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One of the long-standing goals in the framework of inflation is the construction of tools that can be used
to classify models in theory space. An idea that has been put forward in this context is to consider the
energy-dependent scaling behavior of observables to characterize different models. We implement this
approach in the framework of hilltop and hilltop-squared inflation by analyzing their observables when the
small-field approximation is not imposed and the energy scale μ of these models is varied as a free
parameter, subject to observational constraints. We show that the scalar spectral tilt and the tensor ratio r
exhibit μ-dependent scaling behavior and that the scaling exponents as functions of μ in turn lead to
functional forms that are model dependent. Scaling relations of the type discussed here are of interest as
characteristics of the inflationary theory space as well as in the context of the postinflationary reheating
process. We further observe a bifurcation behavior in the behavior of p-families in the spectral-tensor plane
for a critical value of μ.
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I. INTRODUCTION

Hilltop-type potentials have remained among the canoni-
cal models of inflation. While the general class of hilltop
theories encompasses a wide variety of potentials that have
been discussed in the context of a number of embedding
theories (see, e.g., the reviews [1,2] formany references), our
focus here is on a more specific set of models, defined as

Vp;n ¼ Λ4

�
1 −

�
ϕ

μ

�
p
�

n
; ð1Þ

where n ¼ 1, 2. Some of the models in this class have
become benchmark models for the cosmic microwave back-
ground (CMB) collaborations [3–8].While hilltopmodels, in
general, and the Vp;n above, in particular, have traditionally
been considered in the context of single-field inflation (see,
e.g., [2,9–35]), this class of potentials is also of interest in the
framework of multifield inflationary models that describe
saddle point inflation. In this context, hilltop potentials can
be used as single-field approximations of inflaton trajectories
that roughly evolve along a cross section in the concave
direction of the multifield potentials. Examples of this latter
type include the models of j inflation and h inflation in the
framework of modular inflation [36–41].
The potentials Vp;n describe two-parameter single-field

inflationary models and as such are amenable to the
scaling-type analysis that was introduced in Ref. [42] in

the context of multifield inflation. In was observed there
that theories with two parameters may lend themselves to a
characterization in terms of a family of scaling relations
with associated scaling exponents βp that are specific to the
models and therefore could be used to distinguish regions
in the inflationary theory space. Furthermore, if the
exponents βp are functions βpðμÞ of the energy scale μ,
one can ask whether they in turn show scaling behavior
with an associated exponent γp that would then provide a
single number associated with the parameter space of the
model. Such scaling relations were established in [42] in
the context of modular inflation, which is a class of two-
field models. The same question can be raised in the
context of other models with two parameters and, in the
present analysis, we focus on hilltop-type potentials. We
vary the exponent p in Vp;n systematically and consider the
dependence of the observables on the energy scale μ. We
will focus on pure slow-roll inflation, without making any
further approximations that were adopted in early papers on
these models. Making such additional approximations
eliminates the dependence of the observables on the energy
and thereby trivializes the scaling behavior. Imposing such
approximations implies, for example, that the critical
exponent of the tensor ratio is energy independent, hence
there is no functional dependence of the scaling exponents
on μ.
Depending on the exponent n in (1) the models exhibit a

quite different structure close to the minimum at ϕ ¼ μ.
While hilltop inflation (n ¼ 1) intersects the zero line with
a nonzero slope, hilltop-squared models have a smooth
valley around the minimum. The fact that there is no valley
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for the hilltop models has sometimes been considered a
weakness of these models because, strictly speaking, this
means that these models do not have a domain that allows
the inflaton to oscillate around the minimum, thereby
releasing its energy to other particles whose couplings to
the inflaton are assumed to be small and negligible during
inflation but become relevant during the postinflation
process of reheating. As a practical matter this issue can
be resolved by simply gluing an appropriate potential to
VðϕeÞ for ϕ > ϕe to the hilltop potential. The fact that this
issue does not arise for hilltop-squared theories has been a
motivation to consider these models, see, e.g., [7,32,34,35].
Discussions concerning the embedding of hilltop models in
fundamental theories can be found, for example, in the
work of [43–45] and references cited therein.
We have organized this paper as follows. Section II

describes the observables we will focus on in both the pure
slow-roll and in their different small-field approximations.
In Sec. III we briefly consider the reheating constraint so as
to be able to gauge its effect when imposed in addition to
the CMB constraints. In Sec. IV we present the impact of
the CMB and reheating constraints for the class of hilltop
models and in Sec. V we discuss the scaling distributions
that will be made quantitative for hilltop models in Sec. VI.
In Sec. VII we analyze p-families of hilltop models in
dependence of the energy scale μ and describe a bifurcation
phenomenon that appears at a critical value of this scale. In
Sec. VIII we extend our analysis to the hilltop-squared
models and in Sec. IX we discuss the implications of our
scaling analysis as a tool that provides characteristic
quantities defined on the inflationary landscape. We con-
clude in Sec. X.

II. OBSERVABLES IN HILLTOP INFLATION

Our focus in this work is on hilltop inflation in the pure
slow-roll approximation, but it is of interest to compare our
results with the behavior of this class of models in the
small-field approximation. We discuss these approxima-
tions in turn.

A. Slow-roll approximation

The analysis in the following is concerned with the
observables at horizon crossing as functions of the inflaton
ϕ� and the number of e-folds N� between horizon crossing
time t� and the end of inflation te. For the Lukash-Bardeen
perturbation [46–48]

R ¼ Hδu − ψ ; ð2Þ

where H ¼ ȧ=a is the Hubble-Slipher parameter, ψ is the
metric potential, and δu is obtained from δT0i, the spectral
index and the tensor-to-scalar ratio take the form

nRR ¼ 1−p
M2

Pl

μ2
ðϕμÞp−2

ð1− ðϕμÞpÞ2
�
2ðp− 1Þ þ ðpþ 2Þ

�
ϕ

μ

�
p
�
:

r¼ 8p2
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μ2
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ð1− ðϕμÞpÞ2

; ð3Þ

while the number of e-folds is given by
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μ2

pM2
Pl
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: ð4Þ

The end-of-inflation value ϕe will be determined by the
constraint ϵVðϕeÞ ¼ 1, which is obtained from the con-
straint

�
ϕe

μ

�
p
þ pffiffiffi

2
p MPl

μ

�
ϕe

μ

�
p−1

− 1 ¼ 0: ð5Þ

We will use two different ways to analyze these models
phenomenologically. The first is the “scan method,” in
which the strategy is to systematically scan the parameter
space ðΛ; μ;ϕ�Þ for viable models within the available
constraints, in particular, the CMB results for nRR; r from
PLANCK as well as the adopted range for the number of e-
folds. This is in the spirit of earlier analyses in a different
context, such as [41]. The second is the “p-family method,”
where the idea is to choose a fixed number of e-foldsN, say
N ¼ 60, and determine ϕ� in terms of N�, where ϕe has
been solved via ϵVðϕeÞ ¼ 1, as usual. Having determined
ϕ�ðNÞ by inverting the N⋆ equation in (4) leads to

�
ϕ�
μ

�
p
− Ap

�
ϕ�
μ

�
p−2

þ 2

p − 2
¼ 0 ð6Þ

with

Ap ≔ 2p
M2

Pl

μ2
N� þ

�
ϕe

μ

�
2

þ 2

p − 2

�
μ

ϕe

�
p−2

: ð7Þ

In this way, one can compute the observables for a given μ.
This method was considered, for example, in the early
hilltop papers [9,10] (see also [21]).

