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The bubble expansion velocity is an important parameter in the prediction of gravitational waves from
first-order phase transitions. This parameter is difficult to compute, especially in phase transitions in
strongly coupled theories. In this work, we present a method to estimate the wall velocity for phase
transitions with a large enthalpy jump, valid for weakly and strongly coupled theories. We find that
detonations are disfavored in this limit, but wall velocities are not necessarily small. We also investigate the
effect of two other features in the equation of state: nonconformal sound speeds and a limited range of
temperatures for which the phases exist. We find that the former can increase the wall velocity for a given
nucleation temperature, and the latter can restrict the wall velocities to small values. To test our approach,
we use holographic phase transitions, which typically display these three features. We find excellent
agreement with numerically obtained values of the wall velocity. We also demonstrate that the implications
for gravitational waves can be significant.
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I. INTRODUCTION

Many models for particle physics beyond the Standard
Model (BSM) predict that one or more first-order phase
transitions (PTs) might have occurred in the history of the
Universe. These phase transitions might have played a role
in the generation of the matter-antimatter asymmetry [1–8]
or the production of dark matter [9–12]. First-order PTs can
also source a gravitational wave (GW) signal when the
released vacuum energy gets converted into sound
waves, gradient energy in the bubble walls, and/or turbu-
lence [13–16]. Depending on the strength and temperature
of these transitions, the signals could be observable with
the next generation of GW telescopes [17–19]. See, e.g.,
Refs. [19–22] for reviews.
Using GWs to learn about BSM physics requires

accurate predictions of the GW spectrum. Analytical argu-
ments and hydrodynamic simulations have resulted in a
predicted GW spectrum as a broken power law [19,23–30].
The underlying assumption in Refs. [19,25–28,30], which
was checked in Refs. [23,24], is that the amplitude of the
signal can be predicted by the nucleation temperature Tn
and rate β, wall velocity ξw, and sound speed cs, as well as

the so-called energy budget, that can be computed from the
hydrodynamics of a single bubble.1 In most cases, the
energy budget can be estimated from the phase transition
strength α, ξw [34], and cs [35,36]. The challenge of
predicting the GW spectrum is thus reduced to a compu-
tation of the thermal parameters and the hydrodynamics.
The wall velocity strongly affects the strength and shape

of the GW spectrum [19,34], and it also enters in compu-
tations of the baryon asymmetry [37–42] or dark matter
abundance [9–12]. It is, however, challenging to compute
for a given theory (see, however, Refs. [43–47] for some
explicit computations) and is therefore often treated as a
free parameter, or simply set to ξw → 1. This results in a
significant uncertainty, so better estimates are necessary.
Unfortunately, the difficulty of computing the wall velocity
is even greater in strongly coupled theories [48–52], where
a quasiparticle interpretation underlying the computations
of Refs. [43–47] may not be available. In this work, we will
provide a way to determine ξw that can be applied to both
weakly and strongly coupled theories when they have a
large jump in the number of degrees of freedom between
the phases—we will refer to this as a large enthalpy jump.
We will take a holographic equation of state (EOS) as an
explicit example, which can be used to understand aspects
of strongly coupled PTs [53,54]. Holographic models
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1Strictly speaking, the GW signal should be computed at the
percolation temperature Tp. Often, one can approximate Tp ∼ Tn,
but this assumption cannot always be made [31–33].
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represent a useful playground where we can obtain insight
into strongly coupled cosmological PTs [55–61] and
possibly into PTs in neutron star mergers [62]. It has
already been shown that ξw can be obtained in a holo-
graphic PT [63–66], and we can use these results to test our
approach.
Holographic theories are characterized by a gravitational

description that is dual to a strongly coupled gauge theory
with a large number N of degrees of freedom. They
naturally exhibit three distinctive features (see, e.g.,
Refs. [67,68]):

(i) a large jump in enthalpy between the high-temper-
ature and low-temperature phase,

(ii) a limited range of temperature for which the
phases exist,

(iii) strong deviation in the sound speed from the
conformal value c2s ¼ 1=3.

