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We consider a light scalar dark matter candidate with mass in the GeV range whose p-wave annihilation
is enhanced through a Breit-Wigner resonance. The annihilation actually proceeds in the s-channel via a
dark photon mediator whose mass is nearly equal to the masses of the incoming particles. We compute the
temperature at which kinetic decoupling between dark matter and the primordial plasma occurs and show
that including the effect of kinetic decoupling can reduce the dark matter relic density by orders of
magnitude. For typical scalar masses ranging from 200 MeV to 5 GeV, we determine the range of values
allowed for the dark photon couplings to the scalar and to the standard model particles after requiring the
relic density to be in agreement with the value extracted from cosmological observations. We then show
that μ and y-distortions of the cosmic microwave background spectrum and x-ray data from XMM-Newton
strongly constrain the model and rule out the region where the dark matter annihilation cross section is
strongly enhanced at small dispersion velocities. Constraints from direct detection searches and from
accelerator searches for dark photons offer complementary probes of the model.
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I. INTRODUCTION

Searches for dark matter (DM) have for the last decades
concentrated on a new weakly interacting particle at the
electroweak scale. This was partly motivated by theoretical
preferences for new physics at the TeV scale and by the fact
that the freeze-out mechanism for a new weakly interacting
massive particle (WIMP) at the electroweak scale naturally
leads to the value for the DM relic density extracted
from observations [1,2]. The lack of signals in (in-)direct
detection or at colliders for new particles [3–5] aroused
interest for a wider range of DM candidates of different
scales and/or interaction strengths. In particular, on the
theoretical side a plethora of DMmodels have emerged that
feature the possibility of lighter DM, around the GeV scale
or below [6–10]. These candidates largely escape the
strongest constraints from direct detection since the mini-
mum recoil energy they can impart to the nucleus falls
below the detector threshold [11–13]. Efforts to improve

the sensitivity for direct detection of light DM are being
pursued by taking advantage of scattering on electrons or
single phonon excitations in crystals [14]. Indirect searches
for DM annihilation in the galactic halo or in dwarf
spheroidal galaxies (dSPhs) are also mostly sensitive to
DM masses above a few GeVs [15–17]. However, WIMPs
in the MeV-GeV scale can be constrained from cosmic-ray
electrons and positrons using Vogager 1 and AMS-02
data [18,19]. Moreover, light DM annihilating into eþe−
pairs will leave a signature in x-ray when the electron-
positrons scatter on the low-energy photons in the Galaxy.
It was shown recently that x-ray data from XMM-Newton
can be used to constrain light DM [20,21].
Strong constraints on light DM come from cosmology.

DM annihilation deposits electromagnetic energy in the
primordial plasma and impacts the anisotropies of the
cosmic microwave background (CMB) [22]. The precise
measurements of the CMB by the PLANCK satellite thus
put robust constraints on DM annihilation cross sections
into photons or charged particles. These constraints typi-
cally exclude the cross section required to achieve the
measured relic density when the DM mass lies below
approximately 10 GeVunder the assumption of s-wave DM
annihilation [23]. However, such constraints are escaped
easily if DM annihilation is p-wave, indeed the typical
DM velocity during recombination (v ≈ 10−8c) is much
smaller than the typical velocity at freeze-out, leading to a
strong suppression of the cross section at recombination.
The energy injected in the primordial plasma from DM
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annihilations can also induce deviations from the pure
black-body spectrum of the CMB. Depending on the value
of the redshift at which the energy injection occurs, the
dominant effect is either μ-distortion or, at lower redshifts,
y-distortion [24]. FIRAS [25,26] has set limits on both
types of distortions resulting in important constraints for
p-wave annihilating DM as we will see in the later sections.
When DM annihilation is dominated by p-wave, the

cross section for DM annihilation in galaxies is also
suppressed relative to the one at freeze-out, since the
DM velocity in the galactic halo (v ≈ 10−3c) or in dSphs
(v ≈ 10−4c) is also much smaller than at freeze-out. To have
the possibility of a significant signal in indirect detection,
one therefore needs to boost the DM annihilation cross
section with respect to its value in the early Universe. The
typical “boost” scenario occurs when DM annihilation
proceeds through a s-channel exchange of a mediator (X)
near resonance. The cross section then strongly depends
on the kinetic energy of the DM particles. When the mass
of the mediator is larger than that of a pair of DM particles,
mx > 2mϕ, and for a small mass splitting, the maximal
enhancement is found at small relative velocities. This
gives rise to a Breit-Wigner resonance (BW) enhancement
[27,28]. The boost from BW was exploited to generate
large cross sections for DM annihilation in galaxies
for both sub-GeV [29,30] or electroweak scale DM in a
variety of models featuring s-wave [31–33] or p-wave
annihilation [34].
In this paper, we revisit the case of p-wave dominated

dark matter annihilation for DM at the GeV scale in
scenarios with Breit-Wigner enhancement. For the theo-
retical framework, we consider a simplified model
with a scalar DM coupled to a light vector particle, a
“dark photon” [35–37], (for an analysis of fermionic DM
see [34]). We first calculate the DM relic density corre-
sponding to annihilation near a s-channel resonance, and
we examine the dependence of DM annihilation on the
DM dispersion velocity. This leads to orders of magnitude
variations in the relic density [38,39]. We define the
parameter space allowed by the relic density observations.
For a given DM mass nearly half the dark photon mass, the
relevant parameters are the couplings of the dark photon to
DM and to standard model (SM) particles. We also include
constraints on the dark photon coupling from collider and
beam dump experiments [36]. We find that these offer
complementary probes of the light DM scenario.
This paper is organized as follows. In Sec. II, we describe

the model considered and present the DM annihilation
cross section and its dependence on the DM dispersion
velocity and on the couplings of the dark photon. The relic
abundance calculation is discussed in Sec. III including
the effect of kinetic decoupling. In Sec. IV we calculate the
allowed parameter space after taking into account the relic
density constraint as well as constraints from CMB μ and
y-distortions and indirect detection constraints. Section V

contains our conclusions. The Appendices contain more
details on DM annihilation and on DM thermalization that
are required to determine when kinetic decoupling occurs.
To help readers find what might be of interest to them, we
summarize hereafter the salient results of our work.

(i) We examine the behavior of the annihilation cross
section hσannvi near a resonance as a function of DM
dispersion velocity (Sec. II and Appendix A).

(ii) We derive approximate solutions for the evolution of
the cosmological DM abundance (Sec. III A).

(iii) We take into account kinetic decoupling assuming
that DM is thermally coupled with itself (Sec. III D
and Appendix B).

(iv) We determine the parameter space allowed by the
relic density constraint (Sec. IVA).

(v) We impose constraints from DM annihilation in
the Milky Way and from DM distorting the CMB
(Secs. IV B and IV C).

(vi) We set constraints from DM direct detection and
colliders (Sec. IV D).

(vii) We find that several regions of parameter space
evade all the constraints. Summary plots are given in
Sec. IV D 3.

II. THE GENERIC MODEL

The Lagrangian which we consider describes a vector
boson portal, between DM and the SM sector, in the
presence of a Breit-Wigner resonance which may enhance
DM annihilations. This Lagrangian contains the couplings
of a new photon A0μ, dubbed dark, to ordinary fermions f
and to a new complex scalar field ϕ which plays the role of
the DM candidate. The scalars ϕ and their anti-partners ϕ̄
are charged under the new local gauge group U0ð1Þ whose
associated gauge boson is the dark photon A0μ. The model
to be explored is described by the interaction Lagrangian

Lint ¼ −fA0
μJ

μ
ϕ ≡ igxA0μðϕ†

∂μϕ − ∂μϕ
†ϕÞg − ϵeQff̄=A0f:

ð2:1Þ

The DM species ϕ and ϕ̄ interact weakly on short distances
through the exchange of the massive vector boson A0μ.
They respectively carry the dark charges þgx and −gx. The
hidden sector has a broken U0ð1Þ symmetry, which facil-
itates the rotation between true Aμ and dark A0μ photon
states. This explains the presence of the mixing angle ϵ
with which the dark photon couples to ordinary fermions in
the second term of the right-hand side of the previous
equation. To stabilise the DM, we further impose a discrete
Z2 symmetry, where we assume that ϕ and ϕ̄ are odd
under Z2, whereas A0

μ and all other SM particles are even
under the symmetry.1

1We neglect interaction of the type ϕϕ†H2, where H is the SM
Higgs doublet.
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We can readily extract from the Lagrangian (2.1) the
cross section of the annihilation of DM species into
ordinary fermions through the reaction

ϕþ ϕ̄ → f þ f̄: ð2:2Þ

The annihilation is mediated by the dark photon A0μ
exchanged in the s-channel. Let us denote by vrel the
difference vϕ − vϕ̄ between the ϕ and ϕ̄ velocities. A
straightforward calculation leads to

σannv¼
g2xϵ2e2Q̃

2

6π

�
m2

ϕv
2

ð4m2
ϕ−m2

xþm2
ϕv

2Þ2þm2
xΓ2

x

�
; ð2:3Þ

where v is the norm kvrelk of the velocity difference vrel.
The masses of the DM scalars ϕ and ϕ̄, and of the dark
photon, are respectively denoted bymϕ and mx, while Γx is
the decay width of the dark photon. The effective dimen-
sionless charge Q̃ is defined by

Q̃2 ¼
X
f

�
1 −

4m2
f

s

�1=2�
1þ 2m2

f

s

�
Q2

f; ð2:4Þ

where the sum runs over the fermions f produced by the
annihilation, i.e., the fermions whose mass mf is less thanffiffiffi
s

p
=2. The incoming species ϕ and ϕ̄ are nonrelativistic,

i.e., v is very small compared to the speed of light. As a
consequence, the square of the center-of-mass energy

ffiffiffi
s

p
reduces to

s ¼ 4m2
ϕ þm2

ϕv
2; ð2:5Þ

and, in the nonrelativistic limit, the effective charge Q̃ can
be defined as

Q̃2 ¼
X
f

�
1 −

m2
f

m2
ϕ

�1=2�
1þ m2

f

2m2
ϕ

�
Q2

f with mf ≤ mϕ:

