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We propose a novel signal-consistency test applicable to a broad search for gravitational waves emitted
by generic binary black hole (BBH) systems. The test generalizes the time domain ξ2 signal-consistency
test currently utilized by the GstLAL pipeline, which quantifies the discrepancy between the expected signal-
to-noise ratio time series with the measured one. While the traditional test is restricted to aligned-spin
circular orbits and does not account for higher-order modes (HMs), our test does not make any assumption
on the nature of the signal. After addressing the mathematical details of the new test, we quantify its
advantages in the context of searching for precessing BBHs and/or BBHs with HM content. Our results
reveal that, for precessing signals, the new test is optimal and has the potential to reduce the values of the ξ2

statistics by up to 2 orders of magnitude when compared to the standard test. However, in the case of signals
with HM content, only a modest enhancement is observed. Recognizing the computational burden
associated with the new test, we also derive an approximated signal-consistency test. This approximation
maintains the same computational cost as the standard test and can be easily implemented in any matched-
filtering pipeline with minimal changes, sacrificing only a few percent of accuracy in the low-SNR regime.
However, in the high-SNR regime, the approximated signal-consistency test does not bring any
improvement as compared to the “standard” one. By introducing our new test and its approximation
and understanding their validity and limitation, this work will benefit any matched-filtering pipeline aimed
at searching for BBH signals with strong precession and/or HM content.

DOI: 10.1103/PhysRevD.110.023042

I. INTRODUCTION

Gravitational-wave (GW) searches for binary black holes
(BBHs) have been a cornerstone in the activities of the
LIGO-Virgo-KAGRA (LVK) Collaboration [1–3] and have
made possible the discovery of nearly 100 GW events
during the first three observing runs [4–7].
BBH searches can be performed in either a model-

dependent way through the technique of matched filtering
[8–12] or a model-independent way through excess-power
methods [13–15]. The matched-filter method computes
the correlation between GW detector data and a set of
templates of modeled BBH waveforms. This method
proves more sensitive for lower-mass systems, as the power
in these signals is spread over many time-frequency bins
[16,17]. Beyond the initial matched-filter or excess-power
stage, searches consist of analysis pipelines [18–29] that
employ various statistical tests to improve the separation of

GW candidates from false alarms caused by the detectors’
nonstationary and non-Gaussian noise [30–34].
A class of these statistical tests, known as signal-

consistency tests [22,25,35–43], have been designed to
further distinguish between false alarms and real GW
signals by computing the agreement between the data
and the signal model assumed by the search. Signal-
consistency tests have been implemented by all LVK
matched-filtering pipelines and have played an integral
role in enabling many high-significance GW detections.
Expanding our searches to include signals from precess-

ing binaries [44–49] and/or binaries with higher-order
modes (HMs) [50–54] necessitates the generalization of
signal-consistency tests to a more versatile framework.
Neglecting to update these tests can result in decreased
search sensitivity, potentially offsetting the benefits of
using a more diverse set of templates.
While the χ2 time-frequency signal-consistency test [35]

and its variant, the sine-Gaussian χ2 discriminator [38],
have been successfully applied in searches including*Contact author: s.schmidt@uu.nl
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higher-order modes [51,52] and precessing signals [49],
little attention has been given to generalizing other types of
signal-consistency tests or even to the development of
new ones.
In particular, in this work, we focus on the autocorrelation-

based least-squares test, denoted ξ2, which is currently
utilized by the GstLAL search pipeline [22,24,29,55]. The test
relies on the assumption that the signal to detect is a circular
aligned-spin binary system where no HMs are considered.
In this scenario, the system is symmetric for rotation around
the orbital rotation axis, and this symmetry translates into a
simple relation between the two polarizations of the GW
emitted, which allows one to obtain a convenient and
computationally efficient expression for the test.
In this work, we drop the “aligned-spin and no HM”

assumption, and we introduce a new signal-consistency test
that does not make any assumption about the nature of
the signal to detect. Thus, while the test was primarily
motivated to search for precessing and/or HM signals, it
can be applied to a matched-filtering search for any type
of gravitational-wave signal. In Sec. II, we provide some
general background on matched filtering and on the state-
of-the-art signal-consistency test, while in Sec. III we
introduce our new generalized signal-consistency test ξ2sym
and provide a computationally convenient approximate
expression ξ2mix for it. In Sec. IV, we discuss the perfor-
mance of the newly introduced test and its approximated
version. Section V gathers some final remarks.

II. BACKGROUND

According to the theory of general relativity [56],
a gravitational wave carries only two physical degrees of
freedom hþ and h×, also called polarizations. For a generic
GW emitted by a compact binary, the polarizations depend
on the intrinsic properties of the binary such as the two
compact objects’ masses m1 and m2 and spins s1 and s2.
The signal observed at the source also depends on the
so-called extrinsic properties including position, usually
parametrized in spherical coordinates by a distance D from
the origin, a polar angle called inclination angle ι, and an
azimuthal angle ϕ.
For the purpose of modeling, it is customary to expand the

gravitational waveform’s dependence on the extrinsic param-
eters in terms spin-2 spherical harmonics Ylmðι;ϕÞ [56]:

hþ þ ih× ¼ 1

D

X∞
l¼0

Xl
m¼−l

Ylmðι;ϕÞeimϕhlmðtÞ; ð1Þ

where the modes hlm are complex functions of the intrinsic
parameters m1, m2, s1, and s2. Each mode can be decom-
posed into a time-dependent amplitude Alm and a time-
dependent phase φlm such that

hlm ¼ Almeiφlm: ð2Þ

As a consequence, the imaginary part hIlm of each mode is
equivalent to the real part hRlm shifted by a constant phase of
π=2. In the frequency domain, this takes the simple form of

h̃Rlm ¼ ih̃Ilm; ð3Þ
where ∼ indicates the Fourier transform.
If the two spins are aligned with L, the orbital plane

will point toward a fixed direction, establishing an axis
of symmetry for the nonprecessing binary system.
Mathematically, this symmetry translates into a symmetry
between the modes:

hlm ¼ ð−1Þlh�l−m; ð4Þ
where � denotes complex conjugation. On the contrary, if
the two spins s1 and s2 are misaligned with the binary
orbital angular momentum L, the binary plane experiences
precessional motion, where the orbital angular momentum
rotates around a (roughly) constant direction [57–61] and
the symmetry Eq. (4) is no longer valid.
In most aligned-spin systems, it turns out that only

the l ¼ jmj ¼ 2 modes give a significant contribution
to the polarizations, and, thus, all the other HMs are
neglected [50,56,62,63]. Thus, the waveform from a non-
precessing binary without imprints from HMs has a
strikingly simple expression:

hþ ¼ 1

D
1þ cos2ι

2
Refh22ei2ϕg; ð5Þ

h× ¼ 1

D
cos ιImfh22ei2ϕg: ð6Þ

Note that, as a consequence of Eq. (3), the two polarizations
in Fourier space are related by the simple relation

h̃þ ∝ ih̃×; ð7Þ

and, for ι ¼ 0, we have trivially h̃þ ¼ ih̃×.
In the remainder of this section, we describe how the

simplicity of Eqs. (5) and (6) enters the expression for
the currently used ξ2 signal-consistency test [22], and we
describe how to move away from the assumption of
aligned-spin systems without HMs, tackling the most
general case.

