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In this work we study the power spectrum of the stochastic gravitational wave background produced by
standard and biased domain wall networks, using the velocity-dependent one-scale model to compute the
cosmological evolution of their characteristic scale and root-mean-squared velocity. We consider a standard
radiationþ ΛCDM background and assume that a constant fraction of the energy of collapsing domain
walls is emitted in the form of gravitational waves. We show that, in an expanding background, the total
energy density in gravitational radiation decreases with cosmic time (after a short initial period of quick
growth). We also propose a two parameter model for the scale-dependence of the frequency distribution of
the gravitational waves emitted by collapsing domain walls. We determine the corresponding power
spectrum of the stochastic gravitational wave background generated by domain walls, showing that it is a
monotonic decreasing function of the frequency for frequencies larger than that of the peak generated by
the walls that have decayed most recently. We also develop an analytical approximation to this spectrum,
assuming perfect linear scaling during both the radiation and matter eras, in order to characterize the
dependence of the amplitude, peak frequency and slope of the power spectrum on the model parameters.
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I. INTRODUCTION

The discovery of gravitational waves using the ground-
based LIGO and Virgo observatories [1,2] has opened a
new window into the cosmos. Gravitational radiation
allows us to probe the dynamics of extreme astrophysical
events, such as binary black hole mergers and neutron star
collisions. In addition to these resolved sources, however,
there is a stochastic gravitational wave background that
arises from the cumulative effect of numerous unresolved
and independent sources distributed across the universe.
Pulsar Timing Arrays, operating in the nanohertz frequency
band, have recently announced its detection for the very
first time [3–5] and upcoming observatories, such as the
Einstein telescope and the space-borne LISA constellation
of satellites, will enable us to probe this background at
higher frequencies.
Various astrophysical and cosmological phenomena—

such as supermassive black holes, inflation, cosmic strings,
phase transitions (see, e.g., [6,7])—are predicted to generate
stochastic gravitational wave backgrounds. These signals
carry information about the sources that originated them and
may then enable us to unveil the fundamental processes that

shaped the early universe. The observed background is
likely to have been generated by several of these sources and
understanding each of these contributions is therefore
essential in order to use the observational data to its full
potential as a probe of the underlying physics.
In this paper, we focus on the stochastic gravitational

wave background generated by cosmic domain walls—
which were proposed as a potential explanation for the
detected signal [8]—and perform a detailed characteriza-
tion of the expected spectrum. Domain walls may arise in
phase transitions in the early universe as a consequence of
the spontaneous breaking of a discrete symmetry. These
topological defects correspond to two-dimensional surfa-
ces separating regions in space that have different vacuum
expectation values. The existence of cosmic domain walls
is predicted in various theoretical frameworks, including
some grand unified theories and other models incorporat-
ing scalar fields (see, e.g., [9]). However, direct observa-
tional evidence for their existence remains elusive. In fact,
standard domain wall networks have an energy density that
grows over time with respect to the cosmic background
during the radiation and matter eras, which means that they
would eventually dominate the energy budget of the
universe in the absence of dark energy. This led to strong
constraints on the energy scale of the domain-wall-forming
phase transition, as walls that form at a scale of η ≳ 1 MeV
would leave detectable imprints on the cosmic microwave
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background [10,11]. This stringent limit, known as the
Zel’dovich bound, may however be easily evaded if walls
are unstable and decay before the time of decoupling [12]
and, in fact, these biased domain wall networks are
predicted to form in many relevant scenarios [13–20].
Here, we will develop an analytical framework to compute
the gravitational wave background generated throughout
the cosmological evolution of stable and biased domain
wall networks, using some of the techniques developed in
the context of (semi)analytical studies [21–23] of the
stochastic gravitational wave background generated by
cosmic strings.
This paper is structured as follows. In Sec. II, we revisit

the velocity-dependent one-scale model for the evolution of
a network of cosmic domain walls (Sec. II A) and use it to
develop a framework to describe the gravitational wave
emission generated during its evolution (Sec. II B). In
Sec. III, this framework is applied to calculate the evolution
of the total energy density in gravitational waves. Section IV
is then dedicated to the computation of the full stochastic
gravitational wave spectrum, including the full numerical
calculation (IVA), an analytical approximation to our
results (IV B) and an estimate of the contribution of the
gravitational waves emitted during the sudden collapse of
the network due to a bias in the scalar field potential (IV C).
In Sec. V we compare our findings to previous computa-
tions of the stochastic gravitational wave background
generated by domain wall networks in the literature. We
then conclude in Sec. VI.
Throughout this paper, we will work in natural units,

where c ¼ ℏ ¼ 1, with c being the speed of light in
vacuum and ℏ being the reduced Planck constant. In these
units Newton’s gravitational constant is given by G ¼
6.70711 × 10−57 eV−2. Moreover, we will use the cosmo-
logical parameters measured by the Planck mission [24],
where the values of the density parameters for radiation,
matter and dark energy are respectively given by
Ωr ¼ 9.1476 × 10−5, Ωm ¼ 0.308, ΩΛ ¼ 1 − Ωr −Ωm

and the Hubble constant is H0 ¼ 2.13 · h × 10−33 eV,
with h ¼ 0.678, at the present time.

II. THEORETICAL FRAMEWORK

Current studies [18–20,25–28] of the stochastic gravi-
tational wave background (SGWB) generated by domain
wall networks are based on a model inferred from the field
theory simulations of [25]. Therein, the total energy
density in gravitational waves (GWs) and their spectrum
is measured in lattice simulations and, under certain
assumptions (that we will later discuss in more detail) a
model for the full spectrum is built. Lattice simulations,
however, have limitations: their dynamical range and
resolution is severely limited. Moreover, since the thick-
ness of moving walls is Lorentz contracted, the resolution
of the walls is also lost in the relativistic limit, which leads

to an artificial decrease of their velocity through the
emission of scalar radiation [29,30]. This is precisely
the limit in which significant GW emission is expected
to occur, and so this loss of resolution suggests that the
measurement of GWs in these simulations may produce
inaccurate results.
Here, we will follow a different approach and develop a

semianalytical framework to study the SGWB produced by
domain walls. Semianalytical models have been highly
successful in predicting the SGWB generated by cosmic
strings [22,31–36] and in reproducing, after calibration, the
results of numerical simulations [37,38]. Moreover, these
semianalytical frameworks have the advantage of being
very versatile, enabling for instance the study of nonstand-
ard cosmological and defect scenarios [39–41].
In this section, we start by reviewing the velocity-

dependent one-scale (VOS) model for the cosmological
evolution of domain wall networks, which will serve as the
basis for the framework we shall develop later in the
section. All the underlying assumptions will be discussed
in detail.