B. Small-field approximations of hilltop inflation

The small-field approximation can be implemented in
different forms. The weakest form requires only that the
initial value ϕ� is much smaller than the energy scale μ.
More interesting is the stronger approximation that ϕ is
much smaller than μ throughout inflation, because this
allows one to obtain analytical expressions for the observ-
ables. While consistency with the model does place
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restrictions on μ, these are model dependent and are weaker
than the sub-Planckian constraint often encountered as part
of the small-field definition. In order to distinguish these
different approximations, we use the designations SF.I for
the weakest version, SF.II for the version that covers all of
inflation, and SF.III for the version that furthermore
imposes an a priori constraint on the energy scale μ that
is model-independent.
The motivation for SF.II comes from the fact that, in this

case, one can use the resulting e-fold formula

N� ¼
μ2

pðp − 2ÞM2
Pl

��
μ

ϕ�

�
p−2

−
�
μ

ϕe

�
p−2

�
ð8Þ

to solve analytically for ϕ� as a function of N�. Using this
solution, we can write the e-fold dependence of the spectral
index as

nRRðp; μ; N�Þ

¼ 1 −
2ðp − 1Þ

ðp − 2ÞN� þ 1
p ð pffiffi

2
p Þðp−2Þ=ðp−1Þð μ

MPl
Þp=ðp−1Þ ð9Þ

and the tensor-to-scalar ratio as

rðN�;μ;pÞ

¼
8p2ð μ

MPl
Þ2p=ðp−2Þ

ðpðp− 2ÞN� þ ð μ
MPl

Þp=ðp−1Þð pffiffi
2

p Þðp−2Þ=ðp−1ÞÞ2ðp−1Þ=ðp−2Þ :

ð10Þ

This μ-dependent form of the small-field approximation
does not lead to an analytical N�-scaling relation for either
of the observables, which is presumably why it has not been
considered in the literature. However, we can think of these
expressions as functions that indicate a kind of “effective”
scaling relation with energy-dependent exponents and
amplitudes. This point will turn out to be useful later in
this paper to gain a qualitative understanding of the μ
dependence of hilltop inflation.
While neither r nor nRR scale with N� directly in the

SF.II approximation, the tensor ratio does scale analytically
with the spectral tilt δn ¼ 1 − nRR as

rðnRR; μÞ ¼
8p2ð μ

MPl
Þ2p=ðp−2Þ

ð2pðp − 1ÞÞ2ðp−1Þ=ðp−2Þ δ
2ðp−1Þ=ðp−2Þ
n : ð11Þ

This shows that even in the SF.II approximation the tensor
ratio varies for the class of hilltop models and that typicality
statements made in the literature about the behavior of the
tensor ratio as a function of nRR do not apply in general.
The slow-roll form of this relation will be discussed
in Sec. IV.

Our results below will show that, while the SF.II approxi-
mation does capture qualitatively certain features of hilltop
inflation, it is only a good approximation in a limited
parameter range that is not enforced by observations.
Furthermore, while in some parameter regions the small-
field approximation might be reasonable at the beginning of
hilltop inflation it is, in general, less so toward the end of
inflation. If the μ-terms in the denominators are neglected,
the spectral index reduces in the resulting SF.III approxi-
mation to the μ-independent spectral index

nRRðp;N�Þ ¼ 1 −
2ðp − 1Þ
ðp − 2Þ

1

N�
ð12Þ

considered in the early hilltop papers [9,10]. Similarly, in this
limit the tensor ratio reduces to the form discussed in [11]

rðN�Þ ¼ 8p2

�
μ

MPl

�
2p=ðp−2Þ 1

ðpðp − 2ÞN�Þ2ðp−1Þ=ðp−2Þ
:

ð13Þ
In both relations the exponents are independent of the energy,
which is not the case in the slow-roll or the small-field
approximation SF.II.

III. REHEATING CONSTRAINT

While our main focus is in the energy dependence of the
scaling behavior in hilltop and hilltop-squared inflation, it
is of interest to see how the reheating constraints affect the
distributions associated with the initial conditions of the
inflaton field. For this we consider the usual insertion of
phases between horizon crossing and today, in combination
with the evolution of the energy density during reheating
and the conservation of entropy between the end of
reheating and today. The simplest analyses assume that
the equation of state parameter wrh is constant, so that

ρrh ¼ ρe

�
ae
a

�
3ð1þwrhÞ

; ð14Þ

an assumption that is made in much of the literature. The
detailed form of the phase evolution analysis of the scale
factor depends on how the expansion of the k�=k0 is done,
but the end result is essentially the same, see, for example,
[49–53]. For our purpose, it is useful to evaluate the
resulting formula for the e-folds Nrh during reheating for
potentials of the type V ¼ Λ4fðϕ=μÞ, where f is a
dimensionless function. The overall energy scale Λ is
determined by the CMB amplitude AR, leading to

Nrh ¼
4

1−3wrh

�
−N� þ

1

4
ln
ðf0�Þ2
f�fe

þ1

2
ln
MPl

μ
þσpiv

�
; ð15Þ

where f� is the dimensionless potential evaluated at ϕ�, fe
is its value at the end of inflation, and f0 is the
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dimensionless derivative of f. The parameter σpiv is a
model-independent constant

σpiv ¼ ln
a0T0

k�
−
1

3
ln
11grh
43

−
1

4
ln

405

π2grh
þ 1

4
lnð12π2ARÞ;

ð16Þ

determined by the CMB amplitude AR and the pivot scale
k�, as well as grh and T0. For the reheating temperature, we
obtain in terms of the dimensionless potential f

Trh ¼ MPl

�
540

grh

M2
Pl

μ2
AR

ðf0�Þ2fe
f3�

�
1=4

e−
3
4
ð1þwrhÞNrh : ð17Þ

This compact form is convenient for computations even
though it is written in a slightly redundant form. The
energy-dependent scaling relations obtained below for the
observables lead to scaling behavior of Nrh and Trh in
dependence of these variables.