We will see that these features can strongly modify the
hydrodynamic predictions compared to the often-made
assumptions that c2s ∼ 1=3 and that the temperature can
take any value.2 We also stress that these features are not
unique to holographic PTs and that our results apply to
nonholographic models as well.
The main result of this work is a demonstration that the

wall velocity for models with a large enthalpy jump follows
directly from the EOS and the nucleation temperature,
without further details of the plasma. Some steps in this
direction were already taken in Ref. [66], in which a
formula was proposed to obtain the wall speed for planar
bubbles. Our results are valid for spherical bubbles, and we
will compare our results for planar bubbles with the
findings there. Additionally, detonations are not realizable
in the infinite enthalpy jump limit. If the allowed temper-
ature range is limited, we find that the resulting wall
velocity is rather small, favoring deflagrations as observed
in Refs. [63,64,66], and likely excluding detonations.
Finally, we will see that quantitative results can get strongly
affected by a nonconformal sound speed. GW predictions
for models with a large enthalpy jump get significant
corrections compared to the “vanilla” assumption where ξw
is a free parameter and c2s ¼ 1=3.

II. HYDRODYNAMIC AND THERMODYNAMIC
DESCRIPTION OF BUBBLE EXPANSION

A. Hydrodynamics

Finding the kinetic energy in the fluid requires solving
the hydrodynamic equations of a single expanding bubble.
We will summarize the approach here, and further details
can be found in Refs. [16,34,69,70]. The hydrodynamic

equations follow from the energy-momentum tensor of a
perfect fluid,

Tμν ¼ wuμuν − pgμν; ð1Þ

where w ¼ Tdp=dT is the enthalpy. gμν denotes the metric,
which is assumed to be the Minkowski metric, and
uμ ¼ γð1; v⃗Þ denotes the fluid velocitywith γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v⃗2

p
.

The hydrodynamic equations for uμ and w are obtained by
projecting ∂μTμν ¼ 0 in the direction parallel and
perpendicular to the fluid flow,

2
v
ξ
¼ γ2ð1 − vξÞ

�
μ2ðξ; vÞ

c2s
− 1

�
∂ξv;

∂ξw ¼ w

�
1þ 1

c2s

�
γ2μðξ; vÞ∂ξv; ð2Þ

where ξ ¼ r=t (with r the radial distance to the center of the
bubble and t the time since nucleation), v is the fluid velocity
in radial coordinates, and μ is the Lorentz-boosted velocity,
μðξ; vÞ ¼ ðξ − vÞ=ð1 − ξvÞ. The speed of sound follows
from p via

c2s ¼
dp=dT
de=dT

; e ¼ p
dp
dT

− p: ð3Þ

The only regions where this hydrodynamic description fails
are the bubble walls and shocks. Nevertheless, given their
small size compared to the bubble, they can be replaced by
discontinuities across which we impose matching condi-
tions, that are obtained by integration ∂μTμν ¼ 0 from right
behind the wall/shock to right in front of the wall/shock,
yielding

wþv2þγ2þ þ pþ ¼ w−v2−γ2− þ p−;

wþvþγ2þ ¼ w−v−γ2−; ð4Þ

where the þ; ð−Þ label denotes quantities evaluated right in
front of (behind) the discontinuity. After some algebraic
manipulations, we obtain

vþv− ¼ pþ − p−

eþ − e−
;

vþ
v−

¼ e− þ pþ
eþ þ p−

; ð5Þ

for the matching conditions. Note that the velocities are
defined with respect to the frame of the wall/shock.
By solving Eqs. (2) and imposing the matching con-

ditions (5) at the wall and possible shock, we can solve for
the whole flow as a function of two input parameters, e.g.,
ξw and Tn (or, similarly, αn). The energy budget K is
determined from the ratio of the fluid kinetic energy to the
enthalpy of the high-temperature phase at Tn. For each Tn,
there are three type of solutions depending on the value of

2Sometimes this assumption is implicit, by using an approxi-
mation for the energy budget of Refs. [34–36]. The underlying
models of Refs. [34–36] exist for arbitrary temperatures, and the
corresponding solutions could probe temperatures unrealistically
far away from Tn.
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the wall speed with respect to the sound speed (see,
e.g., Ref. [34]):

(i) Deflagrations: ξw < cs;L. In this case, v− ¼ ξw
and vþ < cs;HðTþÞ.

(ii) Hybrids: cs;L < ξw < vJ, with vJ the Jouguet
velocity (see, e.g., Refs. [34,70,71]). We now have
v− ¼ cs;L and vþ <¼ cs;H.

(iii) Detonations: ξw > vJ, with v− > cs;L and vþ ¼ ξw.
Here and in the following, we use the subscript H (L) for
quantities defined in the high- (low-)enthalpy phase.

