasonably, from the particle physics point
of view, we expect Λ≳ 103 GeV, while cosmological
observations allow for a nonstandard thermal history for
Λ≳ 10 MeV. In this context, future cosmological probes
such as SO and CMB-S4, whose sensitivities are repre-
sented by the orange regions, will be capable of fully
exploring the nonthermal production of RH neutrinos,
shedding light on the possible new physics above Λ.
We remark that the constraints discussed here are

irreducible, since they are obtained neglecting additional
nonstandard interactions between neutrinos and other,
perhaps exotic, particles. Indeed, these interactions,
required to justify a neutrino magnetic moment larger than
the standard model prediction, μ ≫ Oð10−19μBÞ, might
contribute to the RH neutrino production in the early
Universe, increasing the value of ΔNeff .

ACKNOWLEDGMENTS

We thank Edoardo Vitagliano and Damiano Fiorillo for
helpful comments on the draft and Patrick Stengel for
useful feedback on the thermalization after reheating. We
warmly thank Shao-Ping Li and Xun-Jie Xu for discussion
and comparison with their recent work [25]. This article/
publication is based upon work from COST Action
COSMIC WISPers CA21106, supported by COST
(European Cooperation in Science and Technology). We
are grateful to Alessandro Mirizzi for his contributions in
the initial stages of the project. The work of P. C. is
supported by the European Research Council under
Grant No. 742104 and by the Swedish Research Council
(VR) under Grants No. 2018-03641 and No. 2019-02337.
G. L. is supported by the European Union’s Horizon 2020
Europe research and innovation programme under the
Marie Skłodowska-Curie Grant Agreement No. 860881-
HIDDeN. M. G. and M. L. acknowledge support from the
COSMOS network [42] through the ASI (Italian Space
Agency) Grants No. 2016-24-H.0, No. 2016-24-H.1-2018,
and No. 2019-9-HH.0. We acknowledge the use of

CINECA HPC resources from the InDark project in the
framework of the INFN-CINECA agreement.

APPENDIX A: DETAILS ON THE FREEZE-IN
REGIME

In the freeze-in regime, it is possible to derive the explicit
dependence of ΔNeff on μ and the initial temperature T in
and far from entropy production events, when the equilib-
rium distribution does not depend on time, i.e.,
feqðq; tÞ ¼ feqðqÞ. Introducing the deviation from equilib-
rium Δfðq; tÞ≡ fRðq; tÞ − feqðqÞ, it is straightforward to
write a formal solution of the Boltzmann equation,

Δfðq; tÞ ¼ −feqðqÞ exp
�
−
Z

t

tin

Γdt0
�

¼ −feqðqÞ exp
�
−
Z

zin

z

Γ
Hð1þ z0Þ dz

0
�
; ðA1Þ

where we use q ¼ ap as the momentum variable to ensure
that ∂tfeq ¼ 0, and the initial condition Δfðq; tinÞ ¼
−feqðqÞ because we assume a vanishing initial population
of RH neutrinos. In the following, we will use the subscript
“in” to denote quantities evaluated at the initial time. We
now write the RH neutrino production rate as

Γ ¼ αμ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�;sðTÞ

q
T3Γ̃ðy; TÞ; ðA2Þ

where the momentum variable is y ¼ p=T ¼ q=aT. Note
that Γ̃ does not depend on the temperature far from entropy
production events, and its temperature dependence is,
anyway, very mild, even when accounting for entropy
production (see the lower panel in Fig. 1).
Using the expression for the Hubble rate in the radiation-

dominated era, we can recast the integral in Eq. (A1) as

Z
zin

z

Γ
Hð1þ z0Þ dz

0 ¼
ffiffiffiffiffiffiffi
45

4π3

r
αμ2mpl

Z
zin

z

Γ̃T
1þ z

dz≃

≃
ffiffiffiffiffiffiffi
45

4π3

r
αμ2mplðΓ̃TÞ

����
zin

¼ Γ
H

����
zin

; ðA3Þ

where the approximate equality holds for z ≪ zin and when
the initial time is far from entropy production events.
Precisely, since T=ð1þ zÞ ∝ g�;sðTÞ and Γ̃ itself is weakly
dependent on temperature, the integrand varies signifi-
cantly only in proximity of entropy production events,
and the value of the integral is dominated by the high-
temperature contribution. Note the somehow fortunate
cancellation between the factors of

ffiffiffiffiffiffiffi
g�;s

p
in Γ and H,

since the effective number of degrees of freedom for energy
density g�;r ¼ g�;s for T ≫ 1 MeV.
Since we are focusing on the freeze-in regime, Γ=H ≪ 1.