A. The velocity-dependent one scale model
for cosmic domain walls

The VOS model was first introduced for cosmic strings
[42], and later extended to accommodate cosmic domain
walls and other topological defects [43–45]. It describes the
time evolution of a cosmic defect network in a homo-
geneous and isotropic Friedmann-Lemaitre-Robertson-
Walker universe in terms of two macroscopic quantities:
its root-mean-squared (RMS) velocity v̄ and a characteristic
length scale L, defined in terms of the proper domain wall
energy per unit area σ and their energy density ρ as
L ¼ σ=ρ. The model treats domain walls as infinitely thin
surfaces, whose dynamics is described by the 2-dimensional
Nambu-Goto (or Dirac) action. Assuming that the network
itself is homogeneous and isotropic on cosmological scales,
averaging the Nambu-Goto equations of motion over the
whole network and assuming that hv4i ¼ v̄4,1 one finds that
the evolution of v̄ and L is of the following form:

dL
dt

¼ ð1þ 3v̄2ÞHLþ c̃ v̄ ð1Þ

dv̄
dt

¼ ð1 − v̄2Þ
�
kw
L

− 3Hv̄

�
: ð2Þ

Here H ¼ ȧ=a is the Hubble parameter and a is the
cosmological scale factor. A phenomenological term (that
we will discuss in more detail later), parameterized by c̃ and
describing the energy loss experienced by the network, was
also introduced in Eq. (1). Note that here we have neglected

1See [46] for a discussion of the potential impact of this
assumption.
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the impact of the frictional force caused by the scattering of
the particles of the surrounding plasma on the walls’
dynamics. This friction may significantly damp wall motion
and lead to a denser network (see, e.g., [43]) in the early
universe. Domain wall dynamics, however, is expected to
become effectively frictionless as the universe expands and
becomes less dense.
The VOS model for domain wall networks has two free

parameters that may be calibrated with simulations: the
curvature parameter kw and the energy loss parameter c̃. We
will work with the unique calibration c̃ ¼ 0.5 and kw ¼ 1.1
as given in [47], which provides an overall fit for the
radiation-, matter- and dark-energy-dominated eras. Note
that, although numerical simulations [48] and recent semi-
analytical studies [49–51] indicate that the calibration of
these parameters is not unique and should, in fact, depend
on the expansion rate, this single calibration actually
provides accurate results since we will only consider a
radiationþ ΛCDM background.
As the universe expands, a domain wall network con-

tinuously loses part of its energy. This happens because
increasingly large domain walls will enter the horizon
(here, and throughout the paper, we shall refer to the
standard cosmological model horizon—always of the order
of the Hubble radius—simply as horizon). Once this
happens, walls detach from the Hubble flow and decay
quickly, converting their energy into scalar and gravita-
tional radiation. This continuous collapse of domains
contributes to further increase the characteristic length of
the network, an effect that is captured by the last term in
Eq. (1). Alternatively, we may express the rate of energy
loss directly as:

dρ
dt

����
loss

¼ c̃ v̄
ρ

L
¼ c̃ v̄

σ

L2
: ð3Þ

For a decelerating power-law expansion of the universe,
with aðtÞ ∝ tλ and 0 < λ < 1, the VOS equations have an
attractor solution usually referred to as the linear scaling
regime. In this regime, L grows linearly with cosmic time,
such that L ¼ ξλt, and v̄ ¼ v̄λ remains constant, where

ξλ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kwðkw þ c̃Þ
3λð1 − λÞ

s
; v̄λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kwð1 − λÞ
3λðkw þ c̃Þ

s
: ð4Þ

For the remainder of this article, we will mostly focus on the
cosmologically most relevant cases of radiation and matter
domination (corresponding to a value of λ of 1=2 and 2=3
respectively). We will use a subscript “r” or “m” to refer to
the values of the corresponding variables in the radiation
and matter eras respectively and we define Aλ ≡ c̃v̄λ=ξ2λ .
Furthermore, we will write the time evolution of the scale
factor as aðtÞ=a0 ¼ Cλtλ where Cr ≡ C1=2 ¼ ½4H2

0Ωr�1=4,
Cm ≡ C2=3 ¼ ½ð9=4ÞH2

0Ωm�1=3 and a0 is the value of the

scale factor at present time. Note that during the transition
between the radiation- and matter-dominated eras the net-
work temporarily leaves the scaling regime. The matter era,
however, does not last long enough for scaling to be fully re-
established before the onset of dark energy. Nevertheless,
our results will show that assuming a matter-era scaling
regime until the present time provides an excellent approxi-
mation for our purposes.
In this discussion we have assumed that domain walls are

stable and that the networks survive until the present day.
Notice, however, that the ratio between the energy density
of a scaling domain wall network and that of the back-
ground is a growing function of time both in the radiation-
and matter-dominated eras. As a result, these walls would in
general be expected to leave strong observational signatures
in the large-scale structure of the cosmos. Still, the absence
of these strong imprints can have multiple explanations.
Domain walls may have never formed or could have formed
before or during cosmic inflation, therefore being pushed
out of the Hubble horizon. On the other hand, domain walls
that are formed late in the cosmic history could be light
enough to evade current observational limits on domain wall
tension. However, yet another solution to the problem has
been discussed extensively in literature: networks of heavy
domain walls could have formed early in the cosmic
history but decayed shortly after. Such a decay can be
caused by a bias in the scalar field potential that gives rise
to the domain walls, for example if one of the vacuum
states is initially more likely to be populated [12] or if the
energy densities of the minima of the potential are slightly
different [14]. In the latter case, a volume pressure may
counteract the surface tension of the domain walls. As the
average size of the domains grows during their evolution,
this volume pressure will eventually dominate over the
surface tension, causing the domains of true vacuum to
rapidly expand and fill all regions in the universe. As was
shown in literature [12,14,16], the rapid decay of the false
vacuum happens once the characteristic length L
approaches a value of order ϵ=σ, where ϵ is the (small)
difference in potential energy of the minima. For earlier
cosmological times, bias has a negligible impact on
domain wall network dynamics and, thus, their evolution
is well described by the VOS model up to the time of
disappearance of the walls. We shall discuss the potential
signature of biased domain walls on the SGWB later in
this work.

B. Basic assumptions on the emission
of gravitational waves

Domain wall networks have been extensively studied
using field theory numerical simulations [47,48,52–56] and
these show that collisions and intersections between walls
associated to different domains are quite rare. This means
that such collisions cannot be expected to give rise to a
significant contribution to the SGWB. In fact, as explained
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in the previous section, the evolution of the network is
mainly determined by the collapse of increasingly large
subhorizon sized domains under the effect of their tension.
As these walls collapse, they evaporate and no longer
contribute to the energy budget of the network. In the last
stages of collapse, however, walls accelerate to ultra-
relativistic velocities and should then be expected to emit
gravitational as well as scalar radiation in the process. Here,
we will take into account that the SGWB generated by
domain walls is expected to be sourced by collapsing
domains rather than by the relatively slow-moving super-
horizon sized walls that are still part of the network. Note
that, although ultra-relativistic velocities may also some-
times be reached on highly curved regions on superhorizon
walls—which would also naturally lead to an energy loss—
this process is akin to the collapse of subhorizon domains
and may thus be described similarly.
Since simulations show that the collapse of sub-horizon

sized walls is a relatively quick process, occurring on
timescales comparable to or shorter than one Hubble time,
we will also assume that domain walls decay effectively
immediately on a cosmological timescale once they detach
from the Hubble flow. In this case, by drawing an analogy
to small cosmic string loops [22] (which also evaporate
almost instantaneously on cosmological timescales), we
assume that the gravitational radiation is generated instan-
taneously by the collapsing walls. Assuming that a constant
fraction F ≤ 1 of the total energy lost by the network is
converted into gravitational radiation, the rate of emission
of GWs at a time t measured by an observer at a time tf is
given by

dρgw
dt

¼ F
dρ
dt

����
loss

�
aðtÞ
af

�
4

; ð5Þ

where af ¼ aðtfÞ and we have included the dilution caused
by the expansion of the background.
Although Eq. (5) is sufficient to determine the total

