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Recent analysis of quantum cosmology has focused on the Lorentzian path integral formulations of both
the no-boundary and tunneling proposals. However, it has been criticized that the wave function for
linearized perturbations around a homogeneous and isotropic background leads to an inverse Gaussian
distribution. This results in divergent correlation functions and cosmological inconsistencies. In this paper
we explore these perturbation problems in Lorentzian quantum cosmology, focusing in particular on the
quantum creation of the closed, flat, and open universe from no spacetime and the beginning of primordial
inflation. We show that most quantum cosmological scenarios have serious perturbation problems. We also
study the effects of trans-Planckian physics on quantum cosmology, using the generalized Corley-Jacobson
dispersion as a case study of modified dispersion relations. Our findings indicate that resolving perturbation
problems in Lorentzian quantum cosmology with modified dispersion relations remains a challenge.
However, the perturbations can be Gaussian in the quantum creation of the flat or open universe within the
confines of the saddle-point approximation and the generalized Corley-Jacobson dispersion.
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I. INTRODUCTION

Classical general relativity (GR) does not explain the
origin and evolution of the Planck-sized primordial uni-
verse, where quantum gravity effects become significant
and quantum theory of gravity is essential. Quantum
cosmology aims to reveal the cosmological genesis based
on an approach based on the quantum gravity framework. It
introduces the concept of the so-called wave function of the
universe, which is the wave-functionalΨ½g;ϕ� is defined on
the space of all 3-geometries g and matter field configu-
rations ϕ, called superspace.
The most famous models for the wave function Ψ½g;ϕ�

are the no-boundary proposal [1] and the tunneling
proposal [2]. These proposals have been recently inves-
tigated in the Lorentzian path integral approach in quan-
tum gravity [3,4]. This Lorentzian method rooted in the
Arnowitt, Deser, and Misner (ADM) formalism [5], is a
consistent path integral formulation of quantum gravity
providing detailed insights into the no-boundary and
tunneling wave function beyond GR [6–11]. However,
there are concerns about their validity when considering
linear perturbations around a homogeneous and isotropic
background [12,13]. The wave function for these linearized
perturbations takes an inverse Gaussian form, leading to
diverging perturbation correlation functions. This implies
that the anisotropy and inhomogeneity of spacetime due to
these perturbations cannot be suppressed, questioning the
consistency of both the no-boundary and tunneling pro-
posals with cosmological observations of an extremely

homogeneous and isotropic universe. In quantum cosmol-
ogy, revealing the behavior of primordial perturbations is
therefore a critical open issue.1

Many attempts to resolve such quantum perturbation
problems in no-boundary and tunneling proposals based
on the Lorentzian framework have been studied [17–27].
Among these proposals, the most promising approach
seems to be the modification of boundary conditions on the
background and perturbations. However, as of now, there
is no fully satisfactory solution that resolves all the issues.
In our previous work [28], we revisited this issue, extending
these perturbation problems beyond GR to include trans-
Planckian physics, which modifies the dispersion relations
for perturbations at wavelengths smaller than the Planck
scale [29–34]. We demonstrated that the inverse Gaussian
problem of perturbations in no-boundary and tunneling
proposals is hard to overcome with the trans-Planckian
physics modifying the dispersion relation such as the
generalized Corley-Jacobson dispersion relation [35,36]
and the Unruh dispersion relation [37].
In this paper, we explore this approach in the contexts of

flat, closed, and open universes. While the closed universe
case has been extensively studied in the literature, the flat
and open universe cases have not received as much attention
and it is possible that the flat and open universe with

1DeWitt’s proposal [14], which posits the vanishing universe
wave function at the big bang singularity, also faces challenges
with perturbations in GR and requires new quantum gravity
theory such as Hořava- Lifshitz (HL) gravity [15,16].
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nontrivial topology could emerge from nothing [38,39].
Therefore, this paper focuses on investigating the perturba-
tion problem in Lorentzian quantum cosmology for flat and
open universes incorporating trans-Planckian effects. We
also comment on the perturbation problems in the primor-
dial inflation based on the Lorentzian quantum cosmology.
This case was studied in the early work [40] and suggested
that primordial inflation has such a problem. In this paper,
we show that the quantum creation of closed, flat, and open
universes from nothing, and the beginning of primordial
inflation have serious perturbation problems. However,
we demonstrate that the perturbations can be Gaussian in
the quantum creation of flat and open universes within the
confines of the saddle-point approximation and the gener-
alized Corley-Jacobson dispersion. In this sense, trans-
Planckian physics or quantum gravity could potentially
stabilize perturbations in quantum cosmology.
This paper is organized as follows: Section II provides a

brief overview of Lorentzian quantum cosmology, and
explains how the no-boundary and tunneling proposal is
achieved in the Lorentzian path integral formulation. We
employ the saddle-point approximation and the Picard-
Lefschetz theory. We can see that the saddle points
associated with the no-boundary and tunneling proposals
are complex, whereas those related to the quantum creation
of flat and open universes are real. In Sec. III, we discuss the
perturbation problems in Lorentzian quantum cosmology
and show that most quantum cosmological scenarios have
serious perturbation issue. In Sec. IV, we explore the trans-
Planckian physics effects using the generalized Corley-
Jacobson dispersion as a case study for modified dispersion
relations at short distances. We show that the perturbation
problems in Lorentzian quantum cosmology are hard to
overcome with the trans-Planckian physics effects. Never-
theless, we demonstrate that the perturbation stability can be
ensured in the quantum creation of flat and open universes
within the confines of the saddle-point approximation and
the generalized Corley-Jacobson dispersion. Finally, in
Sec. V, we summarize our conclusions.

II. LORENTZIAN QUANTUM COSMOLOGY

In this section, we will review the no-boundary and
tunneling proposals based on Lorentzian quantum cosmol-
ogy. The gravitational transition amplitude from the initial
state gi to the final state gf can be expressed by the
gravitational path integral,

G½gf; gi� ¼
Z
M

Dgμν exp

�
i
ℏ
S½gμν�

�
; ð1Þ

where S½gμν� is the Einstein-Hilbert action in GR. In
general, the function G½gf; gi� serves as a Green’s function
for the Wheeler-DeWitt equation, as discussed in [41]. If
the geometries have a single boundary of gf, then G½gf; gi�
acts as a solution to the Wheeler-DeWitt equation, and the

gravitational path integral defines the wave function of the
universe. The Einstein-Hilbert action with a positive
cosmological constant Λ and a boundary term is written as