IV. SCALING BEHAVIOR OF HILLTOP
INFLATION

Hilltop inflation has mostly been analyzed at low p and
low μ. The model at p ¼ 4, in particular, has been discussed
often in the literature, see, e.g., [2,9–12,24–26,29,30,32,33],
and has been adopted as a benchmark model by the CMB
collaborations (see, e.g., [3,4,6–8]). In this section we
investigate the impact of the CMB and reheating constraints
more generally for these models and, in particular, analyze
the behavior of the observables as the energy parameter μ is
varied, similar to the analysis in [42] in the context of
multifield inflation. The resulting data will be used in later
sections for the scaling analyses.
We varyp through awide set of models, ranging from 3 to

100, and for each p consider a range of μ values that is
compatible with the CMB constraints on the spectral index
nRR and the tensor-to-scalar ratio r and also lead to sufficient
inflation N� ∈ ½50; 70�. This μ range increases as p gets
larger, both in the sub-Planckian and the super-Planckian
regime. For lowp, in particular, themodels are not consistent
with the CMB and e-fold constraints for sub-Planckian
values for μ, but these become viable as p increases. We
scan the complete μ range for super-Planckian values in
an integral parametrization μ ¼ mMPl, m an integer, and
impose for larger p the generic p-independent lower bound
μ ¼ 10−2MPl for the sub-Planckian range. This lower bound
is sufficient to indicate the behavior of these models, in
particular, toward the lowendof the tensor ratio that is probed
by such μ values. The parametrization of these sub-Planckian
ranges is via rational valuesμ ¼ MPl=m. The upper boundon
μ grows linearly with p with a slope of slightly less than 8,
while the full sub-Planckian regime reaches for large p far
below the Planck scale. While there is a weak correlation
between the number of inflationary e-folds and μ, there is

quite some degeneracy even for low p and this degeneracy
increases for largerp. For the purpose of our discussion, a full
scan of μ range is not necessary.
In Fig. 1 we illustrate the distributions mapped out by

viable initial conditions in the spectral-tensor plane con-
sidered by the experimental collaborations. We adopt the
values nRR ∈ ½0.96; 0.97� and r� ≤ 0.035, as suggested by
the CMB experiments [8]. The color coding is blue for
super-Planckian μ range and pure inflationary constraints,
while red indicates the results after taking into account the
reheating constraint Nrh, which is implemented here for
illustration with wrh ¼ 0. Black is for μ in the sub-
Planckian range with inflationary constraints and yellow
indicates the inclusion of the reheating constraint. The first
panel in Fig. 1 shows that the quartic hilltop model has no
viable initial values for sub-Planckian μ values, which also
holds for p ¼ 3. The ranges of the inflaton field in both
models are such that these models are no longer small-field
inflation, given the current observational constraints. As p
increases sub-Planckian energy values become possible
and the viable μ bounds extend both in the sub- and the
super-Planckian regime, leading to the regions in the
parameter space in which these models can describe
small-field inflation.
The overall shapes of the viable regions in the spectral-

tensor plane of Fig. 1 are determined by a combination of
constraints. The upper and lower boundary curves of the
distributions come from the lower and upper bound of the
number of inflationary e-folds. A smaller interval of
allowed values N� would lead to regions that are more
narrow. The flat plateaus of the upper regions of the
distributions in Fig. 1 show that the PLANCK bound on r
constrains these models for all p. Future experiments like
the Simons Observatory [5], CMB-S4 [6,7] and LiteBird
[54] aim to reach r ≅ 0.001 and will put more pressure on
some of these models if gravitational waves are not found.
In particular, the often considered quartic model could be
excluded and the same applies even more to the cubic
hilltop model because its lower bound of r is higher than for
the quartic model. For larger p none of the upcoming CMB
experiments will be able to exclude these models based on
their target values of r in the range of a milli, even if the
energy scale μ is restricted to super-Planckian values.
The results in Fig. 1 also show that for low p hilltop

models improved constraints for the spectral index alone
have the potential to significantly reduce the viable region
in the spectral-tensor plane, while for higher p such
constraints will have less impact since for larger p the
region in these graphs covers the whole range of the
spectral index, at least in the tensor ratio range considered
here for sub-Planckian energy scales μ. This pattern is
stable when p is increased to p > 20 as far as the CMB
constraints above are concerned. Including the reheating
constraint does not change the viable range of nRR but does
decrease the regions dramatically by its effect on the tensor
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ratio. An improved accuracy of the spectral index nRR
could again limit the viability of this class of models with a
matter dominated reheating phase. The combination of the
results of the PLANCK probe with the upcoming large scale
survey data, such as Euclid and SKA, will therefore have a
significant impact on the hilltop models. A discussion of
the uncertainties of different combinations of these three
experiments is, for example, given in Ref. [55].
The μ-stratifications of Fig. 1 show that in hilltop

inflation the tensor-to-scalar ratio r follows scaling rela-
tions in dependence of nRR and that the scaling parameters
vary as the energy scale μ is varied. This will be analyzed
quantitatively in later sections by extending and general-
izing the strategy adopted in the context of multifield
inflation in Ref. [42]. Here we point to the fact that this
energy dependence generalizes and refines assumptions
made in the literature that neglect a possible variation of the
amplitude and the exponents in the scaling relation [56,57].
These results make explicit the difference between the
strong small-field approximation discussed earlier in this
paper and the slow-roll approximation. In the former the
scaling exponents are energy-independent, while Fig. 1
illustrates the significant variation of these parameters over
the viable parameter space. As a result of this energy
dependence the parameter spaces of the different hilltop
models are constrained to a different degree, depending on
p. The ðr; nRRÞ-scaling relations of Fig. 1 can be viewed as

a consequence of the energy-dependent scaling relations of
the spectral tilt δnðNÞ and the tensor ratio rðNÞ as functions
of the number of inflationary e-folds, which will be
discussed in the next section.
The μ-stratification of the spectral-tensor plane also

establishes correlations between some observables and
the energy parameter that defines the deformation of the
model. These are of different strength in that the correla-
tion, for example, between the energy μ and the tensor ratio
is quite strong, while the correlation between μ and the
spectral index is much weaker. Other correlations, such as
the anticorrelation between the number of inflationary e-
folds N� and the reheating e-folds Nrh depend on the
model, becoming weaker as p increases. The bounds on
these e-folds are, however, stable and lead to upper bounds
of about 40 and about 60 for the reheating e-folds and the
inflationary e-folds, respectively.