ð2:6Þ

For the relic density computation, we are interested
in the product σannv averaged over the velocity distributions
of ϕ and ϕ̄ species. There is no asymmetry between these
components and the velocity distributions for vϕ and vϕ̄ are
taken identical. The thermal average of σannv is defined as

hσannvi ¼
ZZ

d3vϕd3vϕ̄fðvϕÞfðvϕ̄Þσannv: ð2:7Þ

As discussed in Sec. III, we assume hereafter that velocities
are distributed according to a Maxwellian distribution

fðvÞ ¼ ð2πΣ2Þ−3=2 expð−v2=2Σ2Þ; ð2:8Þ

where Σ is the one-dimensional dispersion velocity. The
integral (2.7) can be carried out analytically by swapping
the velocities vϕ and vϕ̄ for the variables

vG ¼ vϕ þ vϕ̄

2
and vrel ¼ vϕ − vϕ̄; ð2:9Þ

and by noticing that d3vϕd3vϕ̄ ≡ d3vGd3vrel. Integrating
out the barycentric velocity vG yields the thermally
averaged cross section as follows

hσannvi ¼
g2xϵ2e2Q̃

2

12π

�
Jða; bÞ
m2

ϕΣ2

�
; ð2:10Þ

The parameters a and b are defined as

a ¼ −
m2

x

4m2
ϕ

Σ2
0

Σ2
and b ¼ m2

x

4m2
ϕ

Λ2
0

Σ2
ð2:11Þ

where

Σ2
0 ≡ 1 − 4m2

ϕ=m
2
x while Λ2

0 ≡ Γx=mx: ð2:12Þ

They are related to the function J through the integrals

Jða; bÞ ¼ 2ffiffiffi
π

p
Z þ∞

0

u4e−u
2

ðu2 þ aÞ2 þ b2
du

¼ 1ffiffiffi
π

p
Z þ∞

0

t3=2e−t

ðtþ aÞ2 þ b2
dt: ð2:13Þ

The dark photon decay width Γx can be expressed as

Γx ¼
mx

12π

�
g2x
4
ð1 − 4m2

ϕ=m
2
xÞ3=2 þ ϵ2e2Q02

�

¼ mx

12π

�
g2x
4
Σ3
0 þ ϵ2e2Q02

�
: ð2:14Þ

The terms inside brackets respectively refer to decays into
ϕϕ̄ pairs and into fermions. The new effective dimension-
less charge Q0 is defined as

Q02¼
X
f

�
1−

4m2
f

m2
x

�1=2�
1þ2m2

f

m2
x

�
Q2

f with mf ≤mx=2:

ð2:15Þ

In our parameter region of interest,mx is slightly larger than
2mϕ and Q0 boils down to the charge Q̃ as defined in
relation (2.6).
From the definitions of a and b, it is obvious that the sign

of a determines whether annihilation takes place above or
below the resonance. For both cases, however, we can
obtain interesting approximations while computing Jða; bÞ
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and eventually, hσannvi. The details regarding this are given
in Appendix A.
In this work, we concentrate on the case where the dark

photon massmx is larger than 2mϕ. Figure 1 shows how the
annihilation cross section hσannvi depends on the one-
dimensional dispersion velocity Σ when a < 0, i.e., when
the mass gap Δ ¼ mx − 2mϕ is positive. As long as Δ is
small with respect to mϕ, the mass degeneracy parameter
Σ2
0 is nearly equal to the ratio Δ=mϕ. Substituting Σ from

Eq. (2.11) into relation (2.10), one obtains

hσannvi ¼
g2xϵ2e2Q̃

2

3πm2
xΣ2

0

× fjajJða; bÞg; ð2:16Þ

In Fig. 1, we plot the term inside brackets as a function of
1=

ffiffiffiffiffiffijajp ≡ ð2mϕ=mxÞðΣ=Σ0Þ. For Λ0 values that are large
with respect to Σ0, i.e., when Γx=2 is larger than the mass
gap Δ, the cross section is p-wave suppressed at low
velocities and increases like Σ2. It reaches its maximum for
a velocity of order Λ0 above which it decreases like Σ−2.
At high velocities, hσannvi behaves actually as if it was
Sommerfeld enhanced. The model has this intriguing and
fascinating property to predict together, albeit in different

velocity regimes, a p-wave suppression as well as a
Sommerfeld-like behavior. For values of Λ0 small with
respect to Σ0, i.e., when Γx=2 is smaller than the mass
gap Δ, a Breit-Wigner resonance comes also into play,
which increases dramatically the annihilation cross section
as featured by the bumps of Fig. 1. The maximum is
reached at a velocity of ΣM ¼ ffiffiffiffiffiffiffiffi

2=3
p ðmx=2mϕÞΣ0, above

which hσannvi behaves as Σ−3. At low and high velocities,
the annihilation cross section scales respectively as Σ2

(p-wave) and Σ−2 (high-velocity) like in the large Λ0 case.

III. SCALARDARKMATTER RELIC ABUNDANCE

From now on, we will assume that scalar DM is in
thermal and chemical equilibrium with the primordial
plasma when its temperature is of order the DM mass
mϕ. This is the starting point of our analysis. Going beyond
this assumption would require the knowledge of the
complete theory in order to determine the thermal behavior
of DM at much earlier times than those considered here.
Because there is potentially an infinite number of such
theories, the scope of this article is to focus on the cosmo-
logical consequences of a vector boson portal with Breit-
Wigner resonance as encoded by the Lagrangian (2.1).
The model has only a few parameters, namely the dark
charge gx, the mixing angle ϵ and the masses mϕ and mx,
but its phenomenology is already very rich and subtle as we
shall see.
Assuming that scalar DM is in thermodynamical equi-

librium with the SM plasma while becoming nonrelativistic
is quite conceivable. To commence, in the portion of the
parameter space where the couplings gx and ϵ are not too
small, scalar DM collides upon, and annihilates into, SM
fermions so efficiently that thermodynamical equilibrium
ensues at early times. If this is not so, we can assume that
the kinetic mixing ϵ between the visible and dark photons
is triggered by radiative corrections implying loops of
heavy dark species Ψ and Ψ0 with opposite electric or dark
charges. At very early times, these particles are relativistic
and interact efficiently with both scalar DM and SM
species through collisions and annihilations, allowing for
the coupling between these components. Notice also that
the bulk of DM annihilation takes place well after freeze-
out and is most efficient at late times, when the Breit-
Wigner resonance becomes active. The DM density at
freeze-out turns out not to be relevant to compute the relic
abundance. This alleviates the problem of determining the
actual thermodynamical state of DM before freeze-out.
We will also assume that scalar DM reaches at all times

inner thermal equilibrium so that its velocity distribution
is well described by a Maxwell-Boltzmann law. Such a
condition could be established through collisions of ϕ
and ϕ̄ particles with SM fermions, provided that energy is
transferred sufficiently rapidly between these components.
But this turns out not to be the case in a large portion of the

FIG. 1. The variation of the annihilation cross section as a
function of the dispersion velocity Σ for different values of
b=jaj ¼ Λ2

0=Σ2
0. On the horizontal axis, the rescaled variable

ð2mϕ=mxÞðΣ=Σ0Þ has been used. When Λ0 is smaller than Σ0, the
cross section is enhanced by a Breit-Wigner resonance. Above a
velocity of order Σ0, where its peak value is reached, hσannvi
drops like Σ−3 to reach the asymptotic behavior Σ−2. Below the
peak, the p-wave annihilation regime sets in and hσannvi is
proportional to Σ2. For large values of Λ0 with respect to Σ0, the
two asymptotic regimes only appear.
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parameter space where DM kinetic decoupling occurs. To
simplify an already intricate analysis, we have assumed that
the ϕ and ϕ̄ populations reach thermal equilibrium through
mutual collisions. This allows us to define a common
temperature Tϕ for scalar DM which may be different from
the plasma temperature T after kinetic decoupling has
occurred. Notice that if the dark charge gx is not too small,
DM scalars ϕ and ϕ̄ could efficiently collide upon each
other through the exchange in the t-channel of a virtual
dark photon. DM needs to be dense enough though.
Alternatively, a self-coupling à la ϕ4 could also lead to
such a behavior. The annihilation cross section of scalar
DM into SM species can then be averaged over a Maxwell-
Boltzmann distribution of DM velocities, yielding the
result of Sec. II.
In this section, we derive the relic abundance Ωϕh2 of

scalar DM as a function of the parameters of the model. In
Sec. III A, we discuss the master equation that drives DM
freeze-out and explain how we solve it. We then present
numerical results together with approximate solutions that
help understanding how Ωϕh2 depends on the mass
degeneracy parameter Σ2

0. We find three different regimes.
In Sec. III C, we assume that scalar DM stays in thermal
contact with the SM plasma throughout the entire freeze-
out process. This assumption is abandoned in Sec. III D
where we determine when scalar DM decouples from
kinetic equilibrium and analyse how this strongly affects
the relic abundance Ωϕh2.

A. Calculation of the relic abundance Ωϕh2

The scalar DM particles ϕ and ϕ̄ can annihilate into, and
be produced from, SM fermions through the process

ϕþ ϕ̄⇌f þ f̄: ð3:1Þ

Should direct and reverse reactions be fast enough, a
chemical equilibrium is established. When the plasma
temperature T drops below the DM mass mϕ, ϕϕ̄ pairs
are less and less easily produced. DM still goes on
annihilating until it is so depleted that its codensity remains
constant until today. We assume that there is no asymmetry
between the ϕ and ϕ̄ populations and denote by n their
densities nϕ ¼ nϕ̄. The evolution of the density n with time
t is described by the freeze-out equation

dn
dt

¼ −3Hn − hσannvin2 þ hσannvin2eq; ð3:2Þ

where H is the expansion rate of the universe. In its right-
hand side, the three terms respectively stand for the dilution
resulting from the expansion of the universe, the annihi-
lations of ϕϕ̄ pairs and the back reactions which regenerate
scalar DM from lighter species. We have assumed detailed
balance for this last process, hence the density neq as fixed

by the thermodynamical equilibrium. It is convenient to
deal with the codensity ñ, i.e., the density inside a volume
that expands with the expanding universe. We define it as
the ratio

ñ ¼ n
θ3

; ð3:3Þ

where θ is a fictitious temperature which decreases as the
inverse a−1 of the scale factor a of the universe, and which
is normalized in such a way that it is equal to the plasma
temperature TF at freeze-out. Notice that since the entropy
of the plasma is constant in time, the factor θ3 is propor-
tional to the entropy density s ¼ ð2π2=45ÞheffT3, where
heffðTÞ is the effective number of entropic degrees of
freedom. Our codensity ñ is similar to the usual definition
n=s used in the literature. Relation (3.2) can be recast into

dñ
dt

þ fhσannvingñ ¼ hσannviθ3ñ2eq: ð3:4Þ

This form allows for a simple interpretation of freeze-out
as a mere relaxation process during which ñ runs after its
chemical equilibrium ñeq and eventually fails to reach it.
The rate ΓF

rel ≡ hσannvin at which ñ relaxes toward ñeq is
actually the annihilation rate. The right-hand side term of
relation (3.4), i.e., the target which represents chemical
equilibrium, evolves with the typical rate

ΓF
eq ≡

���� ddt ln fhσannviθ3ñ2eqg
����: ð3:5Þ

A straightforward calculation yields

ΓF
eq ¼ H

�
2x −

d lnhσannvi
d ln x

−
d ln heff
d lnT

���
1þ 1

3

d ln heff
d lnT

�

∼ 2xH; ð3:6Þ

where the parameter x denotes the DM mass to plasma
temperature ratio mϕ=T. The Hubble expansion rate H is
related to the plasma temperature through