S½gμν� ¼
1

2

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2ΛÞ þ
Z
∂M

d3y
ffiffiffiffiffiffiffi
gð3Þ

q
K; ð2Þ

where we take the Planck mass unit with MPl ¼ 1=ffiffiffiffiffiffiffiffiffi
8πG

p ¼ 1. The second term is known as the Gibbons-

Hawking-York boundary term, involving the 3-metric gð3Þij

and the trace of the boundary’s extrinsic curvature K on
∂M. In gravitational path integrals, a commonly used
method is the functional approach based on the Euclidean
metric gEμν. The Hartle-Hawking no-boundary proposal is a
famous application of this approach [1]. Initially, this
proposal suggested that the wave function of the universe
could be represented by a path integral over all compact
Euclidean geometries, characterized by a 3-dimensional
boundary-only geometry. This proposal elegantly explains
the quantum birth of the universe but has been criticized so
far for various technical reasons since the Euclidean
formulation of gravity is considered to be problematic [42].
Beyond the Euclidean formulation, it was suggested to

take the path integral along the steepest descent paths in
complex metrics. In this approach, it is not necessary to start
with the Euclidean or Lorentzian metrics. Instead, consid-
ering gμν as complex, the integral is carried out along
contours where the real part of the action increases most
rapidly. However, in reality, such contours are not unique,
bringing ambiguity between the Hartle-Hawking no-
boundary proposal and Vilenkin’s tunneling proposal [43].
More recently, the no-boundary and tunneling proposals in
minisuperspace quantum cosmology have been investigated
by the Lorentzian path integral formulation [3,4]. Integrals
of phase factors such as eiS½gμν�=ℏ usually do not manifestly
converge, but the convergence can be satisfied by shifting
the contour of the integral onto the complex plane by
applying Picard-Lefschetz theory [44].
According to Cauchy’s theorem, if there are no poles

within a region on the complex plane, the Lorentzian nature
of the integral is preserved even if the integration contour
on the complex plane is deformed within such a region. In
particular, the path integral can be reformulated to depend
solely on the gauge-fixed lapse function N and allows for
direct computation. While the Picard-Lefschetz theory by
itself might leave the ambiguity of correct integration paths,
utilizing the resurgence theory and Lefschetz thimble
analyses in combination can solve this problem [45] and
enables the precise execution of the gravitational path
integral over Lorentzian spacetime. Below, we will briefly
explain this Lorentzian framework.
Let us consider a closed, flat, and open Friedmann-

Lemaître-Robertson-Walker (FLRW) universe with tensor-
type metric perturbations whose line element is written as
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ds2 ¼ −
N2ðtÞ
qðtÞ dt2 þ qðtÞ½ΩijðxÞ þ hijðt;xÞ�dxidxj; ð3Þ

where t is a time variable, qðtÞ ¼ aðtÞ2 is the scale factor
squared, NðtÞ is the lapse function, Ωij is the metric of a
homogeneous and isotropic three-dimensional space with
curvature constant K, hij represents the tensor pertur-
bation satisfying the transverse and traceless condition,

Ωijhij ¼ ΩkiDkhij ¼ 0, Ωij is the inverse of Ωij and Di is
the spatial covariant derivative compatible with
Ωij. Given this metric, the gravitational action is expanded
up to the second order in the perturbation hij as

SGR ¼ Sð0ÞGRðh0Þ þ Sð2ÞGRðh2Þ þOðh3Þ:

Sð0ÞGR ¼ V3

Z
t¼tf

t¼ti

dt

�
−

3

4N
q̇2 þ Nð3K − ΛqÞ

�
þ SB; ð4Þ

Sð2ÞGR ¼

8>>>>>>><
>>>>>>>:

V3

R t¼tf
t¼ti Ndt

P
snlm

�
q2

8N2 ðḣsnlmÞ2 − K
8
ððn2 − 3Þ þ 2ÞðhsnlmÞ2

�
; K > 0

V3

R t¼tf
t¼ti Ndt

R
d3k
ð2πÞ3

�
q2

8N2 ðḣskÞ2 − 1
8
k2ðhskÞ2

�
; K ¼ 0

V3

R t¼tf
t¼ti Ndt

P
snlm

�
q2

8N2 ðḣsnlmÞ2 þ K
8
ððn2 þ 3Þ − 2ÞðhsnlmÞ2

�
; K < 0

ð5Þ

where V3 is the three-dimensional volume factor and we
add possible boundary contributions SB localized on the
hypersurfaces at ti;f. For open and closed universes, we
have expanded the tensor perturbation hij in terms of the
tensor hyper-spherical harmonics with each coefficient
hsnlm being a function of the time t, where s ¼ � is the
polarization label, and the integers (n, l, m) run over
the ranges n ≥ 3, l∈ ½2; n − 1�, m∈ ½−l; l� for K > 0 and
the ranges n ≥ 0, l ≥ 2, m∈ ½−l; l� for K < 0 [46–48].
For the flat universe, we have expressed tensor perturba-
tions using eigenfunctions of the flat-space Laplacian and
polarization tensors. We will restrict our consideration
to one mode of tensor perturbations and denote hsnlm or hsk
of our interest simply by h, suppressing the indices snlm
or k.
Hereafter, we shall construct the gravitational transition

amplitude preserving reparametrization invariance through
the Batalin-Fradkin-Vilkovisky (BFV) formalism [49,50].
For the gauge-fixing choice Ṅ ¼ 0, the BFV path integral
reads [51],

G½q; h� ¼
Z

dNðtf − tiÞ
Z

DqDh exp ðiSGR½N; q; h�=ℏÞ;

ð6Þ

which is the integral over the proper time Nðtf − tiÞ
between the initial and final configurations. The gravita-
tional transition amplitude for the no-boundary and tunnel-
ing proposals can be given by Eq. (6) with which the
integration is performed from a 3-geometry of zero sizes,
i.e. nothing, to a finite one [43].

We consider the Dirichlet boundary condition in the
Lorentzian path integral,2 where we fix the value of the
squared scale factor at the two endpoints,

qðti ¼ 0Þ ¼ 0; qðtf ¼ 1Þ ¼ qf: ð7Þ

In this paper, we focus on the quantum creation of the
universe from nothing. For the action with the above
Dirichlet boundary condition, the path integral can be
exactly evaluated by the time-slicing method. On the other
hand, the path integral (6) can be evaluated under the
semiclassical analysis since the action S½q;N� is quadratic.
We assume the full solution qðtÞ ¼ qsðtÞ þQðtÞ where
QðtÞ is the Gaussian fluctuation around the semiclassical
solution qsðtÞ. By substituting it for the action and
integrating the path integral over QðtÞ, we can get the
explicit expression at the zeroth order of the perturbations
h [3],

Gð0Þ½qf; 0� ¼
Z

dN

ffiffiffiffiffiffiffiffiffiffiffiffi
3iV3

4πℏN

r
exp

 
iSð0Þon-shell½N�

ℏ

!
: ð8Þ

2In the path integral, it is possible to consider other boundary
conditions like Neumann or Robin boundary conditions [23,24].
However, in this paper, we only consider the simplest Dirichlet
boundary conditions, which are suitable for describing quantum
cosmogenesis. Moreover, imposing boundary conditions cova-
riantly within the framework of GR is not trivial; it is necessary to
introduce appropriate boundary terms for the background and
perturbations [52–55].

