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The lightest neutralino (χ̃01) is a good dark matter (DM) candidate in the R-parity conserving minimal
supersymmetric Standard Model. In this work, we consider the light Higgsino-like neutralino as the lightest
stable particle, thanks to a rather small Higgsino mass parameter μ. We then estimate the prominent
radiative corrections to the neutralino-neutralino-Higgs boson vertices. We show that for Higgsino-like χ̃01,
these corrections can significantly influence the spin-independent direct detection cross section, even
contributing close to 100% in certain regions of the parameter space. These corrections, therefore, play an
important role in deducing constraints on the mass of the Higgsino-like lightest neutralino DM, and thus the
μ parameter.
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I. INTRODUCTION

A prime motivation for supersymmetric extensions of the
standard model of particle physics (SM) have been to
address the “naturalness” concerns. While there are several
studies in literature to quantify “naturalness” in a super-
symmetric framework, the measure of naturalness is often
debated [1–7]. In the minimal supersymmetric extension of
the standard model (MSSM), a small value of the Higgsino
mass parameter μ [1,2,4,5] and possibly rather light stop
squarks and gluinos (≲2–3 TeV) [6–10] remain desirable
in “natural” scenarios at the electroweak (EW) scale.
At the Large Hadron Collider (LHC), the discovery of

the Higgs boson has established Standard Model (SM)
physics. However, in spite of strong motivation for physics
beyond the standard model, no hints for the same have been
observed so far. The constraints on the supersymmetric
spectrum [11–17], while generally dependent on the nature
of the low-lying states, have been raising concerns about
the naturalness requirements [6–10]. In this regard, within
the minimal supersymmetric standard model (MSSM)
paradigm, the constraint on the μ parameter is of particular

interest. This has been widely studied in literature in the
light of LHC.1 In the minimal construct, a small Higgsino
mass parameter μ [of Oð100Þ GeV] is of relevance.2

Assuming that the gaugino mass parameters M1 and M2

are in the ballpark of multi-TeV, such a scenario leads to a
compressed Higgsino spectrum. In the R-parity conserving
scenario, where the lightest supersymmetric particle (LSP)
is stable. This leads to the Higgsino-like lightest neutralino
being a dark matter (DM) candidate. Such a scenario
attracts rather weak constraints from the electroweakino
searches at the LHC, as the decay of the next two heavier
(Higgsino-like) states lead to soft SM particles in the final
states at the collider.
Several studies have considered the prospects and con-

straints on the lightest neutralino in the light of collider and
DM searches. Also, the implications of a compressed
Higgsino-like spectrum at the LHC have been studied
widely [23–34]. While the neutralino and chargino pair
production cross sections are sizable, especially for small μ,
the soft decay products in the compressed spectrum ensure
that the constraints are rather weak. With Higgsino-like
neutralinos as DM candidates, a complimentary set of
constraints on the μ parameter [33,35,36] also follow from
the direct [37–40] and indirect [41–43] searches for DM.*Contact author: subhadip.b@iopb.res.in
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1Within the high-scale supersymmetric models, a moderate
value of the μ parameter may be realized in the focus point region
[3,18–22].

2Note that, the fine-tuning measure, estimated following the
electroweak naturalness criteria, is stated to be about Oð10–100Þ
assuming the masses of the third-generation squarks and gluons
in the ballpark of several TeV [6].
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In the presentwork,we revisit the implications of the spin-
independent direct detection constraints on the Higgsino-
like (χ̃01). As the coupling of CP-even neutral Higgs bosons
with a pair of χ̃01 is vanishingly small at the tree level, the
contribution to the spin-independent neutralino-nucleus
interaction process is suppressed.3 Consequently, the radi-
ative contributions to the scattering process need to be
considered in order to accurately estimate the relevant cross
sections. While such a scenario has been previously con-
sidered in the literature, in the context of pure Higgsinos, the
importance of radiative corrections to the direct detection
process has received some attention [47–50].4
We improve the estimation of the radiative corrections to

the spin-independent direct detection cross section, by
incorporating the contributions from the gauge bosons,
the Higgs bosons, the respective superpartners and the
third-generation (s)quarks to the relevant vertices involving
neutralino and Higgs bosons. Further, we renormalize the
chargino-neutralino sector using the use the on shell
renormalization scheme and estimate the relevant vertex
counterterms, thus paving the way towards a full one-loop
treatment to the neutralino-Higgs boson vertices.
In order to satisfy the thermal relic abundance of

ΩDMh2 ≃ 0.12, as required by cosmological considerations
[59,60], the Higgsino-like neutralino LSP must be around
1 TeV and can be lowered further in the presence of
coannihilation [33]. Below this mass scale, it is generally
under abundant. However, there are viable nonthermal
production scenarios, where adequate production of such
DM may be possible in the early Universe [61,62]. Further,
the presence of additional DM components, e.g., axions,
may contribute to the DM abundance [44,63,64]. In this
work, we will not concern ourselves with satisfying the
thermal relic abundance in the early Universe. We will only
focus on the impact of certain radiative corrections on such
a DM candidate in the light of direct DM searches. Note
that if the LSP constitutes only a fraction of the required
DM relic abundance (and, therefore, the local DM density),
the constraint on the DM-nucleon scattering cross section
from direct searches will be relaxed in the same proportion.
This article is organized as follows. In Sec. II, the

chargino-neutralino spectrum of interest has been described,
and the tree-level interactions between χ̃01 and the CP-even
Higgs bosons are described. Following this, in Sec. III, the
generalities of (spin-independent direct detection of DM and
the implications in the context of a Higgsino-like DM
candidate have been discussed. Subsequently, in Sec. IV,

we present the important electroweak radiative corrections to
the vertices involving neutralino and the Higgs bosons and
study its impact on the spin-independent DM-nucleon
cross sections. We also reflect on the parameter region
where such corrections are significant and comment on
the implications on the viable region for the Higgsino mass
parameter μ. Finally, in Sec. V, we summarize the results and
conclude.

II. THE FRAMEWORK

In this section, we briefly discuss the chargino-neutralino
sector in the MSSM; in particular, we focus on the
parameter region with rather small Higgsino mass param-
eter μ and light Higgsino-like states.

A. The spectrum: Compressed Higgsinos

In the gauge eigenbasis expressed in terms of the Weyl
spinors (the charged wino ðW̃�Þ, and charged Higgsinos
ðh̃�i Þ, for i∈ f1; 2g) with ψþ ¼ ðW̃þ; h̃þ2 ÞT and ψ− ¼
ðW̃−; h̃−1 ÞT , the tree-level mass term for the charginos is
given by [65]

−Lc
mass ¼ ψ−TMcψþ þ H:c: ð1Þ

The mass matrix Mc can be expressed as

Mc ¼
�

M2

ffiffiffi
2

p
MW sin βffiffiffi

2
p

MW cos β μ

�
: ð2Þ

Here M2 and μ stand for the supersymmetry breaking
SUð2Þ wino mass parameter and the supersymmetric
Higgsino mass parameter, respectively. MW is the mass
of the W boson, and tan β is the ratio of the vacuum
expectation values (VEVs) of the up-type and the down-
type CP-even neutral Higgs bosons. The matrix Mc can be
diagonalized with a biunitary transformation using the
unitary matrices U and V to obtain,

Mc
D ¼ U�McV−1 ¼ Diagonalðmχ̃þ

1
mχ̃þ

2
Þ: ð3Þ

The eigenstates are ordered such that mχ̃þ
1
≤ mχ̃þ

2
. The left-

and right-handed components of these mass eigenstates, the
charginos (χ̃þi with i∈ f1; 2g), are

PLχ̃
þ
i ¼ Vijψ

þ
j ; PRχ̃

þ
i ¼ U�

ijψ
−
j ; ð4Þ

where PL and PR are the usual projectors, ψ−
j ¼ ψ−†

j , and
summation over j is implied.
For the neutralino states, in the gauge eigenbasis [con-

sisting of the bino ðB̃0Þ, neutral wino ðW̃3Þ, and down-type
and up-type neutral Higgsinos (h̃01 and h̃02 respectively)],

3We note in passing that for a mixed LSP, significant parts of the
MSSM parameter space have been ruled out by direct directions
constraints unless one hits the “blind spot” [44,45]; a similar
situation arises if one tunes the Yukawa parameters leading to
cancellation among different contributing processes [46].

4Certain classes of radiative corrections to the direct detection
process and the relic abundance in the context of neutralino DM
have been studied in Refs. [51–58].
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ψ0 ¼ ð B̃0; W̃3; h̃01; h̃
0
2 ÞT , the mass term takes the following

form [65]:

−Ln
mass ¼

1

2
ψ0TMnψ0 þ H:c: ð5Þ

The neutralino mass matrix Mn is given by

Mn ¼

0
BBB@

M1 0 −MZsWcβ MZsWsβ
0 M2 MZcWcβ −MZcWsβ

−MZsWcβ MZcWcβ 0 −μ
MZsWsβ −MZcWsβ −μ 0

1
CCCA:

ð6Þ

In the above equation sW , sβ, cW , and cβ stand for
sin θW; sin β; cos θW , and cos β, respectively while θW is
the weak mixing angle.MZ is the mass of the Z boson, and
M1 is the supersymmetry breaking Uð1ÞY gaugino (bino)
mass parameter. Mn can be diagonalized by a unitary
matrix N to obtain the masses of the neutralinos as follows:

Mn
D ¼ N�MnN−1 ¼ Diagonalðmχ̃0

1
mχ̃0

2
mχ̃0

3
mχ̃0

4
Þ: ð7Þ

The eigenstates (χ̃0i ) are ordered according to the respective
mass eigenvalues as follows,5 mχ̃0

1
≤ mχ̃0

2
≤ mχ̃0

3
≤ mχ̃0

4
.

These eigenstates satisfy χ̃0ci ¼ χ̃0i , where the superscript
c stands for charge conjugation. The left-handed compo-
nents of these mass eigenstates, the Majorana neutralinos,
χ̃0i (i∈ f1; 2; 3; 4g), may be obtained as

PLχ̃
0
i ¼ Nijψ

0
j ; ð8Þ

where summation over j is again implied.
The analytical expressions corresponding to the chargino

and the neutralino mass eigenvalues have been obtained in
the literature [66,67]. However, a numerical estimation of
the eigenvalues is straightforward and convenient, espe-
cially in the case of the neutralinos.
In the region of interest in this article, the Higgsino mass

parameter is rather small in comparison with the gaugino
and the wino mass parameters, i.e., jμj ≪ jM1j;M2; the
masses of the light Higgsino-like particles may be approx-
imately given by [47,68]6

mχ̃�
1
¼ jμj

�
1 −

M2
W sin 2β
μM2

�
þOðM−2

2 Þ þ rad corr

mχ̃0a;s
¼ �μ −

M2
Z

2
ð1� sin 2βÞ

�
sin θ2W
M1

þ cos θ2W
M2

�
þ rad corr: ð9Þ

In the above expression, subscripts aðsÞ refer to antisym-
metric (symmetric) combinations of up-type ðh̃02Þ and
down-type ðh̃01Þ Higgsinos constituting the respective mass
eigenstates. Here, the symmetric and antisymmetric states
refer to the Higgsino-like states with compositions without
and with a relative sign between Ni3 and Ni4, respectively.
It has been pointed out in the literature that, due to the
mixing effects, the mass differences Δm1 ¼ mχ̃�

1
−mχ̃0

1

may become very small in certain regions of the parameter
space [27,29,71,72]. In the present context, we will con-
sider the mass differences Δm1;Δm2 ≫ Oð1 MeVÞ. Thus,
as we will discuss in the next section, in the direct detection
experiments, only the elastic scattering of χ̃01 with the
nucleon will be relevant.

B. Neutralino-Higgs boson(s) interaction:
Tree-level and at one loop

As we will elaborate on in Sec. III, for the spin-
independent direct detection of χ̃01, the relevant vertices
involve the lightest neutralino and the CP-even Higgs
bosons. The gauge symmetry of the MSSM, particularly
the electroweak gauge group, prohibits any superpotential
termwith twoHiggsino states and aHiggs boson in the gauge
eigenbasis. Therefore, the tree-level interaction term, in the
gauge eigenbasis, involves one Higgsino, one gaugino, and a
Higgs boson. Consequently, in the mass eigenbasis, the tree-
level vertex takes the following form [65]:

L ⊃ −
1

2
h1 ¯̃χ01ðCR1PR þ CL1PLÞχ̃01

−
1

2
h2 ¯̃χ01ðCR2PR þ CL2PLÞχ̃01; ð10Þ

where CLi ¼ CR�i for i∈ f1; 2g, and

CR1 ¼ ðS1 sinαþ S2 cosαÞ; ð11Þ

CR2 ¼ ðS2 sinα − S1 cos αÞ; ð12Þ

S1 ¼ g2N13ðN12 − tan θWN11Þ; ð13Þ

S2 ¼ g2N14ðN12 − tan θWN11Þ: ð14Þ

In the above expressions, h1 and h2 denote the 125 GeV
Higgs boson and the heavy Higgs boson mass eigenstates,
respectively, g2 denotes the SUð2Þ gauge coupling, and α
denotes the mixing angle in the CP-even Higgs sector.
Note that in the above equations,N11 andN12 denote the bino
and wino composition of the lightest neutralino mass
eigenstate, while N2

13 and N2
14 denote the respective down-

type and up-type Higgsino fractions in the χ̃01, respectively.
For Higgsino-like χ̃01, the gaugino fraction is very small
compared to the Higgsino fraction, i.e., jN13j2 þ jN14j2 ≫
jN11j2 þ jN12j2. Thus, the tree-level vertex involving the

5Note that some of the eigenvalues may be negative depending
on the input parameters. In such cases, the chiral rotation of the
corresponding mass eigenstate may be performed to change the
sign of the eigenvalue.