H ¼ ð2πÞ3=2
3

ffiffiffiffiffi
10

p ffiffiffiffiffiffiffi
geff

p T2

MP
; ð3:7Þ

where MP is the Planck mass and geffðTÞ is the effective
number of energetic degrees of freedom of the plasma. In
deriving (3.6), we have noticed that d ln θ=dt≡ −H and
used the identity

d ln θ
d lnT

¼ 1þ 1

3

d ln heff
d lnT

: ð3:8Þ

The derivative of the annihilation cross section with respect
to the temperature depends on the one-dimensional DM
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dispersion velocity Σ. In the high-velocity regime where Σ
is well above Σ0, the cross section hσannvi scales as 1=Σ2,
hence a value for d lnhσannvi=d ln x of 1. In the Breit-
Wigner enhancement regime just above Σ0, this derivative
reaches 3=2 while in the low-velocity p-wave regime, it
decreases down to −1.
At high temperature, the relaxation rate ΓF

rel is
much larger than the evolution rate ΓF

eq. The chemical
equilibrium (3.1) is established. The DM density n relaxes
toward its equilibrium value neq much faster than the latter
evolves. As time goes on, the relaxation/annihilation rate
ΓF
rel decreases very rapidly. It actually drops exponentially

with plasma temperature insofar as it is proportional to the
DM density

neq ¼ T3ðx=2πÞ3=2 expð−xÞ: ð3:9Þ

The rate ΓF
eq decreases approximately like T, at a much

slower pace than ΓF
rel ∝ expð−mϕ=TÞ. At some critical

temperature TF, both rates are equal. Freeze-out occurs.
Scalar DM decouples from chemical equilibrium insofar as
its density n no longer relaxes toward neq. The freeze-out
point xF ≡mϕ=TF satisfies the equality

ΓF
relðxFÞ ¼ ΓF

eqðxFÞ: ð3:10Þ

This equation must be solved numerically for each set of
model parameters, i.e., once the masses mϕ and mx, the
coupling gx and the mixing angle ϵ are given. Expressions
(2.10), (2.11), and (2.13) are used to calculate the average
annihilation cross section hσannvi. Assuming that scalar
DM is in thermodynamical equilibrium with the primordial
plasma until it becomes nonrelativistic imposes that xF is
larger than 1. We checked that the solution of Eq. (3.10)
actually fulfills this condition in a large portion of param-
eter space, and noticeably in the domain that survives our
cosmological analysis.
After freeze-out, the density neq vanishes rapidly and so

does the right-hand side of relation (3.4). We can neglect it
in deriving the final DM abundance, especially as most of
the annihilation takes place well after freeze-out. The DM
codensity today ñ0 is given by the relation

1

ñ0
¼ 1

ñF
þ Iann where Iann ≡

Z
t0

tF

hσannviθ3dt: ð3:11Þ

The codensity at freeze-out is ñF ≡ ñeðTFÞ. Equation (3.4)
is integrated without its right-hand side from time tF, at
which freeze-out occurs, until the present age t0 of the
universe. The annihilation integral I ann may be conven-
iently recast in terms of an integral over the parameter
y ¼ T=mϕ, where T is the SM plasma temperature. This
yields

Iann ¼
3

ffiffiffiffiffi
10

p

ð2πÞ3=2
Z

yF

y0

dy

�hσannviMPmϕffiffiffiffiffiffiffiffiffiffiffiffiffiffi
geffðTÞ

p
��

θ3

T3

�

×

�
1þ 1

3

d lnheff
d lnT

�
where

θ3

T3
≡ heffðTÞ

heffðTFÞ
: ð3:12Þ

The parameter y runs from yF¼1=xF down to y0 ¼ T0=mϕ,
where the CMB temperature T0 ¼ 2.72548 K has been
borrowed from [40]. Once the DM codensity at the present
epoch is known, we readily derive the number density

n0 ¼ ñ0θ30 ≡ ñ0T3
0

�
heffðT0Þ
heffðTFÞ

�
; ð3:13Þ

and DM mass density ρ0ϕ ¼ 2mϕn0, remembering that there

are as many ϕ as ϕ̄ particles. Scalar DM contributes today
to the universe mass budget a fraction

Ωϕh2 ¼
ρ0ϕ
ρ0C

where ρ0C ¼ 3H2
0

8πG
: ð3:14Þ

Newton’s constant of gravity is G while H0 stands for a
fiducial Hubble expansion rate of 100 km=s=Mpc. The
actual Hubble constant is equal to h in units of that
benchmark value. We would like DM to be made of the
scalar species ϕ and ϕ̄. That is why we will look in Sec. IV
for configurations of parameters for which Ωϕh2 is equal to
the cosmological measured value of ΩDMh2 ¼ 0.1200 [1].
A key ingredient in the calculation of Iann is the depend-
ence of hσannvi on the one-dimensional dispersion velocity
Σ of scalar DM, and eventually on the parameter y. Scalar
DM is assumed to have reached inner thermalization with
temperature Tϕ, hence the identity Σ2 ≡ Tϕ=mϕ in the
nonrelativistic limit. But the relation between DM temper-
ature Tϕ and plasma temperature T remains to be deter-
mined. It will prove to be of paramount importance.

B. Approximate expression
for the relic abundance Ωϕh2

Before solving numerically forΩϕh2, we derive approxi-
mate expressions for Iann. These will be helpful to discuss
and understand our numerical results. We will set the DM
mass mϕ, the coupling gx and the mixing angle ϵ constant
and will concentrate on how Iann, and eventually the DM
relic abundance, vary with the mass degeneracy para-
meter Σ2

0 ≡ 1 − 4m2
ϕ=m

2
x.

First, we remark that the annihilation cross section
hσannvi is not constant after freeze-out. As discussed in
Sec. II, it increases with time like 1=Σ2 in the high-velocity
regime, or 1=Σ3 at the Breit-Wigner resonance, as plasma
and DM temperatures decrease. It reaches a maximum
when the DM dispersion velocity Σ is equal to some critical
value ΣM. This occurs at time tM when the plasma
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temperature is TM and the parameter y is equal to yM ¼
TM=mϕ. Afterward, the annihilation becomes p-wave
dominated and hσannvi drops rapidly like Σ2 to vanish.
In expression (3.12), the main contribution to the integral
Iann is provided by values of y between yM and yF. From
time tM until today, DM essentially does not annihilate.
We also remark that the thermodynamical coefficients geff ,
heff and d ln heff=d lnT vary slowly in time. They can be
evaluated at time tM and taken out of the integral over y.
Finally, as most of DM annihilation takes place well after
freeze-out, the DM codensity ñF is much larger than the
present codensity ñ0 and can be removed from expression
(3.11). Taking into account these remarks and inserting
expression (2.10) into integral (3.12) yields

1

ñ0
≃ I ann

≃
ffiffiffiffiffiffiffiffi
5=2

p
ð2πÞ5=2 fg

2
xϵ

2e2Q̃2g
�
MP

mϕ

��
PðTMÞ
heffðTFÞ

�
J ann

with J ann ≡
Z

yF

yM

dy
Jða; bÞ
Σ2

; ð3:15Þ

where the plasma function P is defined as

PðTÞ ¼ heffðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
geffðTÞ

p
�
1þ 1

3

d ln heff
d lnT

����
T

�
: ð3:16Þ

The DM relic abundance may be approximated by

Ωϕh2 ≃
16π5=2ffiffiffi

5
p

�
F=J ann

g2xϵ2e2Q̃
2

�

where F ¼
�
mϕT3

0

ρ0C

��
mϕ

MP

��
heffðT0Þ
PðTMÞ

�
: ð3:17Þ

It is proportional to the inverse of J ann. Understanding how
this integral varies with Σ2

0 is paramount to our problem.
The ratio b=jaj is the cornerstone of our analysis. It

controls how Jða; bÞ evolves with Σ2 and, in fine, with y. If
that ratio is smaller than 1, a Breit-Wigner enhancement
appears with hσannvi scaling like 1=Σ3 for dispersion
velocities just above Σ0. On the contrary, if it exceeds 1,
this enhancement disappears and the annihilation cross
section hσannvi is largest for dispersion velocities of order
Λ0. The ratio b=jaj determines also the point yM where the
integrand Jða; bÞ=Σ2 in the integral J ann is maximal. It can
be expressed in terms of the parameters of the model as

b
jaj≡

Λ2
0

Σ2
0

¼ 1

12π

�
g2x
4
Σ0 þ

ϵ2e2Q02

Σ2
0

�
: ð3:18Þ

For illustration, the ratio b=jaj as a function of Σ2
0 is

presented in Fig. 2 for the same parameters as in Fig. 3.

The ratio is minimal when the mass degeneracy parameter
Σ2
0 is equal to the special value

Σ2
min ¼ 4

�
ϵ2e2Q02

g2x

�
2=3

: ð3:19Þ

This corresponds to a minimal ratio of

ðb=jajÞmin ¼
1

16π
fg4xϵ2e2Q02g1=3: ð3:20Þ

The mixing angle ϵ cannot be larger than 1 by construction.
The dark charge gx is also restricted to be smaller than 1
since otherwise, the theory becomes nonperturbative.
According to relation (2.15), the effective charge Q02
reaches a maximal value of 8 in the unrealistic situation
where the dark photon mass mx becomes infinite. Even in
this extreme case, the minimal value of the ratio b=jaj is
less than 1.8 × 10−2. As will be discussed in Sec. IV D 2,
collider experiments yield furthermore the constraint
ϵ ≤ 10−3 on the mixing angle for mx ≤ 10 GeV [36].
This translates into an upper limit on the minimal value
of b=jaj of order 1.8 × 10−4. We conclude that this minimal
value is always very small compared to 1. We also remark
that when Σ2

0 goes to 1, i.e., for a virtually infinite dark
photon mass mx, the ratio b=jaj is still very small since

ðb=jajÞΣ2
0
¼1 ¼

1

12π

�
g2x
4
þ ϵ2e2Q02

�
≲ 1

48π
: ð3:21Þ

FIG. 2. Ratio b=jaj as a function of Σ2
0. The gray-shaded area

corresponds to values of b=jaj < 1, where the cross section is
Breit-Wigner enhanced around Σ2

0.
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Finally, as Σ2
0 decreases below Σ2

min, the ratio b=jaj
increases like ϵ2e2Q02=12πΣ2

0 and overcomes 1 below
the critical value

Σ2
cr ¼

ϵ2e2Q02

12π
≲ 8 × 10−9: ð3:22Þ

1. Case Σ2
0 > Σ2

cr—The Breit-Wigner regime

We are led to conclude that, as long as the mass
degeneracy parameter Σ2

0 is larger than Σ2
cr, the ratio

b=jaj is always less than 1. The thermal average hσannvi
of the DM annihilation cross section behaves like 1=Σ3 for
DM dispersion velocities Σ slightly above Σ0. Close to the
peak, the integral Jða; bÞ may actually be approximated by

Jða; bÞ ≃ J1ða; bÞ ¼
ffiffiffi
π

p
b

jaj3=2e−jaj; ð3:23Þ

as shown in Appendix A, and the integrand of J ann is
proportional to

Jða; bÞ
Σ2

∝ J1ða; bÞjaj ≃
ffiffiffi
π

p
b

jaj5=2e−jaj: ð3:24Þ

This integrand is maximal for jaj ¼ 3=2, i.e., for the DM
dispersion velocity ΣM equal to

ffiffiffiffiffiffiffiffi
2=3

p ðmx=2mϕÞΣ0, a value
which we will approximate hereafter by Σ0 since the dark

photon mass mx is very close to 2mϕ. To summarize, after
freeze-out, DM cools down while Σ decreases. The cross
section hσannvi increases like 1=Σ2 and, close to the peak
where most of DM annihilation occurs, like 1=Σ3. At the
lower boundary yM of the integral J ann, the DM dispersion
velocity is ΣM ≃ Σ0 and the DM temperature Tϕ is equal
to mϕΣ2

0.