energy density in GWs, to fully characterize the SGWB
spectrum one also needs to know how this energy is
distributed in frequency. Following [22], this may be
achieved by resorting to a probability density function
(PDF) pðfÞ. The spectral energy density in GWs measured
at a time tf is then given by:

dρgw
dtdf

¼ dρgw
dt

pðfÞ: ð6Þ

The exact shape of pðfÞ is unknown, but there are a few
well-motivated assumptions that can be made about it. Since
the emission of gravitational radiation can either be sourced
by domains once they become relativistic in the final stages
of collapse or by regions of high curvature on their surface,
we can define a maximal radius of curvature Rmax for GW
emission. Here, we will assume that this maximum radius is

proportional to the characteristic length of the network:
RmaxðtÞ ¼ αLðtÞ, where α≲ 1 is a constant. We will also
assume that the minimum frequency of the GWs at the time
of emission fmin½e� is equal to fmin½e� ¼ 2=Rmax. As we do
not expect significant emission of gravitational radiation
from wall segments with a curvature radius larger than Rmax,
we will assume that there is a minimal frequency fmin
associated with it below which the emission of GWs can be
neglected. An observer at tf then measures a minimal
frequency of

fminðtÞ ¼ fmin½e�ðtÞ
aðtÞ
af

¼ 2

RmaxðtÞ
aðtÞ
af

¼ 2

αLðtÞ
aðtÞ
af

; ð7Þ

where we have used the fact that fðtfÞ ¼ ðaðtÞ=afÞfe.
The simplest PDF one may assume is a Dirac-δ function

of the form:

pðfÞ ¼ δðf − fminÞ; ð8Þ

which corresponds to the unrealistic assumption that the
gravitational radiation emitted by a collapsing domain wall
has a frequency exactly given by fmin. However, as a wall
emits GWs, its energy should decrease until they eventually
evaporate (although here we assume that this happens
effectively immediately), so in general we should expect
walls to emit GWs with frequencies f ≥ fmin. By again
drawing an analogy with small cosmic string loops, we
would write [22]:

pðfÞ ¼ pðRÞ
���� dRdfe

���� dfedf
θðf − fminÞ; ð9Þ

where fe is the emitted frequency, θ is the heaviside step
function, R ∝

ffiffiffiffi
E

p
where E is the domain wall energy, and

pðRÞ ¼ dE=dR ∝ R. Assuming that fe ¼ 2=R, its distri-
bution should be such that pðfÞ ∝ f−3θðf − fminÞ. Note
however that cosmic string loops survive for several
oscillations while emitting GWs, which makes the distri-
bution of energy in frequency during the evaporation
process easier to predict. For domain walls this is not
the case: due to their higher dimensionality, walls will in
general self-intersect and evaporate upon first collapse
without executing a quasiperiodical motion. This means
that this direct generalization of the results of cosmic string
loops would be questionable and that understanding what
happens in these final stages of collapse (by means of
numerical simulations) is crucial to determine the PDF.
Given this, we will assume a more general power-law PDF
that allows for the emission of frequencies larger than fmin
with some arbitrary power fν:

pðfÞ ¼ −
νþ 1

fνþ1
min

fνθðf − fminÞ: ð10Þ
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Here we shall treat ν as a free parameter with the only
limitation that ν < −1, in order for the PDF to be normal-
izable. In fact, as one can easily verify, Eq. (10) fulfills the
condition

R∞
0 pðfÞdf ¼ 1.

III. ENERGY DENSITY
IN GRAVITATIONAL WAVES

In this section, before venturing into a full characteri-
zation of the SGWB spectrum generated by domain walls,
we study how the total energy density of GWs is expected
to evolve in a cosmological background. This study can be
performed with minimal assumptions, just requiring that a
constant fraction of the energy lost by the network goes into
GWs (no assumptions regarding its distribution in fre-
quency are necessary). The results presented here, then, are
quite general and should therefore help clarifying the
potential role of domain walls as contributors to the SGWB.
Assuming a power-law evolution of the scale factor and

that the domain wall network is in the corresponding linear
scaling regime, Eq. (5) may be rewritten as:

dρgw
dt

¼ AλFσ
t4λ−2

t4λf
: ð11Þ

The total energy density in GWs measured by an observer
at a time tf is, for λ ≠ 1=4, then given by:

ρgwðtfÞ ¼
Z

tf

ti

dρgw
dt

dt¼ σ
F
tf

Aλ

4λ− 1

�
1−

�
ti
tf

�
4λ−1

�
ð12Þ

while, for λ ¼ 1=4, we have

ρgwðtfÞ ¼ σ
F
tf
A1

4
log

�
tf
ti

�
; ð13Þ

where we have assumed that the emission of GWs starts at a
time t ¼ ti. In Fig. 1, the evolution of the energy density of
gravitational radiation for different expansion rates is
plotted assuming a constant F . Therein, it is shown that
for λ > 0, after a short period of fast growth, the GWenergy
density decreases over time. In fact, by analyzing Eq. (12),
one can show that, asymptotically, ρgw ∝ t−1f for λ > 1=4
(which includes the cosmologically relevant radiation and
matter backgrounds) and ρgw ∝ t−4λf for λ < 1=4, while
ρgw ∝ logðtfÞ=tf for λ ¼ 1=4. Note that, when λ ¼ 1=4, the
energy density of a domain wall network, in a linear scaling
regime, scales as ρ ∝ a−4, which exactly counteracts the
dilution caused by the expansion of the background. For
faster expansion rates, then, this dilution is very efficient
and ρgw is essentially dominated by the last GWs emitted.
For λ < 1=4, dilution is quite slow and the gravitational
radiation emitted in the initial stages of evolution of the
network still contributes significantly to ρgw at the time of
observation tf. Interestingly, although in a non-expanding

background (λ ¼ 0) ρgw grows with time, one has that, for
tf ≫ ti, ρgw → A0F=ti and remains roughly constant over
time. This is explained by the fact that, in a linear scaling
regime, the network becomes less dense over time and thus
the energy lost by the network is smaller and smaller as
time goes by. In an expanding background, the combination
of this overall decrease in the rate of emission of gravi-
tational waves with the dilution caused by expansion means
that the total energy density of gravitational radiation
should asymptotically decrease over time. As a matter of
fact, as illustrated in Fig. 1, this decreasing regime is
reached faster for larger λ and, as a result, a smaller ρgw is
measured at all times by observers in backgrounds with
faster expansion rates.
Note that, although these results were derived assuming

that a constant fraction of the energy lost by the network
goes into GWs, its main conclusion—namely that the total
energy density of gravitational radiation generated by a
domain wall network decreases over time in an expanding
universe, after a relatively short-lived initial increase—
should hold quite generally. It is straightforward to show
that having an increasing or constant GW energy density
necessarily requires that the fraction of the energy lost by
the network that is converted into gravitational radiation
grows over time as F ∝ ts, with s ≥ 1. However, one such
scenario could only be transient as the energy density that
goes into GWs naturally cannot exceed the energy lost by
the network (notice that F ≤ 1 should be verified at all
times). On the other hand, assuming a decreasing F would
necessarily lead to a faster decrease of ρgw over time than in
the constant F case.
Let us now consider a biased domain wall network that

decays at a time t⋆ for which a⋆ ¼ aðt⋆Þ. The total GW
energy density generated by the scaling domain wall net-
work (ignoring, for now, the emission of gravitational waves
during the decay of the network itself), in units of the critical