NO SMOOTH SPACETIME: EXPLORING PRIMORDIAL … PHYS. REV. D 110, 023503 (2024)

023503-3



where Sð0Þon-shell½N� is the on-shell action for the background,

Sð0Þon-shell½N� ¼ V3

�
N3H4

4
þ N

�
−
3H2ðqfÞ

2
þ 3K

�

þ 1

N

�
−
3

4
ðqfÞ2

��
; ð9Þ

with H2 ≡ Λ=3. We mainly consider the integration of the
lapse function over N ∈ ð0;∞Þ and this choice of N
ensures the causality [56]. On the other hand, considering
all ranges of the lapse function N ∈ ð−∞;∞Þ is also
possible [4,13], but this notorious choice leads to an
ambiguity between the no-boundary wave function and
the tunneling wave function in the Lorentzian path
integral.
We will investigate the behavior of this path integral by

using the saddle-point method. The derivative of the on-
shell action Sð0Þon-shell½N� leads to the four saddle points,

Ns ¼
c1
H2

�ð−KÞ1=2 þ c2ðqfH2 − KÞ1=2�; ð10Þ

with c1;2 ∈ f−1;þ1g. Then the saddle-point action

Sð0Þon-shell½Ns� reads,

Sð0Þon-shell½Ns�¼−c1
2V3

H2

�ð−KÞ3=2þc2ðqfH2−KÞ3=2�: ð11Þ

In the simplest model to describe the quantum creation of
the universe from nothing, we usually consider the closed
universe and K > 0. By using the saddle-point method, for

Re½iSð0Þon-shell½Ns�� > 0 and Re½iSð0Þon-shell½Ns�� < 0, we obtain
the tunneling and no-boundary wave functions, respec-
tively. It is found that c1 ¼ þ1 and c1 ¼ −1 are the
tunneling and no-boundary saddle points, respectively.
The saddle points not located on the initial integration

contour might still influence the outcome, necessitating
further analysis to identify which saddle points are

significant. A practical approach involves identifying the
steepest descent paths or Lefschetz thimbles associated
with the saddle points. By doing so, it is possible to get
the integration contour into a combination of thimbles that
effectively mirrors the original contour. Notably, the
Lefschetz thimble connected to a saddle point, denoted as

J Ns
, exhibits a critical characteristic: (i) Im½iSð0Þon-shell½N�� ¼

Im½iSð0Þon-shell½Ns�� along N ∈J Ns
(ii) Re½iSð0Þon-shell½N�� mono-

tonically decreases as we go far away from Ns along
N ∈J Ns

. Then we rewrite the integral as

Gð0Þ½qf; 0� ¼
ffiffiffiffiffiffiffiffiffiffi
3iV3

4πℏ

r X
Ns

nNs

Z
J Ns

dNffiffiffiffi
N

p exp½iSð0Þon-shell½N�=ℏ�;

ð12Þ

where nNs
is an integer called Stokes multiplier to determine

how the saddle Ns contributes. However, it is not always
possible to express the integration contour as a super-
position of Lefschetz thimbles, J Ns

. In particular, in
situations where Stokes phenomena can occur, the decom-
position of the Lefschetz thimbles becomes ambiguous. The
Stokes phenomena can occur when there are multiple saddle
points with the same imaginary part of the exponent in the

integrand, i.e. Im½iSð0Þon-shell½Ns�� ¼ Im½iSð0Þon-shell½N0
s�� where

Ns and N0
s denote different saddle points. In these Stokes

phenomena, it is often convenient to deviate slightly from
the Stokes lines by adjusting the parameters, and this allows
for the observation of changes as one approaches the Stokes
lines from various directions.
The integration over N in the expression (12) can be

performed by using the Lefschetz thimble analyses. We plot

Re½iSð0Þon-shell½N�� for the on-shell action (9) over the complex
plane in Fig. 1. The left contour plot corresponds to the no-
boundary proposal or tunneling proposal which describes
the quantum creation of the closed universe. In this setup,
when we integrate the lapse function over N ∈ ð0;∞Þ, the

FIG. 1. The left contour plot of Re½iSð0Þon-shell½N�� over the complex N plane for ℏ ¼ 1, H ¼ 1, V3 ¼ 2π2, qf ¼ 3, and K ¼ 1. A middle
and right plot with K ¼ 0 and K ¼ −1 where all other parameters are the same. The black (red) circles represent the tunneling (no-
boundary) saddle points (10) while the blue (red) lines denote the (dual) Lefschetz thimbles.
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Stokes phenomena occur, and the decomposition of the
Lefschetz thimbles seems to be ambiguous. However, this
ambiguity can be removed by the parameter ℏ to be slightly
complex ℏ ¼ eiθ as usually done in the resurgence theory.
The correct Lefschetz thimbleJ Ns

is understood as the limit
θ → �θ from nonzero θ and the contributing saddle points
are the same between θ > 0 and θ < 0 [45]. Thus, the
Lefschetz thimble J Ns

passes one complex saddle point
with c1 ¼ c2 ¼ þ1 and leads to the tunneling propagator or
tunneling wave function.
In addition, integrating the lapse function over N ∈

ð−∞;∞Þ [4] in (12) can provide either the tunneling wave
function or the no-boundary wave function as found in
Ref. [1] with the Euclidean path integral method, depending
on whether the path goes above or below the singularity at
N ¼ 0. The no-boundary wave function is given by the two
complex saddle points with c1 ¼ −1; c2 ¼ −1, and c1 ¼
−1; c2 ¼ þ1 meaning Im½N� < 0. After all, the tunneling
and no-boundary wave function at the zeroth-order in
perturbation are given by [3,4]

Gð0Þ
T ½qf� ≃

e
þiπ
4

2ðqfH2 − 1Þ1=4 e
− 4π2

ℏH2−i4π
2Hðqf−1=H2Þ3=2=ℏ

ðtunnelingÞ; ð13Þ

Gð0Þ
NB½qf� ≃

eþ
4π2

ℏH2

ðqfH2 − 1Þ1=4 cos
�
4π2

ℏH2
ðqfH2 − 1Þ3=2 þ 3π

4

�

ðno-boundaryÞ; ð14Þ

where the first equation considered the integral over
N ∈ ð0;∞Þ, while the latter considered the entire integral
range, and we set V3 ¼ 2π2, K ¼ 1 and qf > 1=H2.
On the other hand, the middle and right plots in Fig. 1

correspond to the flat and open universe, and the corre-
sponding saddle points are real, and consequently the
typical behaviour of these wave functions shows significant
differences from the traditional scenario of quantum cos-
mology. The no-boundary and tunneling wave functions
behave exponentially as a function of the cosmological
constantH2 ≡ Λ=3, whereas the open or flat universe wave
function behaves oscillatively as a function of the cosmo-
logical constant [38,39]. In the saddle-point approximation,
we have the following wave function,

Gð0Þ
open½qf�≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πi
2ℏ

H2

ðqfH2 þ 1Þ1=2 � 1

s

× exp

�
−
4π2i
ℏH2

ððqfH2 þ 1Þ3=2 � 1Þ
�

ðopenÞ;

ð15Þ

Gð0Þ
flat½qf� ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3πiH

2q1=2f ℏ

s
e−

i
ℏ·4π

2q3=2f H ðflatÞ; ð16Þ

where we assumed that the lapse integration is N ∈ ð0;∞Þ.
In the next section, we will consider perturbation problems
for these cosmological wave functions.