2. Case Σ2
0 < Σ2

cr—The nonresonant regime

For a mass degeneracy parameter Σ2
0 less than Σ2

cr, the
ratio b=jaj is this time larger than 1. The integral Jða; bÞ is
equal to 1 as long as b is smaller than 1. As shown
in Appendix A, beyond that point, Jða; bÞ can be
approximated by

Jða; bÞ ≃ J2ða; bÞ ¼
3=4

a2 þ b2
≃
3=4
b2

: ð3:25Þ

The transition occurs at b ¼ ffiffiffi
3

p
=2, at a dispersion velocity

ΣM which is equal to ð2= ffiffiffi
3

p Þ1=2ðmx=2mϕÞΛ0. For sim-
plicity, we will use from now on Λ0 as the benchmark value
for ΣM in this case. In the early universe, after freeze-out,
hσannvi increases like 1=Σ2 until the DM dispersion
velocity Σ has decreased down to Λ0. Below that point,
the annihilation cross section drops like Σ2 and vanishes.
The lower boundary yM of integral J ann is defined in such a

FIG. 3. DM relic abundance as a function of Σ2
0 for fixed gx and ϵ (respectively 10−1 and 10−6), and a DM mass of 1 GeV. In the left

panel, the case without kinetic decoupling of the DM is highlighted in green with the asymptotic scalings around Σ2
min. In the right panel,

the case with kinetic decoupling is highlighted in red, with the asymptotic scalings around Σ̄2
min and Σ2

cr. The horizontal black line
indicates the Planck DM relic abundance ΩDMh2.
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way that the DM dispersion velocity is ΣM ≃ Λ0 and the
DM temperature Tϕ is equal to mϕΛ2

0.

C. Results without kinetic decoupling

In Fig. 3, we consider a benchmark example of a 1 GeV
DM scalar particle. The dark charge gx and the mixing
angle ϵ have been respectively set equal to 0.1 and 10−6. In
the left panel, the green curve features the evolution of
the DM relic abundance Ωϕh2 as a function of the mass
degeneracy parameter Σ2

0. This curve has been obtained
numerically under the assumption that DM does not
undergo kinetic decoupling. We have first determined
the freeze-out point xF by solving Eq. (3.10) with the help
of a dichotomy. We have then calculated Iann by integrating
expression (3.12). At this stage, we have assumed that DM
has always the same temperature as the SM plasma.
This assumption will be challenged in the forthcoming
Sec. III D. The relic codensity ñ0 has been derived
from (3.11), relations (3.13) and (3.14) yielding Ωϕh2.
A close inspection of the green curve allows us to clearly

identify two distinct regimes. For values of Σ2
0 smaller than

approximately 10−13, Ωϕh2 is constant and the curve
exhibits a plateau. As Σ2

0 increases above that value, the
relic abundance first decreases, reaches a minimum slightly
below 10−6 and eventually increases to explode close to the
boundary Σ2

0 ¼ 1. The curve exhibits a plateau for small
values of Σ2

0 and a trough for the larger values. Both
features are characteristic and can be understood with the
help of the approximations developed in Sec. III B. In
particular, we will try to identify the values of Σ2

cr and Σ2
min

along the green curve. As a general remark, we notice that
since DM is assumed here to be always thermally coupled
to the SM plasma, the temperatures of both components are
equal at all times, hence the identity

y≡ T
mϕ

¼ Tϕ

mϕ
≡ Σ2: ð3:26Þ

In the expression (3.15) of J ann, the variable y can be
identified with the DM dispersion velocity squared Σ2. This
implies that the lower boundary yM is equal to Σ2

M.

1. The plateau

For values of Σ2
0 smaller than Σ2

cr, the ratio b=jaj
overcomes 1 (see Fig. 2). In this regime, the annihilation
cross section hσannvi is maximal for ΣM ≃ Λ0, and the
integral J ann is performed from yM ≃ Λ2

0 to yF. In this
interval, the function Jða; bÞ is equal to 1 and we get

J ann ≃ ln ðyF=Λ2
0Þ ¼ − lnðxFΛ2

0Þ: ð3:27Þ

Since the mass degeneracy parameter Σ2
0 is smaller than Σ2

cr,
which is itself smaller than Σ2

min, the reduced decay width

simplifies to the constant

Λ2
0 ¼

ϵ2e2Q02

12π
≡ Σ2

cr: ð3:28Þ

Physically, the decay of a dark photon into a pair of DM
scalars ϕϕ̄ is kinematically suppressed when its mass is
nearly degenerate with 2mϕ. In these conditions, the dark
photon decays only into fermion pairs. We notice that the
reduced width Λ2

0, the integral J ann and eventually the relic
abundance Ωϕh2 no longer depend on Σ2

0, hence the
plateau. The mass degeneracy parameter Σ2

0 has disap-
peared from the problem.
At this stage, we will not compare our approximation

(3.17) with the numerical value of Ωϕh2 ≃ 2.5 × 104 read
from Fig. 3, insofar as we are mostly concerned in this
article with kinetic decoupling. There is also an additional
complication. The plateau is expected to extend up to Σ2

cr,
which is equal to 9.7 × 10−15 in our example. This value
corresponds to a DM temperature, and therefore to a plasma
temperature in the absence of kinetic decoupling, of
9.7 μeV. But today the CMB temperature T0 is equal to
235 μeV. We are in the particular situation where y0 is
larger than yM ≃ Λ2

0 ≡ Σ2
cr. This has two consequences. The

integral J ann must be performed from y0 to yF, and not
from yM to yF. This yields the result ln ðTF=T0Þ instead of
(3.27). Then, the plateau extends beyond the boundary Σ2

cr,
and this as long as the Breit-Wigner enhancement of the
cross section hσannvi does not perturb too much the integral
J ann. At least, this is so as long as Σ2

0 is less than y0,
provided that the ratio b=jaj is not too small compared to 1,
and that the function Jða; bÞ is close to unity. In our
example, we anticipate an extension of the plateau up to
y0 ¼ T0=mϕ ¼ 2.35 × 10−13, more than an order of mag-
nitude above Σ2

cr. In Fig. 3, the transition occurs around
4 × 10−13, not too far from what is expected.

2. The trough

For values of Σ2
0 larger than Σ2

cr, the ratio b=jaj is smaller
than 1. The annihilation cross section undergoes a Breit-
Wigner enhancement which peaks at the dispersion veloc-
ity ΣM ≃ Σ0. The integral J ann is performed from yM ≃ Σ2

0

to yF. Above the peak, hσannvi scales like 1=Σ3. If DM
annihilation reaches its highest intensity before the present
epoch, i.e., if yM is larger than y0, the integral J ann is
significantly modified with respect to the case of the
plateau studied above. Actually, for values of b=jaj
sufficiently small with respect to 1, the function Jða; bÞ
can be replaced, in the integrand of J ann, by its approxi-
mation (3.23), hence

J ann ¼
ffiffiffi
π

p �
Σ2
0

Λ2
0

��
mx

2mϕ

�Z
yF

yM

dy
Σ0

y3=2
: ð3:29Þ
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The ratio jaj=b is by definition identical to Σ2
0=Λ2

0, while Σ2

is equal to the parameter y insofar as DM is kinetically
coupled to the SM plasma. We have dropped the exponential
and replaced it by the sharp boundary at yM. Neglecting the
term with yF, and noticing that mx and 2mϕ are quaside-
generate as long as Σ2

0 is not too close to 1, we get

J ann ≃
ffiffiffi
π

p �
Σ3
0

Λ2
0

�
2ffiffiffiffiffiffi
yM

p ≃ 2
ffiffiffi
π

p �
Σ2
0

Λ2
0

�
: ð3:30Þ

Inserting this result into relation (3.17) yields the DM relic
abundance

Ωϕh2jtrough ≃
8π2ffiffiffi
5

p F
�

Λ2
0=Σ2

0

g2xϵ2e2Q̃
2

�
: ð3:31Þ

The mass degeneracy parameter Σ2
0 appears in the argument

TM ≃mϕΣ2
0 of the plasma function inside the factor F , and

in the ratio Λ2
0=Σ2

0. In the former case, it has little impact on
Ωϕh2 since P is a slowly varying function of plasma
temperature. The DM relic abundance depends on Σ2

0

essentially through the ratio Λ2
0=Σ2

0.
We can readily apply our analysis of Sec. III B.

As Σ2
0 increases from Σ2

cr to the upper limit 1, the ratio
Λ2
0=Σ2

0 ¼ b=jaj, and hence Ωϕh2 to which it is proportional
according to Eq. (3.31), decreases to a minimum reached
at Σ2

min and then increases. This is actually what we observe
in Fig. 3 where the green curve exhibits a trough. Its
minimum corresponds to a DM dispersion velocity Σ2

min of
order 4 × 10−7. This value can be compared to our expect-
ation (3.19). Plugging in it the numerical values of gx and ϵ,
and noticing that Q02 is very close to 4 for a 1 GeV DM
candidate, we derive a value of 4.4 × 10−7, in excellent
agreement with the numerical result. This gives us
confidence in our approach and put our approximation
on firm grounds.
According to Fig. 3, below Σ2

min, the relic abundance
Ωϕh2 decreases with Σ0 as a power law with index close to
−2. Above the minimum, it increases like Σ0, following a
power law with index þ1. For Σ2

0 larger than 10−2, Ωϕh2

sharply increases. To understand the trough which the
green curve exhibits, we can start from the approximation
(3.31) for Ωϕh2 and from the expression (3.18) of the ratio
Λ2
0=Σ2

0. Below Σ2
min, i.e., for small values of Σ2

0, that ratio
simplifies to

Λ2
0

Σ2
0

≃
ϵ2e2Q02

12πΣ2
0

: ð3:32Þ

Noticing that the effective charges Q02 and Q̃2 are essen-
tially equal as long as mx is nearly degenerate with 2mϕ,

we infer the relic abundance

Ωϕh2jΣ2
0
<Σ2

min
≃

2π

3
ffiffiffi
5

p
�

F
g2xΣ2

0

�
∝

m2
ϕ

g2xΣ2
0

: ð3:33Þ

We do find that Ωϕh2 scales as 1=Σ2
0, as observed in Fig. 3.