6An exact analytical result may be found in Refs. [69,70].
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CP-even Higgs bosons is suppressed by a rather small
gaugino component of the mixing matrix (i.e., N11 and
N12). As pointed out, the radiative corrections to these
vertices play an important role in the spin-independent
direct detection process; this will be illustrated in Sec. IV.
To treat the interaction Lagrangian at one-loop level, the

counterterm Lagrangian LCT should be added to the tree-
level Lagrangian Ltree. The Lagrangian, thus takes the
following form:

L ¼ LBorn þ LCT; ð15Þ

where LBorn is written using the renormalized fields, and
LCT involves the contributions from the relevant counter-
terms. The “bare” and the renormalized neutralino mass
eigenstates are related as follows:

χ̃0 barei ¼
�
δij þ

1

2
δZijPL þ 1

2
δZ�

ijPR

�
χ̃0 renormalized
j ; ð16Þ

where the index j has been summed over j∈ f1; 2; 3; 4g.
The wave function renormalization counterterms δZij are
determined using the on shell renormalization schemes [73],
a comparison among different variants can be found in
Ref. [74]. Similarly, for the CP-even neutral Higgs bosons
the bare and the renormalized mass eigenstates are related
as follows:

hbarei ¼
�
δij þ

1

2
δZH

ij

�
hrenormalized
j ; ð17Þ

where the index j has been summed over j∈ f1; 2g. The on
shell renormalization prescription is used to determine the
wave function renormalization counterterms δZH

ij . With the
above relations, the counterterm Lagrangian LCT relevant
for the present discussion can be obtained as follows:

−LCT ⊃
1

2
h1 ¯̃χ01ðδCR1PR þ δCL1PLÞχ̃01

þ 1

2
h2 ¯̃χ01ðδCR2PR þ δCL2PLÞχ̃01;

where the renormalized fields are used in the counterterm
Lagrangian; we have dropped the respective superscript. At
the one-loop level, the neutralinos, charginos, gauge
bosons, and the Higgs bosons contribute to the χ̃01; χ̃

0
1; hi

vertices. Further, there can be sizable contributions from
the third-generation (s)quarks, thanks to the sizable
Yukawa couplings, as will be discussed in Sec. IV. Note
that for all our benchmark scenarios, as described in
Sec. IV, the lightest eigenvalue of the neutralino mass
matrix Mn is positive. Consequently, for the benchmarks
presented in Sec. IV (Tables I and II), CLi ¼ CRi and δCLi ¼
δCRi for i∈ f1; 2g.

C. Constraints on the parameter space

A small μ ≪ jM1j;M2, as discussed above, leads to a
compressed spectrum with three closely spaced states
χ̃01; χ̃

0
2; χ̃

�
1 . The LHC sets stringent limits on chargino

and neutralino masses, from pair productions of charginos
and neutralinos and the subsequent decay of those to χ̃01 and
SM particles. These limits are sensitive to the mass
difference of the heavier chargino and neutralino states
and the LSP (χ̃01). As for small mass splittings, the relevant
bounds on the compressed spectrum can be found in
Refs. [15,75–77]. For 300 (600) GeV Higgsino-like neu-
tralinos, Δm1 ≲ 0.3ð0.2Þ GeV is disfavored [77], and the
constraints weaken for heavier mass. Searches targeting
mass splittings around the electroweak scale may be found
in Refs. [11–17], where decays of the heavier neutralinos
into on shell gauge bosons or Higgs bosons and the LSP, as
well as their three-body decays have been considered.
However, as jM1j;M2 ≫ jμj in our context, these con-
straints are not very relevant to the present discussion. We
have considered the following constraints on the spectrum
for our benchmark scenarios presented in Sec. IV:

(i) We have constrained the lightestCP-evenHiggsmass
mh within the range 122 ≤ mhðGeVÞ ≤ 128 [78–80].
Note that the experimental uncertainty is about
0.25 GeV and the uncertainty in the theoretical
estimation of the Higgs mass is about �3 GeV, see
e.g., [81] and references therein.

(ii) The squarks and the sleptons masses have been
assumed to be above 1.5 TeV, and the gluino mass is
kept above 2.2 TeV, respecting the constraints from
the LHC.

(iii) In our scenario, with jμj ≪ jM1j;M2, the low-lying
Higgsino-like states form a compressed spectrum.
The μ parameter has been chosen such that
LHC constraints on the compressed spectra are
respected [15,75,76]. We have also used SModelS
(version-2.3.0) [82–90] to check our benchmark
scenarios.

(iv) However, we have relaxed the constraints on the relic
density of DM (i.e., ΩDM ≃ 0.12). As χ̃01–may not
constitute all of the DM, constraint from indirect
searches on theHiggsino-likeDM [36,41,42] has also
been relaxed.

III. DIRECT DETECTION OF DARK MATTER:
IMPLICATIONS FOR A HIGGSINO-LIKE LSP

A. Generalities of direct detection

In this section, we describe the generalities of spin-
independent direct detection and sketch the implications for
the Higgsino-like χ̃01–nucleon scattering. In the context of
direct detection, the differential event rate per unit time at a
detector, as a function of the nuclear recoil energy ER, is
given by
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dR
dER

¼ nT
ρχ̃0

1

mχ̃0
1

Z
vesc

vmin

d3vfEðv⃗Þv
dσðv; ERÞ

dER
: ð18Þ

In the above equation, ρχ̃0
1

is the local density

(≃0.3 GeV cm−3), nT is the number of target nuclei in the
detector and σðv; ERÞ denotes the scattering cross section
with the nucleus. Further, fEðv⃗Þ denotes the velocity
distribution in the Earth’s rest frame and fEðv⃗Þ ¼
fðv⃗þ v⃗EÞ, where f is the distribution function in the
galactic rest frame and v⃗E is the velocity of Earth with
respect to the galactic rest frame and vesc is the escape
velocity of our galaxy. Further, v2min ¼ mTER

2M2
r
is the minimum

speed of the DM particle required to impart a recoil energy
ER, wheremT is themass of the target nucleus, andMr is the
reduced mass of the DM-nucleus system. The cross section
with a nucleus (atomic number A and charge Z) is given by

dσ
dER

ðv; ERÞ ¼
mT

2M2
rv2

σ0F2ðq2Þ; ð19Þ

where mT is the mass of the target nucleus, q2 ¼ 2mTER is
the square of the momentum transfer, and F stands for the
form factor, which will be taken as the Woods-Saxon form
factor [91]. Further, σ is the (spin-independent) DM-nucleus
scattering cross section. In the present context only spin-
independent cross section is relevant, which, at zero
momentum transfer is given by σ0.

B. Dark matter-nucleon spin-independent
elastic scattering

In the following, we briefly discuss the relevant parton
level effective Lagrangian leading to the spin-independent
interaction [92],

Leff ⊃ λq ¯̃χ
0
1χ̃

0
1q̄qþ gq ¯̃χ01γ

μ
∂
νχ̃01ðq̄γμ∂νq − ∂μq̄γνqÞ

þ Lg
eff : ð20Þ

In the above equation, the first term in the right-hand
side receives contributions largely from the scattering proc-
essesmediated by theHiggs bosons. In particular, in the limit
of no mixing in the squark sector, the contribution from the
squark sector to this operator vanishes [92,93]. The next term
captures the effect of squark-mediated s-channel scattering
processes. Further, Lg

eff denotes the relevant effective inter-
actionswith gluonswhich contribute to the spin-independent
neutralino nucleon scattering process [92,93].
We now focus on the implications for a Higgsino-like χ̃01,

as we consider in the present context. For such states, the
Higgsino fraction is much greater than the gaugino fraction
(i.e., jN13j; jN14j ≫ jN11j; jN12j). Therefore, the tree-level
coupling involving two neutralinos and the Higgs bosons
[see Eq. (14)] are small, as these are suppressed by a factor of
the gaugino component of the Higgsino-like neutralino
state. Note that, in the present context we consider
jM1j;M2 ≲ 5 TeV and the Higgsino mass parameter

jμj≲ 1 TeV. Consequently, the gaugino fraction in the
lightest neutralino is typicallyOð10−2Þ. Thus, the tree-level
Higgs boson exchange contributions, while small, can be
significant and generally non-negligible. The tree-level
contributions from the (s–channel) squark-mediated proc-
esses are suppressed by an additional factor of a rather small
gaugino fraction in χ̃01 and/or an additional factor of Yukawa
coupling for the first two generation of (s)quarks as
compared to the tree-level Higgs boson exchange processes.
Further, we have considered the first two generations of
squarks to be very heavy ð≫Oð2ÞÞTeV for all our bench-
mark scenarios, as will be described in Sec. IV. Therefore,
contributions from the respective squark-mediated proc-
esses (and their contributions to the neutralino-gluon effec-
tive operators) remain subdominant in the present context. In
the following, we first describe the Higgs exchange con-
tribution, as the focus of the present study is on the radiative
corrections to the neutralino-Higgs boson vertices.
The effective parton-level interactions, as mentioned in

(20) leads to the following effective interaction Lagrangian
with the nucleon N ∈ fn; pg, where n and p stand for
neutron and proton, respectively,

Leff
N ⊃ fN ¯̃χ01χ̃

0
1ψ̄NψN; ð21Þ

where fN denotes the effective coupling and ψN denotes
the field describing the nucleon N. The important con-
tributions from the two CP-even neutral Higgs boson
mediated processes in the spin-independent cross section
σSI comes from its contribution to the coefficient λq. The
contribution from the two CP-even neutral Higgs bosons
λHq is given by

λHq ¼ Σ
2

i¼1

CiCiq

m2
hi

: ð22Þ

In this expression, Ci ¼ CLi as mentioned in (14) and Ciq

denotes the coupling of the same Higgs boson and
quark(q) [65]. The respective contribution to the spin-
independent elastic scattering cross section may be
expressed in terms of their contribution to the effective
interaction strength fN [92,94,95],

fðHÞ
N ¼mN

�
Σ

u;d;s

q
fNTq

λHq
mq

þ 2

27
Σ

c;b;t

q
fNTG

λHq
mq

þ 8π

9αS
fNTG

mNTq̃

�
;

N∈fp;ng; ð23Þ

where [92,96],

fNTq
¼ 1

mN
hNjmqq̄qjNi; fNTG

¼ 1 − Σ
u;d;s

q
fNTq

;

Tq̃ ¼
αS
4π

1

24
Σ
2

i¼1

Ci

m2
hi

Σ̃
qj

Ci
q̃j

m2
q̃j

: ð24Þ
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In the above equation, fNTq
denotes the contribution of

the (light) quarks q∈ fu; d; sg to the mass mN of the
nucleon N.7

Further αS ¼ g2S
4π, gS denotes gauge coupling for the strong

interaction; mq̃j and Ci
q̃j
denote the mass of the jth squark

and its coupling with the ith (CP-even) neutral Higgs
boson, respectively. The heavy quarks (fc; b; tg) contribute
to fN through the loop-induced interactions with gluons. In
Eq. (23), the first term includes a contribution from the
effective neutralino-quark interactions; the second and the
third term includes the contributions from the effective
interaction with the gluon fraction. In particular, the second

term (proportional to fNTG

λHq
mq
) and the third term (propor-

tional to fNTG
mNTq̃) include the relevant contributions from

the heavy quarks and all the squarks to the Higgs bosons-
gluon effective vertices, respectively.
A brief discussion on various other important contribu-

tions to the DM-nucleon scattering is in order. In addition to
the contribution from the Higgs boson exchange processes,
there are tree-level contributions to fN from squark
exchange processes. As already mentioned, in the present
discussion we assume the (first two generations of) squarks
to be very heavy. In such a scenario, the dominant
contribution to the spin-independent neutralino-nucleon
interaction is mediated by the Higgs bosons. Further, the

contribution to fðHÞ
N from the term proportional to Tq̃,

which incorporates the squark contributions to the effective
vertices involving Higgs bosons and gluons, is suppressed
for heavy squark masses. In the present context, the only
the third-generation squarks are relatively light, around
1.5 TeV. Regarding other important radiative corrections,
the supersymmetric-QCD corrections to the Higgs and
the down-type quark vertices [100]; the one-loop correc-
tions to the neutralino-gluon interactions originating
from the triangle vertex corrections involving (s)quarks
at the Higgs-gluon-gluon vertex, and also the box dia-
grams involving (s)quarks can be sizable [92]. These
contributions have been implemented in the numerical
package micrOMEGAs [91] following Ref. [92].8 Further,

contributions from the box diagrams to the DM-quark
scattering involving electroweak gauge bosons have been
considered in the literature [48–50]. In Ref. [50], it has been
shown that the tree-level Higgs boson exchange contribu-
tion to the (Higgsino-like) neutralino-nucleon scattering
dominates over these contributions when the gaugino mass
parameters are less than Oð5–10Þ TeV, as is relevant in the
present context.
As is evident from the discussion above, the interaction

rate is proportional to f2N , which involves the square of the
LSP-Higgs bosons vertices Ci. As discussed above, several
dominant one-loop contributions to the scattering process
have been estimated and incorporated in the publicly
available packages, e.g., micrOMEGAs [91,101,102].
However, a detailed estimation of the one-loop corrections
from the modification of the neutralino-Higgs boson
vertices Ci have not received adequate attention.9 In
particular, for an almost pure Higgsino-like LSP, which
is often relevant for a natural supersymmetric spectrum, the
small (but generally nonvanishing) gaugino fractions imply
that the tree-level value of Ci to be small. Therefore,
radiative corrections to the same vertices can play a crucial
role in the estimation of the cross section. In Fig. 1, some of
the important diagrams contributing to the vertex correction
have been depicted. We consider all the triangle diagrams
involving charginos, neutralinos, gauge bosons, and Higgs
bosons which contribute to the vertex corrections to the
χ̃1 − χ̃1 − hi vertices. Further, as the Yukawa couplings for
the third-generation (s)quarks are large, contributions from
the third-generation (s)quarks have also been considered.
As the loop diagrams with two fermions and one boson are
generally UV divergent, we have included the vertex
counterterms, and ensured the UV finiteness of the overall
contributions. Note that the wave function renormalization
counterterms also include the effect of mixing of the tree-
level fields (due to radiative corrections from the two-point
functions) appearing in the external lines. The complete set
of radiative contributions considered in this work have been
described in Appendix B, and the counterterms have been
mentioned in Appendix C.