From the above discussion, the requirement that this

6In more detail, the red dashed line corresponds, for each μ, to
the initial temperature that gives a yield equal, within 1%, to the
yield that would be obtained in the limit T in → ∞ (i.e., for
T in ≫ Td).
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inequality holds at T in guarantees that it also holds at
z < zin, and that its integrated value over d lnð1þ zÞ is
itself much smaller than 1. In terms of μ and T in, the
condition Γin=Hin ≪ 1 reads

0.47 ×

�
μ

10−12μb

�
2
�

T in

100 GeV

�
Γ̃in ≪ 1: ðA4Þ

We can thus expand the exponential in Eq. (A1) to first
order in its argument and then compute ΔNeff . This yields,
for a single species of RH neutrinos,

ΔNeffðT ≪ T inÞ ¼
120

7π4

�
g�;sðTÞ
g�;sðT inÞ

�
4=3

Z
∞

0

dy y3
Γin

Hin
feq;

ðA5Þ

where Γin ¼ Γðy; T inÞ. The temperature dependence of the
right-hand side is encoded in the g�;s4=3 factor and can be
understood as follows. In the freeze-in regime, the pro-
duction of RH neutrinos mostly happens at high temper-
atures, thus the RH abundance quickly saturates shortly
after the initial time and stays constant for T ≪ T in. The
energy density of RH neutrinos relative to the active ones
can only change when more active neutrinos are produced
due to entropy injection in the plasma. Substituting the
explicit expression of Γin=Hin with the one shown in
Eq. (A3), we obtain

ΔNeff ¼
120

7π4

ffiffiffiffiffiffiffi
45

4π3

r
αμ2T inmpl

×

�
g�;sðTÞ
g�;sðT inÞ

�
4=3

Z
∞

0

dy y3Γ̃infeq: ðA6Þ

This quantity depends on the initial temperature through
the explicit factor T ing�;sðT inÞ−4=3 and also through the
integrand. However, when g�;s is constant, this dependence
reduces to the only factor T in. In this regime,
ΔNeff ∝ μ2T in. Thus, a given observational bound on
ΔNeff translates, in the freeze-in regime defined by
Eq. (A4), to a bound on μ2T in. In other words, constraints
on μ in the freeze-in regime scale as T−1=2

in . Note that, since
Γ=H ∝ μ2T, the decoupling temperature scales as μ−2. This
ensures that, for constant g�;s, the rescaled constraint will
still correspond to the freeze-in regime. To illustrate this, let
us consider an initial temperature in the freeze-in regime,
T in ≪ Td, and the associated constraint μ < μ̄. Rescaling
T in to T 0

in > T in would produce a new upper bound

(assuming freeze-in) μ̄0 ¼ μ̄
ffiffiffiffiffi
T in
T 0
in

q
. Since the decoupling

temperature T 0
d associated to μ̄0 is T 0

d ¼ Td
μ̄2

μ̄02, we find

that T 0
in=T

0
d ¼ T in=Td ≪ 1.

APPENDIX B: IMPACT OF THE DIFFERENT
COSMOLOGICAL ANALYSES

Here we discuss modeling assumptions and approxima-
tions that enter the computation of Neff and subsequent
bounds on the NMM. We find it useful, for the purpose of
this discussion, to show in Fig. 5 the value of Neff for
three RH neutrinos as a function of μ, as obtained with
different approaches. The black, red, and blue curves have
been obtained by direct integration of the Boltzmann
equation, for three different initial temperatures, namely
T in ¼ 100 GeV, T in ¼ 106 GeV, and T in ¼ 100 MeV,
respectively, and assuming a vanishing population of RH
neutrinos at the initial time.
First, we compare our results with those of Ref. [24],

where the primeval plasma is composed only by electrons
and positrons, restricting the analysis to temperatures
T ≤ mμ ≃ 100 MeV. A bound μ≲ 6.2 × 10−11μB was
derived by requiring that RH neutrinos have already
decoupled from the thermal bath at the highest temperature
considered in the analysis, i.e., Γ < H at T ¼ 100 MeV,
with Γ the thermally-averaged interaction rate. Since a
species decoupling after μþμ− annihilation is at a temper-
ature equal or larger than the active neutrinos, this amounts
to requiring that each RH neutrino species contributes with
ΔNeff < 1 to the radiation density. Applying the same
criterion (Γ < H at 100 MeV) using our own calculation of
the rate, we obtain μ < 5.3 × 10−11μB, as represented by
the blue dot in Fig. 5, roughly in good agreement with
Ref. [24].
Current observations constrain ΔNeff < 0.286

(Planckþ BAO), leading to a stronger bound on μ.
Indeed, ignoring any production that might have happened
at epochs earlier than T ≃ 100 MeV, as implicitly done in
Ref. [24], would yield μ≲ 2.1 × 10−11μB, as shown by the
blue curve in Fig. 5. However, the value of T in is somehow

FIG. 5. Late-time value of ΔNeff due to the population of three
species of RH neutrinos as function of μ for different initial
temperatures and calculation methods (see text for details). The
horizontal dashed lines indicate the current 95% bound
(Planckþ BAO and Planckþ BBN) and the 2σ sensitivity of
future experiments (CMB-S4). The dots mark the values of μ
giving thermal equilibrium at the initial temperature T ¼ T in.
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arbitrary and can affect the final abundance. Values of
T in > 100 MeV can be considered, provided that other
particle species in the plasma are included. This is the main
improvement of this work. For T in ¼ 100 GeV (the black
curve in Fig. 5) we obtain the bound