We also notice that the relic abundance depends on the dark
charge gx and no longer on the mixing angle ϵ.
For values of Σ2

0 larger than Σ2
min, the ratio Λ2

0=Σ2
0

simplifies this time to g2xΣ0=48π. This yields

Ωϕh2jΣ2
0
>Σ2

min
≃

π

6
ffiffiffi
5

p F
�

Σ0

ϵ2e2Q̃2

�
∝
m2

ϕΣ0

ϵ2Q̃2
: ð3:34Þ

Our analysis allows us to understand why the DM relic
abundance follows a power law in Σ0 with index þ1 above
Σ2
min. We also remark that Ωϕh2 depends in this case on the

mixing angle ϵ and not on the dark charge gx. When Σ2
0 is

close to 1, our analysis and relation (3.34) no longer apply.
The dark photon mass mx starts to be much larger than
2mϕ. Since the ratio b=jaj is still smaller than 1, a Breit-
Wigner resonance may enhance the annihilation cross
section. But the peak dispersion velocity ΣM is larger than
Σ0 by a factormx=2mϕ which could be very large. If so, ΣM

exceeds the speed of light and hσannvi is never enhanced,
whatever the DM dispersion velocity. DM annihilation is,
in this case, p-wave dominated. The dark photon propa-
gator in the s-channel yields furthermore a factor 1=m4

x
which suppresses DM annihilation when mx diverges. It is
no surprise then if Ωϕh2 explodes when Σ0 goes to 1, as
observed in Fig. 3.
As a side remark, we notice that depending on the values

of gx and ϵ, the dispersion velocity Σ2
min may well exceed

the boundary 1. This happens actually for small gx and
large ϵ. In this case, the general behavior of Ωϕh2 as a
function of Σ2

0 is not qualitatively changed with respect to
what has been discussed above. We still have a plateau
below Σ2

cr and a trough above, the relic abundance starting
to decrease, reaching a minimum and eventually sharply
increasing close to 1. The position of the minimum is no
longer given by Σ2

min, but must be defined numerically.

D. Results in the presence of kinetic decoupling

We have so far assumed that DM is in thermal contact
with the SM plasma, and that their respective temperatures
Tϕ and T are equal at all times relevant to our analysis.
We now challenge this assumption. Thermalization of DM
occurs primarily through an exchange of energy due to
collisions with the SM plasma. Should DM be slightly
colder than the plasma, for instance, the latter would
reheat the former by injecting energy through collisions
of SM fermions on DM scalars. If this occurs fast enough,
Tϕ relaxes rapidly toward T and DM is thermalized.
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In Appendix B, we present a simplified treatment of that
process. Starting from Lagrangian (2.1), we derive the rate
at which energy is exchanged between DM and the plasma.
DM annihilations must also be included together with
collisions to determine how both DM density and temper-
ature vary concomitantly. In Appendix B, we actually
demonstrate that, under the specific assumptions presented
at the beginning of this section, reaction (3.1) is able alone
to thermalize DM with the plasma, should collisions
be turned off. Taking into account both annihilations
and collisions, we establish the simplified differential
equation (B27) which the DM temperature follows. This
allows to define the rate ΓKD

rel with which Tϕ relaxes toward
T, and the rate ΓKD

eq with which the kinetic equilibrium itself
evolves. Kinetic decoupling occurs at temperature TKD, for
which both rates are equal.
In the right panel of Fig. 3, the red curve features the

evolution of Ωϕh2 as a function of the mass degeneracy
parameter Σ2

0 when kinetic decoupling is taken into
account. The other parameters have the same values as
for the green curve. The red curve has been obtained
numerically by first solving Eqs. (3.10) and (B31) using
dichotomies. This allows to determine the freeze-out TF
and kinetic decoupling TKD temperatures. As explained in
Appendix B, kinetic decoupling occurs after freeze-out,
hence the sequence TF ≥ TKD. We then calculate Iann by
integrating expression (3.12) from freeze-out until now.
Between freeze-out and kinetic decoupling, i.e., as long as
T is larger than TKD, both DM and plasma temperatures
are equal. After kinetic decoupling, DM behaves as a
nonrelativistic gas undergoing adiabatic cooling and its
temperature Tϕ drops as a−2, with a the scale factor of the
universe. The plasma also cools down adiabatically, but is
now decoupled from DM. The temperatures of both
components are related by

TϕðT ≤ TKDÞ ¼
�

heffðTÞ
heffðTKDÞ

�
2=3 T2

TKD
: ð3:35Þ

We then determine the relic codensity ñ0 from (3.11) and
derive the DM relic abundance Ωϕh2 using relations (3.13)
and (3.14).
The red and green curves of Fig. 3 are qualitatively

similar. Both exhibit a plateau for small values of Σ2
0 and a

trough for larger values. The red curve becomes flat below
5 × 10−15. For larger values of Σ2

0, the DM relic abundance
starts to decrease and reaches a minimum for a mass
degeneracy parameter of order 2 × 10−7, slightly below
Σ2
min. The red curve then follows a rising power law and

eventually sharply increases close to 1. The essential effect
of including kinetic decoupling in the calculation of Ωϕh2

is to shift the curve downward and to get smaller values of
the DM relic abundance. This can be easily understood.
When DM decouples thermally from the primordial

plasma, its temperature drops faster than if thermal contact
was continuously established. We have just showed that Tϕ

decreases as a−2, while T scales approximately like a−1,
where a is the scale factor of the universe. As DM cools
down, the annihilation cross section hσannvi increases. It
peaks at the DM dispersion velocity ΣM, where most of the
annihilation takes place. When kinetic decoupling is
included, this occurs at a higher plasma temperature TM,
i.e., at an earlier time tM when the DM population is denser.
A stronger DM annihilation at hσannvi peak results in a
smaller relic abundance, hence the observed shift between
the green and the red curves. When kinetic decoupling is
included, the relation between Σ2 and y is also slightly more
involved. In Sec. III C, we could identify y and Σ2 at all
times. This is only possible now before kinetic decoupling.
For temperatures below TKD, the new relation is

Σ2 ≡ Tϕ

mϕ
¼

�
heffðTÞ

heffðTKDÞ
�

2=3 y2

yKD
; ð3:36Þ

where yKD denotes the ratio TKD=mϕ. If most of DM
annihilation occurs after kinetic decoupling, i.e., if TM is
well below TKD, the integral J ann may be approximated by

J ann ≃ yKD

�
heffðTKDÞ
heffðTMÞ

�
2=3

Z
yKD

yM

dy
y2

Jða; bÞ: ð3:37Þ

The ratio heffðTKDÞ=heffðTÞ varies slowly in time and we
have taken it at peak annihilation when the plasma temper-
ature is TM. We also remark that the relation between yM
and the DM dispersion velocity ΣM has become

yM ¼ ffiffiffiffiffiffiffiffi
yKD

p �
heffðTKDÞ
heffðTMÞ

�
1=3

ΣM: ð3:38Þ

Equipped with these notations, we are ready to analyze
the red curve.

1. The plateau

As showed in Sec. III C, the ratio b=jaj overcomes 1
when Σ2

0 is smaller than Σ2
cr. This implies a transition at

9.7 × 10−15, in agreement with the value of 5 × 10−15

mentioned above. In the plateau regime, the annihilation
cross section hσannvi is maximal for ΣM ≃ Λ0 and we get

J ann ≃
ffiffiffiffiffiffiffiffi
yKD

p
Λ0

�
heffðTKDÞ
heffðTMÞ

�
1=3

: ð3:39Þ

Using this expression into relation (3.17) leads to the
approximate DM relic abundance

Ωϕh2jΣ2
0
<Σ2

cr
≃

8π2ffiffiffiffiffi
15

p FKD

� ffiffiffiffiffiffiffiffi
xKD

p
g2xϵeQ̃

�
∝

m2
ϕ

g2xϵQ̃
: ð3:40Þ
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where FKD denotes the prefactor

FKD ≡
�
mϕT3

0

ρ0C

��
mϕ

MP

��
heffðT0Þ
PðTMÞ

��
heffðTMÞ
heffðTKDÞ

�
1=3

:

ð3:41Þ

Along the plateau, i.e., below Σ2
cr, the dark photon mass mx

is very close to 2mϕ and we can identify Q̃ with Q0. We
have also denoted by xKD the inverse of yKD. We notice that
the mass degeneracy parameter Σ2

0 has disappeared from
the problem. With the values of model parameters consid-
ered in Fig. 3, we find that along the plateau, freeze-out
and kinetic decoupling occur respectively at xF ¼ 1.71 and
xKD ¼ 8.48. This translates into a decoupling temperature
TKD of 0.118 GeV. The peak of DM annihilation is reached
at the plasma temperature TM ¼ 58 eV well above T0.
Relation (3.40) yields a DM relic abundance of 0.139, to be
compared to the numerical value of 0.220, obtained
asymptotically by setting the mass degeneracy parameter
Σ2
0 at 10−17. This result is very encouraging given the

simplicity of our approximation. We could improve the
agreement by slightly increasing the critical DM dispersion
velocity ΣM above Λ0. Shifting it from Λ0 to 3Λ0=2, for
instance, yields a relic abundance of 0.208, in better
agreement with the numerical result.

2. The trough

For values of Σ2
0 larger than Σ2

cr, the ratio b=jaj is smaller
than 1 and the analysis proceeds along the same line as in
Sec. III C. Thermal decoupling complicates the relation
between the y parameter and the DM dispersion velocity Σ.
In the trough regime, DM annihilation is Breit-Wigner
enhanced at its peak. Replacing in the integrand of
expression (3.37) the function Jða; bÞ by its approximation
(3.23) leads, after some algebra, to the integral

J ann ≃
ffiffiffi
π

p
y3=2KD

�
mx

2mϕ

��
Σ3
0

Λ2
0

��
heffðTKDÞ
heffðTMÞ

�Z
yKD

yM

dy
y3

:

ð3:42Þ
Making use once again of the conversion (3.36) and setting
the peak dispersion velocity ΣM at Σ0, we get

J ann ≃
ffiffiffi
π

p
2

ffiffiffiffiffiffiffiffi
yKD

p �
Σ0

Λ2
0

��
heffðTKDÞ
heffðTMÞ

�
1=3

: ð3:43Þ

As long as Σ2
0 is not too close to 1, we can identify mx with

2mϕ. Combining relations (3.43) and (3.17) leads to the
DM relic abundance

Ωϕh2jtrough ≃
32π2ffiffiffi

5
p FKD

ffiffiffiffiffiffiffiffi
xKD

p �
Λ2
0=Σ0

g2xϵ2e2Q̃
2

�
: ð3:44Þ

To test this approximation, we have varied Σ2
0 from 10−13

up to 0.1, and compared the numerical result with the
value given by (3.44). On a vast region of that interval,
both results agree at the percent level and, in some cases,
even at the per mille level. The agreement lessens close
to the minimum located at Σ2

0 ≃ 1.66 × 10−7, where the
approximation yields a relic abundance of 6.12 × 10−5 to
be compared to the numerical result of 7.45 × 10−5. We
finally notice that above Σ2

0 ≃ 5 × 10−3, the numerical
relic abundance increases more sharply than its approxi-
mation (3.44). Reasons for this have already been presented
in Sec. III C. Along the trough, Ωϕh2 is proportional to
the ratio