B. Equations of state

We will consider three equations of state to investigate
the effects of large enthalpy jumps, temperature limitations,
and c2s ≠ 1=3 on the hydrodynamic solutions. Let us
parametrize the large enthalpy jump by some large number
N and assume that low-enthalpy phase quantities are
suppressed by3 1=N2.

1. Dark SU(N) model

We consider the model of Refs. [53,54], which is based
on a holographic description of a confinement/deconfine-
ment PT. The thermodynamic equation of state can be
obtained following the approach described in Ref. [53],
which we will not repeat here, but we demonstrate the
pressure and sound speed of the high-enthalpy phase
in Fig. 1. We see that the sound speed deviates strongly
from c2s ¼ 1=3. At the nucleation temperature Tn ¼
0.993Tc [60], c2s ¼ 0.103. Note that the model only
describes the high-enthalpy phase, which ceases to exist
at T < Tmin;SUðNÞ. Even though we leave N as a free
parameter, the model implicitly assumes that N is large,
as contributions that are smaller than OðN2Þ are neglected.
For the low-enthalpy phase, we will assume the equation of
state proposed by Ref. [72] (although we will find that
nothing depends on this for large N),

pL ¼ 1

N2

T4
c

ν − 1

�
T
Tc

�
ν

; ð6Þ

where the sound speed is a constant set by ν ¼ 1þ 1=c2s;L,
which parametrizes the unknown equation of state of the
low-enthalpy phase.

2. Template model

We use the model of Ref. [72] to describe models with
constant, but nonconformal sound speeds,

pH ¼ aHT4
c

μ − 1

�
T
Tc

�
μ

− ϵ;

pL ¼ 1

N2

aHT4
c

ν − 1

�
T
Tc

�
ν

; ð7Þ

where and μ ¼ 1þ 1=c2s;H and aH parametrizes the number
of degrees of freedom of the high-enthalpy phase and ϵ is a
temperature-independent constant, which parametrizes the
energy difference between the two phases. The virtue of
the template model is that it allows us to study the effect of
the nonconformal sound speed and large enthalpy jump,
without the limited temperature range. The often-used bag
equation of state is a special case of the template model
with μ ¼ ν ¼ 4.
In all cases, we assume that the low-enthalpy phase

temperature cannot grow as large as to undo the 1=N2

suppression; i.e., we assume that TL ≪ TcN2=ν.

3. Strongly coupled holographic model

We will briefly discuss the model of Ref. [64] in
Sec. III C, a holographic description of a strongly coupled
phase transition with N ∼ 3 (see Ref. [64] for details). The
bubble wall velocity of this model was determined in
Ref. [63], and we will compare it to our estimate.

III. HYDRODYNAMICS WITH A LARGE
ENTHALPY JUMP

A. Matching conditions in the large-N limit

Let us consider the matching conditions of Eq. (5) in the
limit ofN → ∞. Given the suppression that we assumed for
the low-enthalpy phase, the following ratios hold,

w−

wþ
∼
s−
sþ

∼
e−
eþ

∼
1

N2
; ð8Þ

FIG. 1. Speed of sound squared and pressure (inset) of the high
enthalpy phase. The dashed lines correspond to states that are
thermodynamically unstable.

3The inspiration for this suppression factor comes from
confining holographic and large-N gauge theories, where the
high-enthalpy phase has N2 degrees of freedom and the low-
enthalpy phase has Oð1Þ. However, we do not take any other
assumptions from holography, so the results we obtain are general
for models with a large enthalpy jump.
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where s ¼ w=T. We have assumed the previously men-
tioned bound on the low-enthalpy phase temperature.
The relation between the pressures of both phases is

more complicated. By the definition of Tc, pHðTcÞ ¼
pLðTcÞ, which means that p−=pþ does not need to be
small. Indeed,

p−

pþ
∼

1

N2
if

jTþ − Tcj
Tc

≫
1

N2
; case 1;

p−

pþ
∼ 1 if

jTþ − Tcj
Tc

≲ 1

N2
; case 2: ð9Þ

We will now study the matching conditions for these two
different cases.
Case 1 Let us first investigate Eq. (5) with

p−=pþ ∼ 1=N2,

vþv− ∼
pþ
eþ

�
1þO

�
1

N2

��
∼
vþ
v−

; ð10Þ

with solution4 v− ¼ 1 −Oð1=N2Þ, which corresponds to a
detonation, as we have seen in Sec. II A. In a detonation,
vþ > v−, so Eq. (4) implies that w− > wþ, which is not
possible in the large-N limit.5