FIG. 1. Evolution of the total energy density of gravitational
waves generated by a domain wall network for different
expansion rates λ. Here, we assume that F is a constant
and a power-law expansion of the cosmological scale factor,
such that a ∝ tλ.
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density ρcrit ¼ 3H2
0=ð8πGÞ, measured by an observer at the

present time is given by:

ρrgw
ρcrit

����
t¼t0

¼ 16

3
πFGσ

Ω1=2
r

H0

Ar

�
a⋆
a0

�
2

; ð14Þ

for a⋆ < aeq, where aeq ¼ aðteqÞ and teq is the time of
radiation-matter equality and we have assumed that GW
emission started at a time ti ≪ tf , and

ρmgw
ρcrit

����
t¼t0

¼ 16

3
πFGσ

Ω5=2
r

H0Ω2
m
Ar þ

12

5
πFGσ

Ω1=2
m

H0

×Am

�
a⋆
a0

�
5=2

�
1 −

�
aeq
a⋆

�
5=2

�
; ð15Þ

for a⋆ ≥ aeq. In both cases, one may see that the fractional
contribution of the GWs emitted by domain walls to the
energy density is a growing function of t⋆ (assuming that
the other parameters are fixed). This is explained by the fact
that the ratio between the energy density of domain walls
and the background density rapidly grows with time both in
the radiation and matter eras and thus ρgw is dominated by
late-time GW emissions.
Let us consider stable walls that survive until the present

day. The gravitational waves generated during the radiation
era provide a contribution to the energy density of the
universe at the present time of

ρrgw
ρcrit

����
t¼t0

σZ
Fσ

¼ Oð10−14Þ; ð16Þ

where we have introduced σZ ¼ ð106 eVÞ3 which corre-
sponds to the mass of the heaviest walls that are
still compatible with the Zel’dovich bound. On the other
hand, considering gravitational wave emission during
the matter dominated era, the fractional contribution is
significantly larger:

ρmgw
ρcrit

����
t¼t0

σZ
Fσ

¼ Oð10−6Þ: ð17Þ

This means that the GWs generated by stable domain walls
compatible with the current CMB bounds [57] provide, at
most, a relative contribution of 10−6 to the total energy
density of the universe, which indicates that, in general, we
should not expect GW constraints on σ to lead to significant
improvements over the Zel’dovich bound. As a matter of
fact, such a contribution would only arise in the unrealistic
scenario in which all the energy lost by network goes into
GWs (i.e., F ¼ 1) and, quite generally, this amplitude can
be significantly suppressed for a smaller efficiency of GW
emission F ≪ 1.

IV. SPECTRUM OF THE STOCHASTIC
GRAVITATIONAL WAVE BACKGROUND

In this section, we will perform the full numerical
characterization of the SGWB generated by domain wall
networks in a ΛCDM background and develop an accurate
analytical approximation to describe these results. This
SGWB may be characterized by the spectral density in
GWs in units of ρcrit, given by

ΩgwðfÞ ¼
1

ρcrit

dρgw
d log f

¼ f
ρcrit

Z
tf

ti

dρgw
dtdf

dt: ð18Þ

Here tf ¼ minðt⋆; t0Þ and ti denotes the time in which
significant GWemission starts. Here, as is usually done for
cosmic strings, we will assume that ti corresponds to the
time in which friction becomes negligible to the dynamics
and not the time of creation of the domain wall network.2

The SGWB generated by domain walls measured at the
present time may then be found by setting af ¼ a0 in
Eq. (5) and integrating Eq. (6).

A. Full numerical computation
in a ΛCDM background

To fully characterize the SGWB spectrum produced by
domain wall networks in a ΛCDM background, as a first
step, we start by solving numerically the VOS Eqs. (1)
and (2), coupled to the Friedmann equation, in order to
get the realistic evolution of LðtÞ and v̄ðtÞ. This enables
us to compute the energy lost by domain wall networks
throughout their evolution in a realistic cosmological
background.
Let us first consider the case in which pðfÞ is given by

the δ-function in Eq. (8). In this case, the integration in
Eq. (18) yields a spectrum of the form:

ΩgwðfÞ ¼
πc̃FGσ
6H2

0

v̄ðtminÞLðtminÞ2
HðtminÞ

ðαfÞ4θðf − fminðt⋆ÞÞ:

ð19Þ

Here we introduced tminðfÞ, defined as the time at which
f equals the minimal frequency defined in Eq. (7):
f ¼ fminðtminÞ. Note that a tminðfÞ that is larger than t⋆
corresponds to frequencies that are too low to be emitted by
the network before its decay. We therefore expect a cutoff to
the spectrum at the frequency f ¼ fminðt⋆Þ. The resulting
SGWB is plotted in Fig. 2 for t⋆ ≥ t0, which corresponds to
domain walls that survive until the present time. Therein one
may see that this spectrum peaks at a frequency of
αf ≈ 10−18 Hz, corresponding to that of the gravitational

2Note however that since the largest contribution to the SGWB
comes from later cosmological times, the choice of ti should not
have a significant impact on observational constraints derived
using our results.
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radiation emitted by domain walls collapsing at late times. A
lower value of α will shift the spectrum toward higher
frequencies, without affecting its shape. The spectrum falls
off steeply for frequencies larger than the peak frequency,
until it smoothly transitions to a flatter—but still rapidly
decreasing—part that corresponds to the GWs emitted in the
radiation era. Notice also that the frequency of peak of the
spectrum is always determined by the last GWs emitted and
so, for t⋆ < t0, the peak of the spectrum would appear at
larger frequencies determined by the characteristic length of
the network at t⋆ (as we shall see in the next sections). We
will discuss the case of a δ-shaped PDF in more detail in
section IV B.
If we now consider the more general probability density

function in Eq. (10), the GWs are emitted with frequencies
f ≥ fmin. This means that, for any frequency f, the SGWB
will only have contributions from the domains that have
decayed after tminðfÞ. We may then write the spectrum
ΩgwðfÞ as:

ΩgwðfÞ ¼ −ðνþ 1Þ 8πG
3H2

0

F c̃σ

�
αf
2

�
νþ1

×
Z

tf

tmin

�
aðtÞ
a0

�
3−ν

v̄ðtÞLðtÞν−1dt: ð20Þ

Figure 2 shows the SGWB generated by domain walls
with t⋆ ≥ t0 in a radiationþ ΛCDM background for this
more general PDF and for different values of the spectral

index ν. The key feature of this spectrum is also a peak at
the low-frequency end, corresponding to walls decaying
late into the matter-era—its position is also roughly given
by αf ≈ 10−18 Hz if t⋆ ≥ t0, but should appear at higher
frequencies if the network decays earlier in cosmic history.
However, an increase in ν represents a power shift toward
higher frequencies and is thus associated with a decrease
of the peak amplitude. In fact, the amplitude vanishes
asymptotically in the ν → −1 limit. For smaller values of ν,
on the other hand, the spectrum becomes steeper and
asymptotically approaches that produced by the Dirac-δ
PDF in Eq. (19) in the ν → −∞ limit, as this corresponds
to concentrating all the energy produced by the network at
any given time around fmin. Moreover, as before, a smaller
value of α will shift the spectrum to higher frequencies,
without affecting its shape. Naturally, as will be shown in
more detail later in this section, if the domain walls are
biased and decay before the present time, the spectrum
would have a cut-off at a frequency fminðt⋆Þ and, therefore,
the peak would appear at higher frequencies.