μ≲ 9.1 × 10−12μB: ðB1Þ

Notice that this result corresponds to full thermalization at
T ≳ 4 GeV. Therefore, this is insensitive to further
increases of the initial temperature above 100 GeV, as
confirmed by the T in ¼ 106 GeV case (i.e., by noting that
the black and red curves in Fig. 5 overlap in the region
constrained by the Planckþ BAO dataset).
The dataset combination Planckþ BBN prefers smaller

values of Neff than Planckþ BAO, albeit with a slightly
large uncertainty and, as a result, provides the stronger
constraint ΔNeff ≲ 0.163, leading to μ < 2.7 × 10−12μB for
T in ¼ 100 GeV. In this case, the largest allowed value of μ
corresponds to thermal equilibrium at T ≳ 50 GeV, which
is fairly close to T in. We can thus expect that the bound will
saturate for a somehow larger choice of the initial temper-
ature. This can be concluded by noting that the black and
red curves in Fig. 5 start to diverge for values of the NMM
close to the upper bound. Indeed, we have explicitly
verified that the bound saturates at μ < 1.7 × 10−12μB
for large enough values of T in, as shown by the red line.
We now comment on the difference between the green

line and the other cases previously discussed. In our
analysis, we follow the decoupling of the RH neutrinos
by solving the relevant Boltzmann equation with vanishing
initial population and for different values of the
initial temperature T in. This yields the black, red, and blue
lines in Fig. 5 for T in ¼ 100 GeV, T in ¼ 106 GeV, and
T in ¼ 100 MeV, respectively, as detailed before. A differ-
ent approach, used, e.g., in Ref. [25], would consist in
assuming that a thermal population is established at early
times and that decoupling happens instantaneously at the
time when Γ=H ¼ 1. One should then use entropy con-
servation to find the ratio between the RH and photon
temperatures at late times and compute the corresponding
value of ΔNeff . This yields the green line in Fig. 5.
The first difference between the two approaches is

related to the instantaneous decoupling approximation,
as evident by comparing the black and green lines in
Fig. 5. Before commenting further on the origin of this
difference, we discuss the effects on the NMM bounds. The
initial temperature for the red curve, T in ¼ 106 GeV, has
been chosen to correspond to thermal equilibrium for
μ≳ 2 × 10−14μB, as represented by the red dot, so that
the differences between the two curves at larger values of
the NMM are due to the treatment of decoupling. It can be
clearly seen in Fig. 5 that the instantaneous decoupling can

significantly underestimate the value of ΔNeff , and thus
lead to (artificially) looser constraints on μ. For
Planckþ BAO, the constraint would go from μ < 9.1 ×
10−12μB to μ < 3.7 × 10−11μB. For Planckþ BBN, the
constraint would go from μ < 1.7 × 10−12μB to
μ < 2.6 × 10−12μB. The latter value matches very closely
the bound quoted in Ref. [25], μ < 2.7 × 10−12μB, as
expected given that it has been obtained under the same
assumptions. This bound is also very close to the one we
found using the full Boltzmann approach for
T in ¼ 100 GeV (black line). This agreement should be,
however, regarded as accidental, as it is clear that the black
and green curves in Fig. 5 have different behaviors, and
only by chance cross at a value of ΔNeff corresponding to
the Planckþ BBN bound.
Given that Γ=H scales linearly with T, sizable

entropy transfer from the SM plasma to the RH neutrinos
can take place for quite some time after the condition
Γ=H ¼ 1 is realized at the decoupling temperature Tdec,
i.e., the approximation of instantaneous decoupling is
particularly crude. Thus, neglecting entropy production
happening after decoupling, at T < Tdec, can severely
underestimate the value of ΔNeff associated to a given
value of the NMM. This explains the discrepancy between
the black and green lines. The solution obtained by solving
the Boltzmann equation with the full temperature depend-
ence of Γ=H (red curve) clearly differs in the region of
10−12μB ≲ μ ≲ 5 × 10−11μB. This is particularly important
since this is exactly the region probed by currently available
data. Note also that solving the Boltzmann equation leads
to a much smoother behavior for ΔNeffðμÞ, making the
results obtained in this approach less dependent on the
modeling of the expansion and interaction rates around
the time of QCD decoupling.
One might naively expect that, since Γ=H increases at

large temperatures, the equilibrium condition Γ=H ≫ 1 can
be always met in the early Universe. However, several
factors might affect this extrapolation to high temperatures.
From an observational standpoint, there are direct probes of
the cosmological history only below the BBN energy scale.
Additionally, new physics might appear above the electro-
weak scale, potentially altering the primeval plasma.
Moreover, the NMM interaction is an effective description
valid up to a certain high energy threshold, depending on
the physics inducing the NMM. Hence, it cannot be
assumed that the parameter T in can always be set suffi-
ciently high to establish thermal equilibrium. By resolving
the Boltzmann equation with a vanishing initial RH
neutrino population, we are able to both describe the
scenario in which thermal equilibrium is established, as
well as the scenario in which the interactions are not strong
enough to generate a thermal population.
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