Case 2 If p−=pþ ∼ 1, then

vþv− ¼ O
�

1

N2

�
;

vþ
v−

¼ O
�

1

N2

�
; ð11Þ

implying that vþ ¼ Oð1=N2Þ, corresponding to a defla-
gration or a hybrid. In combination with Eq. (9), this leads
to the following conditions for a large enthalpy jump
bubble expansion,

Tþ ¼ Tc and vþ ¼ 0: ð12Þ
The condition on vþ was already stated in Ref. [66] and it
was also pointed out there that the condition on Tþ was a
good approximation for the simulations presented in
Refs. [63,66].
Let us point out that the matching relation just obtained

does not restrict us to slow walls, as the Jouguet velocity,
which is the transition from hybrids to detonations, can
become arbitrarily close to unity for a large amount of
supercooling (see, e.g., Ref. [34]).
We conclude that large enthalpy jump PTs lead to

deflagrations or hybrids characterized by the condition
(12) while detonations are excluded.

B. Hydrodynamic solutions

We expect the matching relations of Eq. (12) to hold in
any theory with a large enthalpy jump, but in order to use
them to find the relation between ξw and Tn requires a
solution of the hydrodynamic equations in the shock wave.
This requires an EOS, and the relation between ξw and Tn
will be numerical.
In this section, we solve the hydrodynamics for the dark

SU(N) and the template model [with c2s ¼ 1=3 and
c2s ¼ 0.103—the same value as in the dark SU(N)], for
increasing N.
Let us focus first on deflagrations and hybrids. We

demonstrate in the left panel of Fig. 2 that Tþ indeed
approaches Tc, independent of the choice of T−. The
slower converge for larger T− is to be expected as we
require larger N to suppress the enthalpy at higher temper-
atures. Similarly, vþ approaches 0 as N increases, inde-
pendently of the value of T−, as shown in the right panel of
Fig. 2. We used the template model with μ, ν ¼ 4 but have
confirmed explicitly that the convergence also occurs for
other sound speeds and the dark SU(N) model.
The lines of Fig. 3 demonstrate the relation ξwðTnÞ

obtained from solving the hydrodynamic equations with the

FIG. 2. Tþ=Tc (left) and vþ (right) as a function of N for different choices of T−. Tþ tends to Tc, and vþ tends to zero as N increases,
regardless of T−.

4Note that we use the sign conventions of Ref. [34], in which
all velocities are positive.

5Even without taking the large-N limit, detonations can be
excluded in certain theories with a limited temperature range as
having w− > wþ may not be possible.
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matching conditions of Eq. (12). In this limit, the solution is
obtained without any reference to the fluid behind the wall.
The dots demonstrate the result forN ¼ 30 (with ν ¼ 4 and
T−=Tc ¼ 0.5), and we see that they agree extremely well.
We observe that for the holographic model only solutions
with ξw ≲ 0.25 exist. The reason becomes immediately
clear: the minimum temperature of the high-enthalpy phase
prevents further supercooling. From the results of the
template model, we see that when such a minimum
temperature does not exist there is—in principle—no limit
on the amount of supercooling, and the wall velocity can
grow arbitrarily large. This is a very important observation,
as it suggests that the low wall velocities found in real-time
holographic simulations [63,64,66] are not a result of the
strongly coupled nature of these theories, but rather of the
impossibility of strong supercooling.
Another interesting observation is that the sound speed

strongly affects the relation between Tn and ξw. For models
with c2s < 1=3, the typical velocity is larger than for
c2s ¼ 1=3, and a smaller amount of supercooling is required
for a fast wall, in agreement with Ref. [66].
Finally, we checked that detonations get excluded in the

large enthalpy jump limit for the template model. Given a
fixed ξw and Tn, Eq. (5) implies that p− and e− are
independent of N, meaning that the temperature scales as
T− ∝ TcN2=ν for detonations. But this corresponds pre-
cisely to the range of temperatures that we excluded in the
large-N limit because it undoes the 1=N2 suppression.