B. Analytical approximation to the domain wall SGWB

Assuming a power law evolution for the scale factor and
that the domain wall network is in a linear scaling regime—
which, as we discussed, is a good approximation deep into
the radiation and matter eras—it is possible to obtain an
analytical approximation for the SGWB generated by
domain wall networks that survive until a time t⋆. As we
will show, this analytical approximation not only provides
an excellent fit for the spectrum obtained numerically—thus
enabling a simpler and faster computation—but also aids in
understanding better its shape.
The following spectrum is obtained if pðfÞ is given by a

δ-function as in Eq. (8):

ΩgwðfÞ ¼ AλFC4λ
8πGσ

3H2
0ð1 − λÞ

×

�
αξλf
2Cλ

�4λ−1
λ−1
θðf − fminðt⋆ÞÞ; ð21Þ

where we have Ar ¼ 0.102 and ξr ¼ 1.53 during the
radiation era and Am ¼ 0.064, ξm ¼ 1.62 for the matter
era. The spectrum given in Eq. (21) is shaped as a power-law,
scaling proportionally to f−5 in the matter era and f−2 in
radiation domination. As the GWs emitted during the matter
era correspond to the low frequency part of the spectrum,
while higher frequencies are emitted in the radiation era, this
result is consistent with the general shape of the spectrum
obtained numerically (as plotted in Fig. 2). We will return to
this result later in this section.

1. Walls decaying in the radiation era

Let us now consider the case of the PDF in Eq. (10) and
consider domain walls that disappear, due to the effect of

FIG. 2. Stochastic gravitational wave background generated by
domain walls that survive until the present time. Here, ΩgwðfÞ is
determined numerically as prescribed in Eq. (20) for different
values of ν (solid lines). The spectrum resulting from the Dirac-δ
PDF, as given in Eq. (19), is also plotted (dash-dotted line). The
vertical axis is re-scaled by a factor of σZ=ðFσÞ, so that the
spectra correspond to domain walls with σ ¼ σZ (saturating the
Zel’dovich bound) and a maximum efficiency of gravitational
wave emission of F ¼ 1. The frequency on the horizontal axis is
rescaled by α, since a lower value of α will merely shift the
spectrum toward higher frequencies.
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bias, at some time t⋆ < teq. In this case, assuming scaling,
it is possible to obtain an explicit expression for tminðfÞ—
which yields tmin ¼ ½2Cr=ðαξrfÞ�2—and to use it to perform
the integration in Eq. (18) analytically. We find

Ωr
gwðf;a⋆;νÞ ¼

32π

3

νþ 1

νþ 3
FGσ

Ω1=2
r

H0

Ar

×

�
αξrf

4H0Ω
1=2
r

�
−2
�
1−

�
αξrf

4H0Ω
1=2
r

a⋆
a0

�
νþ3

�
;

ð22Þ

which is valid for ν ≠ νrpole ¼ −3. Note that, if ν > νrpole, the
radiation era spectrum will be dominated by the second
term in Eq. (22) and will therefore scale proportionally to
fνþ1. This means that, in this limit, the SGWB is dominated
by the last GWs emitted by the domain wall network over
all the frequency range. On the other hand, for all values of
ν smaller than νrpole, the first term in Eq. (22) dominates and
the spectral shape will be independent of ν, showing a
power-law decay with Ωgw ∝ f−2 similar to that obtained
for the δ-function PDF.
For ν ¼ −3, on the other hand, we find that:

Ωr
gwðf; a⋆; νrpoleÞ ¼

64π

3
FGσ

Ω1=2
r

H0

Ar

�
αξrf

4H0Ω
1=2
r

�
−2

× log
�

αξrf

4H0Ω
1=2
r

a⋆
a0

�
: ð23Þ

In this case, the spectrum will again scale asymptotically as
f−2 for sufficiently high frequencies, although in this case
the logarithmic term in Eq. (23) results in a slightly
shallower decay in the low-frequency part.
For a biased domain wall network that disappears in the

radiation era, the SGWB spectrum peaks at a frequency

αfrpeak ¼

8><
>:

4H0Ω
1=2
r

ξr

h
− 2

νþ1

i
1=ðνþ3Þ�a0

a⋆

	
; for ν ≠ −3;

4H0Ω
1=2
r

ξr
e1=2 a0

a⋆
; for ν¼ −3;

ð24Þ

which corresponds to a peak amplitude of

Ωr
peak ¼

32π

3
FGσ

Ω1=2
r

H0

Ar

�
a⋆
a0

�
2
�
−

2

νþ 1

�
−2=ðνþ3Þ

; ð25Þ

for ν ≠ νrpole and

Ωr
peak ¼

32π

3e
GσF

Ω1=2
r

H0

Ar

�
a⋆
a0

�
2

; ð26Þ

for ν ¼ −3. It is interesting to note that the amplitude of the
peak, except for a factor 2½−2=ðνþ 1Þ�−2=ðνþ1Þ for ν ≠ −3

and 2=e for ν ¼ −3, coincides with the total energy density
in GWs in units of the critical density of the universe in
Eq. (14). These factors, except in the ν → −1 limit (in which
significant power is shifted toward high frequencies) are,
roughly, of order unity, which shows that, in general, the
SGWB is dominated by the emission at late times. Notice
that αfrpeak scales proportionally to a−1⋆ , while Ωr

peak ∝ a2⋆.
As a result, domain wall networks decaying earlier in the
radiation era will peak at higher frequencies and will have a
smaller amplitude for the same value of domain wall
tension, as is shown in Fig. 4 (dashed lines). Note however
that domain walls decaying before the time of decoupling
evade the stringent Zel’dovich bound and may have
significantly larger tensions and generate a strong and
detectable SGWB as a result. This plot, as a matter of fact,
shows that their peak may, in fact, coincide with the pulsar
timing array window provided that they have decayed early
enough in the radiation era (a⋆ ≲ 10−7aeq for α ∼ 1).3

2. Walls decaying in the matter era

For domain wall networks that survive through the
radiation-matter transition and disappear at a time
t⋆ ≥ teq, we will assume, for simplicity, that the transition
between these two eras happens suddenly at teq. We assume
then the universe to be effectively radiation (matter)
dominated, with λ ¼ 1=2 (2=3) for t < teq (t ≥ teq) and
that the network is in a scaling regime characterized by the
parameters ξr (ξm) and v̄r (v̄m). During the matter era,
tmin ¼ ½2Cm=ðαξmfÞ�3 and so the SGWB is given by4

Ωm
gwðf; a⋆; νÞ ¼ Ωr

gwðf; aeq; νÞ þ 12π
νþ 1

νþ 6
FGσ

×
Ω1=2

m

H0

Am

�
αξmf

3H0Ω
1=2
m

�
−5

×



1 −

�
αξmf

3H0Ω
1=2
m

�
a⋆
a0

�
1=2

�
νþ6

�
; ð27Þ

3A detailed analysis of the region of parameter space com-
patible with pulsar timing array data (which is beyond the scope
of this work) would, however, be necessary before domain walls
can be confirmed as a potential explanation for the detected
signal.