V. SCALING DISTRIBUTIONS IN HILLTOP
INFLATION VIA N�

Scaling functions in dependence of the model parameters
can be used as characteristics of the inflationary theory
space, as discussed in the context of multifield theories in
[42]. While this is a particularly interesting tool in multi-
field models with nontrivial potentials, even single-field
inflationary theories are usually not solvable analytically.

FIG. 1. The ðnRR; log rÞ distributions for p ¼ 4, 7, 10, 20 in the panels from the upper left to the lower right, respectively. Here the
colors blue (red) indicate the super-Planckian μ without (with) the reheating constraint, while black (yellow) shows sub-Planckian
domains without (with) the reheating constraint.
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FIG. 2. Scaling distributions for ðN�; δnÞ in hilltop inflationary models with p ¼ 4, 7, 10, 20. The color scheme is the same as in Fig. 1.

FIG. 3. The tensor ratio distribution ðN�; log rÞ for p ¼ 4, 7, 10, 20. The color scheme and the arrangement is as in Fig. 1.
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Making sufficiently strong approximations to yield ana-
lytical methods leads to a loss of significant features. To
gain a broader perspective of scaling in inflation, we
analyze the scaling behavior of hilltop inflation for both
the spectral tilt δn and the tensor ratio r as functions of the
number of e-folds. We extend this analysis for a wide range
of models and a large range of μ values that have been
shown in the previous section to be viable [see, e.g., the
distributions of the viable μ data in the ðnRR; rÞ plane for
different p shown in Fig. 1].
In Fig. 2 we collect the distributions for δnðN; μÞ as p

increases and μ is varied over its viable range. The results
show that δn scales with N in dependence of the energy
scale μ

δnðN; μÞ ¼ αδnðμÞ
Nβδn ðμÞ

; ð18Þ

where the existence of families of the energy-dependent
exponents extends the limit defined by the strong small-
field approximation SF.III with its energy-independent
scaling exponent. Figure 2 shows again that the range of
viable e-folds is dramatically affected by the reheating
constraint.
It was noted in the previous section that there is a weak

correlation between the energy scale μ and the number of
inflationary e-folds N�. In Fig. 2 this degeneracy can be
seen explicitly for the different models and that the
distribution does become more narrow as p increases.
In Fig. 3 we show the scaling distributions of the tensor-

to-scalar ratio rðN; μÞ as p and μ are varied on a logarithmic
scale. The resulting behavior

rðN; μÞ ¼ αrðμÞ
NβrðμÞ ð19Þ

again shows an energy dependence of the exponents that
goes beyond the small-field approximation.
The gap at low r and low N in the graphs of Fig. 3 is

quite pronounced for small p, but becomes smaller as p
increases. This pattern continues for p > 20. Furthermore,
the viable regions including the reheating constraint
increase, in particular, for the sub-Planckian range of μ.
The two scaling relations (18) and (19) of Figs. 2 and 3

explain the scaling relations in Fig. 1, leading to a nonlinear
relation between the spectral tilt and the tensor ratio. They
also explain the scaling behavior of the number of reheating
e-folds and the reheating temperature as functions of the
spectral tilt δn or the tensor ratio r. This will be analyzed
quantitatively in the next section.

VI. SCALING EXPONENTS IN HILLTOP
INFLATION

In this section, we make the scaling behavior of the
spectral tilt and the tensor ratio of the hilltop potentials
more precise. In Figs. 1–3 the scaling behavior of rðδnÞ,
δnðNÞ, and rðNÞ is shown for several hilltop models in a
systematic way for the full super-Planckian range of μ
values as well as a partial range of sub-Planckian values.
The resulting stratifications in these distributions suggest
a scaling behavior of the form δnðNÞ ¼ αδN−βδ and
rðNÞ ¼ αrN−βr , with exponents β and amplitudes α that
depend on the energy scale μ. Hence we obtain for a given
model a family of exponents for each of these observables.
This is qualitatively similar to the multifield behavior
considered in [42]. In the present discussion, we will
determine the resulting exponents β explicitly in order to
be able to compare these characteristic numbers of hilltop
inflationwith those of othermodels and place this class in the
inflationary landscape. The results below can be compared to
the small μ limit of the small-field approximation prediction

FIG. 4. Scaling behavior of the spectral tilt ðN�; δnÞ for the selection of μ of Table I. Here the red sections along the curves cover the
range that is compatible with the CMB and the e-fold constraints.
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where both exponents are constants for a fixed model. In the
slow-roll approximation these families of exponents instead
lead to a nontrivial functional behavior.

A. Scaling exponents for the quartic hilltop model

As noted above, the hilltop model at p ¼ 4 has been
discussed extensively in the literature, see, e.g., [2,9–
12,16,24–26,29,30,32,33], and has been adopted as a
benchmark model by the CMB collaborations (see, e.g.,
[3,4,7]). We therefore begin our analysis with this model
for the most general range of μ. In the previous section, we
have seen that this model leads to viable initial values
compatible with the CMB results only for super-Planckian
μ values in a fairly narrow range. As a consequence, parts
of the analyses of some of the earlier references are no
longer applicable.
The distribution in the spectral-tensor plane is shown in

the previous section in Fig. 1, both with and without the
reheating constraint. In the present discussion we focus on
the scaling behavior of the observables as functions of N.
Figure 2 illustrates again that the spectral tilt δn ¼ 1 − nRR
of the spectral index away from the Harrison-Zeldovich
spectrum nRR ¼ 1 shows for the quartic hilltop model
scaling behavior in dependence of the inflationary e-fold
number N� as indicated above in Eq. (18). In Fig. 4 we
make this scaling relation more explicit for several curves
describing δnðNÞ for the hilltop model at p ¼ 4.
The curves in Fig. 4 lead to the exponents collected in

Table I.

The results of Fig. 4 and Table I show an energy-
dependent scaling exponent βδnðμÞ, which for small μ
approaches the limiting value of the SF.III approximation,
given by βδn ¼ 1, while the amplitude is in this limit given
by 2ðp − 1Þ=ðp − 2Þ ¼ 3. Roughly speaking, the slow-roll
approximation leads to a scaling behavior for p ¼ 4 hilltop
of the form δnðNÞ ∼ N−0.8� in the μ range indicated in
Table I.
For the tensor ratio r the first panel in Fig. 3 shows a

similar power-law scaling behavior rðNÞ ¼ αrN−βr for the
quartic hilltop model and a similar analysis leads to scaling
functions that for a selection of μ scales are illustrated
in Fig. 5.
The scaling exponents βr associated with the curves of

rðNÞ in Fig. 5 lead to the results in Table II.
This can be compared to the analytical tensor ratio

scaling behavior obtained in the SF.III approximation. In
this approximation the scaling exponent βr is independent
of μ and its value is given by βIIIr ¼ 2ðp − 1Þ=ðp − 2Þ ¼ 3.
The above results show the μ dependence of the scaling
exponents βrðμÞ and that for small μ they approach the
value of the strong small-field approximation SF.III.
With the scaling relations δnðNÞ and rðNÞ determined

above, we can also eliminate N in the second by using the
tilt scaling to obtain a scaling relation of the form
r ¼ rðδnÞ. The resulting exponents βr and βδn can be
compared with the analytical scaling relation determined
in the SF.II approximation in Eq. (11). Alternatively, one
can analyze the distributions of Fig. 1 directly in the same
way as done above for the N-scaling functions. This places

TABLE I. Characteristic exponents βδnðμÞ for the spectral tilt
δnðNÞ in the quartic hilltop model.