C. Comparison with the strongly
coupled holographic model

Let us now put our result to the test, by comparing to the
wall velocity obtained in an actual simulation. Figure 4
demonstrates a comparison to the values of ξw obtained in
the strongly coupled holographic model in Ref. [63] for

planar bubbles. In this case, ∂μTμν ¼ 0 reduces to
∂ξv ¼ ∂ξw ¼ 0 for deflagrations, and one only has to solve
the matching conditions at the shock.
We see that the large enthalpy jump description (solid

black) already gives a very accurate estimate of the wall
velocity, even though N is only approximately 3. We also
compare the result to the wall velocity obtained assuming
local thermal equilibrium at the bubble wall (dashed cyan)
[71,73,74], and interestingly this gives a comparable
estimate, albeit somewhat larger. This can be understood
in the large enthalpy jump limit as follows. The entropy
change at the wall, in the wall frame, is given by

sHðTþÞγþvþ − sLðT−Þγ−v− → 0; ð13Þ
which vanishes due to vþ → 0 and s− → 0 when N → ∞.
This is exactly the condition for local thermal equilibrium,
and we would therefore expect an even better agreement
between the two approaches for larger N.
Additionally, we display the prediction of the simple

wave (SW) formula [66] (pink dot-dashed), with the
additional assumption vþ ¼ 0 and Tþ ¼ Tc,

ξw ¼ tanh
Z

Tc

Tn

dT
Tcs

: ð14Þ

Notice that the results are very close to ours for Tn ∼ Tc, but
start disagreeing for smaller Tn. This effect can be perfectly
understood in the template model, where both approaches
offer analytical results,

ξlargeNw ¼ cs;HðTμ
c − Tμ

nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTμ

c þ c2s;HT
μ
nÞðTμ

n þ c2s;HT
μ
cÞ

q ;

ξsww ¼ tanh

�
1

cs;H
log

Tc

Tn

�
; ð15Þ

FIG. 3. Wall speed as a function of the nucleation temperature
in the dark SU(N) model (black), template model with c2s ¼ 1=3
(pink dot-dashed), and with c2s ¼ 0.103 (cyan dashed). Circles
correspond to deflagrations and triangles to hybrids.

FIG. 4. Wall speed from the simulations in Ref. [63] (dots) and
the result using the condition (12) (solid black), local thermal
equilibrium (dashed cyan), and the simple wave formula (14)
(dot-dashed pink).
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with μ ¼ 1þ 1=c2s;H. The series expansions of both expres-
sions around Tn ¼ Tc agree perfectly to second order.
However, greater discrepancy with the data is expected for
theories with stronger supercooling.

IV. IMPLICATIONS FOR GWS

Let us now discuss the possible implications for the GW
spectrum, taking the dark SU(N) model and the template
model as concrete examples. For the prediction of the GW
spectrum, we first follow the approach of Ref. [19], and
then further discuss its applicability.
In Ref. [60], the GW spectrum of the dark SU(N) model

was predicted for three different values of the wall velocity
ξw ¼ ð0.01; 0.1; 1Þ, for a nucleation temperature of
Tn=Tc ∼ 0.993 (note that Tn ∼ Tp holds in this model).
Using the given nucleation temperature, we find that the
correct wall velocity is ξw ¼ 0.078 in the large enthalpy
limit (which is implicitly used in Ref. [60], by assuming
that the low-enthalpy phase can be ignored). The sound
speed deviates strongly from c2s ¼ 1=3 (see Fig. 1), and we
take its full effect on the energy budget into account in the
dashed cyan line in Fig. 5, using β=H ¼ 6.4 × 104 and
Tc ¼ 100 GeV from Ref. [60]. For comparison, we also
show in solid black the GW prediction for c2s ¼ 1=3 like
was done in Ref. [60]. We see that the effect of the
nonconformal sound speed is to increase the peak fre-
quency by almost a factor 2 and to reduce the peak
amplitude by a factor ∼2 (largely due to the explicit cs
in the GW amplitude). If we now compare to the GW
predictions of Ref. [60], we conclude that the large

enthalpy jump fixes the velocity to a relatively small value,
reducing the GW signal compared to more optimistic
choices. Moreover, we see that the deviation in cs signifi-
cantly affects the signal. For concreteness, we compared
our result with ξw ¼ 0.078 and the full temperature-
dependent cs and find a suppression of a factor ∼80
compared to the ξw ¼ 1, c2s ¼ 1=3 result obtained in
Ref. [60], demonstrated by the black dotted line.
Although it looks like the GW spectrum could be