4Technically, to compute the matter era contribution, the
integration in Eq. (18) should start at ti ¼ maxðtmin; teqÞ. Here,
to maintain the analytical expressions presented as simple as
possible, we always set ti ¼ tminðfÞ. We found that, if ν < −6, the
matter-era contribution changes its slope at fminðteqÞ and becomes
steeper for f > fminðteqÞ, if one takes ti ¼ maxðtmin; teqÞ. How-
ever, since in this case the SGWB spectrum is dominated by the
walls that decay in the radiation era in this frequency range, this
has, in general, no significant impact on the final results. Note
however that taking ti ¼ maxðtmin; teqÞ is necessary if one is
interested in computing solely the contribution of the walls that
decay in the matter era.
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which has a pole for ν≡ νmpole ¼ −6. As was the case for the
contribution of the radiation-era walls, if ν > νmpole, this
spectrum will scale proportionally to fνþ1, while for ν <

νmpole we have that Ωm
gw ∝ fν

m
poleþ1 ¼ f−5 as in the case of the

Dirac-δ PDF. For ν ¼ −6, we have an additional logarith-
mic dependency on the frequency just as in the radiation-
dominated case:

Ωm
gwðfÞ ¼Ωr

gwðf;aeq;νÞ þ 60πFGσ
Ω1=2

m

H0

Am

×

�
αξmf

3H0Ω
1=2
m

�
−5
log

�
αξmf

3H0Ω
1=2
m

�
a⋆
a0

�
1=2

�
: ð28Þ

In this case, the peak is located at a frequency

αfmpeak¼

8><
>:

3H0Ω
1=2
m

ξm

h
− 5

νþ1

i
1=ðνþ6Þ�a0

a⋆

	
1=2

; for ν≠−6;

3H0Ω
1=2
m

ξm
e1=5

�
a0
a⋆

	
1=2

; for ν¼−6;
ð29Þ

which corresponds to a peak amplitude of

Ωm
peak¼12πFGσ

Ω1=2
m

H0

Am

�
a⋆
a0

�
5=2

�
−

5

νþ1

�
−5=ðνþ6Þ

; ð30Þ

for ν ≠ νmpole and

Ωm
peak ¼

12

e
πFGσ

Ω1=2
m

H0

Am

�
a⋆
a0

�
5=2

; ð31Þ

for ν ¼ −6. As before, these amplitudes follow closely the
total amplitude in GWs in units of the critical density in
Eq. (15), except for factors of 5½−5=ðνþ 1Þ�−5=ðνþ6Þ for
ν ≠ −6 and 5=e for ν ¼ −6. Moreover, as in the radiation
era, we may see that the later the domain wall network
decays in the matter era, the lower the frequency of the peak
and the stronger their signal would be (for the same tension).
The maximum allowed tension of walls decaying in the
matter era, however, is subject to more stringent bounds
than those of walls decaying in the radiation era to avoid
strong signatures on the CMB. In this case, Fig. 4 clearly
shows that the SGWB generated by stable domain walls or
by networks that decay in the matter era should not be
detectable except for very small values of α. As a matter of
fact, in general, the peak is expected to be located at
frequencies that are significantly lower than those probed by
pulsar timing arrays and, for higher frequencies, the
spectrum falls very steeply. This means that the spectrum
generated in the pulsar timing window should have an
extremely small amplitude, far below current sensitivity and
even the expected sensitivity of the Square Kilometer Array.
We may then divide the results produced by our model

into three different regimes:

(1) For −3 ≤ ν < −1, the spectra generated in the
radiation- and matter-dominated eras have equal
slopes. As a consequence, the spectrum will be
globally dominated by walls that have decayed
more recently, while the contribution from walls
decaying early in the evolution of the network is
negligible. This behavior is clearly displayed in the
top panel of Fig. 3, where we plot the analytical
approximation to the SGWB generated by domain
walls derived here, for ν ¼ −2 and t⋆ ≥ t0, along-
side the full spectrum obtained numerically. This
regime, which corresponds to having significant
power emitted in higher frequencies, particularly
includes the above mentioned case in which
ν → −1, corresponding to a flat spectrum. How-
ever, as may be seen in the Eqs. (22), (27), the νþ 1
prefactor will lead to a suppression of the peak
amplitude of the spectrum in this limit.

(2) For −6 < ν < −3, the radiation era spectrum scales
as f−2, while the matter-era contribution becomes
steeper with decreasing ν. An example of the SGWB
generated by walls in this regime, with ν ¼ −4.5 and
t⋆ ≥ t0, is depicted in the middle panel of Fig. 3.
Therein, one may see clearly that the contributions
of the radiation and matter eras become clearly
distinguishable in this regime and that, as the
frequency increases, the spectrum is dominated by
the GW emissions of domains emitted at progres-
sively earlier times.

(3) For all ν ≤ −6, the spectrum will scale proportion-
ality to f−5 in matter- and f−2 in radiation-domi-
nation, as shown in the bottom panel of Fig. 3, where
we plot the SGWB generated by domain walls with
ν ¼ −7 and t⋆ ≥ t0. In this regime, the spectrum
follows very closely that obtained for a δ-shaped
PDF [Eq. (21)], since this corresponds to concen-
trating most of the GW power emitted around fmin.
The latter can therefore be regarded as an asymptotic
limit for low values of ν, in agreement with the
numerical results presented in Fig. 2.

The plots in Fig. 3 show that the analytical approxima-
tions derived here provide an excellent fit to the SGWB
obtained numerically over the whole range of the spectrum
and for all values of ν. This figure additionally shows the
spectral index of the full numerically-obtained spectrum,
defined as d logΩgw=d log f. One may see that, for the
cases with a distinct scaling of the spectrum with frequency
in the radiation- and matter-dominated eras, the transition
between the two characteristic slopes is smooth. This is a
consequence of the fact that the radiation-matter transition is
a slow continuous process rather than an instantaneous one
(as we have assumed for the purpose of deriving the
analytical approximations). In fact, for low values of ν,
the slope predicted by the analytical approximation in
matter-domination is never fully reached and the spectrum
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will be shallower than predicted in the low-frequency
regime. However, even in this case, our analytical approxi-
mation still provides a remarkably good fit to the numerical
results.
Finally, it is worth noting that, with on average only

about one wall existing per Hubble volume in a scaling
network, the number of collapse events in the recent cosmic
history should be relatively low. This raises questions
regarding the stochastic nature of the gravitational wave
background generated by domain walls decaying in the
very recent past and this may result, in fact, in a “popcorn”
signal or in individual resolvable bursts of GWs.