A. Overview

The core of matched filter relies on computing the cross-
correlation between two time series aðtÞ and bðtÞ, weighted
by the power spectral density (PSD) of the noise SnðfÞ.
Mathematically, we can compute this cross-correlation by
defining a time-dependent complex scalar product:

hajbiðtÞ ¼ 4

Z
∞

0

df
ã�ðfÞb̃ðfÞ
SnðfÞ

e−i2πft: ð8Þ
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It is convenient to separate the real ð·j·Þ and imaginary ½·j·�
parts of the scalar product as

hajbiðtÞ ¼ ðajbÞðtÞ þ i½ajb�ðtÞ: ð9Þ

Given a time series aðtÞ, we can use the above scalar
product to computed the normalized time series âðtÞ:

âðtÞ ¼ aðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðajaÞðt ¼ 0Þp : ð10Þ

Following the notation of [22], the output of the
matched-filtering procedure is a complex time series zðtÞ:

zðtÞ ¼ ðdjhRÞðtÞ þ iðdjhIÞðtÞ; ð11Þ

where hR and hI are two normalized real templates.
We may also define the signal-to-noise ratio (SNR) time
series ρðtÞ as

ρðtÞ ¼ jzðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdjhRÞ2ðtÞ þ ðdjhIÞ2ðtÞ

q
: ð12Þ

The real filters hR and hI are chosen to maximize ρ at the
time where a GW signal is present in the data, and their
expression depends on the assumptions about the nature
of the GW signal to search. For instance, if a template is
spin aligned and HM are not considered, it is sufficient
to filter the data with the two polarizations ĥþ and ĥ×
evaluated at zero inclination ι ¼ 0. As will be shown
below, a more complicated expression will be needed for
a more general case.
Given a trigger at time t ¼ 0, the ξ2 test relies on

predicting the SNR time series zðtÞ obtained by filtering
a signal h with a matching templates. The predicted time
series RðtÞ is then compared to the measured time series
zðtÞ to compute the squared residual time series:

ξ2ðtÞ ¼ jzðtÞ − RðtÞj2: ð13Þ

We can integrate the residual time series to obtain the ξ2

statistics:

ξ2 ¼
R
δt
−δt dtjzðtÞ − RðtÞj2R

δt
−δt dthξ2ðtÞi

; ð14Þ

where the integral extends on a short time window ½−δt; δt�
around the trigger time. To obtain the ξ2 statistics integral
of the residual time series is normalized by integral of
the expected value hξ2ðtÞi over different Gaussian noise
realizations of the residual time series without a signal
buried in the noise. Clearly, its value depends on the
templates employed. It is convenient to express δt in
terms of the so-called autocorrelation length (ACL) [22],

defined as the number of samples in the time window
½−δt; δt� at a given sample rate fsampling, so that
δt ¼ ðACL − 1Þ=2fsampling.
The ξ2 defined above can be used by the GW search

pipelines to veto some loud triggers. If a trigger is caused
by a noise fluctuation or non-Gaussian noise transient
bursts [30], the discrepancy between the expected and
measured SNR time series will be large, leading to a large
value of ξ2. This can be used to down-rank certain triggers,
with large improvement in sensitivity.
As it is custom, to predict the SNR time series, we model

the data d as a superposition of Gaussian noise n and a GW
signal h: d ¼ nþ h. For current ground-based interferom-
eters, the GW signal is

h ¼ Fþhþ þ F×h×; ð15Þ

where Fþ and F× are the antenna pattern functions [64,65],
which define the detector’s response to a signal coming
from a given direction in the sky. For our purpose, it is
convenient to express the signal model in terms of the
normalized polarizations:

h ¼ Fþĥþ þ F×ĥ×; ð16Þ

where we absorbed into Fþ and F× an overall scaling
factor (which depends on the source distance and on the sky
location). Of course, Fþ and F× are not known at the
moment of the search but must be inferred from the value of
the SNR time series zð0Þ at the time of a trigger.

B. The original ξ2 test

To obtain an expression for the filters hR and hI to use
in the case of a spin-aligned system where HM are not
considered, we must first write the signal model Eq. (16) in
a convenient way [10,48]:

h ¼ ARefh22eiϕCg ¼ AðĥR22 cosϕC − ĥI22 sinϕCÞ; ð17Þ

where A is an amplitude factor and ϕC is a constant phase
shift, both depending on Fþ, F×, ι, and ϕ, and we used
Eqs. (5) and (6) for the polarizations. Using Eq. (3),
the frequency domain signal model takes a remarkably
simple form of

h̃ ¼ AeiϕC ˜̂h
R
22: ð18Þ

In practice, this means that all the variability of the
observed signals is encoded in the real function ĥR22ðtÞ
and that all the possible effects due to inclination, reference
phase, and sky localization affect only an overall amplitude
and phase.
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With Eq. (18) at hand, it is a simple exercise to show that
the SNR time series is maximized by the following filters:

hR ¼ ĥR22;

hI ¼ ĥI22 ð19Þ

and, thus, that the search statistics ρðtÞ does not depend on ι
and ϕ. We call “standard” the SNR time series obtained
using such templates:

ρstdðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhjĥR22Þ2 þ ðhjĥI22Þ2

q
: ð20Þ

Note that, in this simple case, the two templates in
frequency domain exhibit a remarkable symmetry, inher-
ited from Eq. (3):

h̃R ¼ ih̃I: ð21Þ

While the standard signal-consistency test relies on this
important symmetry, in general, Eq. (21) is not true for a
precessing and/or HM signal: This is the main motivation for
the novel signal-consistency test introduced in this work.
Thanks to this remarkable property of the signal, the

predicted SNR time series RstdðtÞ around a trigger at t ¼ 0
is given by

RstdðtÞ ¼ ðhjĥR22ÞðtÞ þ iðhjĥI22ÞðtÞ
¼ zð0ÞfðĥR22jĥR22ÞðtÞ þ iðĥR22jĥI22ÞðtÞg; ð22Þ

where, to simplify the expression above, we used the
fact that h ¼ AeiϕC ĥR22 and that zð0Þ ¼ Ae−iϕC , since
ðĥI22jĥR22Þðt ¼ 0Þ is equal to zero. By comparing the
measured time series zðtÞ and the expected time series
RstdðtÞ with Eq. (14), one can compute ξ2std for a non-
precessing search. It is a simple exercise to compute the
expected value of the residual time series over different
noise realizations (see Appendix A in [22]):

hξ2stdðtÞi ¼ 2 − 2jðĥR22jĥR22ÞðtÞ þ iðĥR22jĥI22ÞðtÞj2: ð23Þ

The integral of this expression can be used as a normali-
zation for the ξ2 statistics.
By using again Eq. (21) and the identity ½ajib� ¼ ðajbÞ,

the standard SNR Eq. (20) can also be expressed in terms
of ĥR22 only:

ρstdðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhjĥR22Þ2 þ ½hjĥR22�2

q
: ð24Þ

Of course, the same is readily done for the RstdðtÞ:

RstdðtÞ ¼ zð0ÞfðĥR22jĥR22ÞðtÞ þ i½ĥR22jĥR22�ðtÞg
¼ zð0ÞhĥR22jĥR22iðtÞ: ð25Þ

The quantity hĥR22jĥR22iðtÞ is sometimes called template
autocorrelation. For standard signals, Eqs. (22) and (25)
are equivalent. However, for precessing and/or HM, they
may give very different results, due to the breaking of the
symmetry Eq. (21).
We close by noting that the predicted time series is given

by a product of a trigger-dependent scalar and a complex
template-dependent time series:

RðtÞ ¼ trigger × complex time series:

This arises directly from the fact that the signal model
Eq. (18) presents the same convenient factorization. Such
factorization makes the ξ2 evaluation particularly computa-
tionally convenient and, hence, the ξ2 test computationally
attractive. As we will see, the use of precessing and/or
HM templates breaks this factorization, as Eq. (18) is no
longer valid.