IV. RESULTS

In this section, we present the results highlighting the
importance of the radiative corrections to the vertices
involving neutralino and Higgs bosons, as discussed in
Sec. III, to the (spin-independent) direct detection process
in the context of a Higgsino-like χ̃01.

7We have used the scalar coefficients for the quark content in
the nucleons as implemented in micrOMEGAs [97], where the mass
ratios of the light quarks have been estimated using chiral
perturbation theory, see, e.g., [98]. For a discussion on hadronic
uncertainties in the DM-nucleus scattering cross section, see,
e.g., [99].

8Note that, for our benchmark scenarios, all the relevant tree-
level processes, including the squark exchange processes, and the
radiative corrections mentioned above, have also been consid-
ered; we have used micrOMEGAs for the same. However, the
percentage change in the scattering cross section has been
estimated for the vertex corrections to Ci. For the radiative
corrections implemented, as described above, we have checked
that the contributions are about 10% to the spin-independent
cross section for the benchmark scenarios.

9Certain subsets of the diagrams have been considered in
Refs. [47–50] in the limit of a pure Higgsino or Higgsino-like
neutralino DM; a full calculation of the vertex corrections,
involving the respective counterterms, is not available in the
literature to our knowledge.
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A. Implementation

We begin by describing the procedure to compute the
radiative corrections. The steps have been sketched in the
flowchart shown in Fig. 2:

(i) We generated the benchmark scenarios using the
spectrum generator SPheno [103] (version 4.0.4).
The parameters are read from the output file and
the relevant radiative corrections are numerically

evaluated using those parameters. The input param-
etersM1,M2, and μ in the chargino-neutralino sector
are varied to obtain different benchmark scenarios,
as presented in Tables I and II. The details of the
benchmark scenarios will be discussed in the next
subsection.

(ii) To evaluate the radiative corrections to the
χ̃01 − χ̃01 − hi vertices, we have used the publicly
available packages FeynArts (version 3.11) [104,105],
FormCalc (version 9.10) [106], and LoopTools (version
2.15) [106]. In particular, the Feynman diagrams
are evaluated using FeynArts, and the vertex correc-
tions are calculated using FormCalc. Further, the
radiative contributions are expressed in terms of
the Passarino-Veltman integrals (briefly discussed in
Appendix A) and numerically evaluated for the
benchmark scenarios using FormCalc and LoopTools.
Further, the UV finiteness of the radiatively corrected
vertex factors (including the counterterm contribu-
tions) have been numerically checked using the pack-
ages mentioned above. Finally, the numerical results
are stored in data files. To determine the relevant
counterterms, we have used the on shell renormaliza-
tion scheme. We have used the relevant counterterms
implemented in FormCalc, as described in Ref. [107].

(iii) To evaluate the direct detection cross sections
micrOMEGAs [91,101,108,109] (version 5.2.1) [102]
has been used. We generated the model files
for micrOMEGAs using SARAH (version 4.14.5)
package [110] on the Mathematica platform. We

FIG. 1. Some important contributions to the χ̃01 − χ̃01 − hi vertices at one-loop level.

FIG. 2. The flowchart for implementation of the relevant
corrections to the neutralino-Higgs boson(s) vertices.
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modify the relevant vertices in the code to include the
radiatively corrected vertices. For each benchmark,
then, the corrected vertices are read from the output
file, as described above, using a subroutine. Thus, the
radiatively corrected vertices are used to evaluate the
spin-independent direct detection cross section.

B. Benchmark scenarios

In this subsection, the benchmark scenarios have been
discussed. The benchmark points have been described in
Tables I and II.
As we focus on the Higgsino-like χ̃01 DM, jμj ≪

jM1j;M2 have been set for all the benchmark scenarios.
The tree-level vertices CL=Ri , as described in Eq. (14), are
proportional to the product of the gaugino and Higgsino
components of χ̃01. Thus, the tree-level spin-independent
cross section (σSI) is sensitive to the variation in the
gaugino-Higgsino mixing. With jM1j;M2, and jμj fixed,
the gaugino-Higgsino mixing is sensitive to the signs ofM1

and μ. Consequently, the tree-level spin-independent cross
sections and the relative contributions from the radiative
corrections to the χ̃01 − χ̃01 − hi vertex factors can be very
different even for very similar chargino-neutralino masses.

In the benchmark scenarios, with jμj ≪ jM1j;M2; we have
varied the sign of μ and M1 to illustrate this variation.
Further, the order of M1 andM2 have been altered to study
the effect of the variation in the gaugino components.
The benchmark points BP-1a to BP-6a, as shown in

Table I reflect scenarios with jμj ¼ 300 GeV. Setting
jM1j;M2 ≫ jμj ensures that χ̃01; χ̃

0
2; χ̃

�
1 are closely spaced

and are Higgsino-like states. For the benchmark scenarios
BP-1b to BP-6b, as shown in Table II, a heavier jμj ¼
600 GeV has been considered. As discussed above, to
illustrate the variation in the gaugino components of χ̃01 for
very similar particle spectra, the sign of μ and the sign of
M1 have been varied. For BP-1a and 2a, with μ ¼ 300 GeV
and μ ¼ −300 GeV, respectively,M1 is set to −5 TeV. For
BP-3a and 4a, with μ ¼ 300 GeV and μ ¼ −300 GeV,
respectively, M1 is set to 5 TeV. For all these benchmark
scenarios, we fix M2 ¼ 4 TeV. For BP-5a and 6a, with
μ ¼ 300 GeV and M2 ¼ 5 TeV, while M1 assumes
−4 TeV and 4 TeV, respectively. BP-1b to BP-6b resembles
BP-1a to BP-6a, respectively, only with jμj ¼ 600 GeV.
Note that for BP-1 to BP-4 (a and b), jM1j > M2, while for
BP-5 and BP-6 (a and b) jM1j < M2. For all these bench-
mark scenarios tan β ¼ 10, the masses of the Higgs bosons
and the third-generation squarks, which are also relevant

TABLE I. The benchmark scenarios with a Higgsino-like χ̃01 have been tabulated for jμj ¼ 300 GeV. HF stands
for Higgsino fraction. The fixed input parameters are: the mass of the pseudoscalar Higgs boson mA ¼ 1.414 TeV,
and tan β ¼ 10. The gluino mass parameterM3 ¼ 3 TeV. The trilinear coupling for two stops with the Higgs boson
is set as Tt ¼ −3 TeV. The soft-supersymmetry-breaking mass parameters for the left-type and the right-type stop
and sbottom squarks are as follows: mQ̃L

¼ 2.69 TeV, mt̃R ¼ 2.06 TeV and mb̃R
¼ 2.50 TeV. As for the physical

masses, the charged Higgs boson mass MH� ¼ 1.416 TeV, the CP-even Higgs mixing angle α ¼ sin−1ð−0.1Þ. For
all the benchmarks, the third-generation squark mass and mixing parameters are taken as the lightest stop mass
mt̃1 ¼ 2.05 TeV, the heaviest stop mass mt̃2 ¼ 2.71 TeV, the lightest sbottom mass mb̃1

¼ 2.50 TeV, the heaviest
sbottom mass mb̃2

¼ 2.69 TeV.

Parameters BP1a BP2a BP3a BP4a BP5a BP6a

μ (GeV) 300 −300 300 −300 300 300
M1 (GeV) −5000 −5000 5000 5000 −4000 4000
M2 (GeV) 4000 4000 4000 4000 5000 5000
mχ̃0

1
(GeV) 299.17 299.44 298.72 299.14 299.44 298.88

mχ̃0
2
(GeV) −300.44 −300.66 −300.74 −301.11 −300.29 −300.66

mχ̃0
3
(GeV) 4000 4000 4000 4000 −4000 4000

mχ̃0
4
(GeV) −5000 −5000 5000 5000 5000 5000

mχ̃�
1
(GeV) 299.56 300.2 299.56 300.2 299.67 299.67

mχ̃�
2
(GeV) 4000 4000 4000 4000 5000 5000

mh1 (GeV) 122.92 122.79 122.73 122.61 122.81 122.65
mh2 (GeV) 1386 1468 1407 1448 1425 1450

HF 0.9997 0.9998 0.9997 0.9998 0.9998 0.9998

N11ð×10−3Þ −6.291 −5.145 7.087 5.795 −7.756 −9.004
N12ð×10−2Þ −1.679 −1.373 −1.677 −1.372 −1.322 1.321
N13 0.708 −0.707 0.708 −0.708 0.708 −0.708
N14 −0.706 −0.706 −0.706 −0.706 −0.706 0.706
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for the present study, have been kept fixed. Further,
constraints from LHC on such compressed spectra have
been taken into account.
For all the benchmark scenarios, χ̃01 corresponds to a

mass eigenstate with positive eigenvalue. In the bench-
mark scenarios with a negative μ parameter, i.e. BP-2a,
BP-2b, BP-4a, and BP-4b, χ̃01 is the symmetric Higgsino-
like state. For all other benchmarks (with positive μ
parameter) χ̃01 is the antisymmetric Higgsino-like state.
Note that, irrespective of the sign of M1, the gaugino
components in χ̃01 are reduced substantially for negative μ
(where χ̃01 is the symmetric state) as compared to positive μ
(where χ̃01 is the symmetric state). This is evident from
comparing the wino and the bino components (N12, N11,
respectively) of χ̃01 in BP-1a(b) and BP-2a(b), respectively.
In particular, the wino component is reduced by approx-
imately 50% and 25% for benchmarks BP-1a(b) and BP-
2a(b), respectively. The bino content, which contributes
subdominantly, follows a similar trend, although by a
smaller margin. As the tree-level χ̃01 − χ̃01 − hi vertices are
directly proportional to the gaugino fraction, the change in
sign of the Higgsino mass parameter μ leads to a
significant change in the tree-level spin-independent direct
detection cross section.

C. Numerical results and discussion

In this section, we discuss the numerical results. The
radiative corrections to the χ̃01 − χ̃01 − hi vertices for the
benchmark scenarios, as described in Tables I and II, have
been computed and have been presented in Table III. In
Table III, the one-loop corrected χ̃01 − χ̃01 − hi vertices

(CL=Ri ) for the respective benchmark scenarios (as men-
tioned in the first column) have been presented in the
second column. In the third and the fourth column the
percentage contribution from the radiative corrections to
the χ̃01-proton spin-independent scattering cross sections

ΔCL=Ri ¼ CL=Ri −CL=Ri tree

CL=Ri tree

× 100% have been described for i ¼ 1

and i ¼ 2, respectively. Note that in the present scenario,
the results are similar for χ̃01-neutron spin-independent
scattering cross sections. For estimating the radiative
corrections, contributions from the loops involving all
the neutralinos and charginos, gauge bosons, Higgs bosons,
and third-generation (s)quarks have been considered.
Individual contributions from all the loops, counterterms,
and also the third-generation (s)quarks to the respective
vertices have been mentioned. Finally, the radiatively
corrected χ̃01–nucleon cross section and the percentage
contribution to the same ΔσSI ¼ σSI−σSI tree

σSI tree
× 100% are

TABLE II. The benchmark scenarios with a Higgsino-like χ̃01 have been tabulated for jμj ¼ 600 GeV. HF stands
for Higgsino fraction. The fixed input parameters are: the mass of the pseudoscalar Higgs boson mA ¼ 1.414 TeV,
and tan β ¼ 10. The gluino mass parameterM3 ¼ 3 TeV. The trilinear coupling for two stops with the Higgs boson
is set as Tt ¼ −3 TeV. The soft-supersymmetry-breaking mass parameters for the left-type and the right-type stop
and sbottom squarks are mQ̃L

¼ 2.69 TeV, mt̃R ¼ 2.06 TeV, and mb̃R
¼ 2.50 TeV. As for the physical masses, the

charged Higgs boson mass MH� ¼ 1.416 TeV, the CP-even Higgs mixing angle α ¼ sin−1ð−0.1Þ. For all the
benchmarks, the third-generation squark mass and mixing parameters are taken as the lightest stop mass
mt̃1 ¼ 2.05 TeV, the heaviest stop mass mt̃2 ¼ 2.71 TeV, the lightest sbottom mass mb̃1

¼ 2.50 TeV, the heaviest
sbottom mass mb̃2

¼ 2.69 TeV.