C. The contribution of bias

When bias becomes relevant to domain wall dynamics, it
renders the whole network unstable and all the walls
evaporate within about a Hubble time. In this process,
domain walls emit further gravitational radiation and this
emission should also contribute to the SGWB. We did not
take this final emission into consideration in the previous
sections. Here, we briefly discuss this additional contribu-
tion to the SGWB.
As was the case for the GWs emitted throughout the

evolution of the network, in this case, it is not known a priori
how much of the energy of the network is converted into
gravitational radiation and how this energy is distributed in
frequency in this almost instantaneous decay process. As a
matter of fact, bias may have an impact on the emission of
scalar radiation and the distribution of GWs in frequency
may in fact be altered since, in this case, there is also a decay
of superhorizon domains. Here, for simplicity and given all
the unknowns, we will assume that both the PDF and F will
be the same as in the case of the domains that collapse while
the network is stable. As the final decay of a biased network
occurs in roughly one Hubble time, wewill assume it may be
treated as instantaneous on cosmic time scales. In this
approximation, all the energy stored in the network is
assumed to be released at the time of decay, t⋆. Then,
the contribution of this decay to the GW spectrum as
measured today will be given by the Eqs. (5) and (6), but
with the energy loss term replaced by [20]:

dρ
dt

����
loss;bias

¼ ρδðt − t⋆Þ: ð32Þ

The integration of a term of this form will yield an additional
contribution of the form Ωgw ∝ fνþ1. For a network
decaying in the radiation-dominated era, with t⋆ < teq,
the full spectrum may be obtained by multiplying the second
term in Eq. (22) by the following term:�

1þ νþ 3

2Arξr
θðf − fminða⋆ÞÞ

�
: ð33Þ

FIG. 3. Analytical approximation to the SGWB generated by
domain wall networks that decay, due to the effect of bias, at
t⋆ ≥ t0. These plots display the full spectra obtained numeri-
cally (solid lines) as well as the analytical approximations for
the contributions generated during the matter (dashed orange
lines) and radiation era (dashed green lines) for ν ¼ −2 (top
panel), ν ¼ −4.5 (middle panel) and ν ¼ −7 (bottom panel).
Each panel additionally displays the spectral index dΩ=d log f
of the numerical spectrum (dash-dotted lines) and that predicted
by the analytical approximation during the matter era (black
dashed line).
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As to the ν ¼ −3 case, one has to add the following term to
Eq. (23)

32

3
πFGσ

Ω1=2
r

H0ξr

�
αξrf

4H0Ω
1=2
r

�
−2
; ð34Þ

in order to account for the contribution of bias. If on the
other hand t⋆ ≥ teq, the last term in Eq. (27) should be
corrected by a factor of

�
1þ νþ 6

3Amξm
θðf − fminða⋆ÞÞ

�
; ð35Þ

for ν ≠ −6 and the term

20πFGσ
Ω1=2

m

H0ξm

�
αξmf

3H0Ω
1=2
m

�
−5

ð36Þ

should be added to Eq. (28) for ν ¼ −6.
Figure 4 displays examples of the full spectrum expected

for a biased network decaying at different instants of time t⋆
(given as a fraction of the time of matter-radiation equality
teq) and for different values of ν. These plots show that the
sudden decay of the network has the potential to increase
the peak amplitude of the SGWB by up to one order of
magnitude. This is to be expected, as the energy density in
the network at any time is larger—but roughly of the same
order—than the energy density lost by the network in a
Hubble time. Moreover, as we have seen, the contribution of
the decay of the biased network (in our simplified model)
always scales as fνþ1. As a consequence, for ν ≥ νrpole (the
case in which the “scaling” spectrum also scales as fνþ1),
the spectrum is globally dominated by the gravitational
waves emitted during the decay of the network. This case is
displayed in the top panel of Fig. 4. Besides the peak getting
sharper—a consequence of assuming that the decay would
happen instantaneously—this case is not distinguishable
from the spectrum generated by a stable domain wall
network with a larger tension σ or an increased F (as
these would lead to an increase of the amplitude). On the
other hand, for ν < νrpole, the part of the spectrum emitted
before bias comes into effect scales as f−2 for GWs sourced
in the radiation era, as explained in Sec. IV B. This means
that, for t⋆ < teq, the contribution of the decay of the
network caused by bias dominates the spectrum only in a
small frequency band close to the peak, while toward higher
frequencies it is dominated by the contribution emitted
while the network is stable. A similar situation arises for
t⋆ ≥ teq when ν < νmpole. These situations, as can be seen in
the middle and bottom panels of Fig. 4, lead to a distinct
sharper peak with a different slope that becomes more

FIG. 4. Stochastic gravitational wave background generated
by biased domain wall networks. Each panel displays the
analytical approximation the total SGWB spectrum generated
by a biased network for different decay times t⋆ including
the contribution of the final decay of the network (solid lines),
alongside the spectrum generated by the network while it is
stable up until time of decay (dashed lines). The top, middle and
bottom panels correspond, respectively, to values of ν ¼ −2,
ν ¼ −4.5 and ν ¼ −7.
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pronounced the smaller ν gets, which may be regarded as a
potential observational signature of bias.
As to the total energy density of gravitational radiation

measured by an observer at a time tf , to account for the final
collapse of the network, we need to include an additional
contribution of ρ at t ¼ t⋆ and to take into account that
there is no emission of GWs for t > t⋆. We then have, for
λ ≠ 1=4, that:

ρgwðtfÞ ¼ σ
F
t⋆

Aλ

4λ− 1

��
1þ 4λ− 1

Aλξλ

��
t⋆
tf

�
4λ

−
t⋆
ti

�
ti
tf

�
4λ
�
;

ð37Þ

while, for λ ¼ 1=4, we have

ρgwðtfÞ ¼ σ
F
tf
A1

4

�
log

�
t⋆
ti

�
þ 1

A1
4
ξ1
4

�
ð38Þ

for tf ≥ t⋆, while Eqs. (12) and (13) remains valid if
tf < t⋆. Assuming that tf ≳ t⋆ ≫ ti, the total GW energy
density is enhanced by a factor of ∼7, if bias comes into
effect during the radiation era, and a factor of ∼17 for
t⋆ ≥ teq. For times tf > t⋆, however, there is no new
gravitational wave emission and, therefore, the energy
density of gravitational radiation is merely redshifted due
to expansion. Note that the enhancement factors predicted
here should be taken as an upper limit since a more realistic
non-instantaneous description of the decay of the wall
network would necessarily lead to smaller values and to
spectra with rounder peaks and a smaller maximum
amplitude. Also, we have ignored the potential impact
of bias on F and the PDF as this is currently unknown, but
if these are significantly impacted this contribution would
be significantly affected too.

V. COMPARISON WITH PREVIOUS
COMPUTATIONS

The shape of the SGWB generated by domain wall
networks computed here is different from other predictions
in the literature [18–20,25–28]. These predictions all stem
from the results of Ref. [25], wherein the spectrum of GWs
is measured in field theory simulations of domain wall
networks (see also [17,58–60] for earlier estimates and [61]
for a review). In [25], the authors propose a broken power-
law shape for the spectrum, with the peak located at a
frequency fpeak corresponding to the horizon scale at the
time of disappearance of the network, if walls are biased, or
the present time for standard walls. For f > fpeak, simu-
lations indicate that Ωgw ∝ f−1 in the radiation era—which
would correspond to a PDF for GWemission with a spectral
index of ν ¼ −2 in our case—however the authors state that
the exact dependence of Ωgw on f is not straightforward to
estimate. For f < fpeak, the dependence of Ωgw on f was
not accurately determined in the simulations and the authors

claim that causality requires thatΩgw ∝ f3, as was shown to
be the case for the SGWB generated by bubble collisions in
first order phase transitions [62] (see however [63,64]).
Here, we obtained a much steeper spectrum for f < fpeak—
as is, in fact, also found for the SGWB generated by cosmic
strings [22,23,35], especially for fast-decaying small cosmic
string loops [22]—and this steepness is a consequence of
assuming that one may associate a well defined character-
istic frequency to the collapsing domain walls. Note
however that our predictions for this spectrum (and the
predictions for that generated by cosmic string loops in the
literature) do not apply to superhorizon scales: we always
consider a minimum frequency of emission that corresponds
to a sub-horizon mode as, in fact, the GWs are sourced, in
this case, by domains that are subhorizon at the time of
collapse. In reality, a less steep cutoff would be expected,
and thus this framework cannot be expected to provide an
accurate description of the spectra for frequencies smaller
than that of the peak. As a matter of fact, a smooth transition
toward a f3 spectrum might be expected to occur in this
regime, but the precise nature of this transition is a topic that
warrants further investigation.
Our predictions for the shape of the spectrum qualita-