Λ2
0

Σ0

¼ 1

12π

�
g2x
4
Σ2
0 þ

ϵ2e2Q02

Σ0

�
; ð3:45Þ

which is minimum at the mass degeneracy parameter

Σ̄2
min ¼

�
2ϵ2e2Q02

g2x

�
2=3

: ð3:46Þ

So is Ωϕh2. If thermal contact was constantly established
between DM and the SM plasma, the DM relic abundance
would exhibit a minimum at Σ2

min. In the presence of kinetic
decoupling, the new minimum is a factor 42=3 smaller. In
Fig. 3, this shift of the minimum ofΩϕh2 between the green
and red curves can be clearly seen. Relation (3.46) yields a
value of 1.75 × 10−7 for the minimum of the red curve,
close to the numerical value of 1.66 × 10−7.
Below Σ̄2

min, the ratio Λ2
0=Σ0 can be approximated by

ϵ2e2Q02=12πΣ0 and expression (3.44) simplifies into

Ωϕh2jΣ2
0
<Σ̄2

min
≃

8π

3
ffiffiffi
5

p FKD

� ffiffiffiffiffiffiffiffi
xKD

p
g2xΣ0

�
∝

m2
ϕ

g2xΣ0

; ð3:47Þ

where we have identified Q̃2 with Q02. Above the mini-
mum, we can replace Λ2

0=Σ0 by ðg2x=48πÞΣ2
0 to get

Ωϕh2jΣ2
0
>Σ̄2

min
≃

2π

3
ffiffiffi
5

p FKD
ffiffiffiffiffiffiffiffi
xKD

p �
Σ2
0

ϵ2e2Q̃2

�
∝
m2

ϕΣ2
0

ϵ2Q̃2
: ð3:48Þ

In Fig. 3, the red curve decreases actually with Σ0 as a
power law of index −1 while, above the minimum, it
follows a power law with index þ2. We also remark that
Ωϕh2 depends in the former case on the dark charge gx and
not on the mixing angle ϵ, while it is the opposite in the
latter case. This property will play a crucial role in Sec. IV
and will help understand the results. For completeness, we
have derived an approximate expression for the minimal
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DM relic abundance. Since the minimal value of the ratio
Λ2
0=Σ0 is given by

ðΛ2
0=Σ0Þmin ¼

ð2gxϵ2e2Q02Þ2=3
16π

; ð3:49Þ

we infer that the DM relic abundance, in the presence of
kinetic decoupling, reaches a minimal value of

Ωϕh2jmin ≃
25=3πffiffiffi

5
p FKD

ffiffiffiffiffiffiffiffi
xKD

p
ðg4xϵ2e2Q̃2Þ1=3 ; ð3:50Þ

where we have identified once again Q̃2 with Q02. This
expression yields a minimum value of 6.13 × 10−5 to be
compared to the numerical result of 7.46 × 10−5 for a mass
degeneracy parameter Σ2

0 of 1.75 × 10−7. Since approxi-
mation (3.50) is based only on the behavior of the ratio
Λ2
0=Σ0, it disregards the influence of the temperatures TKD

and TM on Ωϕh2, hence the very small differences with the
results quoted above. For Σ2

0 larger than 10
−2,Ωϕh2 sharply

increases.
In the next section, we will impose that the DM

relic abundance is equal to the observed value ΩDMh2 of
0.1200 [1]. For this, at fixed DM mass mϕ, dark charge gx
and mixing angle ϵ, we will look for values of the mass
degeneracy parameter Σ2

0 that fulfill this requirement.
Depending on the height of the red curve with respect to
the level of ΩDMh2, three configurations are possible.
(1) If the red curve is too high, there is no solution and

the DM relic abundance Ωϕh2 is always larger than
ΩDMh2. The universe is overclosed by scalar DM.

(2) In the configurations of interest, two values of Σ2
0

fulfill the condition Ωϕh2 ¼ ΩDMh2. One solution
lies on the decreasing left branch of the red curve,
below the critical value Σ̄2

min at which the DM relic
abundance is minimal. The other solution is located
above Σ̄2

min, on the rising right branch of the red
curve. These solutions are dubbed hereafter left and
right branch solutions.

(3) If the red curve is too low, there is no left branch
solution insofar as the plateau stands below ΩDMh2.
The universe is underclosed by scalar DM below
Σ̄2
min. A right branch solution still exists.

IV. RESULTS

We present our results in the form of scans on the DM
model parameter space in the gx and ϵ plane for three
chosen DM particle masses: 200 MeV, 1 GeV and 5 GeV.
We take into account kinetic decoupling as presented in
Sec. III D. At 200 MeV, DM annihilation is dominated by
the leptonic channels whereas at 1 and 5 GeV, there is also a
significant contribution from DM annihilating directly into
quark pairs. Moreover, for these masses, we mostly avoid

the stringent direct detection limits. The impact of various
constraints on the parameter space is summarized in
Figs. 6–8, both for the left and right branch cases. In
Sec. IVA, we first discuss how the DM relic abundance
shapes the allowed region in the gx and ϵ plane. Then, in
Sec. IV B, IV C, and IV D, we show how other constraints,
from DM annihilation in the Milky Way, in the early
universe, and from direct detection and accelerators, shrink
the allowed region of the DM parameter space.

A. Limits on gx and ϵ set by the relic abundance ΩDMh2

As discussed previously in Sec. III D notably when
commenting Fig. 3, requiring Ωϕh2 ¼ ΩDMh2 leads, at
fixed values of the parameters gx and ϵ, to two different
solutions, depending on the mass degeneracy parameter Σ2

0.
We first discuss the solutions where Σ2

0 < Σ̄2
min which we

dubbed left branch solutions in the previous section, and
then consider the right branch solutions corresponding
to Σ2

0 > Σ̄2
min.

1. Left branch solutions—Σ2
0 < Σ̄2

min

Figure 4 shows the allowed regions for the case of a
1 GeV DM scalar after enforcing Ωϕh2 ¼ ΩDMh2 with
various quantities displayed in the color bar. The trends
explained in the following are similar for the other DM
masses. The top panels of Fig. 4 feature in their respective
color bars the kinetic decoupling parameter xKD (left) and
the mass degeneracy parameter Σ2

0 (right). In the colored
band, the relic density constraint is satisfied, while in the
white regions above and below either Ωϕh2 < ΩDMh2 or
Ωϕh2 > ΩDMh2. First, in the region whereΩϕh2 < ΩDMh2,
the value of the plateau of Ωϕh2 at low Σ2

0 (see right panel
of Fig. 3) does not exceed ΩDMh2. Since the plateau height
scales as g−2x ϵ−1, at the boundary where Ωϕh2 ¼ ΩDMh2,
we obtain the following scaling: ϵ ∝ g−2x , which is the slope
observed in the upper-right corner of the figures, between
the white and colored regions. Second, in the region where
Ωϕh2 > ΩDMh2, the minimal value ofΩϕh2 at Σ2

0 ¼ Σ̄2
min is

always larger than ΩDMh2. Given the scaling of Ωϕh2jmin
shown in Eq. (3.50), at the boundary where Ωϕh2jmin ¼
ΩDMh2, we recover the scaling ϵ ∝ g−2x . This slope is
observed in the lower-left corner, between the white and
colored regions in the figures.
Note that the discontinuity observed around gx ¼ 10−3

stems from the QCD phase transition as we shall explain
hereafter. As shown in Appendix B 1, kinetic decoupling
happens after freeze-out, and even possibly after the QCD
phase transition. In the black region of the upper-left panel
of Fig. 4, xKD ≈ 1, which means that, since mϕ ¼ 1 GeV,
TKD ≈ 1 GeV. This is a temperature above the QCD phase
transition. In the green region, xKD ≈ 10, thus TKD ≈
0.1 GeV which is a temperature below the QCD phase
transition. As explained in Sec. III D, the later the kinetic
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decoupling, the larger the relic abundance. Thus, for given
model parameters, if TKD becomes smaller than TQCD, the
temperature Tϕ starts dropping later, in particular, because
of latent heat release, and annihilation occurs in a less dense
medium resulting in a larger value for Ωϕh2jmin. Because
the latter scales as ϵ−2=3, one has to boost the value of ϵ to
satisfyΩϕh2 ¼ ΩDMh2, hence the jump in the plot observed
around gx ≈ 10−3.
Another feature we would like to explain is the sharp

vertical cut in the allowed parameter space around
gx ≈ 10−4. In this region of the ðgx; ϵÞ plane, the value
of Σ̄2

min, as given by Eq. (3.46), becomes larger than 1. In

the trough regime, as the mass degeneracy parameter Σ2
0

increases, the relic abundance decreases according to
relation (3.47). A minimum is reached near Σ2

0 ≃ 0.01.
This corresponds here to a plasma temperature
TM ≃ 10 MeV. Requiring that this minimum is less than
ΩDMh2 sets a lower limit on gx. With a kinetic decoupling
temperature TKD of order 50 MeV, using relation (3.47)
leads to an approximate value for that bound of
gx ¼ 1.4 × 10−4, in excellent agreement with the numerical
result. We reproduced this exercise for a DM mass
of 200 MeV and 5 GeV, and found limiting gx values of
3.0 × 10−5 and 5.2 × 10−4, in agreement with the summary

FIG. 4. Allowed parameter space in the ðgx; ϵÞ plane, for left branch solutions (Σ2
0 < Σ̄2

min), and for a DM mass of 1 GeV. From the
upper-left to the lower-right panel, the color code shows xKD, Σ2

0, the corresponding DM annihilation cross section in the Milky Way
hσannviMW and the CMB μ-distortion. In the bottom-left panel, the hatched region features the exclusion constraints by XMM x-ray
measurements. In the bottom right panel, the forbidden hatched region is drawn from CMB μ-distortion as observed by FIRAS (COBE).
It encompasses the domains excluded by CMB y-distortions (dashed line) and anisotropies (dotted line).The full interpretation of these
plots is provided in the text.
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plots Figs. 6 and 8, respectively. The remaining panels in
Fig. 4 will be discussed in the following subsections.

2. Right branch solutions—Σ2
0 > Σ̄2

min

The corresponding figures for the right branch solutions
are shown in Fig. 5. The shape of the lower boundary,
below which Ωϕh2 > ΩDMh2 is exactly the same as in the
left branch case, and is explained by the same arguments.
The main difference with the left branch solution is that the
upper boundary above which Ωϕh2 < ΩDMh2 does not
exist in this case. In the right branch, it is always possible to
increase the value of Σ2

0 and thus to increase Ωϕh2 until we

reach the required value. When Σ2
0 approaches 1, the dark

photon mass mx explodes and the Breit-Wigner resonance
disappears.