μ 5 10 15 20 25 30

βδnðμÞ 0.924 0.838 0.833 0.86 0.886 0.906

FIG. 5. Scaling behavior of the tensor ratio ðN�; rÞ for quartic hilltop inflation.

TABLE II. The scaling exponents of the tensor ratio rðNÞ at
p ¼ 4.

μ=MPl 5 10 15 20 25 30

βrðμÞ 2.748 2.268 1.897 1.667 1.532 1.446
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rðδnÞ directly in spectral-tensor plane and with a meas-
urement of r would allow tests not only of the model but
also of the parameter space spanned by μ.
The postinflationary evolution constraint is illustrated in

this paper with a matter dominated reheating phase. The
implications of the reheating constraint for the different
models are shown in the first three figures for both the super-
Planckian and the sub-Planckian energy scales μ. For hilltop
inflationwithp ¼ 4 the reheating e-fold range iswith our run
parameters roughly ΔNrh ¼ 40, while the reheating temper-
ature Trh is roughly between 103 and 1015 GeV.

B. Behavior of hilltop inflation at p= 10

For p ≥ 5 the range of viable energies μ includes the
sub-Planckian regime. In the present section we briefly
summarize here the scaling results at p ¼ 10, which are
obtained in the same way as described in detail in the
previous subsection for p ¼ 4. For this model the sub-
Planckian values for the energy scale μ lead to a much
deeper range for the tensor ratio.
The distribution ðδn; NÞ for all viable initial values at

p ¼ 10 takes the form shown in Fig. 2. Similar to the case
p ¼ 4, the distribution at p ¼ 10 is again formed by a set of
curves [that are described by a scaling relation in depend-
ence of μ of the type in Eq. (19)]. The scaling curves for a
selection of energy scales μ are collected in Fig. 6.
The scaling exponents for the curves in Fig. 6 can be

found in Table III. The values obtained can again be

compared to those of the small-field approximation, where
the amplitude evaluates for p ¼ 10 to α10 ¼ 9=4.
We consider again the behavior of the tensor-to-scalar

ratio r, for which Fig. 7 shows the dependence on the
inflationary number of e-folds for rðN�Þ for several energy
values μ extracted from the distribution of μ-family curves
in Fig. 3.
The scaling curves in Fig. 7 lead to the scaling exponents

compiled in Table IV. These results can again be compared
to the analytical tensor ratio scaling behavior that can be
obtained in the SF.III approximation. The latter predicts
that βIIIr ¼ 2.25.
The reheating parameters Nrh and Trh for the p ¼ 10

hilltop model are comparable to the values for the quartic
hilltop model.
As the exponent p of the hilltop models increases, the

pattern of the distributions in Fig. 1 is stable in that the
spectral-tensor plane region that is viable under CMB + e-
fold constraints remains saturated as for the p ¼ 20 model.
Furthermore, the range of the scaling exponents decreases
and remains within the viable region for larger ranges for
the energy scale μ.
The above results for the hilltop models at p ¼ 4 and

p ¼ 10 already indicate that these two inflationary scenar-
ios can be characterized by the ranges they define for the
scaling exponents of the spectral tilt and the tensor ratio.
This will be discussed in more detail in Sec. IX, after the
analysis of the hilltop-squared models.

C. Implications

The energy dependence of the N-scaling behavior of any
observable

OðNÞ ¼ αON−βO ð20Þ

FIG. 6. Scaling behavior of ðN�; δnÞ for p ¼ 10 hilltop inflation.

TABLE III. Scaling exponents βp for δn in hilltop inflation at
p ¼ 10.

μ=MPl 1 20 40 60 80

βδnðμÞ 0.998 0.922 0.916 0.934 0.947
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can be used to determine how the uncertainties of param-
eters describing the inflationary and reheating phases are
affected by varying μ. Denoting these parameters by P, for
example, the e-folds of the inflationary and reheating
phases, and the reheating temperature, their uncertainty
is determined by the uncertainties ΔO associated with
either the measured values of O or the uncertainties of
fiducial values predicted for future experiments. By
inverting (20) the induced uncertainty of the inflationary
number of e-folds is determined by

ΔN ¼ −
α1=βOO

βO

ΔO

O1þ 1
βO

; ð21Þ

which depends on μ via the energy dependence of the
amplitude αOðμÞ and the exponent βOðμÞ. This in turn can
be used to trace the implications of the uncertainties of O
forΔTrh. To do so it is useful to make the dependence of Trh
on the number of inflationary e-folds explicit by writing
Eq. (17) for the reheating temperature via Eq. (15) for the
number of reheating e-folds as

Trh ¼ κFðϕ�Þ exp
�
3ð1þ wrhÞ
ð1 − 3wrh

N�

�
; ð22Þ

where

Fðϕ�Þ ¼
�

f3wrh�
ðf0�Þ1þ3wrh

�1=ð1−3wrhÞ
ð23Þ

and κ collects all the remaining terms that are independent
of ϕ� and N�. With these ingredients we obtain

ΔTrh

Trh
¼

�
3ð1þ wrhÞ
1 − 3wrh

þ F0�
F�

�
ΔN�; ð24Þ

where here the dimensionless derivative is relative to the
number of e-folds F0 ¼ dF=dN. The energy dependence of
the scaling amplitude αOðμÞ and the exponent βOðμÞ
therefore leads to a μ dependence of these uncertainties.
Using, for example, the estimates of the CMB-S4 and the
Simons collaborations [5–7] this leads to uncertainties
induced by the spectral index and the tensor ratio.