III. A NEW GENERALIZED ξ2

SIGNAL-CONSISTENCY TEST

The simplicity of the standard case arises directly from
the symmetry between the two polarizations Eq. (7), which
allows us to conveniently factorize the signal model and the
predicted SNR time series. However, in general, this is not
possible, and a different expression for the filters and the
expected SNR time series needs to be computed. With
the only assumptions that the observed signal is a linear
combination of the two polarizations, the appropriate filters
for the interferometric data are given by [51,66,67]

hR ¼ ĥþ;

hI ¼ ĥ⊥ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ĥ2þ×

q ðĥ× − ĥþ×ĥþÞ; ð26Þ

where

ĥþ× ¼ ðĥþjĥ×Þðt ¼ 0Þ: ð27Þ

The real quantity ĥþ× is a crucial measure of the precession
and/or HM content of a template. The nonprecessing non-
HM limit can be recovered by ĥþ× ¼ 0. We call symphony
SNR1 the time series Eq. (12) produced with the templates
above:

ρsymðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðhjĥþÞ2 þ ðhjĥ⊥Þ2

q
: ð28Þ

Note that, if hþ and h× are normalized, the template ĥ⊥ is
normalized by definition: hĥ⊥jĥ⊥i ¼ 1. Moreover, ĥþ and

1The term “symphony” comes from the title of a paper
describing the statistics [51].
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ĥ⊥ are orthogonal vectors, i.e., ðĥþjĥ⊥Þ ¼ 0. Indeed,
the vectors for ĥþ and ĥ⊥ follow the Gram-Schmidt
“orthogonalization” prescription to create a set of ortho-
normal basis from the set of basis vectors fĥþ; ĥ×g.
Obviously, the fact that the two filters are orthogonal does
not mean that, in general, ĥþ and ĥ⊥ are related by a simple
expression such as Eq. (21).
To compute the predicted time series RsymðtÞ, it is

convenient to rewrite the signal model Eq. (16) in terms
of ĥþ and ĥ⊥:

h ¼ Aþĥþ þA⊥ĥ⊥; ð29Þ

where Aþ ¼ Fþ þ ĥþ×F× and A⊥ ¼ F×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ĥ2þ×

q
.

With this definition, the predicted SNR time series is
given by

RsymðtÞ ¼ ðhjĥþÞðtÞ þ iðhjĥ⊥ÞðtÞ
¼ AþĥþþðtÞ þA⊥ĥ⊥þðtÞ
þ iAþĥþ⊥ðtÞ þ iA⊥ĥ⊥⊥ðtÞ; ð30Þ

where to shorten the notation we defined

ĥ•⋆ðtÞ ¼ ðĥ•jĥ⋆ÞðtÞ with • ⋆ ¼ þ;×;⊥; ð31Þ

and we identify Aþ=⊥ with the real and imaginary part,
respectively, of the trigger zð0Þ ¼ Aþ þ iA⊥. This directly
arises from the setting Rsymð0Þ ¼ zð0Þ and recognizing that
ĥ⊥þð0Þ ¼ ĥþ⊥ð0Þ by definition.
The expression for RsymðtÞ Eq. (30) is a linear combi-

nation of four basis real time series, which, in general, are
independent from each other. Note that this is not the case
for the standard test Eq. (22), where only two independent
time series are needed to describe the SNR time series.
This is the direct consequence of the fact that in the
standard case the signal model depends on only a single
time series ĥR22, while in the general case, the two time
series hþ and h× are needed to specify the signal model.
We can gain more insight by redefining a different set of
basis for RsymðtÞ:

ĥSþþðtÞ ¼
1

2
ðĥþþðtÞ þ ĥ⊥⊥ðtÞÞ; ð32Þ

ĥAþþðtÞ ¼
1

2
ðĥþþðtÞ − ĥ⊥⊥ðtÞÞ; ð33Þ

ĥSþ⊥ðtÞ ¼
1

2
ðĥþ⊥ðtÞ − ĥ⊥þðtÞÞ; ð34Þ

ĥAþ⊥ðtÞ ¼
1

2
ðĥþ⊥ðtÞ þ ĥ⊥þðtÞÞ; ð35Þ

and the predicted SNR time series takes a strikingly
simple expression:

RsymðtÞ ¼ zð0ÞðĥSþþðtÞ þ iĥSþ⊥ðtÞÞ
þ z�ð0ÞðĥAþþðtÞ þ iĥAþ⊥ðtÞÞ: ð36Þ

We can write Eq. (36) more compactly by introducing the
two complex time series

ĥS=AðtÞ ¼ ĥS=Aþþ ðtÞ þ iĥS=Aþ⊥ ðtÞ ð37Þ

so that

RsymðtÞ ¼ zð0ÞĥSðtÞ þ z�ð0ÞĥAðtÞ: ð38Þ

The expected SNR time series RsymðtÞ can be compared to
complex symphony SNR time series to yield a novel
generally applicable signal-consistency test ξ2sym. We can
compute the normalization of the ξ2 statistics with
a simple computation of the expected value of the
residual time series jzðtÞ − RsymðtÞj2 over different noise
realizations:

hξ2symðtÞi ¼ 2 − 2jĥSðtÞj2 þ 2jĥAðtÞj2: ð39Þ

The expression generalizes Eq. (23) to the symphony
search statistics. The details of the computation are
reported in the Appendix.
The first term in Eq. (36) has the same structure of the

standard test Eq. (22). However, an additional term propor-
tional to z�ð0Þ enters the expression, thus breaking the
convenient factorization between a complex trigger and a
complex template-dependent time series. Of course, the
expression agrees with the standard test for aligned-spin

limit where ˜̂hþ ¼ i ˜̂h×. In that case, it is easy to show that
ĥ⊥ ¼ ĥ× ¼ ĥI22 and that

ðĥþjĥþÞðtÞ ¼ ðĥ×jĥ×ÞðtÞ; ð40Þ

ðĥþjĥ×ÞðtÞ ¼ −ðĥ×jĥþÞðtÞ: ð41Þ

For this reason, both ĥAþþðtÞ and ĥAþ⊥ðtÞ are identically
vanishing time series, and Eq. (36) reduces to the stan-
dard case.

A. Approximating the new ξ2 test

Although the time series RsymðtÞ offers the best pre-
diction for the symphony SNR, it cannot be expressed as a
product of the trigger zð0Þ and a template-dependent
complex time series. As discussed earlier, such a conven-
ient factorization is crucial for reducing the computational
cost of the consistency test and for deploying the test with
minimal changes to existing infrastructures. Therefore, we
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seek an expression RmixðtÞ for the predicted symphony
SNR time series that retains this convenient factorization
while providing satisfactory accuracy. While this expres-
sion is only an approximation to RsymðtÞ, it may prove
adequate in certain cases.
In particular, in the case of a precessing and HM binary

system, the symmetries in Eqs. (40) and (41) are violated by
only a “small amount.” More formally, we observe that the
magnitude of ĥAþþðtÞ and ĥAþ⊥ðtÞ is small in most of the
practical cases, and it makes sense to discard from Eq. (36)
the term ∝ z�ð0Þ. This leads to an approximation RmixðtÞ of
the predicted symphony time series:

RmixðtÞ ¼ zð0ÞðĥSþþðtÞ þ iĥSþ⊥ðtÞÞ: ð42Þ
Therefore, we can introduce the additional “mixed” signal-
consistency test ξ2mix, which is obtained by comparing Rmix

with the symphony SNR Eq. (28). The normalization factor
hξ2ðtÞi can be straightforwardly computed by setting
ĥAðtÞ ¼ 0 in Eq. (39):

hξ2symðtÞi ¼ 2 − 2jĥSðtÞj2: ð43Þ

The test is equivalent to the standard ξ2 Eq. (25) with the
minimal replacement hĥR22jĥR22iðtÞ → ĥSðtÞ.
To obtain this expression, we discarded from the

predicted time series the complex quantity z�ð0ÞĥAðtÞ.
For this reason, the order of magnitude of ĥAðtÞ is
intimately connected with the error introduced by the
mixed predicted time series and, hence, with the perfor-
mance of ξ2mix. In what follows, we will use the magnitude
of the peak ρA of the ĥAðtÞ as a primary indicator of the
goodness of the mixed consistency test:

ρA ¼ max
t
jĥAðtÞj: ð44Þ

As already noted, ĥAðtÞ is identically zero for standard
systems; hence, ρA can be also used as a metric to quantify
the amount of precession and/or HM of a template. Note
that by definition maxt jĥSðtÞj ¼ 1; hence, the quantity
above automatically measures the ratio between ĥA and ĥS.
The choice of discarding the term z�ð0ÞĥAðtÞ is very

natural but somehow arbitrary. Other choices for the
residuals are possible, thus leading to a different expression
for the predicted time series and, hence, different values
of ξ2. A convenient alternative choice for an approximate
signal-consistency test consists in neglecting from RmixðtÞ
all the terms Oðĥþ×Þ:

Rmix−bisðtÞ ≃ zð0Þ
�
1

2
ðĥþþðtÞ þ ĥ××ðtÞÞ

þ i
1

2
ðĥþ×ðtÞ − ĥ×þðtÞÞ

�
: ð45Þ

The expression has the merit of being more physically
interpretable than Eq. (42), as it depends only on the
physical polarizations, and it defines an additional test,
labeled ξ2mix−bis. As we will see in the next section, the
values of ξ2 obtained with the latter expression do not
significantly differ from the values of ξ2mix obtained with
Eq. (42); hence, an experimenter interested in interpret-
ability could freely use ξ2mix−bis instead of ξ2mix.
We close by noting that, by assuming the approximate

symmetries Eqs. (40) and (41), Rmix−bisðtÞ has the simple
expression

Rmix−bisðtÞ ≃ zð0ÞðĥþþðtÞ þ iĥþ×ðtÞÞ; ð46Þ

where we can straightforwardly recognize the standard test
with the natural replacement ĥR22 → ĥþ and ĥI22 → ĥ×. This
is the expression that one could have naively guessed
without thorough computations.
In Fig. 1, we present an example demonstrating how

accurately the predicted SNR time series aligns with the
actual one, comparing the standard, mixed, and symphony
cases. We compute the SNR time series obtained for
precessing BBH signal with zero noise and filter the data
with the same signal; we plot the measured SNR time series
ρstdðtÞ and ρsymðtÞ and the expected absolute values of
the time series RstdðtÞ, RmixðtÞ, and RsymðtÞ. We note that
RstdðtÞ and ρstdðtÞ show poor agreement with each other,
while RsymðtÞ perfectly models the complicated features of
ρsymðtÞ. Moreover, RmixðtÞ provides a satisfactory approxi-
mation to ρsymðtÞ, accurate to a few percent.

IV. VALIDITY AND LIMITATIONS OF
DIFFERENT SIGNAL-CONSISTENCY TESTS

In this section, we study in depth the validity and the
range of applicability of the various signal-consistency tests
discussed above, namely, the new ξ2sym, the standard ξ2std,
and the approximated test ξ2mix and its alternative expression
ξ2mix−bis. After presenting a study of the capabilities of the
different tests, we study the performance of the standard
and mixed tests as a function of the region of the parameter
space. We also study the differences between the two
alternative approximations of the symphony test ξ2mix and
ξ2mix−bis and how the test depend on the choice of the
integration window ACL. Finally, we compare the results
obtained by performing the test in Gaussian noise with
those obtained with real interferometer data: This study is
crucial to test the robustness of the test in a “real life”
scenario.
To carry out our analysis, we compute ξ2std, ξ

2
mix, ξ

2
mix−bis,

and ξ2sym for 15000 randomly sampled BBH signals, injected
into Gaussian noise at different values of SNR. We uni-
formly sample the total massM∈ ½10; 50�M⊙ and mass ratio
q ¼ m1=m2 ∈ ½1; 15�, while reference phase and inclination,
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as well as the sky location, are drawn from a uniform
distribution on the sphere. We also sample the starting
frequency fmin in the range ½5; 20� Hz. Conveniently, we can
introduce the spin tilt angle θ, defined as

θi ¼ arccos
siz
si

; ð47Þ

where si is the magnitude of the ith spin. The tilt angle
measures the misalignment of the each spin with the orbital
momentum, and, thus, it is crucial to control the amount of
precession in a system, with a maximally precessing system
having θ ≃ π=2.
In our study, we explore two scenarios. In one case,

we focus on precessing systems with both spins sampled
isotropically inside the unit sphere. In the other case, we
consider aligned-spin systems but include HMs in the
waveform. For the latter experiment, we sample both z
components of the spins uniformly between ½−0.99; 0.99�,
and we consider the HM with ðl;jmjÞ¼ð2;2Þ;ð2;1Þ;ð3;3Þ;
ð3;2Þ;ð4;4Þ. We utilize the frequency domain approximants
IMRPhenomXP [69] and IMRPhenomXHM [70] for the
two scenarios, respectively. We employ the PSD computed
over the first three months of the third observing run at the
LIGO Livingston detector [68] and sample 100 s of
Gaussian noise at a sample rate of 4096 Hz for each signal
under study. To study the performance in real noise, we
repeat the experiment by using segments of real publicly
available real data [71], as we discussed with more
details below.

A. How do the different tests compare to each other?

We compare here the performance of the different tests
for different SNR summarizing the main results of the
analysis described above. In Fig. 2, we present results
pertaining precessing systems, while results in Fig. 3 refer
to aligned-spin system with HM. In both figures for
varying SNR, we plot the ξ2 values as a function of the
peak ρA of ĥAðtÞ, which as discussed above is an excellent
measure of the content of precession and/or HM content
in a template. Note that the ξ2 values do not depend
exclusively on ρA but also on the details of the residuals
ĥAðtÞ. Nevertheless, ρA still remains a useful scalar
quantity to quantify the lack of orthogonality of the
two templates. In the “zero noise” case, the injected
signals are normalized to one: This arbitrary choice affects
only the value of ξ2 with an overall scaling, but it does not
alter the distribution of values. We compute the ξ2 using a
window (ACL) of 701 points centered around the injec-
tion time.
As long as zero noise is considered, we note that ξ2std and

ξ2mix are both nonzero. This means that RstdðtÞ and RmixðtÞ
are not able is not able to predict exactly the behavior of the
SNR time series. This is expected, since in the precessing
and HM regime, they are both approximations to the true
SNR. On the other hand, ξ2sym is always zero (up to
numerical noise), showing that the newly introduced
ξ2sym is the optimal test to search for generic BBH signals:
This is also manifest in Fig. 1.

FIG. 1. Predicted and measured absolute value of the SNR time series, jRj and ρ, respectively, for a precessing signal in zero noise and
with unit magnitude, filtered with a perfectly matching template. We measure the SNR using both the standard SNR and the symphony
SNR. The predicted SNR is computed with three different prescriptions, Rstd Eq. (25) suitable for the standard SNR and Rsym Eq. (36)
and Rmix Eq. (42), both suitable for the symphony SNR. We also report in the bottom panel the difference between the expected and
measured SNR time series. In the bottom panel, we report the difference between both jRsymj or jRmixj and the symphony SNR. It is
manifest that jRsymj and ρsym show perfect agreement between each other while jRstdj and jRmixj do not accurately predict the relevant
SNR time series. Also note that the peak of standard search statistics is lower than unity, meaning that performing matched filtering with
templates Eq. (19) is not able to fully recover the SNR of a precessing signal. The signal is injected into Gaussian noise, sampled from
the PSD LIGO Livingston PSD [68] with a rate of 4096 Hz. The waveform is characterized by masses m1; m2 ¼ 28M⊙; 3M⊙ and spins
s1 ¼ ð−0.8; 0.02;−0.5Þ and s2 ¼ 0, observed with an inclination ι ¼ 2.66. It was generated starting from a frequency of 12 Hz with the
approximant IMRPhenomXP [69].
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1. Precessing templates

By looking at the injected precessing signals in Fig. 2 in
the presence of noise, we see that ξ2sym is always superior to
the standard test, with an improvement as large as 2 orders
of magnitude in the SNR ¼ 100 case. As long as ξ2mix is

considered, we observe that ξ2mix and ξ2sym show similar
dispersions in the low-SNR case. Therefore, in the presence
of a substantial amount of noise, the accuracy improvement
provided by ξ2sym is negligible over the approximation given
by ξ2mix. The discrepancy between the two ξ

2 tests increases

FIG. 3. Values of ξ2 [Eq. (14)] as a function of the absolute value of ðĥþjĥ×Þ, which quantifies the precession and/or HM content of a
signal. Each value is computed on random aligned-spin BBHs with HM content, injected into Gaussian noise at a constant SNR. The left
and center panels show SNRs of 20 and 100, respectively, while the right panel tackles the case of zero noise with injected signal
normalized to 1. ξ2 is computed using three different prescriptions. ξ2std is obtained from RstdðtÞ and zstdðtÞ (label standard). ξ2sym is
computed using RsymðtÞ and zsymðtÞ (label symphony), while ξ2mix uses RmixðtÞ and zsymðtÞ. For this study, we set ACL ¼ 701.