B. Limits on gx and ϵ from the annihilation
cross section today

As discussed in Sec. II, the peculiarity of our model is
the nontrivial dependence of the dark matter annihilation
cross section with the dispersion velocity Σ2, which, in the
Breit-Wigner regime, peaks at Σ2

0. The value of Σ2
0 is set

by the requirement Ωϕh2 ¼ ΩDMh2. Using the scalings of
Eqs. (3.47) and (3.48) (also shown in the right panel of

FIG. 5. Allowed parameter space in the ðgx; ϵÞ plane, for right branch solutions (Σ2
0 > Σ̄2

min) and for a DM mass of 1 GeV. From the
upper left to the lower right panel, the color code shows xKD, Σ2

0, the corresponding DM annihilation cross section in the Milky Way
hσannviMW and the CMB μ-distortion, respectively. In the bottom panels, the hatched regions draw the exclusion constraints by XMM
x-ray measurements and FIRAS (COBE) on the μ-distortion (solid line) and on the y-distortion (dashed line). The full interpretation of
these plots is provided in the text.
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Fig. 3) implies that Σ2
0 scales as g

−4
x for the left branch and

as ϵ2 for the right branch. The resulting Σ2
0 values are shown

with a color scale, for these two cases, in the top right
panels of Figs. 4 and 5. As predicted by the scalings, we
note the almost complete independence of Σ2

0 values on ϵ
and gx in the first and second case, respectively.
From the values of Σ2

0, gx and ϵ, we compute the
corresponding DM annihilation cross section today in
the Milky Way hσannviMW in order to compare with
observational limits and to set constraints on our model.
For this, we use relation (2.10) and set the DM dispersion
velocity Σ equal to its value ΣMW in the Milky Way halo.
Strictly speaking, the chosen value for ΣMW should depend
on the position in the MilkyWay (see, e.g., [41]). However,
given that the x-ray constraints that we will be using are
drawn from multiple lines of sight, for simplicity, we set
Σ2
MW to the fiducial value 3 × 10−7 c2. This value is

obtained for an isothermal DM halo accounting for a flat
rotation curve with the typical 230 km=s circular velocity.
We anticipate that hσannviMW is maximal at the Breit-
Wigner peak, when the Milky Way dispersion velocity
Σ2
MW is of order the mass degeneracy parameter Σ2

0. We
display hσannviMW with a color scale in the lower-left
panels of Figs. 4 and 5, for the left and right branches,
respectively. Hereafter, we discuss these two cases
independently.

1. Left branch solutions—Σ2
0 < Σ̄2

min

In the lower-left panel of Fig. 4, the color shows that the
DM annihilation cross section values hσannviMW are almost
independent of ϵ. Going from small to large gx values,
hσannviMW increases rapidly, reaching a maximum at the
Breit-Wigner peak, followed by a slow decrease toward
the largest gx values. In fact, this behavior can be easily
explained by the variations of hσannvi with Σ2 as shown
in Fig. 1. Going from small to large gx values implies
decreasing Σ2

0 values as shown in the upper right panel.
When gx increases, the Breit-Wigner peak is shifted toward
lower DM dispersion velocities. The annihilation cross
section in the Milky Way follows a p-wave behavior
and increases until a maximum is reached when Σ2

MW is
of order Σ2

0. This occurs at gx of order 10−3, above which
hσannviMW decreases.
The reasoning developed above is only valid at first

order, since we notice deviations from a unique dependence
of hσannviMW on gx, at large enough ϵ values. For example,
we see that for a given value of gx, e.g., 10−2, going from
small to large ϵ values, hσannviMW is constant and then
increases. This leads to a chevronlike feature for hσannviMW
in the ðgx; ϵÞ plane. We explain this feature by the change of
behavior of hσannvi going from the Breit-Wigner resonance
to the high-velocity regime. From Eq. (2.10), we know that
this transition typically occurs when Jða; bÞ starts saturat-
ing to 1 for low values of jaj (see also Fig. 9). When this

happens, hσannviMW ∝ g2xϵ2, a scaling which is observed in
Fig. 4. When the parameter jaj is not too small, the function
Jða; bÞ is given by its approximation (A3). The DM
annihilation cross section is proportional to Σ2

0=Λ2
0.

Along the left branch, we can use relation (3.32) and we
find that hσannvi scales like g2xΣ3

0. The tip of the chevron,
i.e., the position of this transition, can be found by equating
the approximation J1ða; bÞ, valid at the Breit-Wigner peak,
to 1. From Eq. (A3), this means that

ffiffiffiffiffiffi
πa

p ðjaj=bÞ ¼ 1,
and we readily get that ϵ2 ∝ Σ3

0. Hence, as Σ2
0 ∝ g−4x for

left branch solutions, we find that ϵ ∝ Σ3=2
0 ∝ g−3x , which

corresponds to the line one can draw through the tips of the
chevrons in the lower-left panel.

2. Right branch solutions—Σ2
0 > Σ̄2

min

On the lower-left panel of Fig. 5, we see that hσannviMW
values are almost independent of gx. Going from large to
small ϵ values, this cross section exhibits a rapid increase,
reaches a maximum, and then decreases with ϵ. In the same
way, as for the left branch case, this behavior is explained
by the variations of hσannvi with Σ2 as shown in Fig. 1.
Going from large to small ϵ values implies decreasing Σ2

0

values (upper right panel of Fig. 5), and shifting
the position of the Breit-Wigner peak of hσannvi toward
smaller Σ2. Since hσannviMW is evaluated at fixed DM
dispersion velocity Σ2

MW, the annihilation cross section in
the Milky Way follows a p-wave behavior as ϵ decreases.
It increases until a maximum is reached when Σ2

MW is of
order Σ2

0. This occurs at ϵ of order 10
−8. Below that value,

hσannviMW decreases.
As for the left branch, this picture is only valid at first

order, important corrections occurring for ϵ > 10−7. For
example, at gx ¼ 10−2, going from ϵ ¼ 10−7 to 10−2,
hσannviMW decreases and then increases again. The latter
behavior can be explained by going into some more detail.
From Eq. (2.10), we know that this behavior occurs in the
p-wave regime when Jða; bÞ is well approximated by
J2ða; bÞ [see Eq. (A1) and Fig. 9 of the Appendix A].
In this approximation, one can easily show that
hσannviMW ∝ ϵ2=Σ4

0 and, given the scaling of the right
branch Σ2

0 ∝ ϵ2 [see Eq. (3.48)], we recover that
hσannviMW ∝ ϵ−2. However, as one can notice from the
right panel of Fig. 3, the scaling drawn from Eq. (3.48) fails
to reproduce the sharp rise of Ωϕh2 as Σ2

0 tends to 1.

Instead, we can assume that Σ2β
0 ∝ ϵ2 with β being a

number larger than 1. In that case hσannviMW ∝ ϵ2−4=β,
which means that, when β gets larger than 2, hσannviMW
starts increasing with growing ϵ values. This explains the
violet-blue spot of the lower left panel of Fig. 5.

3. X-rays constraints

Light stable fermions (typically eþe− or μþμ−) from
DM annihilating today, may energize the low-energy
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photons of the interstellar radiation field of the Galaxy
and generate a sizable x-ray emission, via the Inverse
Compton effect. In the lower-left panels of Figs. 4 and 5,
we draw with a hatched region, the x-ray constraints of
XMM Newton taken from [20], that we find to be the
strongest of the literature. The constraints shown include
only DM annihilating into eþe− pairs. This annihilation
channel provides the strongest limit on hσannviMW. The
analysis by [20] provides the following upper bound on
hσannviMW for DM annihilating into eþe−: 7.8 × 10−29,
1.5 × 10−28, and 2.3 × 10−27 cm3 s−1 for 200 MeV, 1 GeV
and 5 GeV DM mass, respectively. In our case, we apply
these limits on the product Beþe− × hσannviMW, with
the branching ratio Beþe− ≡ Q̃2

eþe−=Q̃
2 [see Eq. (2.6),

where Q̃2
eþe− only includes eþe− in the sum]. The other

constraints discussed in [20], which are based on μþμ−
and πþπ−, are not competitive and have not been
implemented.

C. Limits on gx and ϵ from CMB spectral
and angular distortions

DM annihilation in the early universe injects energy in
the primordial plasma and may generate distortions in the
radiation spectrum. These distortions get frozen after
recombination and leave indelible deviations of the
CMB from a pure black body spectrum (see, e.g., [24]
for an introduction). The characteristics of the distortions
can be addressed very generally by solving the so-called
Kompaneets equation [42] which describes the
Comptonization of photons by free thermal electrons.
However, depending on the epoch at which the energy is
released, approximations can be accurately used and avoid
solving this nonlinear equation. If the injection occurs for
redshifts larger than zDC ¼ 1.98 × 106 [43], the energy is
rapidly redistributed to the photons via Compton scattering,
while the number of photons is adjusted by photon non-
conserving processes: double Compton (DC), which sets
zDC, and thermal Bremsstrahlung. In this case, the CMB
spectrum just undergoes a temperature shift. If the energy
injection occurs after zDC, but before zC ¼ 5.8 × 104 [43],
the number of photons remains unchanged while
Comptonization, which sets zC, ensures an efficient redis-
tribution of energy among photons. The energy per photon
is increased and leads to a nonvanishing chemical potential
μ in the Bose-Einstein spectrum, referred to as μ-distortion.
Finally, if the energy injection happens for redshifts
smaller than zC, a typical Compton y-distortion arises
when scatterings become inefficient in exchanging energy.
This classification is useful to easily compare with present
constraints from FIRAS [25,26] which set the upper limits
jμj < 4.7 × 10−5 and jyj < 1.5 × 10−5, but in general, there
is a large variety of possible distortions with a smooth
transition from y to μ distortions that could give comple-
mentary information.

In practice we compute the μ and y-distortions using the
prescription presented in [43,44], such as:

μ ¼
Z

dμ ≈ 1.4
Z

∞

0

J μðzÞ
dργ
ργ

ð4:1Þ

y ¼
Z

dμ ≈
1

4

Z
∞

0

J yðzÞ
dργ
ργ

; ð4:2Þ

where we have introduced the window functions J μðzÞ and
J yðzÞ defined by:

J μðzÞ ¼
�
1− exp

�
−
�
1þ z
zC

	
1.88


	
× exp

�
−
�

z
zDC

	
5=2



;

ð4:3Þ

J yðzÞ ¼
�
1þ

�
1þ z

6.0 × 104

	
2.58

	
−1
: ð4:4Þ

We compute the energy released in the photon bath
dργ ¼ fem × hσannvin2ϕdt × 2mϕ corresponding to the
energy injected by DM annihilation during dt. The pre-
factor fem accounts for the fraction of the energy injected in
the form of electromagnetic energy and depends on the
dark matter mass. This factor has already been computed
for this model in Ref. [30] [see their Eq. (3.4) and Fig. 2],
and we extract the following values: 0.52, 0.28, 0.27, for
mϕ ¼ 200 MeV, 1 GeV, and 5 GeV. However, in this paper,
the authors were interested in the impact of the ionization
on the CMB and so included ionization efficiencies. Hence,
using their values for fem, we slightly underestimate the μ
and y values we compute. The constraints we will draw
from FIRAS [25,26] upper bounds on μ an y, thus give
conservative limits in the ðgx; ϵÞ parameter space.
The results for the μ-distortion are shown with a color

scale on the lower-right panel of Figs. 4 and 5, for the left
and right branch, respectively. As for hσannviMW, the μ
values are primarily dependent on gx (resp. ϵ) in the left
(resp. right) branch case. The evolution of μ with these
parameters follows the same trend as for hσannviMW. This is
not a coincidence since, by definition, μ traces the DM
annihilation history in the redshift window ½zDC; zC�. In
particular, we remark first that the peak of μ values occurs
at larger gx (resp. smaller ϵ) compared to the peak in
hσannviMW in the left (resp. right) branch. This is explained
by the fact that the DM dispersion velocity Σ2 at the epoch
½zDC; zC� is smaller than the virialized one in the DM
galactic halo today. Second, the peak of the μ values is
broader (the red colored region is wider) than the one seen
on hσannviMW. This is because the DM annihilation is
integrated over the full redshift window ½zDC; zC�, including
a broad range of Σ2 values with respect to the plot of
hσannviMW which displays a picture of the annihilation for
the specific Σ2