VII. BIFURCATION AMONG p-FAMILIES
IN HILLTOP INFLATION

In the previous sections we have analyzed the behavior
of the spectral tilt δn and the tensor-to-scalar ratio r of
hilltop models in dependence of model parameters p and μ,
as well as the number of e-folds N, leading to functions on
the theory space. Our strategy has been to consider a wide
range of models and determine the energy ranges that are
compatible with the constraints provided by the CMB data
and the e-fold constraints. This leads to energy-dependent
scaling exponents that we interpret as diagnostic tools to
characterize inflationary models.
An alternative view of the class hilltop models can be

obtained by varying the models systematically by letting p
run while keeping μ andN� fixed, leading to a p-family. By
subsequently varying μ we obtain a set of p-families in the
spectral-tensor plane, as shown in Fig. 8. The strategy here
is to determine ϕe in the slow-roll approximation as the

FIG. 7. Scaling behavior of ðr; N�Þ at p ¼ 10.

TABLE IV. The scaling exponents of rðNÞ for p ¼ 10 hilltop
inflation.

μ=MPl 1 20 40 60 80

βrðμÞ 2.24 1.92 1.62 1.46 1.37
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solution of the degree p constraint of Eq. (5) and to
determine ϕ�ðN; pÞ via Eq. (6). This type of analysis gives
further insight into the differences between the hilltop
models and it also illustrates the energy dependence of the
observables described earlier in this paper in a different
way.

A. The bifurcation phenomenon for p-families

Naively, one might have expected that as μ increases the
p-family curve becomes ever steeper in the spectral-tensor
plane, perhaps approaching the vertical line. This turns out
not to be the case. Instead, when changing the μ parameter
we find that at some “critical value” μc a bifurcation arises
in the plane spanned by the spectral index and the tensor
ratio. For low μ the trajectories begin at low nRR for low p
values, with increasing nRR as p increases. Beyond the
critical value of μ the p-families begin for small p at large
nRR, with decreasing nRR as p increases. This is illustrated
in Fig. 8, which also contains an overlay of the forecasts of
the Simons Observatory to illustrate how different models
are affected by experimental constraints. The precise
location of the bifurcation in the plane depends on the
choice of the e-folds. In a first approximation this location
is clear from the approximation of the spectral index in the
form of Eq. (12), which ignores the ϕe dependence of the
e-folds. In this approximation the large p-limit approaches
the spectral index nRR ¼ 1–2=N�.
The structure of the p-families in Fig. 8 illustrates in a

different way the results of the scan analysis earlier in this
paper, in particular, the fact that for any super-Planckian
energy scale μ there are hilltop models that are compatible
with the CMB and lead to sufficient inflation. It also

illustrates that for low p-models there is a cutoff in the
super-Planckian regime below which no viable models can
be found. This includes, in particular, the quartic model for
which sub-Planckian energy is ruled out.

B. Small-field structure of p-families

It is clear that the bifurcation of the p-families in the
spectral-tensor plane cannot be understood in the approxi-
mation of hilltop inflation in which the dependence of the
number of e-folds on the field ϕe at the end of inflation is
neglected. This approximation leads to the spectral index
(12) and the tensor ratio (13) considered in the early
literature [9–11]. The reason why the ϕe-terms have often
been neglected is because the focus was on the low range of
the energy scale μ, in which case the N-independent terms
in the denominators of the small-field approximation are
small and it is justified to neglect them. An unusual feature
of this procedure is that the spectral index does not depend
on the energy scale. While it is usually the case that nRR
does not depend on the overall energy scale Λ, it does, in
general, depend on the remaining parameters of the theory,
and we see here that in the less severe SF.II approximation
this is also the case for hilltop inflation.
To illustrate that the SF.II approximation does capture

the bifurcation, we consider in Fig. 9 several p-family
curves in this approximation for several μ values between 1
and 200 MPl. This graph is truncated compared to the
numerical slow-roll graph in Fig. 8 because of the p-
dependent consistency constraints on the energy scale μ in
this approximation. Nevertheless, it does show that the

FIG. 8. A selection of p-families in the ðnRR; log rÞ plane for
different energy scale μ=MPl values between 1 (purple, low left
corner) and 100 (in black, upper right corner). The forecasts here
are by the Simons Observatory (SO) Collaboration [5] for
different scenarios.

FIG. 9. An illustration of the SF.II approximation of the
bifurcation phenomenon in the ðnRR; log rÞ plane for hilltop
inflation with energy scales between 5MPl and 100 MPl with p
running for p > pμ, where pμ is the consistency bound.
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bifurcation phenomenon can be captured by the SF.II
approximation even though the detailed numerics of the
trajectories is, of course, different in pure slow-roll as
compared to the SF.II approximation.

VIII. HILLTOP-SQUARED INFLATION

We have noted already that hilltop inflation Vp;n as
defined in Eq. (1) with n ¼ 1 does not contain a minimum
valley in which the inflaton can oscillate during reheating.
While this is, in principle, easy to fix with a small
deformation of the potential close to its zero, this feature
has motivated the consideration of more global changes of
the hilltop models, such as hilltop-squared inflation (HSI),
with potentials of the type considered in Eq. (1) with n ¼ 2
[23]. Higher exponents n have been considered in
[26,32,34,35].
In the present section, we extend our analysis of the

scaling behavior of the spectral tilt and the tensor ratio
considered above for hilltop inflation (HI) to potentials of
the type

Vp;2 ¼ Λ4

�
1 −

�
ϕ

μ

�
p
�

2

: ð25Þ

We focus, in particular, on the phenomenological aspects
and the scaling behavior of these models. We find that the

scaling results for the hilltop-squared models differ from
those of the hilltop models, but that they follow a similar
overall pattern.

A. Observables in hilltop-squared inflation

The spectral index of the scalar perturbations for the
hilltop-squared inflationary models (25) is given by

nHSIRR ¼ 1−
4pM2

Pl
μ2

ð1− ðϕμÞpÞ2
�
ϕ

μ

�
p−2

�
ðp− 1Þ þ ðpþ 1Þ

�
ϕ

μ

�
p
�

ð26Þ
and the tensor ratio rHSI relates to the hilltop tensor ratio as

rHSIðϕÞ ¼ 32p2
M2

Pl

μ2
ðϕμÞ2ðp−1Þ

ð1 − ðϕμÞpÞ2
¼ 4r: ð27Þ

The inflaton field at the end of inflation ϕe is determined in
HSIp by

xpe þ
ffiffiffi
2

p
p
MPl

μ
xp−1e − 1 ¼ 0; ð28Þ

where xe ¼ ϕe=μ. The number of e-folds NHSI� is related to
that of hilltop inflation as

FIG. 10. The spectral-tensor distributions ðnRR; log rÞ for hilltop-squared models with p ¼ 4, 7, 10, 20. The color scheme is the same
as in Fig. 1. For p ¼ 4, 7 the reheating constraint rules out sub-Planckian μ.
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NHSI� ¼ 1

2
NHI� : ð29Þ

The reheating e-fold number Nrh and the reheating temper-
ature Trh can be obtained from the general formulas given
above in (15) and (17) via the dimensionless hilltop-
squared potential.