FIG. 2. Values of ξ2 [Eq. (14)] as a function of the absolute value of ðĥþjĥ×Þ, which quantifies the precession and/or HM content of a
signal. Each value is computed on random precessing BBHs, injected into Gaussian noise at a constant SNR. The left and center panels
show SNRs of 20 and 100, respectively, while the right panel tackles the case of zero noise with injected signal normalized to 1. ξ2 is
computed using three different prescriptions. ξ2std is obtained from RstdðtÞ and zstdðtÞ (label standard). ξ2sym is computed using RsymðtÞ and
zsymðtÞ (label symphony), while ξ2mix uses RmixðtÞ and zsymðtÞ. For this study, we set ACL ¼ 701.
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for SNR ¼ 100; in that case, the noise level is lower, and it
must be of the same order of magnitude of the terms
neglected to obtain ξ2mix. We also note that the values ξ2mix
are very well correlated with ρA, thus confirming the
usefulness of the latter to predict the failure of the mixed
signal-consistency test.
The fact that ξ2mix degrades its performance at high SNR

should not be of concern, as the signal-consistency test is
less crucial for the high-SNR region. Indeed, due to the
rarity of very loud signals, it is feasible to perform targeted
follow up and ad hoc studies, hence assessing the signifi-
cance of a trigger with other strategies. For this reason, we
conclude that ξ2mix is likely to perform close to optimality
for the vast majority of the practical applications, and we
recommend its implementation in any pipeline aiming to
search for precessing signals.
In closing, we note that, in the ξ2std computation, we

could have used Eq. (20) instead of Eq. (24) to filter the
data and, similarly, Eq. (22) rather than Eq. (25) to compute
the autocorrelation. Even though in the standard case the
two expressions agree, they do not agree when precessing
and/or HM template are considered. In that case,
a straightforward generalization to precession ĥR22 → ĥþ
and ĥI22 → ĥ× would lead ξ2std to also take into account both
polarization, with potential improvements on the efficacy
of the test. However, as the GstLAL pipeline implements the
test using Eq. (25), we made the choice to describe the
current situation.

2. HM templates

The picture outline above changes when aligned-spin
HM templates are considered in Fig. 3. In this case, the
performance of ξ2std, ξ

2
mix, and ξ2sym are very comparable in

the low-SNR case. In the high-SNR case, ξ2sym retains a
slightly better performance but the use of ξ2mix does not
bring any additional improvement over the standard test
ξ2std. Therefore, if only HMs are considered, our results
indicate that ξ2std already delivers close to optimal results,

suggesting that no updates of the standard signal-
consistency test are required to tackle only the aligned-
spin HM case.

B. When does the standard test fail?

To study the limitation of the standard ξ2, in Fig. 4, we
report the values of ξ2std as a function of the template
parameters. We focus on only the precessing case, as for the
HM case ξ2std Fig. 3 shows a good performance across
the whole parameter space. Our results suggest that the
performance of the test decreases for large values of the
mass ratio, large values of spin, and large spin misalign-
ment. Moreover, precession is more visible for systems
observed with a close to edge-on inclination, i.e., ι ≃ π=2.
These findings align with the literature on the detectability
of precession in BBH [49,72–74], which demonstrates that
precession is more detectable for asymmetric, heavily
spinning edge-on systems. The GW signals emitted by
such heavy precessing acquire a more complicated struc-
ture, which translates into the lack of symmetry between
the two polarizations, which fail to satisfy Eq. (7). As the
standard test relies on such symmetry and uses only the
plus polarization to predict the SNR time series, a large
violation of Eq. (7) also leads straightforwardly to large
values of ξ2std.

C. How does the mixed test perform?

As we turn our attention to the performance of the
approximate mixed signal-consistency test, we are inter-
ested in (i) identifying the regions of the parameter space
where this test provides an advantage over the standard
test and (ii) evaluating the extent of performance loss
compared to the optimal symphony test. We limit our study
to precessing signals, since for aligned-spin HM systems
the three tests show very similar performance.
To answer the first question, we report in Fig. 5 the

ratio ξ2mix=ξ
2
std between the mixed and the standard tests,

evaluated at SNR ¼ 100 as a function of the template

FIG. 4. Performance of the standard test as a function of the parameter space. We color each bin according to the median value of ξ2std,
and we consider the mass ratio q and the polar spin components s1 and θ1 and of the inclination angle ι of the 15000 test BBHs described
in the text.
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parameters. Unsurprisingly the mixed test outperforms the
standard test for systems that show a strong amount of
precession: In these regions of the parameter space, the
standard test shows poor performance, while the mixed test
is able to better predict the behavior of the SNR time series.
To understand the performance loss of the mixed test as

compared to the optimal symphony test, we turn our
attention to Fig. 6, where we report the ratio ξ2mix=ξ

2
sym,

also evaluated at SNR ¼ 100, as a function of the template
parameters. By comparing the performance of the ξ2mix with
ξ2sym, it is striking to note that the mixed test has poor
performance for systems with ι ≃ π

2
. This is somehow

expected, as it is well known that the inclination increases
the precession-induced amplitude and phase modulation on
the waveform. However, it is surprising that the worst
performance occurs mostly for systems with low precession
content, i.e., with s1 ≲ 0.25 and for θ1 ≲ 1. This is puz-
zling, because the precession content of such systems is
expected to be small, due to low spins and mild misalign-
ment. We make the hypothesis that the effect can be
explained by studying the details of the spin twist procedure
[75–77] employed to model the precessing effects in the
approximant in use. According to this procedure, the

waveform is generated with a time-dependent rotation of
the waveform emitted by a corresponding aligned-spin
system. The spin twist might introduce some numerical
noise in the polarizations, even in the aligned-spin limit.
For ι far from π

2
, the numerical noise is expected to be much

smaller than the waveform itself; however, as h× → 0
for ι → π

2
the noise might become dominant and affect

the computation of ĥSðtÞ. A numerical study reported in
Fig. 8 shows that even in the aligned-spin case the
precessing approximant IMRPhenomXP returns a nonzero
value for ρA, while the aligned-spin approximant
IMRPhenomXAS [78] returns the zero value consistent
with the theory. For this reason, as IMRPhenomXP is built
upon IMRPhenomXP, we may conclude that the spin twist
procedure introduces spurious noise into the polarizations.
The numerical noise becomes visible in the time series
ĥAðtÞ only when the cross polarization tends to zero, which
happens for close to aligned-spin systems but not for
heavily precessing systems: That explains why the issue
is seen only for small values of s1. Further investigations
should corroborate this hypothesis.
These limitations for ι ≃ π

2
, most likely due to the

approximant employed, should not be of concern. First

FIG. 5. Comparison between the mixed and the standard signal-consistency tests as a function of the parameter space. We color each
bin according to the median value of ξ2mix=ξ

2
std, and we consider the mass ratio q and the polar spin components s1 and θ1 and of the

inclination angle ι of the 15000 test BBHs described in the text.