III. PERTURBATION CRISIS IN QUANTUM
COSMOLOGY

In the previous section, we have discussed the Lorentzian
formulations of the wave function of the closed, flat, and
open universe at the zeroth order of perturbations in path
integrals of quantum gravity. Hereafter, we discuss such
wave functions Ψ½g�, including tensor perturbations. In
GR [3,4], it has been shown that for the wave functions
of the closed universe, the linearized perturbations around
the background are governed by an inverse Gaussian
distribution, which leads to divergent correlation functions,
and thus the perturbation is uncontrollable. In this section,
we demonstrate that the inverse Gaussian wave function for
linearized tensor perturbations in the Lorentzian path
integral is inevitable, as long as the regularity of the on-
shell gravitational action is required in quantum cosmology.
We perform the Lorentzian path integral for Eq. (6) up to

the second order in the tensor perturbation where we
neglect the backreaction of the linearized tensor perturba-
tions. First, as previously discussed, we integrate the path
integral with respect to the background qðtÞ and the tensor
perturbation hðtÞ around each classical solution, and
evaluate the total on-shell action including the background
and the tensor perturbation as

Son-shell½q; h; N� ¼ Sð0Þon-shell½q;N� þ Sð2Þon-shell½h;N� þOðh3Þ:
ð17Þ

Next, we integrate expðiSon-shell½q; h; N�=ℏÞ over the lapse
function N. In this step, we utilize the Picard-Lefschetz
method, which complexifies N and selects complex inte-
gration contours along the Lefschetz thimbles J Ns

. Since
J Ns

ensures the convergence of the integral, we can
efficiently perform the Lorentzian path integral at the
perturbative level. In particular, assuming that the pertur-
bations do not affect the background spacetime, the saddle
points of the total on-shell action can be approximated
nearly as Ns (10) of the background. Since it is confirmed
numerically in the full analysis, we can approximately use
Ns (10) of the background.
We write down the second-order action for the tensor

perturbation,

Sð2ÞGR½h;N� ¼ V3

Z
1

0

Ndt

	
q2

8N2
ḣ2 −

αmode

8
h2


; ð18Þ
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where αmode ∈ fKððn2 − 3Þ þ 2Þ; k2;−Kððn2 þ 3Þ − 2Þg
for the closed, flat, and open universe, respectively. We

can evaluate the on-shell action Sð2Þon-shell½N�,

Sð2Þon-shell½N� ¼ π2

4

�
q2

hḣ
N

�
1

0

; ð19Þ

where we set V3 ¼ 2π2, and performed the integration by
parts for the action (18) and used the equation of motion for
hðtÞ. For convenience, let us introduce χðtÞ ¼ qðtÞhðtÞ and

write the equation of motion for χðtÞ as

χ̈

N2
þ
�
αmode

q2
−

1

N2

q̈
q

�
χ ¼ 0: ð20Þ

Given the classical solution for the background qðtÞ ¼
N2H2tðt − 1Þ þ qft which satisfies the boundary condition
qð0Þ ¼ 0 and qð1Þ ¼ qf, we have the solution for the above
equation (20) as [28],

χðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH2N2tðt − 1Þ þ qftÞðH4N2tðt − 1Þ þH2qftþ αmodeÞ

q

×

8<
:C1

�
H2N2ðt − 1Þ þ qf

t

�δ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2N2ð2t − 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H4N4 þ N2ð−4αmode − 2H2qfÞ þ q2f

q
þ qf

H2N2ð2t − 1Þ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H4N4 þ N2ð−4αmode − 2H2qfÞ þ q2f

q
þ qf

vuuut

þ C2

�
t

H2N2ðt − 1Þ þ qf

�δ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2N2ð2t − 1Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H4N4 þ N2ð−4αmode − 2H2qfÞ þ q2f

q
þ qf

H2N2ð2t − 1Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H4N4 þ N2ð−4αmode − 2H2qfÞ þ q2f

q
þ qf

vuuut
9=
;; ð21Þ

where C1;2 are constants, and we have defined

δ½N� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH2N2 − qfÞ2 − 4N2αmode

q
ðH2N2 − qfÞ

¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4N2αmode

ðqf − N2H2Þ2
s

;

where Re½δ½N�� < 0 is negative for all complex N plane
away from the branch cuts [13].
When we substitute the saddle-points Ns (10) into δ½N�,

we have

δ½Ns� ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αmode þ K

K

r
: ð22Þ

For the closed and flat universe, δ½Ns� is negatively real
whereas for the open universe, δ½Ns� is imaginary.
Hereafter, we simply drop the dependence of N in δ½N�
and write δ.
To estimate the on-shell action, we only need the values

of χðtÞ and χ̇ðtÞ at t ¼ 0; 1. The on-shell action for the
solution (21) is written as

Sð2Þon-shell½N� ¼ −
π2αmode

8N

�
C2
1q

δ
f

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqf −H2N2Þ2 − 4αmodeN2

q
þH2N2 þ qf

�
þ C2

2q
−δ
f

×

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqf −H2N2Þ2 − 4αmodeN2

q
þH2N2 þ qf

�
þ 2C1C2ðH2N2 þ qfÞ

�
−

π2

4N
q2ḣhjt¼0: ð23Þ

Near the boundary t ¼ 0, the solution (21) behaves as

χðtÞ∝C1F1½N�t12ð1−δÞ þC2F2½N�t12ð1þδÞ ðt→ 0Þ; ð24Þ

where F1½N�, F2½N� are functions of N whose explicit form
can be derived from the general solution (21). From this

expression one can show that the contribution of t ¼ 0 to
the on-shell action (19) contains terms of the form ∝ C1t−δ,
∝ C1C2 and ∝ C2

2t
δ, and thus is finite if and only if C1 ¼ 0

or C2 ¼ 0 for Re½δ� > 0 or for Re½δ� < 0, respectively. As
we mentioned δ½Ns� is real and negative for the closed and
flat universe so that we should take C2 ¼ 0. On the other
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hand, for the open universe, δ½Ns� is imaginary and at the
saddle points Ns (10), to take C1 ¼ 0 seems to be possible.
We shall discuss this point in more detail later.
Setting either C1 ¼ 0 (for Re½δ� > 0) or C2 ¼ 0 (for

Re½δ� < 0), and then fixing the remaining integration

constant C2 or C1, respectively, by χð1Þ ¼ qfhf for the
solution (21), we obtain the on-shell action. For conven-
ience, by using δ½N� we rewrite the on-shell action as
follows,

Sð2Þon-shell½N� ¼

8><
>:

−
π2qfh2fαmodeððH2N2−qfÞδ½N�þH2N2þqfÞ

8NðαmodeþH2qfÞ for Re½δ� > 0

−
π2qfh

2
fαmodeð−ðH2N2−qfÞδ½N�þH2N2þqfÞ

8NðαmodeþH2qfÞ for Re½δ� < 0;
ð25Þ

where we include the N dependence of δ in the on-shell
action and write δ½N� again.