B. Distribution of ðr; nRRÞ in hilltop-squared inflation

In the present subsection, we consider a sample of HSIp
models for the same range of p values considered above for
hilltop inflation and with the same CMB and reheating
constraints so as to be consistent with the PLANCK results
for the observables. The number of e-folds is again in the
canonical interval [50, 70]. Figure 10 shows the distribution
in the spectral-tensor plane.
These results imply that hilltop-squared inflation is not

small-field inflation, in general, in the sense that for some p
models sub-Planckian field values are not compatible with
the CMB constraints. This is similar to the behavior of the
hilltop models discussed above. The panel in Fig. 10 for
hilltop-squared at p ¼ 4 shows, in particular, that the
allowed range in the spectral-tensor plane is quite small
and that there are, in particular, no sub-Planckian energies μ
that lead to viable initial values. One can check that this
implies that the inflaton values ϕ� for this model are all

super-Planckian and hence hilltop-squared inflation at p ¼ 4
is not small-field inflation. The same holds for the p ¼ 3
model.

C. Scaling distributions for hilltop-squared
observables via N

The behavior of the spectral tilt δn is of interest both from
a theoretical and a practical perspective, as discussed above
in the context of the hilltop models. Figure 11 shows the
scaling distributions for the spectral tilt δn for different p
models in hilltop-squared inflation. Like in hilltop inflation
these distributions show a weak correlation between the
energy scales μ and the number of inflationary e-folds.

D. rðNÞ scaling in hilltop-squared inflation

The behavior of the tensor-to-scalar ratio r as a function of
the number of inflationary e-folds N� in hilltop-squared
inflation is similar to that of hilltop inflation. Figure 12
illustrates the ðN; log 4Þ-scaling relations for several hilltop
models. As in the case of the hilltopmodels, the viable region
for p ¼ 4 is much smaller than that of the higher p models.

E. Scaling exponents in hilltop-squared inflation

The analysis of the scaling behavior in hilltop-squared
inflation follows the same strategy as in hilltop inflation.

FIG. 11. The ðN�; δnÞ distributions for hilltop-squared models p ¼ 4, 7, 10, 20. The color coding is the same as in Fig. 1. For p ¼ 4
there are no contributions from sub-Planckian μ, hence there are no black and yellow regions in the corresponding panel.
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The structure of the two classes of models is similar,
although the numerical results differ. We have analyzed a
wide range of models between p ¼ 3 and p ¼ 100, based
on the distributions discussed in the previous sections and
extensions thereof, but here we focus on the p ¼ 4 hilltop-
squared model to illustrate the results. The distribution in
the spectral-tensor plane shown in Fig. 12 establishes the
regions that are viable given the CMB inflationary con-
straints with or without the reheating constraint. In the

following we focus on the scaling exponents of the tensor
ratio in dependence of the number of e-folds, shown for
several models in Fig. 12 as a function of the energy scale
μ. Some aspects of this model other than scaling have
also been discussed in [32]. In Fig. 13 we select several
curves from the distribution shown in the p ¼ 4 panel
of Fig. 12.
The scaling exponents for the curves in Fig. 13 lead to

the results listed in Table V.

FIG. 12. Distributions of ðN�; log rÞ for hilltop-squared models at p ¼ 4, 7, 10, 20. The color scheme is the same as in Fig. 1.

FIG. 13. A selection of ðN�; rÞ curves for hilltop-squared inflation at p ¼ 4.
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For hilltop-squared models, the range of the scaling
exponents becomes more narrow as p increases because the
upper boundary decreases and the lower boundary changes
only slightly.

IX. SCALING EXPONENTS AS MODEL
CHARACTERISTICS

In the previous sections we have determined the scaling
exponents of the two main observables nRR; r as functions
of the number of inflationary e-folds in both hilltop and
hilltop-squared inflationary models. These power-law scal-
ing exponents depend on the energy parameter μ of the
models, leading for a given model to functions βδðμÞ and
βrðμÞ. More generally, we can think of observables OðNÞ
and their associated exponents βOðμÞ as functions on the
model parameter space. These energy scales are con-
strained, depending on the conditions imposed on the
observables. If one is interested in what present and future
experiments can observe, then these constraints include
those obtained from CMB and large scale survey data,
assumptions about the number of inflationary e-folds N�
and, in principle, assumptions about the reheating period
and other constraints. Given such a set of μ-dependent
scaling exponents for an observable O it is natural to ask
how they characterize different models. The discussion
above suggests that this can be achieved in different ways.
An immediate comparison of models can be obtained by
comparing the ranges of the exponents for different models,
leading to what we will call “characteristic intervals.” A
second way is to focus on the functional form of the scaling
exponents, leading to “characteristic functions.”

A. Characteristic intervals

One possibility to distinguish different inflationary
models in an observable-based way is by comparing the
characteristic intervals obtained by imposing the CMB
constraints and the number of inflationary e-folds. The
results above of the analyses of hilltop and hilltop-squared
inflation show that for both types of models the strong
small-field approximation SF.III leads to an upper bound of
the corresponding characteristic intervals. For small p this
upper limit is quite different from the actual upper limit, but
for larger p the energy-independent SF.III exponent βIIIr ¼
2ðp − 1Þ=ðp − 2Þ is quite close to the slow-roll upper
bound of the tensor ratio scaling rðNÞ.
In order to gain perspective, it is useful to compare the

hilltop and hilltop-squared results above with results
obtained in other models. In Ref. [42] a scaling analysis

of the type considered in the present paper was constructed
for two modular inflationary models, theories that are based
on softly broken groups SLð2; IRÞ, associated with a
hyperbolic target space. In these models the potentials
are invariant under discrete subgroups of the Möbius group
and the theories have two energy scales ðΛ; μÞ, much like
the hilltop and hilltop-squared families. The observables
nRR and r can be viewed as functions of the number of e-
folds and show scaling behavior that is also energy
dependent. The resulting exponents again sweep out
characteristic intervals and hence can be compared with
the results obtained in the present paper. The fact that the
βIIIr define the upper limit for the energy-dependent expo-
nents immediately implies that the hilltop and hilltop-
squared models define scaling classes that are distinct from
the scaling classes defined by modular inflationary models
considered in [42] because the characteristic intervals of
hilltop and hilltop-squared inflation have no overlap with
the models considered there. This shows that characteristic
intervals provide a useful diagnostic for both single-field
and two-field inflation.
The comparison of the characteristic intervals of the two

hilltop classes, on the other hand, shows that they are similar,
with a somewhat higher lower bound of βrðμÞ for hilltop-
squared models as compared to hilltop models. Roughly
speaking, the distribution of these values in the hilltop-
squared class is more narrow than in hilltop inflation.