Parameters BP1b BP2b BP3b BP4b BP5b BP6b

μ (GeV) 600 −600 600 −600 600 600
M1 (GeV) −5000 −5000 5000 5000 −4000 4000
M2 (GeV) 4000 4000 4000 4000 5000 5000
mχ̃0

1
(GeV) 599.06 599.37 598.61 599.07 599.36 598.79

mχ̃0
2
(GeV) −600.39 −600.59 −600.7 −601.04 −600.24 −600.62

mχ̃0
3
(GeV) 4000 4000 4000 4000 −4000 4000

mχ̃0
4
(GeV) −5000 −5000 −5000 5000 5000 5000

mχ̃�
1
(GeV) 599.43 600.08 599.43 600.08 599.58 599.58

mχ̃�
2
(GeV) 4000 4000 4000 4000 5000 5000

mh1 (GeV) 122.94 122.68 122.75 122.51 122.83 122.65
mh2 (GeV) 1347 1506 1390 1465 1423 1450

HF 0.9997 0.9998 0.9996 0.9997 0.9997 0.9997

N11ð×10−3Þ 5.956 −4.872 −7.575 −6.196 −7.252 −9.804
N12ð×10−2Þ 1.827 −1.495 1.827 1.494 −1.412 1.412
N13 −0.707 −0.707 −0.708 0.708 0.707 −0.708
N14 0.707 −0.707 0.706 0.706 −0.707 0.706
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presented in the fifth column. In the above discussion, the
subscript “tree” denotes the respective quantities without
including the radiative corrections considered in this article.
As discussed in the previous section, we have used FeynArts,
FormCalc, and LoopTools for the numerical evaluation of the
radiative contributions and the relevant counterterms.
As described in Tables I and II, for all the benchmark

scenarios χ̃01 is dominantly Higgsino-like. The Higgsino
fraction (HF ¼ jN13j2 þ jN14j2) is above 99%. The radia-
tive corrections to the χ̃01 − χ̃01 − h1 vertex CL=R1 contributes
dominantly to the spin-independent cross section σSI. The
contribution to the spin-independent cross section σSI from
the heavy Higgs boson h2 is only about ≲3% for all the
benchmark scenarios. This is because mh2 ≫ mh1 (about
ten times) in the present context. Therefore, its contribution

to the χ̃01- nucleon coupling λ
H
q ð∝ 1

m2
h2

Þ is suppressed, as can
be inferred from Eq. (22). Thus, for all the benchmark
scenarios, the percentage corrections to the cross section
σSI are approximately twice that of the percentage correc-
tions to the χ̃01 − χ̃01 − h1 vertex factor CL=R1 .
The radiative corrections to χ̃01 − χ̃01 − h1=h2 vertices are

significant for all the benchmark scenarios and vary
between approximately 9%-40% for the light Higgs boson
vertex and between approximately 5%-21% for the vertex
involving the heavy Higgs boson. Comparing the first eight
benchmarks (BP-1a to BP-4b), the percentage change in the
χ̃01 − χ̃01 − h1 vertices are significant for the benchmarks
with negative μ (BP-2a, BP-2b and BP-4a, BP-4b), as
compared to their counterparts with positive μ (BP-1a,

TABLE III. ΔCL=Ri (%) denotes the percentage correction to the χ̃01 − χ̃01 − hi vertices CL=Ri . σSI denotes spin-
independent cross section (with proton) including the radiative corrections and ΔσSI (%) denotes the percentage
contribution to the same from the radiative corrections under consideration. In the third and the fourth column title,
“Total” refers to total percentage correction to CL=Ri , “CT” refers to the percentage contribution from the counterterm
vertex, “Loop” denotes the percentage contribution from the one-loop diagrams, and “SQ” denotes the percentage
contribution from the third-generation quarks and squarks running in the loops.

ΔCL=R1 (%) ΔCL=R2 (%)
Total (SQ) Total (SQ) σSI [pb]

BP CL=R1 , CL=R2 (Loop, CT) (Loop, CT) (ΔσSI %)

BP1a
7.96 × 10−3 19.74ð−22.35Þ −13.96ð−2.9Þ 4.13 × 10−11

4.68 × 10−3 (2.74, 17.0) ð−17.63; 3.67Þ (41.7)

BP1b
8.64 × 10−3 15.50ð−26.62Þ −14.29ð−1.02Þ 4.89 × 10−11

5.24 × 10−3 ð−1.52; 17.03Þ ð−18.0; 3.74Þ (31.5)

BP2a 6.12 × 10−3 37.88ð−29.52Þ −19.87ð−9.05Þ 2.29 × 10−11

−4.36 × 10−3 (20.89, 16.99) ð−23.53; 3.66Þ (96)

BP2b 6.63 × 10−3 32.7ð−35.78Þ −21.22ð−8.18Þ 2.71 × 10−11

−4.82 × 10−3 (15.73, 16.97) ð−25; 3.78Þ (81)

BP3a
1.13 × 10−2 11.07ð−18.05Þ −6.98ð−1.39Þ 8.46 × 10−11

7.77 × 10−3 ð−7.1; 18.2Þ ð−11.83; 4.89Þ (22.4)

BP3b
1.21 × 10−2 9.14ð−21.22Þ −7.63ð−0.26Þ 9.67 × 10−11

8.37 × 10−3 ð−9.13; 18.27Þ ð−12.66; 5.03Þ (18.25)

BP4a 8.25 × 10−3 21.11ð−24.33Þ −12.36ð−6.99Þ 4.13 × 10−11

−7.33 × 10−3 (2.81, 18.3) ð−17.31; 4.95Þ (49.75)

BP4b 8.82 × 10−3 19.21ð−28.89Þ −13.74ð−6.57Þ 4.77 × 10−11

−7.83 × 10−3 (0.87, 18.34) ð−18.83; 5.09Þ (45)

BP5a
6.24 × 10−3 38.95ð−25.5Þ −16.6ð−2.68Þ 2.53 × 10−11

3.06 × 10−3 (22.47, 16.48) ð−20.35; 3.75Þ (89.6)

BP5b
6.74 × 10−3 32.88ð−31.58Þ −15.77ð−0.26Þ 2.97 × 10−11

3.49 × 10−3 (16.27, 16.61) ð−19.72; 3.95Þ (73.8)

BP6a
1.05 × 10−2 17.0ð−17.81Þ −5.32ð−0.65Þ 7.26 × 10−11

6.94 × 10−3 ð−1.42; 18.42Þ ð−10.42; 5.10Þ (35.8)

BP6b
1.11 × 10−2 15.41ð−21.43Þ −5.44ð−0.74Þ 8.13 × 10−11

7.43 × 10−3 ð−3.20; 18.61Þ ð−10.8; 5.36Þ (32.2)
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BP-1b and BP-3a, BP-3b). Let us consider BP-1a(b) and
BP-2a(b). While BP-1a(b) and BP-2a(b) only differ by the
sign of μ, thus, the percentage contribution to CL=R1 from the
radiative correction for BP-2a(b) is significantly higher as
compared to BP-1a(b). This is largely because of a
substantial reduction in the tree-level vertex factor for
BP-2a and BP-2b, while the radiative corrections are also
marginally higher. Note that, for positive (negative) μ, χ̃01 is
the symmetric (antisymmetric) Higgsino-like state. A
similar argument explains the larger percentage corrections
in the context of BP-4a(b), as compared to BP-3a(b). It
follows from Eq. (14), that for the symmetric states, the
respective tree-level vertex suffers from cancellation
between two terms proportional to N13 and N14, respec-
tively. In all the benchmark scenarios, the dominant loop
contributions to CL=R1 come from the triangle loops involving
two vector bosons and one neutralino/chargino. Further, the
third-generation (s)quarks contribute significantly thanks to
the large Yukawa couplings. The contributions from the
loops involving, in particular, two quarks and one squark
tend to negate the contributions from the loops involving the
vector bosons and one neutralino/ chargino. In BP-5a(b) and
BP-6a(b), the difference in the percentage contribution to
CL=R1 is largely attributed to the cancellation from the (s)
quark loop. Further, contributions from the vertex counter-
terms are substantial. In particular, we find sizable contri-
butions from the terms proportional to the diagonal and
off-diagonal wave-function renormalization counterterms.
The vertex counterterms are evaluated following the

implementation in FormCalc [107]. The details have been
discussed in Appendix C. On shell renormalization
schemes have been adopted for the neutralino-chargino
sector [73]. In particular, for BP1a to BP-4b, two chargino
masses and the heaviest neutralino mass (CCN[4]) have
been used as on shell input masses. For BP-5a, BP-5b,
BP-6a, and BP-6b, two chargino masses and the third
neutralino mass (CCN[3]) have been used as on shell input
masses. This ensures that there is always a binolike
neutralino among the input masses [74,111]. The respective
contributions from the counterterms have been shown in
Table III. Note that we have used tree-level masses for all
the neutralinos and charginos, including χ̃01 for the east-
imation of the spin-independent scattering cross section.
This ensures that the percentage corrections to the cross
section reflects only the contributions from the vertex
corrections, which we intend to illustrate.
As the spin-independent cross section of χ̃01 with the

nucleons (protons and neutrons) receive dominant contri-
butions from the light Higgs boson-mediated processes, the
percentage corrections to the cross sections about twice the
respective percentage corrections to the χ̃01 − χ̃01 − h1 ver-
tex. These cross sections can be enhanced by up to about
100% for the benchmark scenarios. This highlights the
importance of these corrections in the present context.

Note that, as mentioned in Sec. I and elaborated further
in Sec. III, certain important loop corrections to the Higgs
bosons-nucleon interactions, which contribute to the effec-
tive neutralino-nucleon effective operators [see Eqs. (20)
and (21)], have been already included in micrOMEGAs. Thus,
the cross sections computed using the one-loop corrections
to χ̃01 − χ̃01 − h1=h2 vertices also effectively include certain
two-loop contributions. These corrections are also included
in the cross sections with which we have compared the
final results after including the vertex corrections. Thus,
the percentage corrections to the cross sections, as men-
tioned in Sec. III, solely come from the corrections to the
χ̃01 − χ̃01 − h1=h2 vertices.
Assuming that χ̃01 constitutes the entirety of DM, we have

further considered the implications of these large correc-
tions for the viability of sub-TeV Higgsino-like DM in light
of stringent limits from the direct detection experiments.
We consider the DM-nucleon (proton) cross section limits
from the LUX-ZEPLIN (LZ) experiment [37] and compare
the status of the benchmark scenarios after including the
radiative corrections as shown in Fig. 3(a). We find that,
thanks to the radiative corrections, benchmark point BP-1a
is pushed above the lower limit of the 1σ sensitivity band
(dotted line), and BP-1b is pushed close to the 1σ band.
Benchmark points BP-2a and BP-2b are pushed close to the
1σ band while lying below it. The benchmark BP-3a falls
on the exclusion line (solid line) and is close to being ruled
out after the corrections are added, and BP-3b is also close
to the exclusion limit. As for benchmark BP4a, it is pushed
above the 1σ lower band, and BP-4b is pushed close to it.
BP-5a and BP-5b are also pushed closer to the 1σ band of
the exclusion region; finally, BP6a and BP6b benchmarks
are pushed above the 1σ band and close to the exclusion
limit when the corrections are added. Although, to estimate
the overall impact on the scattering cross section all the
radiative corrections need to be considered together, the
above discussion aims to demonstrate the relative impor-
tance of the vertex corrections, in comparison with the same
cross section evaluated using the tree-level vertices Ci.

10

To demonstrate the significance of the radiative corrections
on constraining the Higgsino mass parameter μ in the

10Note that by changing the stop-stop-Higgs boson soft-
supersymmetry-breaking trilinear term Tt to −4 TeV, the light
Higgs mass mh1 , as computed by SPheno, becomes about
125 GeV. We have checked that using mh1 ≃ 125 GeV, with
the above modifications to the stop sector parameters, does not
affect the vertex corrections and the percentage corrections to
the direct detection cross section appreciably. For most of the
benchmark scenarios, which assume mh1 ≃ 123 GeV, using the
parameters as mentioned above lead to variations in the percent-
age correction to the neutralino-proton cross section (ΔσSI) by
less than ∼3%. Further, note that while using mh1 ≃ 125 GeV,
keeping all the other parameters as the benchmark scenarios, does
not change in the vertex corrections appreciably, and thus, the
percentage change in the spin-independent cross sections (ΔσSI)
are also well below a percent.
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present context, we further vary the μ parameter keeping all
the other relevant parameters the same as BP-3a(or b). The
cross sections with the radiatively corrected χ̃01 − χ̃01 −
h1=h2 vertices (C

L=R
i ) and the respective tree-level vertices

(CL=Ritree) have been used to obtain the dashed red line and the
dot-dashed orange line respectively in Fig. 3(a). As
demonstrated in the figure, the dashed red line intersects
the 90% confidence limit from the LZ experiment [37] for a
heavier mχ̃0

1
, as compared to the dot-dashed orange line. As

in the present context mχ̃0
1
≃ jμj (as jμj ≪ jM1j;M2), there-

fore, the constraint on the μ parameter is improved. This is
further illustrated in Fig. 3(b) with positive M1 and
μðμ ≪ M1;M2Þ. In this figure, the constraint on μ param-
eter is shown to vary with respect toM1. We have assumed,
as in the benchmark scenarios, tan β ¼ 10;M2 ¼ 4 TeV
and MA ¼ 1.414 TeV; the other parameters are also
kept the same as mentioned in Tables I and II. As shown
in Fig. 3(b), for M1 ¼ 2 TeV, μ ≲ 493 GeV (as shown by
the dashed line) is excluded by the direct detection experi-
ment LZ, when tree-level χ̃01 − χ̃01 − h1=h2 vertices are used
to estimate the respective cross sections. While estimating
the cross-section using the radiatively corrected vertices
(CL=Ri ), the constraint shifts to μ ≲ 593 GeV (as shown by
the solid line), a shift of 100 GeV. Likewise, the bound on
μ shifts from 230 to 291 GeV for M1 ¼ 5 TeV. Thus, the
constraint on the μ parameter space (with μ ≪ M1, M2)

becomes more stringent by about 60–100 GeV, as
illustrated in this figure.11

V. CONCLUSION

Light Higgsino-like χ̃01 fits well within the framework of
natural supersymmetry. In this article, we have considered
Higgsino-like χ̃01 DM within R-parity conserving MSSM
and have studied the importance of a class of radiative
corrections to the χ̃01 − χ̃01 − h1=h2 vertices in the context of
spin-independent direct detection. The tree-level couplings
between χ̃01 and the CP-even neutral Higgs bosons (h1, h2),
in such a scenario, are suppressed by small gaugino-
Higgsino mixing. However, as demonstrated in this article,
the radiative contributions to these vertices (including the
respective counterterms) from the loops involving the
charginos, neutralinos, gauge bosons, and Higgs bosons
can have significant implications for direct detection.
Further, third-generation (s)quark contributions are signifi-
cant and tend to cancel the former to some extent in the
parameter region considered in this article. For the bench-
mark scenarios presented, the radiatively corrected vertices
can be enhanced by about 40% compared to the respective

FIG. 3. Panel (a) shows the comparison of the shift of various benchmark points (Table III) before and after adding the vertex
corrections (CL=Ri ) with the direct detection bound of LUX-ZEPLIN (LZ) experiment [37]. The circled points depict the corrected cross
sections (σSI) and the uncircled ones are without the corrections (σSI tree). Panel (b) shows the shift in the μ parameter for different values
of M1 as constrained by LZ (2022) [37] after adding the vertex corrections (CL=Ri ). The change in the constraint on the μ parameter (for

μ ≪ M1,M2) corresponding to the cross section after adding the vertex corrections CL=Ri is shown by the solid line, the dashed line

represents the case without the corrections (CL=Ritree). Here, M2 is taken as 4 TeV and the other parameters are assumed to be the same as
mentioned in Table I.