significantly enhanced by allowing for a larger amount
of supercooling, and correspondingly larger ξw, we refrain
from giving such a prediction here. The reason is that the
simulations of Refs. [23,24] on which the GW predictions
of Ref. [19] are based never probed large values of
α corresponding to such supercooling. Moreover, the
vacuum energy domination would trigger a period of
inflation [79,80], which affects the GW spectrum.
The GW prediction for models with a large enthalpy

jump might even need further revision, due to the large
amount of latent heat L ¼ eH − eL ∼ eH released. As
discussed in Refs. [13,81–83], for phase transitions with
large amount of latent heat and a small amount of
supercooling, the nucleation and growth of bubbles gets
delayed due to heating of the plasma by the first generation
of nucleated bubbles, suppressing the GW amplitude.6 The
extent of this effect is possibly model dependent, as a large
amount of latent heat does not need to imply a small
amount of supercooling. In Refs. [58,85], it was demon-
strated that the amount of supercooling in (holographic)
models with a large number of degrees of freedom can in
fact be large.
Another effect that likely modifies the GW spectrum was

observed in the simulations of Ref. [86]. For strong
deflagrations, bubble walls were observed to slow down
before colliding, due to the formation of heated droplets of
the high-temperature phase. This caused a vortical compo-
nent in the fluid field and a suppression of the kinetic energy
compared to the predictions of Ref. [19]. Reference [56]
included this suppression in the prediction of the GW
spectrum from a holographic model and concluded that
the spectrum from parameter points with small ξw became
largely unobservable (byTianQin).Whether the suppression
persists for larger phase transition strengths and/or fast
hybrid walls is a matter that requires further study.

V. CONCLUSION

In this work, we have explored the consequences of a
large enthalpy jump, limited allowed temperature range,
and strong deviations from c2s ¼ 1=3 on the wall velocity
and the predicted GW spectrum. Although these features
arise naturally in holographic and strongly coupled

FIG. 5. Prediction of the GW signal in models with a large
enthalpy jump and Tc ¼ 100 GeV. The two lower lines show the
dark SU(N), with Tn=Tc ¼ 0.993 and ξw computed in the large-N
limit. The dashed cyan line considers the full model, and the
black solid line assumed that c2s ¼ 1=3. The black dotted line
shows the spectrum if one assumes ξw ¼ 1 and c2s ¼ 1=3. The
pink area shows the power-law-integrated sensitivity curve of the
future GW experiment Big Bang Observer [75–77], obtained
from Ref. [78].

6In Ref. [84], ξw < 10−6 was found in this scenario, but note
that the amount of supercooling was significantly smaller than the
one found in Ref. [60].
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theories, our results are also applicable to weakly coupled
theories.
A large enthalpy jump highly constrains the fluid flow,

favoring deflagrations and hybrids over detonations, which
cease to exist as the jump grows larger. It forces the fluid
ahead of the wall to be at the critical temperature Tþ ¼ Tc
and to move at the same speed as the wall, vþ ¼ 0. By
integrating the hydrodynamic equations (2) and solving
matching conditions at the shock, we showed that one can
obtain a relation between the wall speed and the nucleation
temperature depending solely on the EOS. Our estimate for
the wall velocity becomes more accurate as the enthalpy
jump increases in a given theory, as demonstrated in Fig. 3.
The method can be applied to bubbles in arbitrary dimen-
sions. A formula to obtain ξw was also proposed in
Ref. [66], but it has not yet been generalized beyond
planar bubbles, and it only agrees with our result in the
regime of small supercooling.
As discussed around Eq. (13), the large-N limit also

enforces local thermal equilibrium. This implies that as
long as the enthalpy jump is large the estimate of ξw by the
code snippet of Ref. [71] (developed for local thermal
equilibrium) will be very similar to the one obtained with
the method presented in this work.
We have pointed out that a limit on the amount of

supercooling, rather than strong coupling, is the main
limiting factor in obtaining fast walls. This clarifies the
reason behind the low speeds measured in holographic

simulations [63,64,66]. For illustration, we have computed
the GW spectrum in the dark SU(N) model. We found that
the limited temperature range indeed results in a small wall
speed, which suppressed the GW spectrum compared to the
choice ξw ¼ 1. We also demonstrated that nonconformal
values of cs, which naturally occur in holographic models,
significantly affect the GW spectrum.
Our main conclusion is that care is needed when

determining the wall speed in the computation of the
GW spectrum. We have demonstrated a way of estimating
the wall velocity in the case of a large enthalpy jump, which
can even be applied to strongly coupled theories and which
should decrease the uncertainty in the GW prediction
associated to ξw.
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