FIG. 6. Comparison between the mixed and the standard signal-consistency tests as a function of the parameter space. We color each
bin according to the median value of ξ2mix=ξ

2
sym, and we consider the mass ratio q and the polar spin components s1 and θ1 and of the

inclination angle ι of the 15000 test BBHs described in the text.
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of all, they affect a region of the parameter space well
covered by current searches and for which the standard test
is mostly suitable. Second, future precessing approximants
might solve the pathological behavior observed in Fig. 8,
thus potentially improving the performance of the mixed
test. Finally, we note that ξ2mix differs from ξ2sym by at most a
factor of ∼2. It is left to the developer of a search to
quantify the consequent loss in sensitivity and to consider
whether this is an acceptable loss. Here, we limit ourself to
stress that ξ2mix is more suitable to deal with the heavily
precessing regime and provides a substantial improvement
over the standard test. Moreover, we stress again that the
results discussed refers to signals with a high SNR of 100,
for which a ad hoc followup strategy can be implemented,
thus making the signal-consistency test less decisive.
For signals observed with a more realistic lower SNR,
the impact on the ξ2mix values is much smaller, as shown
in Fig. 2.

In Fig. 7, we report the peak value ρA of the residual time
series ĥAðtÞ as a function of the template parameters. We
observe that the values of ρA are very well correlated with
the values of ξ2mix reported in Fig. 6. This confirms the
utility of ρA as a measure of the performance of the ξ2mix.

D. Which mixed test should we use?

As a final analysis, we compare the performance of the
two approximate tests introduced in Sec. III A, ξ2mix and
ξ2mix−bis. While ξ2mix has a more straightforward definition,
ξ2mix−bis has a simpler expression, and it is written in terms
of only the two polarizations. Depending on the pipeline
details, a user may decide to implement either versions.
For this reason, it is important to check that they give
consistent results. This is done in Fig. 9, where we report a
histogram with the relative error of ξ2mix−bis with respect to
ξ2mix. From the histogram, we learn that in 90% of the cases
ξ2mix−bis has a discrepancy of less than 6% from ξ2mix. Our
results show that the two expressions for the predicted
SNR time series, Eqs. (42) and (45), are mostly equivalent
and they can both successfully employed in a full search,

FIG. 7. Values of ρA as a function of the parameter space. We color each bin according to the median value of ρA, and we consider the
mass ratio q and the polar spin components s1 and θ1 and of the inclination angle ι of the 15000 test BBHs described in the text. ρA is
intended as a measure of the goodness of the mixed signal-consistency test, and, as such, it correlates very well with the values of ξ2mix
(see also Fig. 6).

FIG. 8. Numerical stability of the approximant IMRPhenomXP
in the aligned-spin limit as a function of the inclination angle ι.
We compute the values of ρA and for a BBH with total mass
M ¼ 10M⊙ and mass ratio q ¼ 8 and with spins s1z; s2z ¼ −0.4,
0.6, seen at different inclination angles ι. We repeat the experi-
ment with both the precessing approximant IMRPhenomXP and
the aligned-spin approximant IMRPhenomXAS. While for the
aligned-spin approximant ρA are both zero up to numerical
precision, for the precessing approximant the two quantities
become nonzero as the inclination gets close to ι ≃ π=2. In this
case, since h× → 0, the numerical noise introduced by the spin
twist procedure affects the normalized cross polarization ĥ×.

FIG. 9. Discrepancies between the mixed signal-consistency
test ξ2mix Eq. (42) and a possible alternative definition Eq. (45)
ξ2mix−bis. For the 15000 BBH signals introduced in the text, we

report a histogram with the fractional difference ξ2mix−bis−ξ
2
mix

ξ2mix

between the two consistency tests. The discrepancies between
the two versions are negligible, showing that Eqs. (42) and (45)
are mostly equivalent.
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with the caveats about the validity of the approximation
discussed above.

E. How to choose the autocorrelation length for the test?

In Fig. 10, we study how the three ξ2 tests considered
depend on the choice of the integration window ACL.
For brevity, we consider only the ξ2 values for precessing
injections with SNR ¼ 100, and we choose three different
values of ACL ¼ 351, 701, 1401. Our results show that the
ξ2 values are slightly improved for a longer integration
window, i.e., for a larger ACL. However, the smallness
of the differences suggests that the choice of ACL is not
crucial and that overall the test is robust against different
ACL values. We then recommend to choose ACL ¼ 701,
which seems a satisfying trade-off between test perfor-
mance and computational cost.

F. How does real noise affect the test performance?

We conclude our analysis by studying the performance
of the various signal-consistency tests in real detector’s
noise. This study allows us to study a realistic scenario,
where non-Gaussian artifacts may negatively impact our
ability to predict the SNR time series. To do so, we use the
publicly available data [71] taken during the third observ-
ing run (O3) by the LIGO-Hanford observatory between
GPS times 1245708288 s and 1246756864 s. We use the
data to produce whitened segments of 100 s, where we
inject the test signals introduced above. We then compute
the SNR time series, for both the standard and the
symphony case, and we compute the ξ2 for each injection.
We present our results in Fig. 11, where for each type of
signal-consistency test we report the distribution of ξ2

values computed in both the real and Gaussian noise cases.
As above, we repeat the experiment for signals injected at
an SNR of 10 and 100.
From our results, it is manifest that the bulk of the ξ2

distributions computed for both real and Gaussian noise are
consistent with each other: This confirms the robustness of
the test even in the real noise scenario. Moreover, we note
that our novel symphony produces systematically lower
values of ξ2 as compared to both the mixed and standard
tests, further confirming its optimal performance in the
high-SNR case.
On some occasions, the real noise produces triggers with

large values of ξ2 when compared with the Gaussian noise
case: In these situations, the non-Gaussianities of the
detector’s output introduce artifacts in the SNR time series,
which are not taken into account by our prediction. This
produces the large values of ξ2 observed in Fig. 11. This
behavior is not only expected, but also desired: Indeed,
the ξ2 test is specifically designed to discriminate between
astrophysical triggers and triggers from noise artifacts.
Consequently, large ξ2 values in the presence of noise
artifacts indicate that the test is correctly performing its
intended function.
For triggers at SNR ¼ 100, the standard and mixed

signal-consistency tests agree when computed for Gaussian
and real noise: In this case, the test in Gaussian noise
already produces triggers with large ξ2 values, which are
indistinguishable from the effect of non-Gaussian artifacts.

FIG. 10. Values of ξ2 for different window lengths (ACL) used
for the integral in Eq. (14). For each ACL, we report the values of
ξ2std (blue), ξ2mix (orange), and ξ2sym (green), following the color
code introduced in Figs. 2 and 3. The data refer to 15000
precessing signals injected at SNR ¼ 100.

FIG. 11. Performance in real detector’s noise of the three
signal-consistency tests discussed in the paper. We randomly
select a number of precessing templates as in Fig. 2, and we inject
a corresponding signal into both Gaussian noise and the real
detector’s noise. The detector’s noise was recorded by the LIGO-
Hanford observatory between GPS times 1245708288 s and
1246756864 s. In each histogram, we report the values for the
Gaussian noise (orange) and real noise (blue) case. Each panel
refers to a different type of signal-consistency test and to different
values of the injected SNR.
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V. FINAL REMARKS

We introduce a novel ξ2 signal-consistency test tailored
for the matched-filtering searches of gravitational waves
emitted by precessing and/or higher-mode binary systems.
The test measures the discrepancy between the predicted
and measured SNR time series, as output by any matched-
filtering pipeline which filters the data with a large set
of templates. While the traditional test ξ2std is valid only
for the case of aligned-spin binaries where HM are not
considered, our new ξ2sym is built upon the symphony search
statistics [51], and it does not make any assumption about
the nature of the signal to detect. Our new ξ2sym relies on the
expression Eq. (36) for the predicted matched-filtering
output, which is derived here for the first time.
Thanks to the symmetry of the aligned-spin systems

without HMs, the standard consistency test is conven-
iently factorized as the multiplication between a complex
trigger and a complex template-dependent time series. As
our newly introduced test breaks such simple factoriza-
tion, it requires twice the computational cost to be
performed. To alleviate such cost, we also proposed an
approximation ξ2mix to our new ξ2sym, which, by respecting
the simple factorization for the predicted time series,
requires minimal changes to existing code platforms and
is obtained without extra computation with respect to the
standard test.
We investigated the validity of the two newly introduced

tests ξ2sym and ξ2mix, by performing an extensive study on
signals injected in both Gaussian noise, reaching four main
conclusions.