tively agree with the results in the literature for frequencies
higher than that of the peak: in both cases the spectrum is
dominated by the last GWs emitted and decreases as a
power law. The biggest disagreement between our predic-
tions and those of [25] actually appears in the normalization
of the spectrum. By comparing our results in Eq. (25) to
those therein, we find that the latter include an additional
factor of ∼Gσ=Hðt⋆Þ. This factor may be quite significant
and may have implications for the observational constraints
derived using the results of [25]. In [25], the normalization
of the spectrum is determined by assuming that the energy
density in gravitational waves remains constant over time,
as predicted in [59]. As we have argued in Sec. III, this
should not be the case: in an expanding background, if F is
a constant, the total gravitational radiation energy density
measured by an observer at a time t, after an initial period of
quick growth, necessarily decreases as t increases. A
constant GW energy density would necessarily require that
the fraction of the energy lost by the network into GWs
would increase over time (with F ∝ t, if linear scaling of L
with cosmic time is assumed) and, as previously explained,
such scenario would necessarily have to be transient since
the condition F ≤ 1 must be satisfied at all times.5 The
measurements in Ref. [25] seem to be consistent with a
constant ρgw, and these are admittedly affected by several
systematic uncertainties. In fact, these simulations are not
able to resolve the dynamics of the domain walls in the
ultrarelativistic regime, in which the dominant contribution

5Notice that, given that the domain walls will also lose
energy through other channels, F ¼ 1 will never be attained
in practice.
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of domain walls to the SGWB is expected to be generated,
nor do they account for the GW backreaction that would
necessarily affect domain wall dynamics, especially for
values of F not much smaller than unity—a necessary
condition for domain walls to provide a significant con-
tribution to the SGWB background.
Our results about the evolution of ρgw are based on

minimal assumptions: they are independent of both the
characteristic scale and the spectrum of emission of GWs.
The only underlying assumption is that the energy that goes
into GWs is a constant fraction of that lost by the domain
wall network. Although this assumption may not hold
throughout the whole evolution of the network, it should
be an excellent approximation during the final stages of the
evolution of the domain walls, when most of the contribu-
tion to the SGWB is generated. The assumptions in [25,59]
are different, as the authors assume that the GWs are
sourced by domain walls that are only mildly relativistic
and that did not fully detach from the Hubble flow. Therein,
following [65], the authors use the quadrupole formula to
estimate the power emitted by a domain wall with a typical
size of R:

P ∼ Gσ2R8f6: ð39Þ

Then, assuming that the frequency is determined by R, so
that f ∼ R−1, one has

P ∼Gσ2R2: ð40Þ

The energy in a volume L3, containing a domain wall
with area L2, is then estimated in [25,59] to be E∼
P · t ∼ P · L ∼Gσ2L3, so that ρgw ∼ E=L3 remains constant
over time. This is the result that the authors use as a basis to
derive the normalization of the spectra. In the last step of this
derivation, the radius of the domain wall R was identified
with the characteristic length L of the network and linear
scaling of the network was assumed. However, one cannot
have a cake and eat it: emission of radiation by a domain
wall, in any form, would necessarily lead to a decrease of
their size and, hence, the identification of R and L is
questionable in this case. More formally, onewould write the
power emitted per unit volume by the domain wall network
in the form of gravitational waves as

dρgw½e�
dt

¼ Pn; where n ¼ ρ=Ew ð41Þ

is the wall number density, and Ew and P are, respectively,
the average energy of a single wall and the average power
emitted per wall in the form of GWs. Estimating P using the
quadrupole formula, one obtains

P ∼Gσ2L2; ð42Þ

which then implies

dρgw½e�
dt

∼
Gσ2

L
¼ ρ

τ
; ð43Þ

where τ ¼ ðGσÞ−1 defines a characteristic time for the
conversion of a constant fraction of the energy of the
network into GWs (which for reasonable values of domain
wall tension is always much larger than the age of the
universe). Notice that, in this case, we are not following the
evolution of a single wall and, therefore, no identification
between R and L is necessary. By integrating and main-
taining the assumption that the network is in linear scaling,
one would in fact obtain a constant energy density. Note
however that there is an underlying assumption when one
proceeds this way: walls are assumed to only decay at this
rather slow rate and to be extremely long-lived. This can
only apply to walls that are part of the network and not to
collapsing domain walls. The quadrupole formula, in fact,
cannot capture what happens in the last ultrarelativistic
stages of collapse and the potential bursts triggered by
domain wall self-interactions which can lead to a smaller
time-dependent characteristic time τ ∝ L for the production
of GWs (which for a scaling network would imply that
τ ∝ H−1). In this case, we would then have that the averaged
power emitted per unit volume during the collapse scales
proportionally to L−2, precisely as predicted for the energy
loss rate of the domain wall network [cf. Eq. (3)]. The
radiation coming from the slowly moving walls that are part
of the network should be subdominant when compared to
that emitted in the last stages of the evolution of the many
collapsing domains that exist at any time. The fact that the
energy lost by a network of domain walls during its
evolution is so well described by the rapid collapse of the
domains that detach from the Hubble flow after entering the
horizon [49] provides strong evidence for this.

VI. CONCLUSIONS

In this paper we investigated the power spectrum of the
SGWB produced by domain wall networks. We assumed
that the main source of energy loss is the collapse, on a
timescale of roughly one Hubble time, of domains walls that
detach from the Hubble flow and that these walls disappear
quickly after, leaving behind a contribution to the gravita-
tional wave and scalar radiation backgrounds. These basic
assumptions were shown to be sufficient to estimate the
energy density associated with the SGWB generated by
domain walls, as a function of two crucial parameters of our
model: the efficiency of GW emission and the domain wall
tension. We modeled the scale dependence of the average
distribution in frequency of the GWs emitted by domain
walls in the final collapse stages using a simple model
characterized by two further parameters: a minimum fre-
quency inversely proportional to the characteristic length of
the network at the time of collapse and a constant power
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spectrum slope. We also investigated the limiting case
where all the emission happens at the minimum frequency.
For all these cases we were able to compute the power
spectrum of the SGWB generated by domain walls as
observed at the present time. We also developed an
analytical approximation assuming perfect linear scaling
in both radiation and matter eras. We have shown that the
power spectrum of the SGWB background generated by
domain walls is a monotonic decreasing function of the
frequency whose peak and slope depends significantly on
the two parameters characterizing the average frequency
distribution of the GWs generated by domain walls at the
time of emission. This should constitute a strong motiva-
tion for an in-depth characterization of the GWs generated
by collapsing domain walls. Probing the dynamics of
domain walls in the ultra-relativistic regime—during
which their main contribution to the SGWB is expected
to be generated—will probably require a new generation of
field theory simulations, capable of dealing with the major

challenge posed by the enormous Lorentz contraction of
the width of ultra-relativistic domain walls. We have also
investigated the case of biased domain walls, considering
both the contribution to the SGWB generated while the
network is stable and the contribution associated to the
sudden decay of the domain walls.
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