B. Characteristic functions of scaling exponents

A second defining feature that can be considered, once
the distribution of the scaling exponents βOðμÞ of an
observable O is known, is their functional form. Here
we focus on the tensor-to-scalar ratio for hilltop and hilltop-
squared inflation, similar to the analysis considered for
modular inflation in Ref. [42]. In both HI and HSI inflation
it is tempting to use as a guide for the functional fit the fact
that for large p the exponents βðμÞ are approximately flat
because for large p these models behave similar to the
strong small-field approximation SF.III and in this approxi-
mation there is no μ dependence. This suggests a linear
ansatz for the βðμÞ as a comparison to the horizontal line
determined by SF.III. It turns out, however, that this is not a
good approximation, in general, as seen already earlier in
the analyses above.
We make the functional μ dependence of the tensor

scaling exponents explicit in Fig. 14 for the classes of
hilltop and hilltop-squared inflation for six different models
between p ¼ 3 and p ¼ 100 and an energy range
μ ≤ 150MPl. The gray bands indicate the characteristic
intervals of the approximate range of exponents for which
the models are compatible with the CMB and e-fold
constraints. For small p these μ have a lower bound that
is super-Planckian, hence for these models the exponent
functions leave this CMB region at smaller values of μ and
again for larger μ, depending on p. For larger p the μ range

TABLE V. Scaling exponents βrðμÞ for at p ¼ 4 HSI.

μ 5 10 20 25 30

βrðμÞ 2.859 2.546 1.958 1.798 1.687
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reaches down quite far into the sub-Planckian regime and
the functional form of scaling exponents βrðμÞ becomes
flatter as the viable μ range expands. It is only for the largest
p models considered here that the exponents remain
completely within the characteristic band in the whole
range of μ considered in the graphs.
The behavior of the rðNÞ exponents in Fig. 14 for hilltop

and hilltop-squared models shows that for the complete
range of μ values, irrespective of the precise observational
constraints, the functions βrðμÞ can be described by higher
degree polynomials for low p, with the degrees decreasing
as the model exponents p increase. These polynomial fits
for βrðμÞ thus provide intrinsic characteristic functions of
the models. In the parameter ranges that are viable relative
to the CMB and e-fold constraints, the functions βrðμÞ
become simpler in the sense that fewer parameters suffice
for a good description.
The results obtained here for hilltop and hilltop-squared

inflation can now be compared with the results obtained

in [42] for modular inflationary models. For those models
the μ range was restricted to the super-Planckian range
μ > 10MPl and the models showed a simple scaling-of-
scaling behavior with exponents δr that were very similar,
both close to δr ≅ 2. In order to compare the hilltopmodels to
thesemodular inflationarymodels, it is useful to restrict them
to the same energy range. This leads again to an approximate
simple scaling behavior with exponents δr in dependence of
p. These hilltop scaling exponents are much smaller than 2,
establishing that the resulting scaling-of-scaling behavior
can be used as a classification tool that distinguishes between
these two different classes of models. The advantage of this
analysis is that a single numerical exponent allows one to
characterize a model and its parameter space.

X. CONCLUSIONS

In this paper we have shown how the energy-dependent
scaling exponents βOðμÞ associated with observablesOðNÞ

FIG. 14. The functional dependence of the scaling exponents βr (vertical axis) of the tensor ratio rðNÞ on the energy scale μ (horizontal
axis) at p ¼ 3, 4, 7, 10, 20, 100 for hilltop (top) and hilltop-squared inflation (lower). The gray region indicates the values for which the
different models are compatible with the CMB and e-fold based constraints.
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as functions of the number N of inflationary e-folds can be
used to characterize the classes of hilltop and hilltop-
squared inflation. Our focus has been on the spectral tilt δn
and the tensor-to-scalar ratio r, leading to an analysis of the
behavior of the scaling exponents βδnðμÞ and βrðμÞ of
δnðNÞ and rðNÞ. Here the energy scale μ is constrained by
the conditions imposed, which include the CMB and the
e-fold constraint, but may also include other restrictions,
for example, the reheating constraint. In the classes of
hilltop and hilltop-squared inflation these constraints lead
to μ ranges that increase as the exponent p is increased,
leading to increasing domains of functions βO. The result-
ing scaling exponents βrðμÞ then lead to two different
modes in which models can be classified, first via their
characteristic intervals and second via the functional types
of the scaling exponents.
The scaling results for the hilltop and hilltop-squared

models for βOðμÞ are quite similar, as expected, indicating
that the differences seen by the inflaton toward the end of
inflation do not lead to significant changes in the present
context. The behavior of these two classes is, however,
quite different from that of the modular inflationary models
considered in [42]. Using the characteristic interval as a
diagnostic tool shows that the modular inflationary models
are quite distinct from hilltop inflation and hilltop-squared
inflation since the tensor exponents of the former have no
overlap with the tensor exponents of the latter. Hence these
models belong to different regions of the inflationary
landscape. The functional behavior of hilltop and hilltop-
squared models is also quite similar, but again quite
different from that of the modular models. Comparing
modular inflation with hilltop/hilltop-squared inflation
shows that the CMBþ e-fold compatible range of μ for
hilltop and hilltop-squared inflation is much larger than for

the modular inflationary models. As discussed in Sec. IX,
for the full viable range the functional behavior of the
exponents depends quite dramatically on the model param-
eter p. In order to compare HI and HSI models with
modular inflation, it is necessary to restrict the energy scale
to about μ ≥ 10MPl. In this range the functional behavior of
HI and HSI simplifies and can be approximated as a power-
law scaling relation, leading to different inflationary scaling
regimes.
An immediate implication of the energy dependence of

the scaling exponents of both δnðNÞ and rðNÞ is that this
leads to an energy-dependent scaling behavior for rðδnÞ,
leading to a family of curves in the spectral-tensor plane.
This will have consequences for the type of reheating
analysis considered for example in [58].
The fact that hilltop and hilltop-squared models lead to

scaling regimes that are different from that of the modular
inflation models considered in [42] raises the question
whether the scaling diagnostics considered here general-
ize to other models. It would be interesting to place other
inflationary models in the scaling framework considered
here, either for single-field inflationary models or for
theories with more than one inflaton field. Analyzing
models such as those considered in the single-field
encyclopedia [2], or multifield models, including, for
example, the models considered in Refs. [59–71], will
provide further insight into the scaling structure of the
inflationary landscape.
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