(i) The newly introduced test ξ2sym has optimal perfor-
mance for precessing and/or HM systems, being able
to optimally predict the SNR time series in the zero
noise case.

(ii) The traditional test ξ2std shows poor performance for
heavily asymmetric systems with misaligned spins.

(iii) The approximate test ξ2mix is very suitable for low-
SNR signals, while it displays some loss of perfor-
mance for systems with high SNR.

(iv) The traditional test ξ2std is very suitable for aligned-
spin systems where HM are considered, showing
similar performances to the optimal ξ2sym.

These same conclusions are obtained by studying the test
performance on real detector’s noise, although with some
outliers with high ξ2 values in correspondence of loud non-
Gaussian transient burst of noise.
The newly introduced test ξ2sym can be implemented in

any matched-filtering pipeline, enhancing the search for
both precessing and aligned-spin signals with HM content.
Additionally, the validation studies presented here will help
the community better understand the limitations of the
traditional ξ2std test, benefiting any matched-filtering pipe-
line aimed at detecting binary black hole signals with
strong precession and/or higher-mode content.

ACKNOWLEDGMENTS

We thank Khun Sang Phukon for the useful remarks.
We are also very grateful to the anonymous referee, who
stimulated a huge improvement upon the first draft of this
work. S. S. and S. C. are supported by the research program
of the Netherlands Organization for Scientific Research
(NWO). S. C. is supported by the National Science
Foundation (NSF) under Grant No. PHY-2309332. The
authors are grateful for computational resources provided
by the LIGO Laboratory and supported by the National
Science Foundation Grants No. PHY-0757058 and
No. PHY-0823459. This material is based upon work
supported by NSF’s LIGO Laboratory which is a major
facility fully funded by the National Science Foundation.

APPENDIX: EXPECTED VALUE OF THE
SYMPHONY SIGNAL-CONSISTENCY TEST

IN GAUSSIAN NOISE

To compute the expected value of the symphony signal-
consistency test in Gaussian noise, we closely follow
the computation presented in Appendix A in Ref. [22].
We begin by noting that, since the two templates ĥþ and ĥ⊥
and the data are real time series, the matched-filtering
output hdjhþ=×iðtÞ is also a real time series:
hdjhþ=⊥iðtÞ ¼ ðdjhþ=⊥ÞðtÞ. Thus, the complex SNR time

series zsymðtÞ ¼ ðdjĥþÞðtÞ þ iðdjĥ×ÞðtÞ can be rewritten as

zsymðtÞ ¼ hdjĥþ þ iĥ⊥iðtÞ: ðA1Þ
We can now compute the expected value of the residual

time series hξ2symðtÞi by taking the ensemble average of
jzðtÞ − RsymðtÞj2:
hξ2symðtÞi ¼ hjzðtÞ − zð0ÞĥSðtÞ − z�ð0ÞĥAðtÞj2i

¼ −2Refhz�ðtÞzð0ÞiĥSðtÞg
− 2RefhzðtÞzð0ÞiĥA�ðtÞg
þ 2Refhzð0Þzð0Þiĥ�AðtÞĥSðtÞg
þ hjzð0Þj2ijĥSðtÞj2 þ hjzð0Þj2ijĥAðtÞj2
þ hjzðtÞj2i: ðA2Þ

To move forward, we need to consider some properties of
Gaussian noise in the frequency domain:

hñ�ðf0ÞñðfÞi ¼ 1

2
SnðfÞδðf − f0Þ; ðA3Þ

hñðf0ÞñðfÞi ¼ 0: ðA4Þ
Using these two properties, it is easy to show that

hjzðtÞj2i ¼ hjzð0Þj2i ¼ 2; ðA5Þ
hzð0Þzð0Þi ¼ hzðtÞzð0Þi ¼ 0 ðA6Þ
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by computing the relevant integrals. Moreover, we can
easily compute hz�ð0ÞzðtÞi using the definition of scalar
product Eq. (8):

hz�ð0ÞzðtÞi

¼ 4

Z
∞

−∞

Z
∞

−∞
dfdf0

ñ�ðf0ÞñðfÞ
Sðf0ÞSnðfÞ

× ðĥ�þ − iĥ�⊥Þðĥþ þ iĥ⊥Þe−i2πft

¼ 2

Z
∞

−∞
df

ĥ�þĥþ þ ĥ�⊥ĥ⊥ þ iðĥ�þĥ⊥ − ĥ�⊥ĥþÞ
SnðfÞ

e−i2πft

¼ 2ĥSðtÞ: ðA7Þ

Putting everything together, we obtain a simple expres-
sion for hξ2symðtÞi:

hξ2symðtÞi ¼ 2 − 2jĥSðtÞj2 þ 2jĥAðtÞj2; ðA8Þ

which can be used to normalize the symphony ξ2 test.
Note that, in the standard limit, we have ĥAðtÞ → 0 and
ĥSðtÞ → hĥR22jĥR22iðtÞ; hence, the two expected values
hξ2ðtÞi agree.

[1] J. Aasi et al., Advanced LIGO, Classical Quantum Gravity
32, 074001 (2015).

[2] F. Acernese et al., Advanced Virgo: A second-generation
interferometric gravitational wave detector, Classical Quan-
tum Gravity 32, 024001 (2015).

[3] T. Akutsu et al., Overview of KAGRA: Detector design and
construction history, Prog. Theor. Exp. Phys. 2021, 05A101
(2020).

[4] B. P. Abbott et al., GWTC-1: A gravitational-wave transient
catalog of compact binary mergers observed by LIGO and
Virgo during the first and second observing runs, Phys. Rev.
X 9, 031040 (2019).

[5] R. Abbott et al., GWTC-2: Compact binary coalescences
observed by LIGO and Virgo during the first half of the third
observing run, Phys. Rev. X 11, 021053 (2021).

[6] R. Abbott et al., GWTC-2.1: Deep extended catalog of
compact binary coalescences observed by LIGO and Virgo
during the first half of the third observing run, Phys. Rev. D
109, 022001 (2024).

[7] R. Abbott et al., GWTC-3: Compact binary coalescences
observed by LIGO and Virgo during the second part
of the third observing run, Phys. Rev. X 13, 041039
(2023).

[8] B. S. Sathyaprakash and S. V. Dhurandhar, Choice of filters
for the detection of gravitational waves from coalescing
binaries, Phys. Rev. D 44, 3819 (1991).

[9] S. V. Dhurandhar and B. S. Sathyaprakash, Choice of filters
for the detection of gravitational waves from coalescing
binaries. 2. Detection in colored noise, Phys. Rev. D 49,
1707 (1994).

[10] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and
J. D. E. Creighton, FINDCHIRP: An algorithm for detection
of gravitational waves from inspiraling compact binaries,
Phys. Rev. D 85, 122006 (2012).

[11] K. Cannon et al., Toward early-warning detection of
gravitational waves from compact binary coalescence,
Astrophys. J. 748, 136 (2012).

[12] S. Babak et al., Searching for gravitational waves from
binary coalescence, Phys. Rev. D 87, 024033 (2013).

[13] S. Klimenko, I. Yakushin, A. Mercer, and G. Mitselmakher,
Coherent method for detection of gravitational wave bursts,
Classical Quantum Gravity 25, 114029 (2008).

[14] V. Necula, S. Klimenko, and G. Mitselmakher, Transient
analysis with fast Wilson-Daubechies time-frequency trans-
form, J. Phys. Conf. Ser. 363, 012032 (2012).

[15] M. Drago et al., Coherent WaveBurst, a pipeline for
unmodeled gravitational-wave data analysis, arXiv:2006
.12604.