11The cases for other combinations of signs ofM1 and μ are not
shown as their cross sections lie below the LZ bounds in the
parameter space of our interest.
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tree-level vertices. The spin-independent cross section of χ̃01
with the nucleons (protons and neutrons), which receives a
significant contribution from the CP-even neutral Higgs
boson mediated processes through the respective effective
operators, thus, can be enhanced by about 100% in certain
benchmark scenarios. We further illustrate that the correc-
tions are sensitive to the sign of μ and the choice of the
gaugino mass parameters M1 and M2, even though
jμj ≪ jM1j;M2. Note that, the “tree-level” cross section
in such scenarios is quite sensitive to the small gaugino
admixture in the χ̃01. Thus, generally, the constraint on the
mass of sub-TeV Higgsino-like χ̃01, after including these
corrections, is sensitive to the sign of μ and the choice of the
gaugino mass parameters M1 and M2. As mentioned in the
Introduction, in the sub-TeV mass region, the thermal relic
abundance of a Higgsino-like χ̃01 LSP is inadequate to fulfill
the required relic abundance of DM (ΩDMh2 ¼ 0.12 [60]).
Thus, assuming only thermal production of χ̃01 will lead to a
dilution of the direct detection constraints on χ̃01, in pro-
portion to the relative abundance of χ̃01. However, consid-
ering the possibility of nonthermal production of χ̃01 in the
early Universe, there is a possibility that χ̃01 constitutes
the entire DM. In any scenario, the result demonstrates the
significance of the complete vertex corrections to the χ̃01 −
χ̃01 − h1=h2 vertices in the spin-independent scattering cross
section of a Higgsino-like χ̃01 DM.
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APPENDIX A

In this appendix, we summarize the Passarino-Veltman
functions [112], which appear in the radiative corrections,
as described in Appendix B. We follow the convention of
Refs. [113,114]. The Passarino-Veltman C functions have
the following form:

C0ðp2
1; ðp1 − p2Þ2; p2

2; m0; m1; m2Þ

¼ −
Z

1

0

dx
Z

1−x

0

dy½x2p2
1 þ y2p2

2 þ xy2p1p2

− xðp2
1 −m2

1 þm2
0Þ − yðp2

2 −m2
2 þm2

0Þ
þm2

0 − iϵ�−1: ðA1Þ

We have used the following abbreviation:

h� � �iq ≔
ð2πμ̃Þ4−D

iπ2

Z
dDq � � � ; ðA2Þ

where μ̃ denotes a parameter with dimension of mass.
Further,

Cμðp2
1; ðp1 − p2Þ2; p2

2; m0; m1; m2Þ

¼
�

qμ
ðq2 −m2

0Þ½ðqþ p1Þ2 −m2
1�½ðqþ p2Þ2 −m2

2�
�

q

¼ p1;μC1 þ p2;μC2: ðA3Þ
Contraction with pμ

1, then, gives

p2
1C1þp1p2C2

¼
�1

2
½ðqþp1Þ2−m2

1�− 1
2
ðq2−m2

0Þ− 1
2
ðp2

1−m2
1þm2

0Þ
ðq2−m2

0Þ½ðqþp1Þ2−m2
1�½ðqþp2Þ2−m2

2�
�

q

¼ 1

2
B0ðp2

2;m0;m2Þ−
1

2
B0ððp1−p2Þ2;m1;m2Þ

−
1

2
ðp2

1−m2
1þm2

0ÞC0;

where the momenta and masses are as shown in Fig. 4.
Further,

�
C1

C2

�
¼

�
p2
1 p1p2

p1p2 p2
2

�−1
·

� 1
2
B0ðp2

2; m0; m2Þ − 1
2
B0ððp1 − p2Þ2; m1; m2Þ − 1

2
f1C0

1
2
B0ðp2

1; m0; m1Þ − 1
2
B0ððp1 − p2Þ2; m1; m2Þ − 1

2
f2C0

�
; ðA4Þ

FIG. 4. The above figure shows the mass and momentum
convention for the Passarino-Veltman functions.
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where fi ¼ p2
i −m2

i þm2
0, for i∈ f1; 2g. In the expres-

sions above, B0 is given by

B0ðp1; m0; m1Þ

¼ Δ −
Z

1

0

dx log

�
x2p2

1 − xðp2
1 −m2

1 þm2
0Þ þm2

0 − iϵ
μ2

�
þOðD − 4Þ; ðA5Þ

where Δ ≔ 2
4−d − γE þ log 4π, γE is the Euler-Mascheroni

constant and d stands for space-time dimension.

APPENDIX B

In this appendix, we discuss the radiative corrections to
the χ̃01 − χ̃01 − hi vertices originating from the triangle
diagrams. In particular, generic expressions for contribu-
tions from scalar bosons, vector bosons, and fermions
running in the loops have been provided. In the following
discussion, F and F0 denote fermions, S and S0 are used for
scalar bosons, and V denotes vector bosons. Further, q2

denotes the square of the momentum transferred from the
incident χ̃01 to the quarks in the nucleons, and d stands for
space-time dimension. Here, G and G� refer to the neutral
and charged Goldstone bosons, respectively. We have
evaluated the expressions using Package-X (version
2.1.1) [113], and have also checked some of these expres-
sions by explicit calculations. Feynman gauge has been
used for the calculation. The vertices may be found
in Ref. [65].

1. Topology-(1a)

The respective Feynman diagram is shown in Fig. 5(a).

iδΓðaÞ ¼−
i

16π2
½PLfξLLmFC0−ξLRmχ̃0

1
C1−ξRLmχ̃0

1
C2g

þPRfξRRmFC0−ξRLmχ̃0
1
C1−ξLRmχ̃0

1
C2g�; ðB1Þ

where Ci ¼ Ciðm2
χ̃0
1

; q2; m2
χ̃0
1

;mF;mS;m0
SÞ, and

ξLL¼ λhiSS0G
L
χ̃0
1
FS0G

L
χ̃0
1
FS; ξLR¼ λhiSS0G

L
χ̃0
1
FS0G

R
χ̃0
1
FS; ðB2Þ

ξRL¼ λhiSS0G
R
χ̃0
1
FS0G

L
χ̃0
1
FS; ξRR ¼ λhiSS0G

R
χ̃0
1
FS0G

R
χ̃0
1
FS: ðB3Þ

(1) hi ¼ h1=h2, F ¼ χ̃0l, and S ¼ S0 ¼ h1.

ξLL ¼ λhih1h1G
L
χ̃0
1
χ̃0lh1

GR�
χ̃0
1
χ̃0lh1

;

ξLR ¼ λhih1h1G
L
χ̃0
1
χ̃0lh1

GL�
χ̃0
1
χ̃0lh1

; ðB4Þ

ξRL ¼ λhih1h1G
R
χ̃0
1
χ̃0lh1

GR�
χ̃0
1
χ̃0lh1

;

ξRR ¼ λhih1h1G
R
χ̃0
1
χ̃0lh1

GL�
χ̃0
1
χ̃0lh1

; ðB5Þ

where λhihihi ¼−3g2MZ
2cW

Bhi , with Bhi ¼ fc2αsβþα;

c2αcβþα;
hi¼h1
hi¼h2

,

GL
χ̃0
1
χ̃0lhi

¼
	
g2ðQ00�

l1sα þ S00�l1cαÞ; hi ¼ h1
g2ð−Q00�

l1cα þ S00�l1sαÞ; hi ¼ h2
;

GR
χ̃0
1
χ̃0lhi

¼
	
g2ðQ00

1lsα þ S001lcαÞ; hi ¼ h1
g2ð−Q00

1lcα þ S001lsαÞ; hi ¼ h2
:

(2) hi ¼ h1=h2, F ¼ χ̃0l, and S ¼ h1, S0 ¼ h2 or S ¼ h2,
S0 ¼ h1.

ξLL ¼ λhih1h2G
L
χ̃0
1
χ̃0lh2

GR�
χ̃0
1
χ̃0lh1

;

ξLR ¼ λhih1h2G
L
χ̃0
1
χ̃0lh2

GL�
χ̃0
1
χ̃0lh1

; ðB6Þ

ξRL ¼ λhih1h2G
R
χ̃0
1
χ̃0lh2

GR�
χ̃0
1
χ̃0lh1

;

ξRR ¼ λhih1h2G
R
χ̃0
1
χ̃0lh2

GL�
χ̃0
1
χ̃0lh1

; ðB7Þ

where λhih1h2 ¼ g2MZ
2cW

Chi , with Chi ¼n
−2s2αsβþαþcβþαc2α;
2s2αcβþαþsβþαc2α;

hi¼h1
hi¼h2

.

FIG. 5. Topology 1(a) and 1(b).
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(3) hi ¼ h1=h2, F ¼ χ̃0l, and S ¼ S0 ¼ h2.

ξLL ¼ λhih2h2G
L
χ̃0
1
χ̃0lh2

GR�
χ̃0
1
χ̃0lh2

;

ξLR ¼ λhih2h2G
L
χ̃0
1
χ̃0lh2

GL�
χ̃0
1
χ̃0lh2

; ðB8Þ

ξRL ¼ λhih2h2G
R
χ̃0
1
χ̃0lh2

GR�
χ̃0
1
χ̃0lh2

;

ξRR ¼ λhih2h2G
R
χ̃0
1
χ̃0lh2

GL�
χ̃0
1
χ̃0lh2

; ðB9Þ

(4) hi ¼ h1=h2, F ¼ χ̃0l, and S ¼ S0 ¼ A.

ξLL ¼ λhiAAG
L
χ̃0
1
χ̃0lA

GR�
χ̃0
1
χ̃0lA

;

ξLR ¼ λhiAAG
L
χ̃0
1
χ̃0lA

GL�
χ̃0
1
χ̃0lA

; ðB10Þ

ξRL ¼ λhiAAG
R
χ̃0
1
χ̃0lA

GR�
χ̃0
1
χ̃0lA

;

ξRR ¼ λhiAAG
R
χ̃0
1
χ̃0lA

GL�
χ̃0
1
χ̃0lA

; ðB11Þ

where λhiAA¼−g2MZ
2cW

c2βDhi , with Dhi ¼ f sβþα;

−cβþα;
hi¼h1
hi¼h2

,

GL
χ̃0
1
χ̃0lA

¼ iðQ00�
l1sβ−S00�l1cβÞ, and GR

χ̃0
1
χ̃0lA

¼ ið−Q00
1lsβþ

S001lcβÞ.
(5) hi ¼ h1=h2, F ¼ χ̃0l, and S ¼ A, S0 ¼ G or S ¼ G,

S0 ¼ A.

ξLL ¼ λhiAGG
L
χ̃0
1
χ̃0lG

GR�
χ̃0
1
χ̃0lA

;

ξLR ¼ λhiAGG
L
χ̃0
1
χ̃0lG

GL�
χ̃0
1
χ̃0lA

; ðB12Þ

ξRL ¼ λhiAGG
R
χ̃0
1
χ̃0lG

GR�
χ̃0
1
χ̃0lA

;

ξRR ¼ λhiAGG
R
χ̃0
1
χ̃0lG

GL�
χ̃0
1
χ̃0lA

; ðB13Þ

where λhiAG¼−g2MZ
2cW

s2βDhi , G
L
χ̃0
1
χ̃0lG

¼ ig2ð−Q00�
l1cβ−

S00�l1sβÞ, and GR
χ̃0
1
χ̃0lG

¼ ig2ðQ00
1lcβ þ S001lsβÞ.

(6) hi ¼ h1=h2, F ¼ χ̃0l, and S ¼ S0 ¼ G.

ξLL ¼ λhiGGG
L
χ̃0
1
χ̃0lG

GR�
χ̃0
1
χ̃0lG

;

ξLR ¼ λhiGGG
L
χ̃0
1
χ̃0lG

GL�
χ̃0
1
χ̃0lG

; ðB14Þ

ξRL ¼ λhiGGG
R
χ̃0
1
χ̃0lG

GR�
χ̃0
1
χ̃0lG

;

ξRR ¼ λhiGGG
R
χ̃0
1
χ̃0lG

GL�
χ̃0
1
χ̃0lG

; ðB15Þ

where λhiGG ¼ − g2MZ
2cW

c2βD0
hi
, with D0

hi
¼n−sβþα; hi ¼ h1

cβþα; hi ¼ h2
,

(7) hi ¼ h1=h2, F ¼ χ̃�l , and S ¼ S0 ¼ H�.

ξLL ¼ λhiH�H�GL
χ̃0
1
χ̃�lH

�GR�
χ̃0
1
χ̃�lH

� ;

ξLR ¼ λhiH�H�GL
χ̃0
1
χ̃�lH

�GL�
χ̃0
1
χ̃�lH

� ; ðB16Þ
ξRL ¼ λhiH�H�GR

χ̃0
1
χ̃�lH

�GR�
χ̃0
1
χ̃�lH

� ;

ξRR ¼ λhiH�H�GR
χ̃0
1
χ̃�lH

�GL�
χ̃0
1
χ̃�lH

� ; ðB17Þ

where, λhiH�H� ¼ −g2Ahi , with

Ahi ¼
	

MWsβ−α þ MZ
2cW

c2βsβþα; hi ¼ h

MWcβ−α −
MZ
2cW

c2βcβþα; hi ¼ H
;

GL
χ̃0
1
χ̃�lH

� ¼ −g2Q0L
1l, and GR

χ̃0
1
χ̃�lH

� ¼ −g2Q0R
1l.

(8) hi ¼ h1=h2, F ¼ χ̃�l , and S ¼ H�, S0 ¼ G� or
S ¼ G�, S0 ¼ H�.