A. No-boundary and tunneling proposals

Hereafter, we shall concentrate on the no-boundary and
tunneling proposals where we consider the quantum crea-
tion of the universe from nothing, i.e. qðti ¼ 0Þ ¼ 0 and
K ¼ 1. In particular, we do not take into account a possible
shift of the position of the saddle points in the complex-N
plane due to the tensor perturbations and simply evaluate

Sð2Þon-shell½N� for χðτÞ at the background saddle points Ns (10)
in the complex-N plane. As previously commented, this
would be a good approximation as long as the backreaction
of the perturbations is negligible.
Now, we simply set K ¼ 1 and consider the integration

of the lapse function over N ∈ ð0;∞Þ, where the Lefschetz
thimble J Ns

passes one complex saddle-point Ns (10) with
c1 ¼ c2 ¼ þ1 (see left plot in Fig. 1),

NT ¼ 1

H2
½iþ ðqfH2 − 1Þ1=2�; ð26Þ

and this leads to the tunneling propagator or tunneling wave
function. Taking the tunneling saddle point NT (26) for
the on-shell action of the perturbations (25) with C2 ¼ 0,
we have

i
ℏ
Sð2Þon-shell½NT�¼−

iπ2qfh2fαmode

�
−iδ½N�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qfH2−1

q �
4ℏðqfH2þαmodeÞ

¼þ
π2qfh2fαmode

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αmodeþ1

p
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qfH2−1

q �
4ℏðqfH2þαmodeÞ

≈
π2nðn2−1Þ

4ℏH2
½1−in−1q1=2f Hþ����h2f; ð27Þ

where we took the superhorizon mode (n ≪ q1=2f H) and
qf ≫ 1=H2 in the last expression. The real part of (27) is
positive and thus induces an inverse Gaussian distribution

for the tensor perturbations. In contrast, at the no-boundary
saddle point NHH the tensor perturbations follow a
Gaussian distribution according to the on-shell action
(27). Although the contribution of the no-boundary saddle
points to the correlation functions of the linearized
perturbations is finite, we must consider the lapse N
integration over N ∈ ð−∞;∞Þ [4] and pass through the
tunneling saddle pointNT and the branch cuts, which again
lead to divergent correlation functions of linearized per-
turbations [13]. As a result, the inclusion of tensor
perturbations in the no-boundary proposal (14) leads to
inconsistencies. Attempts to solve these problems by
modifying the boundary conditions of the background
and fixing the imaginary initial momentum [23,24] depart
from the original framework describing quantum creation
from nothing (qðti ¼ 0Þ ¼ 0) and do not save the tunneling
proposal. This is a brief overview of the dilemmas that the
no-boundary and tunneling proposals face due to linear-
ized perturbations in the Lorentzian quantum gravity.

B. Open and flat universe

Next, we consider the open and flat universe. We study
the quantum creation of the universe from nothing where
spatial sections are compact but the curvature is charac-
terized as flat or open (K ¼ −1; 0) [38,39]. In such
scenarios of quantum cosmology, the saddle points Ns

(10) of the on-shell action Sð0Þon-shell½N� are deformed to be
real. As the previous discussion, we have shown that
complex saddle points where Im½N� > 0 pose challenges
in the context of perturbations so one might think that real
saddle points may offer solutions to the perturbation
problems. However, we will show that the real saddle
points do not fully solve the perturbation problems.
First, we consider the open universe and simply set

K ¼ −1. When we assume the integration of the lapse
function overN ∈ ð0;∞Þ, the Lefschetz thimble J Ns

passes
two real saddle points (see right plot in Fig. 1),

Nopen ¼
1

H2
½c3 þ ðqfH2 þ 1Þ1=2�; ð28Þ
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with c3 ∈ f−1;þ1g. Taking the above saddle point for the on-shell action (25) with C2 ¼ 0, we have

i
ℏ
Sð2Þon-shell½Nopen� ¼

π2qfh2fαmode

�
ðδ½N� − 1Þ

�
c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qfH2 þ 1

q
þ 1

�
− qfH2

�

4

�
c3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qfH2 þ 1

q �
ðqfH2 þ αmodeÞ

¼ −c3
π2qfh2fαmode

�
iqfH

2

1þc3
ffiffiffiffiffiffiffiffiffiffiffiffi
qfH

2þ1
p þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − αmode

p þ i

�
4ℏðqfH2 þ αmodeÞ

: ð29Þ

The real part of (29) becomes positive or negative depend-
ing on the sign of c3. For c3 ¼ þ1 meaning the tunneling
saddle point, the tensor perturbations exhibit an inverse
Gaussian distribution. In this sense, the quantum creation of
the open universe has a perturbative problem and is naively
not consistent with cosmological observations.
Next, let us consider the flat universe and take K ¼ 0.

When we assume the integration of the lapse function over
N ∈ ð0;∞Þ, the Lefschetz thimble J Ns

passes one real
saddle point (see middle plot in Fig. 1),

Nþ
flat ¼ þ q1=2f

H
: ð30Þ

Taking the above saddle point for the on-shell action (25)
with C2 ¼ 0, we have

i
ℏ
Sð2Þon-shell½Nflat� ¼ þ π2qfh2fαmodeð− ffiffiffiffiffiffiffiffiffiffiffi

αmode
p − i ffiffiffiffiffiqfp HÞ

4ℏðαmode þ qfH2Þ

≈ −
π2k3

4ℏH2
½1þ iq1=2f Hk−1 þ � � ��h2f; ð31Þ

where we took the superhorizon mode (k ≪ q1=2f H) and
qf ≫ 1=H2 in the last expression. Unlike the closed
universe, the real component of Eq. (31) is negative, which
results in the tensor perturbations following a Gaussian
distribution and indicates that the perturbations can be
suppressed. This result corresponds to the standard analysis
of the inflation theory taking the Bunch-Davies vacuum.
However, beyond the saddle-point approximation, we must
integrate the lapse function N over all the complex planes,
and the perturbation problem appears again. For instance,
considering the variation around the saddle point Nflat as

Nflat ¼
q1=2f

H
þ i

ΔN

H2
; ð32Þ

where iΔN=H2 is the complex variance of the lapse
function. If we set ΔN ¼ 1, we obtain the tunneling saddle
pointNT (26) and the tensor perturbation exhibits an inverse
Gaussian distribution. Only at the saddle point, the stability

of the perturbations is ensured. Furthermore, by using the
on-shell action (25), it is easy to show that the perturbation
is again inverse Gaussian if the quantum creation of the flat
universe is taken as the zero limit K → 0þ from which the
curvature is positive [40].
Additionally, when we take the integration of the lapse

function over N ∈ ð−∞;∞Þ, the Lefschetz thimble J Ns

passes two real saddle points,

N�
flat ¼ � q1=2f

H
: ð33Þ

Taking the above saddle points for the on-shell action (25)
with C2 ¼ 0, and assuming the superhorizon mode
(k ≪ q1=2f H) and qf ≫ 1=H2, we obtain the following
expression,

i
ℏ
Sð2Þon-shell½N�

flat� ¼ � π2qfh2fαmodeð− ffiffiffiffiffiffiffiffiffiffiffi
αmode

p − i ffiffiffiffiffiqfp HÞ
4ℏðαmode þ qfH2Þ

≈ ∓ π2k3

4ℏH2
½1þ iq1=2f Hk−1 þ � � ��h2f: ð34Þ

For the saddle point N−
flat, the real component of Eq. (34) is

positive, which results in the tensor perturbations following
an inverse Gaussian distribution once more.
Finally, we will briefly discuss the primordial inflation

case. For simplicity, we assume the flat spatial curvature
K ¼ 0 and the finite value of the initial scale factor
qðti ¼ 0Þ ¼ qi. When we assume the integration of the
lapse function over N ∈ ð0;∞Þ, the Lefschetz thimble J Ns

passes two real saddle points [3],

Ninf ¼
1

H
½c3q1=2i þ q1=2f �; ð35Þ

with c3 ∈ f−1;þ1g. Similar to the open universe case, the
perturbations are found to be stable at one saddle point and
unstable at another [40]. One difference is that the regularity
of the on-shell action does not have to be strictly enforced.
Indeed, since it does not take qi ¼ 0, we may take the
divergent solutions, but it makes a large contribution to the

HIROKI MATSUI PHYS. REV. D 110, 023503 (2024)

023503-8



on-shell action. Therefore, the above conclusions would still
hold when the initial size of spacetime is small, qi ≪ 1. See
the Appendix for a comparison with standard perturbation
analysis of inflation theory. We have seen that the quantum
creation of closed, flat, and open universes from nothing,
and the beginning of primordial inflation have serious
perturbation problems. In the next section, we will discuss
the perturbation problem beyond GR.