[16] B. P. Abbott et al., GW151226: Observation of gravitational
waves from a 22-solar-mass binary black hole coalescence,
Phys. Rev. Lett. 116, 241103 (2016).

[17] B. P. Abbott et al., GW170817: Observation of gravitational
waves from a binary neutron star inspiral, Phys. Rev. Lett.
119, 161101 (2017).

[18] S. Privitera, S. R. P. Mohapatra, P. Ajith, K. Cannon, N.
Fotopoulos, M. A. Frei, C. Hanna, A. J. Weinstein, and J. T.
Whelan, Improving the sensitivity of a search for coalescing
binary black holes with nonprecessing spins in gravitational
wave data, Phys. Rev. D 89, 024003 (2014).

[19] T. Adams, D. Buskulic, V. Germain, G. M. Guidi, F. Marion,
M. Montani, B. Mours, F. Piergiovanni, and G. Wang, Low-
latency analysis pipeline for compact binary coalescences in
the advanced gravitational wave detector era, Classical
Quantum Gravity 33, 175012 (2016).

[20] S. A. Usman et al., The PyCBC search for gravitational waves
from compact binary coalescence, Classical Quantum
Gravity 33, 215004 (2016).

[21] C. Capano, I. Harry, S. Privitera, and A. Buonanno,
Implementing a search for gravitational waves from binary
black holes with nonprecessing spin, Phys. Rev. D 93,
124007 (2016).

[22] C. Messick et al., Analysis framework for the prompt
discovery of compact binary mergers in gravitational-wave
data, Phys. Rev. D 95, 042001 (2017).

[23] A. H. Nitz, T. Dent, T. Dal Canton, S. Fairhurst, and D. A.
Brown, Detecting binary compact-object mergers with gravi-
tational waves: Understanding and Improving the sensitivity
of the PyCBC search, Astrophys. J. 849, 118 (2017).

STEFANO SCHMIDT and SARAH CAUDILL PHYS. REV. D 110, 023042 (2024)

023042-14

https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1093/ptep/ptaa125
https://doi.org/10.1093/ptep/ptaa125
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://doi.org/10.1103/PhysRevD.109.022001
https://doi.org/10.1103/PhysRevD.109.022001
https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1103/PhysRevD.44.3819
https://doi.org/10.1103/PhysRevD.49.1707
https://doi.org/10.1103/PhysRevD.49.1707
https://doi.org/10.1103/PhysRevD.85.122006
https://doi.org/10.1088/0004-637X/748/2/136
https://doi.org/10.1103/PhysRevD.87.024033
https://doi.org/10.1088/0264-9381/25/11/114029
https://doi.org/10.1088/1742-6596/363/1/012032
https://arXiv.org/abs/2006.12604
https://arXiv.org/abs/2006.12604
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevD.89.024003
https://doi.org/10.1088/0264-9381/33/17/175012
https://doi.org/10.1088/0264-9381/33/17/175012
https://doi.org/10.1088/0264-9381/33/21/215004
https://doi.org/10.1088/0264-9381/33/21/215004
https://doi.org/10.1103/PhysRevD.93.124007
https://doi.org/10.1103/PhysRevD.93.124007
https://doi.org/10.1103/PhysRevD.95.042001
https://doi.org/10.3847/1538-4357/aa8f50


[24] S. Sachdev et al., The GstLAL search analysis methods for
compact binary mergers in Advanced LIGO’s second and
Advanced Virgo’s first observing runs, arXiv:1901.08580.

[25] C. Hanna et al., Fast evaluation of multidetector consistency
for real-time gravitational wave searches, Phys. Rev. D 101,
022003 (2020).

[26] F. Aubin et al., The MBTA pipeline for detecting compact
binary coalescences in the third LIGO–Virgo observing run,
Classical Quantum Gravity 38, 095004 (2021).

[27] G. S. Davies, T. Dent, M. Tápai, I. Harry, C. McIsaac, and
A. H. Nitz, Extending the PyCBC search for gravitational
waves from compact binary mergers to a global network,
Phys. Rev. D 102, 022004 (2020).

[28] Q. Chu et al., SPIIR online coherent pipeline to search for
gravitational waves from compact binary coalescences,
Phys. Rev. D 105, 024023 (2022).

[29] B. Ewing et al., Performance of the low-latency GstLAL
inspiral search towards LIGO, Virgo, and KAGRA’s fourth
observing run, Phys. Rev. D 109, 042008 (2023).

[30] L. Blackburn et al., The LSC Glitch Group: Monitoring
noise transients during the fifth LIGO science run, Classical
Quantum Gravity 25, 184004 (2008).

[31] B. P. Abbott et al., Characterization of transient noise
in Advanced LIGO relevant to gravitational wave signal
GW150914, Classical Quantum Gravity 33, 134001
(2016).

[32] M. Cabero et al., Blip glitches in Advanced LIGO data,
Classical Quantum Gravity 36, 155010 (2019).

[33] S. Soni et al., Reducing scattered light in LIGO’s third
observing run, Classical Quantum Gravity 38, 025016
(2020).

[34] D. Davis et al., LIGO detector characterization in the second
and third observing runs, Classical Quantum Gravity 38,
135014 (2021).

[35] B. Allen, χ2 time-frequency discriminator for gravitational
wave detection, Phys. Rev. D 71, 062001 (2005).

[36] P. Shawhan and E. Ochsner, A new waveform consistency
test for gravitational wave inspiral searches, Classical
Quantum Gravity 21, S1757 (2004).

[37] K. Cannon, C. Hanna, and J. Peoples, Likelihood-ratio
ranking statistic for compact binary coalescence candidates
with rate estimation, arXiv:1504.04632.

[38] A. H. Nitz, Distinguishing short duration noise transients in
LIGO data to improve the PyCBC search for gravitational
waves from high mass binary black hole mergers, Classical
Quantum Gravity 35, 035016 (2018).

[39] S. Dhurandhar, A. Gupta, B. Gadre, and S. Bose, A unified
approach to χ2 discriminators for searches of gravitational
waves from compact binary coalescences, Phys. Rev. D 96,
103018 (2017).

[40] V. Gayathri, P. Bacon, A. Pai, E. Chassande-Mottin, F.
Salemi, and G. Vedovato, Astrophysical signal consistency
test adapted for gravitational-wave transient searches,
Phys. Rev. D 100, 124022 (2019).

[41] P. Godwin et al., Incorporation of statistical data quality
information into the GstLAL search analysis, arXiv:2010
.15282.

[42] C. McIsaac and I. Harry, Using machine learning to
autotune chi-squared tests for gravitational wave searches,
Phys. Rev. D 105, 104056 (2022).

[43] L. Tsukada et al., Improved ranking statistics of the
GstLAL inspiral search for compact binary coalescences,
Phys. Rev. D 108, 043004 (2023).

[44] T. Dal Canton, A. P. Lundgren, and A. B. Nielsen, Impact of
precession on aligned-spin searches for neutron-star–black-
hole binaries, Phys. Rev. D 91, 062010 (2015).

[45] I. W. Harry, A. H. Nitz, D. A. Brown, A. P. Lundgren, E.
Ochsner, and D. Keppel, Investigating the effect of pre-
cession on searches for neutron-star–black-hole binaries
with Advanced LIGO, Phys. Rev. D 89, 024010 (2014).

[46] S. Fairhurst, R. Green, M. Hannam, and C. Hoy, When will
we observe binary black holes precessing?, Phys. Rev. D
102, 041302 (2020).

[47] N. Indik, K. Haris, T. Dal Canton, H. Fehrmann, B.
Krishnan, A. Lundgren, A. B. Nielsen, and A. Pai, Stochas-
tic template bank for gravitational wave searches for
precessing neutron-star–black-hole coalescence events,
Phys. Rev. D 95, 064056 (2017).

[48] I. Harry, S. Privitera, A. Bohé, and A. Buonanno, Searching
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