ξLL ¼ λhiH�G�GL
χ̃0
1
χ̃�lG

�GR�
χ̃0
1
χ̃�lH

� ;

ξLR ¼ λhiH�G�GL
χ̃0
1
χ̃�lG

�GL�
χ̃0
1
χ̃�lH

� ; ðB18Þ

ξRL ¼ λhiH�G�GR
χ̃0
1
χ̃�lG

�GR�
χ̃0
1
χ̃�lH

� ;

ξRR ¼ λhiH�G�GR
χ̃0
1
χ̃�lG

�GL�
χ̃0
1
χ̃�lH

� ; ðB19Þ

where λhiH�G� ¼ − g2MW
2

A0
hi
, with

A0
hi
¼

8<
:

s2βsβþα

c2W
− cβ−α; hi ¼ h1

− s2βcβþα

c2W
− sβ−α; hi ¼ h2

;

GL
χ̃0
1
χ̃�lG

� ¼ −g2tβQ0L
1l, and GR

χ̃0
1
χ̃�lG

� ¼ g2
tβ
Q0R

1l.

(9) hi ¼ h1=h2, F ¼ χ̃�l , and S ¼ S0 ¼ G�.

ξLL ¼ λhiG�G�GL
χ̃0
1
χ̃�lG

�GR�
χ̃0
1
χ̃�lG

� ;

ξLR ¼ λhiG�G�GL
χ̃0
1
χ̃�lG

�GL�
χ̃0
1
χ̃�lG

� ; ðB20Þ

ξRL ¼ λhiG�G�GR
χ̃0
1
χ̃�lG

�GR�
χ̃0
1
χ̃�lG

� ;

ξRR ¼ λhiG�G�GR
χ̃0
1
χ̃�lG

�GL�
χ̃0
1
χ̃�lG

� ; ðB21Þ

where λhiG�G� ¼ − g2MZ
2cW

c2βD0
hi
.

(10) hi ¼ h1=h2, F ¼ qi, S ¼ q̃t, S0 ¼ q̃s

ξLL ¼ λhiq̃tq̃sG
L
χ̃0
1
qiq̃s

GR�
χ̃0
1
qiq̃t

;

ξLR ¼ λhiq̃tq̃sG
L
χ̃0
1
qiq̃s

GL�
χ̃0
1
qiq̃t

; ðB22Þ

ξRL ¼ λhiq̃tq̃sG
R
χ̃0
1
qiq̃s

GR�
χ̃0
1
qiq̃t

;

ξRR ¼ λhiq̃tq̃sG
R
χ̃0
1
qiq̃s

GL�
χ̃0
1
qiq̃t

; ðB23Þ
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where λhiq̃tq̃s ¼ C½hi; q̃t; q̃s� are defined as

C½h1; ũt; ũs� ¼ cA½ũt; ũs�cα − cμ½ũt; ũs�sα þ cg½ũt; ũs�sαþβ;

C½h1; d̃t; d̃s� ¼ −cA½d̃t; d̃s�sα þ cμ½d̃t; d̃s�cα þ cg½d̃t; d̃s�sαþβ;

C½h2; ũt; ũs� ¼ cA½ũt; ũs�sα þ cμ½ũt; ũs�cα − cg½ũt; ũs�cαþβ;

C½h2; d̃t; d̃s� ¼ cA½d̃t; d̃s�cα þ cμ½d̃t; d̃s�sα − cg½d̃t; d̃s�cαþβ;

with

cA½ũt;ũs�¼
g2

MWsβ

	
1

2
½Wũ�

it W
ũ
jþ3sðmuAu�ÞijþWũ�

jþ3tW
ũ
isðmu

�AuÞij�


−m2

uk ½UuL
ik U

uL�
jk Wũ�

it W
ũ
jsþUuR

ik U
uR�
jk Wũ�

iþ3tW
ũ
jþ3s�;

cA½d̃t;d̃s�¼
g2

MWcβ

	
1

2
½Wd̃�

it W
d̃
jþ3sðmdAd�ÞijþWd̃�

jþ3tW
d̃
isðmd

�AdÞij�


−m2

dk
½UdL

ik U
dL�
jk Wd̃�

it W
d̃
jsþUdR

ik U
dR�
jk Wd̃�

iþ3tW
d̃
jþ3s�;

cμ½ũt;ũs�¼
g2

2MWsβ
muk ½μUuL

ik U
uR�
jk Wũ�

it W
ũ
jþ3sþμ�UuL�

ik UuR
jkW

ũ�
jþ3tW

ũ
is�;

cμ½d̃t;d̃s�¼
g2

2MWcβ
mdk ½μUdL

ik U
dR�
jk Wd̃�

it W
d̃
jþ3sþμ�UdL�

ik UdR
jkW

d̃�
jþ3tW

d̃
is�;

cg½ũt;ũs�¼
g2MW

2

�
Wũ�

it W
ũ
is

�
1−

1

3
t2W

�
þ4

3
Wũ�

iþ3tW
ũ
iþ3st

2
W

�
;

cg½d̃t;d̃s�¼−
g2MW

2

�
Wd̃�

it W
d̃
is

�
1þ1

3
t2W

�
þ2

3
Wd̃�

iþ3tW
d̃
iþ3st

2
W

�
:

In the present context, only the third-generation quarks and squarks have been included, and no flavor mixing in the
squark sector has been assumed. Further, the third-generation squarks are kept lighter than the first two generations. Thus, in
the subscripts only t; s∈ f1; 2g are relevant; further i, j, k ¼ 3. The same treatment follows for all the subsequent diagrams,
including the third-generation (s)quark loops.

2. Topology-(1b)

The respective Feynman diagram is shown in Fig. 5(b).

iδΓðbÞ ¼ −
i

16π2
½PLfζLRLB0 þ ζLLLmFmF0C0 þ ζLLRmχ̃0

1
mF0 ðC0 þC1Þ þ ζLRLm2

SC0

þ ζLRLm2
χ̃0
1

ð2C0 þ 3C1 þ 3C2Þ − ζLRLq2ðC0 þC1 þC2Þ − ζLRLð2m2
χ̃0
1

− q2Þ:
ðC0 þC1 þC2Þ þ ζLRRmχ̃0

1
mFC1 þ ζRLLmχ̃0

1
mFðC0 þ C2Þ

þ ζRLRm2
χ̃0
1

ðC0 þ C1 þ C2Þ þ ζRRLmχ̃0
1
mF0C2g

þ PRfζRLRB0 þ ζLLRmχ̃0
1
mF0C2 þ ζLRLm2

χ̃0
1

ðC0 þC1 þ C2Þ þ ζLRRmχ̃0
1
mFðC0

þ C2Þ þ ζRLLmχ̃0
1
mFC1 þ ζRLRm2

SC0 þ ζRLRm2
χ̃0
1

ð2C0 þ 3C1 þ 3C2Þ − ζRLRq2:

ðC0 þC1 þC2Þ − ζRLRð2m2
χ̃0
1

− q2ÞðC0 þ C1 þ C2Þ þ ζRRLmχ̃0
1
mF0 ðC0 þ C1Þ þ ζRRRmFmF0C0g�; ðB24Þ

where B0 ¼ B0ðq2;mF;mF0 Þ, Ci ¼ Ciðm2
χ̃0
1

; q2; m2
χ̃0
1

;

mS;mF;mF0 Þ and

ζLLL ¼ GL
χ̃0
1
F0SG

L
FF0hi

GL
χ̃0
1
FS;

ζLLR ¼ GL
χ̃0
1
F0SG

L
FF0hi

GR
χ̃0
1
FS; ðB25Þ

ζLRL ¼ GL
χ̃0
1
F0SG

R
FF0hi

GL
χ̃0
1
FS;

ζLRR ¼ GL
χ̃0
1
F0SG

R
FF0hi

GR
χ̃0
1
FS; ðB26Þ

ζRLL ¼ GR
χ̃0
1
F0SG

L
FF0hi

GL
χ̃0
1
FS;

ζRLR ¼ GR
χ̃0
1
F0SG

L
FF0hi

GR
χ̃0
1
FS; ðB27Þ
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ζRRL ¼ GR
χ̃0
1
F0SG

R
FF0hi

GL
χ̃0
1
FS;

ζRRR ¼ GR
χ̃0
1
F0SG

R
FF0hi

GR
χ̃0
1
FS: ðB28Þ

(1) hi ¼ h1=h2, S ¼ h1=h2, F ¼ χ̃0l, F
0 ¼ χ̃0n.

ζLLL ¼ GL
χ̃0
1
χ̃0nhi

GL
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lhi

;

ζLLR ¼ GL
χ̃0
1
χ̃0nhi

GL
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lhi

; ðB29Þ

ζLRL ¼ GL
χ̃0
1
χ̃0nhi

GR
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lhi

;

ζLRR ¼ GL
χ̃0
1
χ̃0nhi

GR
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lhi

; ðB30Þ

ζRLL ¼ GR
χ̃0
1
χ̃0nhi

GL
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lhi

;

ζRLR ¼ GR
χ̃0
1
χ̃0nhi

GL
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lhi

; ðB31Þ

ζRRL ¼ GR
χ̃0
1
χ̃0nhi

GR
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lhi

;

ζRRR ¼ GR
χ̃0
1
χ̃0nhi

GR
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lhi

; ðB32Þ

where

GL
χ̃0lχ̃

0
nhi

¼
	
g2ðQ00�

lnsα þ S00�lncαÞ; hi ¼ h1
−g2ðQ00�

lncα − S00�lnsαÞ; hi ¼ h2
;

and

GR
χ̃0lχ̃

0
nhi

¼
	
g2ðQ00

nlsα þ S00nlcαÞ; hi ¼ h1
−g2ðQ00

nlcα − S00nlsαÞ; hi ¼ h2
.

(2) hi ¼ h1=h2, S ¼ A, F ¼ χ̃0l, F
0 ¼ χ̃0n.

ζLLL ¼ GL
χ̃0
1
χ̃0nA

GL
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lA

;

ζLLR ¼ GL
χ̃0
1
χ̃0nA

GL
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lA

; ðB33Þ

ζLRL ¼ GL
χ̃0
1
χ̃0nA

GR
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lA

;

ζLRR ¼ GL
χ̃0
1
χ̃0nA

GR
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lA

; ðB34Þ

ζRLL ¼ GR
χ̃0
1
χ̃0nA

GL
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lA

;

ζRLR ¼ GR
χ̃0
1
χ̃0nA

GL
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lA

; ðB35Þ

ζRRL ¼ GR
χ̃0
1
χ̃0nA

GR
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lA

;

ζRRR ¼ GR
χ̃0
1
χ̃0nA

GR
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lA

; ðB36Þ

where GL
χ̃0
1
χ̃0nA

¼ iðQ00�
n1sβ − S00�n1cβÞ and GR

χ̃0
1
χ̃0nA

¼
ið−Q00

1nsβ þ S001ncβÞ.

(3) hi ¼ h1=h2, S ¼ G, F ¼ χ̃0l, F
0 ¼ χ̃0n.

ζLLL ¼ GL
χ̃0
1
χ̃0nG

GL
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lG

;

ζLLR ¼ GL
χ̃0
1
χ̃0nG

GL
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lG

; ðB37Þ

ζLRL ¼ GL
χ̃0
1
χ̃0nG

GR
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lG

;

ζLRR ¼ GL
χ̃0
1
χ̃0nG

GR
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lG

; ðB38Þ

ζRLL ¼ GR
χ̃0
1
χ̃0nG

GL
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lG

;

ζRLR ¼ GR
χ̃0
1
χ̃0nG

GL
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lG

; ðB39Þ

ζRRL ¼ GR
χ̃0
1
χ̃0nG

GR
χ̃0l χ̃

0
nhi
GR�
χ̃0
1
χ̃0lG

;

ζRRR ¼ GR
χ̃0
1
χ̃0nG

GR
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lG

: ðB40Þ

(4) hi ¼ h1=h2, S ¼ H�, F ¼ χ̃�l , F
0 ¼ χ̃�n .

ζLLL ¼ GL
χ̃0
1
χ̃�n H�GL

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lH

� ;

ζLLR ¼ GL
χ̃0
1
χ̃�n H�GL

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lH

� ; ðB41Þ

ζLRL ¼ GL
χ̃0
1
χ̃�n H�GR

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lH

� ;

ζLRR ¼ GL
χ̃0
1
χ̃�n H�GR

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lH

� ; ðB42Þ

ζRLL ¼ GR
χ̃0
1
χ̃�n H�GL

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lH

� ;

ζRLR ¼ GR
χ̃0
1
χ̃�n H�GL

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lH

� ; ðB43Þ

ζRRL ¼ GR
χ̃0
1
χ̃�n H�GR

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lH

� ;

ζRRR ¼ GR
χ̃0
1
χ̃�n H�GR

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lH

� : ðB44Þ

(5) hi ¼ h1=h2, S ¼ G�, F ¼ χ̃�l , F
0 ¼ χ̃�n .

ζLLL ¼ GL
χ̃0
1
χ̃�n G�GL

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lG

� ;

ζLLR ¼ GL
χ̃0
1
χ̃�n G�GL

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lG

� ; ðB45Þ

ζLRL ¼ GL
χ̃0
1
χ̃�n G�GR

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lG

� ;

ζLRR ¼ GL
χ̃0
1
χ̃�n G�GR

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lG

� ; ðB46Þ

ζRLL ¼ GR
χ̃0
1
χ̃�n G�GL

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lG

� ;

ζRLR ¼ GR
χ̃0
1
χ̃�n G�GL

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lG

� ; ðB47Þ

ζRRL ¼ GR
χ̃0
1
χ̃�n G�GR

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lG

� ;

ζRRR ¼ GR
χ̃0
1
χ̃�n G�GR

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lG

� : ðB48Þ
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(6) hi ¼ h1=h2, F ¼ F0 ¼ qi, S ¼ q̃s.