IV. TRANS-PLANCKIAN PHYSICS
AND MODIFIED DISPERSION RELATIONS

In this section, wewill discuss the perturbation problem in
Lorentzian quantum cosmology by assuming modified
dispersion relations based on the trans-Planckian physics
[29–34]. In our previous work [28], we demonstrated that
the perturbation problem of the no-boundary and tunneling
proposal in Lorentzian quantum cosmology is difficult to
overcome with the trans-Planckian physics modifying the
dispersion relation at wavelengths smaller than the Planck
scale. In this section, we extend the previous analysis to the
general case where we consider the quantum creation of the
closed, flat, and open universe and the primordial inflation.
If new physics appears at short distances, the dispersion

relation of the perturbation would be modified and we can
assume that such modified dispersion relation takes the form
ω2 ¼ F ðkphysÞ [57], where kphys ¼ α1=2mode=q

1=2 is the physi-
cal wave number. Since the physical momentum diverges at
q → 0, the dispersion relation would drastically change. For
instance, we can introduce the modified dispersion relation,
including the trans-Planckian cutoff [31],

F ðkphysÞ ¼
(
k2phys for k2phys ≪ M2

UV

M2
UV for k2phys ≫ M2

UV;
ð36Þ

whereMUV is the trans-Planckian or ultraviolet (UV) cutoff
scale. In the limit q → 0, correspondingly kphys → ∞, the
dispersion relation for all modes is modified from that in GR.
A concrete example of such modified dispersion relations
including the trans-Planckian cutoff is the Unruh dispersion
relation [37]. Another well-known modified dispersion
relation is the generalized Corley-Jacobson dispersion rela-
tion [29], which takes the following form,

F ðkphysÞ ¼ k2phys þ k2phys
Xp
j¼1

bj

�
k2phys
M2

UV

�j

; ð37Þ

where the right-hand side should be non-negative for all
k2phys ≥ 0 to avoid instability.3 This was introduced in the

context of black hole physics [35,36]. The modified
dispersion relation (37) can be introduced by higher-
dimensional operators in higher-curvature theories of
gravity such as HL gravity theory [58]. Therefore, our
analysis is expected to be applicable to the analysis of the
modified gravity theories.
We will consider the generalized Corley-Jacobson

dispersion relation [29,35,36] as examples of the modified
dispersion relations, and use the second-order action

Sð2ÞGR½h;N� for the tensor perturbation h with the dispersion
relation ω2 ¼ F ðkphysÞ in (37). To simplify our analysis,
we assume that the dispersion relation (37) only contains
the last term of the sum and consider p ¼ 2. Thus, we have
the following equation of motion,

χ̈

N2
þ
	
αmode

q2

�
1þ b2

�
αmode

qM2
UV

�
2
�
−

1

N2

q̈
q



χ ¼ 0: ð38Þ

Now, we consider the UV regime αmode=q ≫ M2
UV, and

simply seek the solutions for the tensor perturbations and
calculate the contribution of the UV boundary (t ¼ 0), to
the on-shell action. We will consider the following equation
of motion in the UV regime,

χ̈

N2
þ
	
αmode

q4
β −

1

N2

q̈
q



χ ¼ 0; ð39Þ

where we set β ¼ b2α2mode=M
4
UV. By using the background

solution qðtÞ ¼ N2H2tðt − 1Þ þ qft, the perturbative sol-
ution reads

χðtÞ ¼C3ðN2H2ðt− 1ÞþqfÞζ1tζ2

×exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αmodeβ

p
NðN2H2ð2t−1ÞþqfÞ

ðN2H2−qfÞ2ðN2H2ðt−1ÞþqfÞt
�

þC4ðN2H2ðt− 1ÞþqfÞζ2τζ1

×exp

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αmodeβ

p
NðN2H2ð2t− 1ÞþqfÞ

ðN2H2−qfÞ2ðN2H2ðt− 1ÞþqfÞt
�
; ð40Þ

where C3;4 are constants, and we define ζ1;2 as,

ζ1 ¼ 1−2
N3H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αmodeβ

p
ðN2H2−qfÞ3

; ζ2 ¼ 1þ2
N3H2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αmodeβ

p
ðN2H2−qfÞ3

:

ð41Þ

As previously shown in Sec. III, the on-shell action has
two contributions, one from the UV (t ¼ 0) and the other
from the infrared (IR) (t ¼ 1). In order to estimate the
UV contribution, we approximate the above solution (40)
near t ¼ 0,

3We have assumed that bj > 0 with j ¼ 1…p to avoid
instability, but if we could take bp < 0 the perturbation problems
in quantum cosmology would be solved since the regularity of the
on-shell action is improved. However, it is difficult to make such
an assumption in the well-defined theories of gravity.
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χðtÞ ∝ C3F3½t; N�e−λ
t þ C4F4½t; N�eþλ

t ; ð42Þ

where F3½t; N� and F4½t; N� are polynomial functions
of t whose coefficients depend on N, and λ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αmodeβ

p
N=ðH2N2 − qfÞ2. It is clear that the UV

(t ¼ 0) contribution to the on-shell action with C3 ¼ 0

vanishes for Re½λ� < 0 whereas that with C4 ¼ 0 vanishes
for Re½λ� > 0. Other choices lead to a divergent on-shell
action. Hereafter, we adopt the choices that avoid a
divergent on-shell action (C3 ¼ 0 for Re½λ� < 0 or C4¼0

for Re½λ� > 0) and, as a result, the UV (t ¼ 0) contribution
is zero.
For modes satisfying β ≫ q2f (αmode=qf ≫ M2

UV for
b2 ¼ Oð1Þ), we can evaluate not only the UV (t ¼ 0)
contribution but also the IR (t ¼ 1) one to the on-shell
action by using the solution (40). As explained above, to
avoid divergences of the on-shell action, we have sup-
posed that C3 ¼ 0 for Re½λ� < 0 and that C4 ¼ 0 for
Re½λ� > 0. By imposing χð1Þ ¼ qfhf to normalize the
overall factor for the solution (40) with C3 ¼ 0 or C4 ¼ 0,
we obtain

Sð2Þon-shell½N� ¼
(
− π2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αmodeβ

p
h2f for Re½λ� < 0

þ π2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αmodeβ

p
h2f for Re½λ� > 0:

ð43Þ

Indeed, we obtain inverse Gaussian or Gaussian distribu-
tion for the tensor perturbations as

i
ℏ
Sð2Þon-shell½N� ¼

8<
:

þ π2

4ℏ
α3=2modeb

1=2
2

M2
UV

h2f for Re½λ� < 0

− π2

4ℏ
α3=2modeb

1=2
2

M2
UV

h2f for Re½λ� > 0:
ð44Þ

We note that Sð2Þon-shell½N� depends on the lapse function N
only through the sign of Re½λ�. For instance, taking the
tunneling saddle point NT (26) we have

λ½NT� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αmodeβ

p
NT

ðN2
TH

2 − qfÞ2
¼ −

α
3
2

modeb
1
2

2

4qfM2
UV

�
1þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qfH2 − 1

q �
;

ð45Þ

which means Re½λ� < 0. Thus, we must set C3 ¼ 0 and, as
a result, we obtain the inverse Gaussian wave function for
the tunneling proposal,

G½qf; hf� ¼ Gð0Þ½qf� · exp
�
þ π2

4ℏ
α

3
2

modeb
1
2

2

M2
UV

h2f

�
; ð46Þ

meaning that the tensor perturbations lead to an unbounded
distribution. In contrast, the no-boundary saddle point NH

takes Re½λ� > 0 and leads to the Gaussian distribution for
the tensor perturbations. However, as previously discussed
in GR, the integration contours in the complexN plane must
pass through the tunneling saddle point NT even for the no-
boundary proposal [13]. Hence, even if the dispersion
relation is modified as the generalized Corley-Jacobson
dispersion relation (37) with p ¼ 2, the tensor perturbations
exhibit inverse-Gaussian distribution for UV modes.
Although we have only obtained analytical solutions for
p ¼ 2, and make no analytical estimates for p ≠ 2, we
numerically confirmed a similar behavior for p ≠ 2.
Although this analytical discussion was limited to the
UV region, Ref. [28] also numerically demonstrated that
the perturbation problems occur in the general case as
Eq. (38) where the dispersion relation takes the modified
dispersion relation in the UV region, and the standard form
of GR in the IR region.
Next, we consider the open and flat universe. The sign of

Re½λ� determines the stability of the perturbations. For
instance, taking the saddle point Nopen (28), we have

λ½Nopen� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αmodeβ

p
Nopen

ðN2
openH2 −qfÞ2

¼ α
3
2

modeb
1
2

2

4qfM2
UV

iH2

c3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qfH2þ 1

q ;

ð47Þ

which is imaginary. In the saddle point approximation, we
can take either C3 ¼ 0 or C4 ¼ 0. Thus, when we take
C4 ¼ 0, we can obtain the Gaussian wave function. On the
other hand, taking the saddle point Nþ

flat (30) we have
Re½λ� > 0. Thus, we can take C4 ¼ 0 and, as a result, we
obtain the Gaussian wave function at the saddle-point
approximation. Beyond the saddle-point approximation
and considering the lapse integration over all complex
planes, we obtain Re½λ� < 0 again and must set C3 ¼ 0 due
to the regularity of the on-shell action.
Finally, we discuss the primordial inflation with

the generalized Corley-Jacobson dispersion relation (37)
with p ¼ 2. By using the background solution qðtÞ ¼
N2H2tðt − 1Þ þ ðqf − qiÞtþ qi, the perturbative solution
reads
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χðtÞ ¼ −
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αmodeβ

p
N

�
ððqf þH2N2ðt − 1ÞÞt − tqi þ qiÞ

× exp

�
−i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αmodeβ

p
N

�
H2N2ð2t − 1Þ þ qf − qi

ðqf − qiÞ2 − 2H2N2ðqf þ qiÞ þH4N4

�

×
−4H2N2tan−1

�
H2N2ð2t−1Þþqf−qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqf−qiÞ2−2H2N2ðqfþqiÞþH4N4
p

�
ð2H2N2ðqf þ qiÞ − ðqf − qiÞ2 −H4N4Þ3=2

�

×

�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
αmodeβ

p
C̃4N exp

�
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
αmodeβ

p
N

�
H2N2ð2t − 1Þ þ qf − qi

ðqf − qiÞ2 − 2H2N2ðqf þ qiÞ þH4N4

�

×
−4H2N2tan−1

�
H2N2ð2t−1Þþqf−qiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðqf−qiÞ2−2H2N2ðqfþqiÞþH4N4
p

�
ð2H2N2ðqf þ qiÞ − ðqf − qiÞ2 −H4N4Þ3=2

��
− iC̃3

�
; ð48Þ

where C̃3;4 are constants, When we assume qi ≪ 1, we
approximate the above solution (48) near t ¼ 0 to be the
above solution (40) with C̃3 → C3 and C̃4 → C4. Thus, the
UV (t ¼ 0) contribution to the on-shell action with C̃3 ¼ 0

vanishes for Re½λ� < 0 whereas the contribution with
C̃4 ¼ 0 vanishes for Re½λ� > 0. Other choices lead to a
divergent on-shell action and we should not take other
choices since it makes a large contribution to the on-shell
action for qi ≪ 1. Thus, we reach the same conclusion
with the quantum creation of the open universe. By
imposing χð1Þ ¼ qfhf to normalize the overall factor
for the solution (48) with C̃3 ¼ 0 or C̃4 ¼ 0, we obtain

i
ℏ
Sð2Þon-shell½N� ¼

8><
>:

þ π2

4ℏ
α3=2modeb

1=2
2

M2
UV

h2f for Re½λ� < 0

− π2

4ℏ
α3=2modeb

1=2
2

M2
UV

h2f for Re½λ� > 0:
ð49Þ

For the inflation case, we can take two real saddle points
(35) and obtain

λ½Ninf � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−αmodeβ

p
NT

ðN2
TH

2 − qfÞ2
¼ i

α
3
2

modeb
1
2

2

HM2
UV

ðc3q1=2i þ q1=2f Þ
ðqi þ 2c3q

1=2
i q1=2f Þ2

;ð50Þ

which is imaginary. In the saddle point approximation, we
can take either C̃3 ¼ 0 or C̃4 ¼ 0. Thus, when we take
C̃4 ¼ 0, we can obtain the Gaussian wave function at two
saddle points (35). In GR with saddle-point approxima-
tion, the Gaussian perturbation is only achieved for the
quantum creation of the flat universe, but it is also realized
for the open universe and inflation model in the gener-
alized Corley-Jacobson dispersion.

Although this behavior is in the UV region, and in the IR
region the perturbation behavior is again the same with GR,
this result would be interesting when we consider the
cosmological scenarios of HL gravity. In the HL gravity
the UV perturbations can produce scale-invariant primordial
density perturbations and gravitational waves [59]. Beyond
the saddle-point approximation, it is necessary to set C̃3 ¼ 0
to ensure the regularity of the on-shell action, and the
perturbation problem reappears. In conclusion, the issue of
perturbations in Lorentzian quantum cosmology cannot be
entirely resolved by considering trans-Planckian physics
with the generalized Corley-Jacobson dispersion relation.
However, the perturbations can be Gaussian in the quantum
creation of the flat or open universe with the saddle-point
approximation and the generalized Corley-Jacobson
dispersion. This suggests that trans-Planckian physics or
quantum gravity might offer a potential mechanism to
stabilize perturbations in quantum cosmology.