ζLLL ¼ GL
χ̃0
1
qiq̃s

GL
qiqihi

GR�
χ̃0
1
qiq̃s

;

ζLLR ¼ GL
χ̃0
1
qiq̃s

GL
qiqihi

GL�
χ̃0
1
qiq̃s

; ðB49Þ

ζLRL ¼ GL
χ̃0
1
qiq̃s

GR
qiqihi

GR�
χ̃0
1
qiq̃s

;

ζLRR ¼ GL
χ̃0
1
qiq̃s

GR
qiqihi

GL�
χ̃0
1
qiq̃s

; ðB50Þ

ζRLL ¼ GR
χ̃0
1
qiq̃s

GL
qiqihi

GR�
χ̃0
1
qiq̃s

;

ζRLR ¼ GR
χ̃0
1
qiq̃s

GL
qiqihi

GL�
χ̃0
1
qiq̃s

; ðB51Þ

ζRRL ¼ GR
χ̃0
1
qiq̃s

GR
qiqihi

GR�
χ̃0
1
qiq̃s

;

ζRRR ¼ GR
χ̃0
1
qiq̃s

GR
qiqihi

GL�
χ̃0
1
qiq̃s

; ðB52Þ

where GL
qiqihi

¼GR
qiqihi

¼−g2
mqi
2MW

Xqiqihi , G
L
χ̃0
1
qiq̃s

¼GqL
is1

and GR
χ̃0
1
qiq̃s

¼ GqR
is1; q ¼ u, d; i ¼ 3; s ¼ 1, 2; with

Xuiuihi ¼
	 cα

sβ
; hi ¼ h1

sα
sβ
; hi ¼ h2

, Xdidihi ¼
	−sα

cβ
; hi ¼ h1

cα
cβ
; hi ¼ h2

,

GuL
is1 ¼ −

ffiffiffi
2

p
g2

�
1

2
N�

12 þ
1

6
tan θWN�

11

�
Wũ�

js U
uL
ji

−
g2ffiffiffi

2
p

MW sin β
muiN

�
14W

ũ�
jþ3U

uR
ji ;

GuR
is1 ¼

2
ffiffiffi
2

p

3
g2 tan θWN11Wũ�

jþ3U
uR
ji

−
g2ffiffiffi

2
p

MW sin β
muiN14Wũ�

js U
uL
ji ;

GdL
is1 ¼

ffiffiffi
2

p
g2

�
1

2
N�

12 −
1

6
tan θWN�

11

�
Wd̃�

js U
dL
ji

−
g2ffiffiffi

2
p

MW cos β
mdiN

�
13W

d̃�
jþ3U

dR
ji ;

GdR
is1 ¼ −

ffiffiffi
2

p

3
g2 tan θWN11Wd̃�

jþ3U
dR
ji

−
g2ffiffiffi

2
p

MW cos β
mdiN13Wd̃�

js U
dL
ji :

For third-generation quarks and squarks: i, j ¼ 3
and s∈ f1; 2g.

3. Topology-(2a)

The respective Feynman diagram is shown in Fig. 6(a).

iδΓðcÞ ¼ i
16π2

½PLfΛLLLmχ̃0
1
mF0 ð2 − dÞC2 þ ΛLRLmχ̃0

1
mFð2 − dÞðC0 þ C2Þ þ ΛLRRm2

χ̃0
1

ðd − 4ÞðC0 þC1 þC2Þ
þ ΛRLLfdB0 þ ð4m2

χ̃0
1

þm2
Vd − 2q2ÞC0 þ ð4m2

χ̃0
1

þm2
χ̃0
1

d − 2q2ÞðC1 þC2Þg
þ ΛRLRmχ̃0

1
mFð2 − dÞC1 þ ΛRRLmFmF0dC0 þ ΛRRRmχ̃0

1
mF0 ð2 − dÞðC0 þ C1Þg

þ PRfΛLLLmχ̃0
1
mF0 ðC0 þC1Þ þ ΛLLRmFmF0dC0 þ ΛLRLmχ̃0

1
mFð2 − dÞC1

þ ΛLRRfdB0 þ ð4m2
χ̃0
1

þm2
Vd − 2q2ÞC0 þ ð4m2

χ̃0
1

þm2
χ̃0
1

d − 2q2ÞðC1 þ C2Þg
þ ΛRLLm2

χ̃0
1

ðd − 4ÞðC0 þ C1 þ C2Þ þ ΛRLRmχ̃0
1
mFð2 − dÞðC0 þC2Þ þ ΛRRRmχ̃0

1
mF0 ð2 − dÞC2g�; ðB53Þ

FIG. 6. Topology 2(a) and 2(b).
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where B0 ¼ B0ðq2; mF;mF0 Þ, Ci ¼ Ciðm2
χ̃0
1

; q2; m2
χ̃0
1

;

mV;mF;mF0 Þ and
ΛLLL ¼ GL

χ̃0
1
F0VG

L
FF0hi

GL
χ̃0
1
FV;

ΛLLR ¼ GL
χ̃0
1
F0VG

L
FF0hi

GR
χ̃0
1
FV; ðB54Þ

ΛLRL ¼ GL
χ̃0
1
F0VG

R
FF0hi

GL
χ̃0
1
FV;

ΛLRR ¼ GL
χ̃0
1
F0VG

R
FF0hi

GR
χ̃0
1
FV; ðB55Þ

ΛRLL ¼ GR
χ̃0
1
F0VG

L
FF0hi

GL
χ̃0
1
FV

;

ΛRLR ¼ GR
χ̃0
1
F0VG

L
FF0hi

GR
χ̃0
1
FV; ðB56Þ

ΛRRL ¼ GR
χ̃0
1
F0VG

R
FF0hi

GL
χ̃0
1
FV;

ΛRRR ¼ GR
χ̃0
1
F0VG

R
FF0hi

GR
χ̃0
1
FV

: ðB57Þ

(1) hi ¼ h1=h2, F ¼ χ̃0l, F
0 ¼ χ̃0n, V ¼ Z.

ΛLLL ¼ GL
χ̃0
1
χ̃0nZ

GL
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lZ

;

ΛLLR ¼ −GL
χ̃0
1
χ̃0nZ

GL
χ̃0l χ̃

0
nhi
GL
χ̃0
1
χ̃0lZ

; ðB58Þ

ΛLRL ¼ GL
χ̃0
1
χ̃0nZ

GR
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lZ

;

ΛLRR ¼ −GL
χ̃0
1
χ̃0nZ

GR
χ̃0l χ̃

0
nhi
GL
χ̃0
1
χ̃0lZ

; ðB59Þ

ΛRLL ¼ GR
χ̃0
1
χ̃0nZ

GL
χ̃0l χ̃

0
nhi
GL�
χ̃0
1
χ̃0lZ

;

ΛRLR ¼ −GR
χ̃0
1
χ̃0nZ

GL
χ̃0l χ̃

0
nhi
GL
χ̃0
1
χ̃0lZ

; ðB60Þ

ΛRRL ¼ GR
χ̃0
1
χ̃0nZ

GR
χ̃0lχ̃

0
nhi
GL�
χ̃0
1
χ̃0lZ

;

ΛRRR ¼ −GR
χ̃0
1
χ̃0nZ

GR
χ̃0l χ̃

0
nhi
GL
χ̃0
1
χ̃0lZ

; ðB61Þ

where GL
χ̃0lχ̃

0
nZ

¼ g2
cW

NL
ln and GR

χ̃0lχ̃
0
nZ

¼ g2
cW

NR
ln.

(2) hi ¼ h1=h2, F ¼ χ̃�l , F
0 ¼ χ̃�n , V ¼ W�.

ΛLLL ¼ GL
χ̃0
1
χ̃�n W�GL

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lW

� ;

ΛLLR ¼ GL
χ̃0
1
χ̃�n W�GL

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lW

� ; ðB62Þ

ΛLRL ¼ GL
χ̃0
1
χ̃�n W�GR

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lW

� ;

ΛLRR ¼ GL
χ̃0
1
χ̃�n W�GR

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lW

� ; ðB63Þ

ΛRLL ¼ GR
χ̃0
1
χ̃�n W�GL

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lW

� ;

ΛRLR ¼ GR
χ̃0
1
χ̃�n W�GL

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lW

� ; ðB64Þ

ΛRRL ¼ GR
χ̃0
1
χ̃�n W�GR

χ̃�l χ̃
�
n hi

GR�
χ̃0
1
χ̃�lW

� ;

ΛRRR ¼ GR
χ̃0
1
χ̃�n W�GR

χ̃�l χ̃
�
n hi

GL�
χ̃0
1
χ̃�lW

� ; ðB65Þ

where GL
χ̃0l χ̃

�
n W� ¼ g2CL

ln and GR
χ̃0l χ̃

�
n W� ¼ g2CR

ln.

4. Topology-(2b)

The respective Feynman diagram is shown in Fig. 6(b).

iδΓðdÞ ¼ −
i

16π2
½PLfηLLmχ̃0

1
ðd − 2ÞC2

þ ηRLmFdC0 þ ηRRmχ̃0
1
ðd − 2ÞC1g

þ PRfηLLmχ̃0
1
ðd − 2ÞC1 þ ηLRmFdC0

þ ηRRmχ̃0
1
ðd − 2ÞC2g�; ðB66Þ

where Ci ¼ Ciðm2
χ̃0
1

; q2; m2
χ̃0
1

;mF;mV;mVÞ and

ηLL ¼ GVVhiG
L
χ̃0
1
FVG

L
χ̃0
1
FV;

ηLR ¼ GVVhiG
L
χ̃0
1
FVG

R
χ̃0
1
FV; ðB67Þ

ηRL ¼ GVVhiG
R
χ̃0
1
FVG

L
χ̃0
1
FV;

ηRR ¼ GVVhiG
R
χ̃0
1
FVG

R
χ̃0
1
FV: ðB68Þ

(1) hi ¼ h1=h2, F ¼ χ̃0l, V ¼ Z.

ηLL ¼ GZZhiG
L
χ̃0
1
χ̃0lZ

GL�
χ̃0
1
χ̃0lZ

;

ηLR ¼ −GZZhiG
L
χ̃0
1
χ̃0lZ

GL
χ̃0
1
χ̃0lZ

; ðB69Þ

ηRL ¼ GZZhiG
R
χ̃0
1
χ̃0lZ

GL�
χ̃0
1
χ̃0lZ

;

ηRR ¼ −GZZhiG
R
χ̃0
1
χ̃0lZ

GL
χ̃0
1
χ̃0lZ

; ðB70Þ

where GZZhi ¼ g2MZgμνYhi , with Yhi ¼	 sβ−α
cW

; hi ¼ h1
cβ−α
cW

; hi ¼ h2
.

(2) hi ¼ h1=h2, F ¼ χ̃�l , V ¼ W�.

ηLL ¼ GW�W�hiG
L
χ̃0
1
χ̃�lW

�GR�
χ̃0
1
χ̃�lW

� ;

ηLR ¼ GW�W�hiG
L
χ̃0
1
χ̃�lW

�GL�
χ̃0
1
χ̃�lW

� ; ðB71Þ

ηRL ¼ GW�W�hiG
R
χ̃0
1
χ̃�lW

�GR�
χ̃0
1
χ̃�lW

� ;

ηRR ¼ GW�W�hiG
R
χ̃0
1
χ̃�lW

�GL�
χ̃0
1
χ̃�lW

� ; ðB72Þ

where GW�W�hi ¼ g2MWgμνY 0
hi
, with Y 0

hi
¼n sβ−α; hi ¼ h1

cβ−α; hi ¼ h2
.
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5. Topology-(3a)

The respective Feynman diagram is shown in Fig. 7(a).

iδΓðeÞ ¼ i
16π2

½PLfψLLmχ̃0
1
mFðC2 −C0Þ þ ψLRm2

χ̃0
1

ðC1 þ 2C2Þ þ ψRLf−dC00

−m2
χ̃0
1

ðC22 þ 2C12 þC11 þ 2C1Þ þ q2C12 þ ð2q2 − 3m2
χ̃0
1

ÞC2g
þ ψRRmχ̃0

1
mFðC1 þ 2C0Þg þ PRfψLLmχ̃0

1
mFðC1 þ 2C0Þ

þ ψLRf−dC00 −m2
χ̃0
1

ðC22 þ 2C12 þ C11 þ 2C1Þ þ q2C12 þ ð2q2 − 3m2
χ̃0
1

ÞC2g
þ ψRLm2

χ̃0
1

ðC1 þ 2C2Þ þ ψRRmχ̃0
1
mFðC2 −C0Þg�; ðB73Þ

where Ci ¼ Ciðm2
χ̃0
1

; q2; m2
χ̃0
1

;mF;mS;mVÞ, Cij ¼
Cijðm2

χ̃0
1

; q2; m2
χ̃0
1

;mF;mS;mVÞ and

ψLL ¼ G hiSVG
L
χ̃0
1
FVG

L
χ̃0
1
FS;

ψLR ¼ G hiSVG
L
χ̃0
1
FVG

R
χ̃0
1
FS; ðB74Þ

ψRL ¼ G hiSVG
R
χ̃0
1
FV

GL
χ̃0
1
FS
;

ψRR ¼ G hiSVG
R
χ̃0
1
FVG

R
χ̃0
1
FS: ðB75Þ

(1) hi ¼ h1=h2, F ¼ χ̃0l, S ¼ A, V ¼ Z.

ψLL ¼ GhiAZG
L
χ̃0
1
χ̃0lZ

GR�
χ̃0
1
χ̃0lA

;

ψLR ¼ GhiAZG
L
χ̃0
1
χ̃0lZ

GL�
χ̃0
1
χ̃0lA

; ðB76Þ

ψRL ¼ GhiAZG
R
χ̃0
1
χ̃0lZ

GR�
χ̃0
1
χ̃0lA

;

ψRR ¼ GhiAZG
R
χ̃0
1
χ̃0lZ

GL�
χ̃0
1
χ̃0lA

; ðB77Þ

where GhiAZ ¼ g2
2cW

Y 00
hi
, with Y 00

hi
¼
ncβ−α; hi¼h1
−sβ−α; hi¼h2

.

(2) hi ¼ h1=h2, F ¼ χ̃0l, S ¼ G, V ¼ Z.

ψLL ¼ GhiGZG
L
χ̃0
1
χ̃0lZ

GR�
χ̃0
1
χ̃0lG

;

ψLR ¼ GhiGZG
L
χ̃0
1
χ̃0lZ

GL�
χ̃0
1
χ̃0lG

; ðB78Þ

ψRL ¼ GhiGZG
R
χ̃0
1
χ̃0lZ

GR�
χ̃0
1
χ̃0lG

;

ψRR ¼ GhiGZG
R
χ̃0
1
χ̃0lZ

GL�
χ̃0
1
χ̃0lG

; ðB79Þ

where

GhiGZ ¼
	 g2

2cW
sβ−α; hi ¼ h1

g2
2cW

cβ−α; hi ¼ h2
.

(3) hi ¼ h1=h2, F ¼ χ̃�l , S ¼ H�, V ¼ W�.

ψLL ¼ GhiH�W�GL
χ̃0
1
χ̃�lW

�GR�
χ̃0
1
χ̃�lH

� ;

ψLR ¼ GhiH�W�GL
χ̃0
1
χ̃�lW

�GL�
χ̃0
1
χ̃�lH

� ; ðB80Þ

FIG. 7. Topology 3(a) and 3(b).
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ψRL ¼ GhiH�W�GR
χ̃0
1
χ̃�lW

�GR�
χ̃0
1
χ̃�lH

� ;

ψRR ¼ GhiH�W�GR
χ̃0
1
χ̃�lW

�GL�
χ̃0
1
χ̃�lH

� ; ðB81Þ

where GhiH�W� ¼ g2
2
Y 00
hi
.

(4) hi ¼ h1=h2, F ¼ χ̃�l , S ¼ G�, V ¼ W�.

ψLL ¼ GhiG�W�GL
χ̃0
1
χ̃�lW

�GR�
χ̃0
1
χ̃�lG

� ;

ψLR ¼ GhiG�W�GL
χ̃0
1
χ̃�lW

�GL�
χ̃0
1
χ̃�lG

� ; ðB82Þ

ψRL ¼ GhiG�W�GR
χ̃0
1
χ̃�lW

�GR�
χ̃0
1
χ̃�lG

� ;

ψRR ¼ GhiG�W�GR
χ̃0
1
χ̃�lW

�GL�
χ̃0
1
χ̃�lG

� ; ðB83Þ

where

GhiG�W� ¼
	− g2

2
sβ−α; hi ¼ h1

− g2
2
cβ−α; hi ¼ h2

.

6. Topology-(3b)

The respective Feynman diagram is shown in Fig. 7(b).

iδΓðfÞ ¼ i
16π2

½PLfΞLLfdC00 þm2
χ̃0
1

ðC22 þ 2C12 þ C11 þ 2C2 þ 3C1Þ − q2ðC12 þ 2C1Þg þ ΞLRmχ̃0
1
mFðC0 −C1Þ

− ΞRLmχ̃0
1
mFðC2 þ 2C0Þ − ΞRRm2

χ̃0
1

ðC2 þ 2C1Þg þ PRf−ΞLLm2
χ̃0
1

ðC2 þ 2C1Þ − ΞLRmχ̃0
1
mFðC2 þ 2C0Þ

þ ΞRLmχ̃0
1
mFðC0 −C1Þ þ ΞRRfdC00 þm2

χ̃0
1

ðC22 þ 2C12 þ C11 þ 2C2 þ 3C1Þ − q2ðC12 þ 2C1Þgg�; ðB84Þ

where Ci ¼ Ciðm2
χ̃0
1

; q2; m2
χ̃0
1

;mF;mV;mSÞ, Cij ¼
Cijðm2

χ̃0
1

; q2; m2
χ̃0
1

;mF;mV;mSÞ and

ΞLL ¼ G hiSVG
L
χ̃0
1
FSG

L
χ̃0
1
FV;

ΞLR ¼ G hiSVG
L
χ̃0
1
FSG

R
χ̃0
1
FV; ðB85Þ

ΞRL ¼ G hiSVG
R
χ̃0
1
FSG

L
χ̃0
1
FV;

ΞRR ¼ G hiSVG
R
χ̃0
1
FSG

R
χ̃0
1
FV: ðB86Þ

(1) hi ¼ h1=h2, F ¼ χ̃0l, S ¼ A, V ¼ Z.

ΞLL ¼ GhiAZG
L
χ̃0
1
χ̃0lA

GL�
χ̃0
1
χ̃0lZ

;

ΞLR ¼ −GhiAZG
L
χ̃0
1
χ̃0lA

GL
χ̃0
1
χ̃0lZ

; ðB87Þ

ΞRL ¼ GhiAZG
R
χ̃0
1
χ̃0lA

GL�
χ̃0
1
χ̃0lZ

;

ΞRR ¼ −GhiAZG
R
χ̃0
1
χ̃0lA

GL
χ̃0
1
χ̃0lZ

: ðB88Þ

(2) hi ¼ h1=h2, F ¼ χ̃0l, S ¼ G, V ¼ Z.

ΞLL ¼ GhiGZG
L
χ̃0
1
χ̃0lG

GL�
χ̃0
1
χ̃0lZ

;

ΞLR ¼ −GhiGZG
L
χ̃0
1
χ̃0lG

GL
χ̃0
1
χ̃0lZ

; ðB89Þ

ΞRL ¼ GhiGZG
R
χ̃0
1
χ̃0lG

GL�
χ̃0
1
χ̃0lZ

;

ΞRR ¼ −GhiGZG
R
χ̃0
1
χ̃0lG

GL
χ̃0
1
χ̃0lZ

: ðB90Þ

(3) hi ¼ h1=h2, F ¼ χ̃�l , S ¼ H�, V ¼ W�.

ΞLL ¼ GhiH�W�GL
χ̃0
1
χ̃�lH

�GR�
χ̃0
1
χ̃�lW

� ;

ΞLR ¼ GhiH�W�GL
χ̃0
1
χ̃�lH

�GL�
χ̃0
1
χ̃�lW

� ; ðB91Þ

ΞRL ¼ GhiH�W�GR
χ̃0
1
χ̃�lH

�GR�
χ̃0
1
χ̃�lW

� ;

ΞRR ¼ GhiH�W�GR
χ̃0
1
χ̃�lH

�GL�
χ̃0
1
χ̃�lW

� : ðB92Þ

(4) hi ¼ h1=h2, F ¼ χ̃�l , S ¼ G�, V ¼ W�.

ΞLL ¼ GhiG�W�GL
χ̃0
1
χ̃�lG

�GR�
χ̃0
1
χ̃�lW

� ;

ΞLR ¼ GhiG�W�GL
χ̃0
1
χ̃�lG

�GL�
χ̃0
1
χ̃�lW

� ; ðB93Þ

ΞRL ¼ GhiG�W�GR
χ̃0
1
χ̃�lG

�GR�
χ̃0
1
χ̃�lW

� ;

ΞRR ¼ GhiG�W�GR
χ̃0
1
χ̃�lG

�GL�
χ̃0
1
χ̃�lW

� : ðB94Þ
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In the above, we have used the following [65]:

CL
lk ¼ Nl2V�

k1 −
1ffiffiffi
2

p Nl4V�
k2;

CR
lk ¼ N�

l2Uk1 þ
1ffiffiffi
2

p N�
l3Uk2;

N L
ln ¼

1

2
ð−Nl3N�

n3 þ Nl4N�
n4Þ;

N R
ln ¼ −ðN L

lnÞ�;

Qkl ¼ 1

2
Vk1Ul2;

Skl ¼ 1

2
Vk2Ul1;

Q0L
lk ¼ cβ

�
N�

l4V
�
k1 þ

1ffiffiffi
2

p V�
k2ðN�

l2 þ tWN�
l1Þ

�
;

Q0R
lk ¼ sβ

�
Nl3Uk1 −

1ffiffiffi
2

p Uk2ðNl2 þ tWNl1Þ
�
;

Q00
nl ¼ 1

2
½Nn3ðNl2 − tWNl1Þ þ Nl3ðNn2 − tWNn1Þ�;

S00nl ¼ 1

2
½Nn4ðNl2 − tWNl1Þ þ Nl4ðNn2 − tWNn1Þ�:

APPENDIX C

The counterterm Lagrangian for the χ̃01 − χ̃01 − hi inter-
action (L CT) is given as follows:

L CT ⊃ −
1

2
h1 ¯̃χ01ðδCR1PR þ δC L

1PLÞχ̃01

−
1

2
h2 ¯̃χ01ðδC R

2PR þ δC L
2PLÞχ̃01;

where δC L
i ¼ δC R�

i for i∈ f1; 2g.
In the above expression, δCR1 is given by

δC R
1 ¼ −

e
4s2W

�
2

c3W
A1 þ B1

sW
cW

�
; ðC1Þ

where A1 and B1 are given by

A1 ¼ −2ðsαN13 þ cαN14ÞððδZesW − δsWÞN12c3W

− N11ðδsWsW þ δZec2WÞs2WÞ;

B1 ¼
X4
i¼1

ððsαNi3 þ cαNi4ÞðsWN11 − cWN12Þ

þ ðsWNi1 − cWNi2ÞðsαN13 þ cαN14ÞÞ
ðδZ�

1i þ δZ�
i1Þ þ 2ððδZH

11sα − δZH
12cαÞN13

þ ðδZH
11cα þ δZH

12sαÞN14ÞðsWN11 − cWN12Þ: ðC2Þ
In these expressions sW ¼ sin θW, cW ¼ cos θW, where θW
is the Weinberg angle, δsW and δcW denote the respective
counterterms. Further, cα ¼ cos α, sα ¼ sin α, where α is

the mixing angle in the CP-even Higgs boson sector, δZe
denotes the counterterm corresponding to the charge e.
Weuse the following abbreviations in this section.fRe takes

the real part of loop integrals but does not affect the complex
couplings. For the notations, we have closely followed [107]
and [73]. The relevant counterterms have been listed below.
For the Higgs sector, the following counterterms are

relevant [107]:

δZH1
¼ −ReΣ0

h2
ð0Þj

α¼0;div
;

δZH2
¼ −ReΣ0

h1
ð0Þj

α¼0;div
;

δtβ ¼
1

2
tβðδZH2

− δZH1
Þ:

In the gauge boson sector, the relevant counterterms are
as follows [107]:

δM2
Z ¼ fReΣT

ZðM2
ZÞ;

δM2
W ¼ fReΣT

WðM2
WÞ;

δZγγ ¼ −fReΣ0T
γ ð0Þ;

δZZγ ¼
2

M2
Z

fReΣT
γZð0Þ;

δsw ¼ 1

2

c2w
sw

�
δM2

Z

M2
Z
−
δM2

W

M2
W

�
;

δZe ¼
1

2

�
sw
cw

δZZγ − δZγγ

�
:

The counterterms to the gaugino and Higgsino mass
parameters are determined from the chargino-neutralino
sector. In the In the CCN(n) scheme, these are given
by [73,74,107,111]

δM1¼
1

N�2
n1
fδmOS

χ̃0n
þδNn−N�2

n2δM2þ2N�
n3N

�
n4δμg; ðC3Þ

δM2 ¼
1

koro − kdrd

	
U�

12V
�
12δm

OS
χ̃�
2

−U�
22V

�
22δm

OS
χ̃�
1

þ
ffiffiffi
2

p
ðcβðkd − koÞV�

12V
�
22

þ sβðro − rdÞU�
12U

�
22ÞMWc2βδtβ

þ ðsβðkd − koÞV�
12V

�
22

− cβðro − rdÞU�
12U

�
22Þ

δM2
Wffiffiffi

2
p

MW



; ðC4Þ

δμ ¼ 1

koro − kdrd

	
U�

21V
�
21δm

OS
χ̃�
1

− U�
11V

�
11δm

OS
χ̃�
2

−
ffiffiffi
2

p
ðsβðkd − koÞV�

11V
�
21

þ cβðro − rdÞU�
11U

�
21ÞMWc2βδtβ

þ ðcβðkd − koÞV�
11V

�
21

− sβðro − rdÞU�
11U

�
21Þ

δM2
Wffiffiffi

2
p

MW



; ðC5Þ
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where we have used the following notations:

kd ¼ U�
11U

�
22; ko ¼ U�

12U
�
21;

rd ¼ V�
11V

�
22; ro ¼ V�

12V
�
21;

and

δNn ¼ 2c2βδtβðsβN�
n3 þ cβN�

n4ÞðMWN�
n2 −MZswN�

n1Þ þ ðcβN�
n3 − sβN�

n4Þ
�
N�

n1

�
δM2

Z

MZ
sw þ 2MZδsw

�
− N�

n2
δM2

W

MW

�
;

δmOS
χ̃0n

¼ fRe½mχ̃0n
ΣL
χ̃0
ðm2

χ̃0n
Þ þ ΣSL

χ̃0
ðm2

χ̃0n
Þ�
nn
;

δmOS
χ̃�c

¼ fRe�mχ̃�c
2

ðΣL
χ̃−ðm2

χ̃�c
Þ þ ΣR

χ̃−ðm2
χ̃�c
ÞÞ þ ΣSL

χ̃− ðm2
χ̃�c
Þ
�
cc
: ðC6Þ

We have used n ¼ 4 for BP1-4 and n ¼ 3 for BP5-6. A more thorough analysis can be found in [73] and [107].
We have used an on shell renormalization scheme, which has been implemented in the FormCalc [107], to evaluate these

counterterms for the benchmark scenarios.
Next, δC R

2 is given by

δC R
2 ¼ e

4s2W

�
2

c3W
A2 þ B2

sW
cW

�
: ðC7Þ

In the above expression A2 and B2 are given by

A2 ¼ −2ðcαZ13 − sαZ14ÞððδZesW − δsWÞZ12c3W − Z11ðδsWsW þ δZec2WÞs2WÞ;

B2 ¼
X4
i¼1

½ðcαNi3 − sαNi4ÞðsWN11 − cWN12Þ þ ðsWNi1 − cWNi2ÞðcαN13 − sαN14Þ�ðδZ̄i1 þ δZ�
i1Þ

þ 2ðδZH
22 − δZH

12Þ½sαðN13 − N14Þ þ cαðN13 þ N14Þ�ðsWN11 − cWN12Þ: ðC8Þ

The wavefunction renormalization counterterms for the neutralino sector and the CP-even Higgs sector have been
determined using the on shell renormalization scheme [73,115], following the implementation in FormCalc [107]. For
different benchmark scenarios, variants of the on shell renormalization scheme have been adopted; a detailed discussion
may be found in [74].
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