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we have investigated the perturbation
problems in Lorentzian quantum cosmology, particularly
focusing on various models of quantum cosmology where
we have considered the closed, flat, and open universe. We
have shown that this problem is inevitable as far as the
regularity of the on-shell gravitational action is required,
and in most quantum cosmological scenarios, the cosmo-
logical wave functions linearized perturbations exhibit an
inverse Gaussian distribution and lead to cosmological
inconsistencies. At the saddle point, the quantum creation
of the flat universe has the Gaussian distribution, and this
analysis corresponds to the standard inflation theory.
However, beyond the saddle-point approximation and con-
sidering the N integration over all complex planes, the
perturbation problem appears again. Furthermore, we have
considered the impact of trans-Planckian physics on quan-
tum cosmology, using the generalized Corley-Jacobson

NO SMOOTH SPACETIME: EXPLORING PRIMORDIAL … PHYS. REV. D 110, 023503 (2024)

023503-11



dispersion relation as a case study of modified dispersion
relations. We have shown that even if we assume such a
modified dispersion relation, the regularity of the on-shell
action is required, and resolving perturbation problems in
Lorentzian quantum cosmology remains a challenge.
However, we have found that the perturbations can be
Gaussian in the quantum creation of the open or flat
universe and the primordial inflation within the confines
of the saddle-point approximation and the generalized
Corley-Jacobson dispersion. This is because the behavior
of the perturbation is changed by the modified dispersion
relation, and therefore, the trans-Planckian physics or
quantum gravity could solve the perturbation problem in
quantum cosmology if the regularity of the on-shell action is
improved or the perturbations in the UVand IR regions are
modified in a closely related way.

ACKNOWLEDGMENTS

H.M. expresses gratitude to Shinji Mukohyama and
Atsushi Naruko for collaborating on the earlier work [28].
H. M. also thanks Masazumi Honda, Kazumasa
Okabayashi, and Takahiro Terada for useful discussions
regarding the Lefschetz thimble analysis. This work is
supported by JSPS KAKENHI Grants No. JP22KJ1782
and No. JP23K13100.

APPENDIX: KLEIN-GORDON NORM
AND BUNCH-DAVIES VACUUM

To assist in understanding the perturbation problem in
Lorentzian quantum cosmology [12,13], and to explain
why unstable perturbations occur in quantum cosmology,
in this appendix we review the perturbation analysis of
cosmic inflation. We will proceed with the path integral
formulation for tensor perturbations in an asymptotically de
Sitter background, taking the scale factor as aðηÞ ¼ −1=Hη
with the conformal time −∞ < η < 0.
Now, the second-order action for the tensor perturbation

with wave-number k around the spatially flat background
spacetime is given as follows:

Sð2ÞGR ¼ 2π2
Z

dη

�
a2

8
ðh0Þ2 − a2

8
k2h2

�

¼ 2π2
Z

dη

�
1

8
ðχ0Þ2 − 1

8

�
k2 −

a00

a

�
χ2
�

þ Boundary term; ðA1Þ

where we took V3 ¼ 2π2, fixed the lapse function as
N ¼ 1, introduced χðηÞ ¼ aðηÞhðηÞ, and used integration
by parts. The equation of motion for χðηÞ is as

χ00 þ
�
k2 −

2

η2

�
χ ¼ 0: ðA2Þ

We obtain a well-known solution,

χðηÞ ¼ Akffiffiffiffiffi
2k

p
�
1−

i
kη

�
e−ikη þ Bkffiffiffiffiffi

2k
p

�
1þ i

kη

�
eþikη; ðA3Þ

where the Bunch-Davies vacuum corresponds to Bk ¼ 0.
We expand χ̂ðxÞ in terms of a set of complex solutions

fχðxÞg of the Klein-Gordon equation (A3) as

χ̂ðxÞ ¼
X
k

½âkχðxÞ þ â†kχ
�ðxÞ� ðA4Þ

where âk and â
†
k are the annihilation and creation operators

associated with the set fχðxÞg. These operators satisfy
the commutation relations, ½âk; â†k0 � ¼ δkk0 and ½âk; âk0 � ¼
½â†k; â†k0 � ¼ 0. The χðxÞ should be complete and orthonormal
concerning the Klein-Gordon inner product (see, e.g.
Ref. [60]),

ðχ1; χ2ÞKG ≔ −i
Z

½χ1∂ηχ�2 − χ�2∂ηχ1�dx3 ðA5Þ

where χ1;2 are the Klein-Gordon solutions. The Klein-
Gordon inner product is constant for all time η and can be
easily verified by

∂ηðχ1; χ2ÞKG ¼ χ1∂ηð∂ηχ�2Þ − χ�2∂ηð∂ηχ1Þ ¼ 0: ðA6Þ

The Klein-Gordon norm for the solution (A3) is given by

ðχ; χÞKG ¼ jAkj2 − jBkj2; ðA7Þ

where the positive or negative frequency modes respec-
tively have positive or negative Klein-Gordon norms.
Generally, a positive Klein-Gordon norm is required when
defining a vacuum state in quantum field theory.
Hereafter, we will demonstrate that a positive norm

jAkj2 − jBkj2 > 0 leads to a Gaussian wave function, while
a negative norm jAkj2 − jBkj2 < 0 leads to an inverse
Gaussian wave function in the path integral. For conven-
ience, we replace the normalized parameters Ak ¼
ðk3=2hf=iHÞαk and Bk ¼ ðk3=2hf=iHÞβk in (A3) to achieve
hðηfÞ ¼ hf at the limit ηf → 0−. Then we can derive the
following on-shell action,
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Sð2Þon-shell½hf� ¼
π2

4

Z
ηf

−∞
dη½a2ðh0Þ2 − k2a2h2� ¼ π2

4
½a2h0h�ηf−∞

¼ π2h2fk
2ðαke−2ikηf − βkÞ½ð1þ ikηfÞαk þ ð−1þ ikηfÞβke2ikηf �

4H2ηf

þ lim
η0→−∞

−
iπ2h2fk

3ðαke−2ikη0 − βkÞðαk þ βke2ikη0Þ
4H2

; ðA8Þ

where the last term originates from the infinite path. By
evaluating the semiclassical exponent at the limit ηf → 0−

we obtain

Gð2Þ½hf� ¼

8><
>:
e
− π2

4H2k
3h2f−

iπ2

4H2ηf
k2h2fþ��� ðαk ¼ 1;βk ¼ 0Þ;

e
þ π2

4H2k
3h2fþ iπ2

4H2ηf
k2h2fþ��� ðαk ¼ 0;βk ¼ 1Þ;

ðA9Þ

where the former takes positive norm (Bunch-Davies
vacuum), and the wave function of the universe takes

the form of Gaussian and suppressed amplitude for the
tensor perturbation modes. On the other hand, the latter
takes a negative norm, and increasing amplitude for the
tensor perturbation modes. As we saw in Sec. III, since
the lapse function N is integrated into the complex plane,
the last term in the Lorentz path integral diverges.
Therefore it is not possible to take any perturbative
solutions. As a consequence (a rather complicated dis-
cussion is on the way), we cannot take positive norms and
the Bunch-Davies vacuum.
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