MW value. The hatched region delineated by
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the solid line corresponds to the region of the parameter
space excluded by the upper bound jμj < 4.7 × 10−5 from
FIRAS [25,26]. The results for the y-distortion look very
similar in shape to the ones for the μ-distortion, and we
only show with a dashed line the region of the parameter
space excluded by the upper bound jyj < 1.5 × 10−5 from
FIRAS [25]. We note that the constraints from the
y-distortion are always weaker than the ones from the
μ-distortion. In the summary plots of Figs. 6–8, we call
CMB constraints the limits from μ-distortion.
For completeness, we also report the constraints coming

from CMB anisotropies. Following Ref. [30], we have
computed the effective annihilation parameter defined in
their Eq. (3.1):

pann ¼
R2

2
fem

hσannviCMB

mϕ
; ð4:5Þ

where R≡ nϕðCMBÞ=nϕðtodayÞ being the ratio between
the dark matter density at the CMB epoch and today.
As the injection of energy in the primordial plasma from
DM annihilation has maximal effect for z ≈ 600, we have
computed pann at that redshift. We have applied the
limits on pann from [1]. Thus, for the left branch
solutions (Σ2

0 < Σ̄2
min), the corresponding exclusion

region stands to the right of the dotted line in the
lower-right panel of Fig. 4 for a 1 GeV DM scalar. We
find the same trend for the 200 MeV and 5 GeV cases,
with much weaker constraints for the latter case. This is
expected insofar as the peak of DM annihilation takes
place earlier for heavier masses. For all the masses
considered, we always find the pann constraint to be
subleading with respect to the μ-distortions one. For
right branch solutions (Σ2

0 > Σ̄2
min), we find no con-

straints from pann since the peak of DM annihilation
occurs well before recombination.

D. Limits on gx and ϵ from direct detection
and collider experiments

Other significant limits on the ðgx; ϵÞ parameter space
come from the DM direct detection experiments as well as
from the accelerator searches.

1. Direct detection limits

Dark photon interacting with ϕ and the SM particles
can be constrained by the direct detection limits because
DM can scatter off nucleons or electrons in the detector
material through A0μ exchange in ϕ SM → ϕ SM processes.
The spin-independent elastic scattering cross section is
given by [45,46]

σSIϕT ¼ 1

π

q2Te
2ϵ2g2x

ðm2
x þ q2Þ2 μ

2
T; ð4:6Þ

where μT is the reduced mass of DM with the target species
T ¼ electron=nucleon and qT is the U0ð1Þ charge of the
target particle, which is 1=2 for a proton, −1=2 for a
neutron and 1 for an electron. q is the momentum transfer.
For our parameter range of interest, mx ≈ 2mϕ, which
implies the zero-momentum transfer limit for the case of
a heavy mediator, i.e., mx ≫ q. Equation (4.6) can be
approximated as:

σSIϕT ≈
1

π

q2Te
2ϵ2g2x
m4

x
μ2T: ð4:7Þ

The limits from electron recoil experiments are
relevant for lighter DM whereas for larger mϕ (i.e.,
mϕ ≳ 100 MeV), the limits from DM-nucleon scattering
kick in. Although detection sensitivity rapidly decreases at
low recoil energies, there have recently been substantial
efforts in low-mass detection techniques, with experiments
like PandaX-4T and XENON IT using liquid Xenon (LXe)
detectors. DM scattering off the target nuclei produces
scintillation photons (S1) and ionized electrons (S2) (pro-
duced through Migdal effect). Both S1 and S2 signals are
used for low-mass DM detection, although the S2-only
signal is more efficient toward lower energy. For nuclear
recoil experiments, around ∼100 MeV DM mass, the most
efficient limits come from the S2-only bounds. In this
category, PandaX-4T limits improve the previous limits
from CRESST-III and XENON-IT(M) by several orders
[47,48]. For heavier DM of a few GeV mass, the most
stringent limits come from PandaX-4T (S1-S2), which
improves the old XENON-IT(S2) limits by ∼a factor of
2 [47,48]. In the case of electron recoil, for DM mass
mϕ ≲ 10 MeV, the most stringent limits come from
SENSEI [49], while for larger DM mass these limits are
surpassed by DarkSide-50 [50] and eventually XENON-IT
(S2) limits take over around mϕ ∼ 30 MeV [51]. Recent
results from PandaX-4T improve XENON-1T limits by
almost an order for DM mass ≳50 MeV [52].
In Figs. 6–8, the exclusion limits by the existing direct

detection experiments are illustrated in the ðgx; ϵÞ plane. As
obvious from Eq. (4.7), the scattering cross sections are
effectively independent of Σ2

0 (it only introduces a negli-
gible correction when taking 2mϕ ≃mx), which implies
that the exclusion regions in ðgx; ϵÞ plane do not change for
the left and right branch solutions. Formϕ ¼ 200 MeV, the
orange shaded region in Fig. 6 corresponds to the region
excluded by PandaX-4T (S2 onlyþMigdal) limits, which
is the most constraining so far with the allowed upper
limit of spin-independent scattering cross section reaching
down to σSIN ≃ 3.25 × 10−38 cm2 [47]. The electron recoil
limits can be obtained from PandaX-4T (constant W
model) [52], where the exclusion region corresponds to
σSIe ≳ 2.1 × 10−41 cm2. These limits are much less con-
straining in comparison with the nuclear recoil bounds and
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therefore are not shown in the figure. In Figs. 7 and 8, the
orange colored exclusion regions are obtained from
PandaX-4T (S2 onlyþMigdal) and PandaX-4T (S1-S2)
[47] respectively. We quote the following numbers for the
respective allowed upper limits on σSIN : σSIN ≃ 1.61 ×
10−39 cm2 for mϕ ¼ 1 GeV and σSIN ≃ 1.22 × 10−44 cm2

for mϕ ¼ 5 GeV. We find that the electron recoil limits are
practically irrelevant for these masses and do not constrain
the range of gx and ϵ considered in the figures.
In Figs. 6–8, the projected limits from the near-future

direct detection experiments are shown with orange dashed
lines. For 200 MeV and 1 GeV DM, we show projections
from DARKSPHERE [53], an experiment proposed by
the NEWS-G collaboration. DARKSPHERE uses a
spherical proportional counter, optimized for detecting
nuclear recoils with sub-keV energy. We quote the pro-
jected exclusions of σSIN ≳ 2.47 × 10−42 cm2 for mϕ ¼
200 MeV and σSIN ≳ 1.7 × 10−43 cm2 for mϕ ¼ 1 GeV.
For 5 GeV DM, the best projections are obtained from
the SBC experiment [54,55] which uses liquid Argon (LAr)
spiked with liquid Xenon (LXe) in a bubble chamber
setup. We have used the projected sensitivity of σSIN ≃
7.28 × 10−46 cm2 for mϕ ¼ 5 GeV in the figures.

2. Accelerator limits

Dark photons can also be probed in various accelerator
searches. Depending on the mass scale, the production and
the decay of the dark photon in these experiments dictate
the sensitivity of detection. While sub-GeV dark photons
are best probed in the electron and the proton beam-dumps

and other fixed-target experiments, they can also be tested
in eþe− colliders, up to a few GeV mass [36,56]. For dark
photons of mass ≳10 GeV, there are constraints from
several LHC searches [57,58]. The signal for all these
probes can come from both visible and invisible decay of
dark photons. For visible dark photon searches, the typical
signal is a pair of leptons whereas the invisible searches are
sensitive to the missing energy signal, due to the dominant
decay of the dark photon into DM.
In our model, the bounds can be obtained from both

visible and invisible dark photon accelerator searches.
The partial decay widths of the dark photon into a pair
of DM and SM particles respectively can be obtained
from Eq. (2.14), which implies that BRðA0 → visibleÞ ¼
ðϵ2e2Q02Þ=ðg2xΣ3

0=4þ ϵ2e2Q02Þ and BRðA0 → invisibleÞ ¼
ðg2xΣ3

0=4Þ=ðg2xΣ3
0=4þ ϵ2e2Q02Þ. When both decay modes

are kinematically accessible, one should take into account
the respective branching ratios while computing the con-
straints. The constraints will therefore depend on gx;Σ0

and ϵ. The constraints on dark photons found in the litera-
ture only depend on ϵ since it is generally assumed that the
branching ratio for either visible or invisible decay modes
is 1. The ϵ dependence comes only from the dark photon
production which is determined by its interactions with SM
particles. For the dark photon mass range of our interest, the
following search strategies yield significant limits:
(1) Visible searches: The best limits for dark photons of

mass ∼100 MeV are obtained from BABAR [59] in
eþe− collisions. The production channel for the dark
photon is eþe− → γA0, and the signal is observed
when A0μ promptly decays into visible final states:

FIG. 6. Summary plot for mϕ ¼ 200 MeV: constraints on the parameter space ðgx; ϵÞ. The left and right panels correspond to the left
(Σ2

0 < Σ̄2
min) and right (Σ2

0 > Σ̄2
min) branch solutions, respectively. The color scale indicates the resulting hσannviMW. The colored patches

show excluded regions from CMB μ-distortion constraints (blue), x-rays measured by XMM (gray), colliders (pink) and direct detection
(orange). Projected exclusion limits are depicted for future direct detection experiments (orange dashed lines) and future accelerator
searches (pink dashed lines). More details are provided in the Sec. IV.
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A0 → eþe− and μþμ−. BABAR provides the most
stringent limits on visible dark photon decays for
100 MeV≲mx ≲ 200 MeV and 1 GeV≲mx≲
10 GeV. For the mass window 2mμ≲mx≲0.5GeV,
the prompt and the displaced vertex searches
(A0 → μþμ−) at LHCb produce the best limits
[57]. Here A0μ is produced through meson decays:
π0 → A0γ or η → A0γ. mx ≳ 10 GeV is best con-
strained by the dimuon searches at LHCb and
CMS [60]. A heavier dark photon, which is relevant
for these searches can be produced in Drell-Yann
process qq0 → A0 at the LHC.

(2) Invisible searches: Light dark photons decaying into
a pair of DM particles can be probed in the invisible

search experiments. For mx in our range of interest,
there are only a few experiments that produce the
relevant constraints. For both BABAR and LEP,
the process under consideration is the production
of an ordinary photon accompanied by a dark
photon. The decay channel A0 → ϕϕ† gives a sig-
nature of monophoton and missing energy. For
25 MeV≲mx ≲ 8 GeV, BABAR limits are the
most stringent [61]. For mx ≳ 8 GeV, LEP limits
prevail [56,62,63].

In Figs. 6–8, the exclusion regions corresponding to the
accelerator limits are shown in magenta shade. We find that
the dark photon decays almost entirely into SM particles in
the parameter space of interest for the left branch solutions,

FIG. 7. Same legend as Fig. 6, for mϕ ¼ 1 GeV.

FIG. 8. Same legend as Fig. 6, for mϕ ¼ 5 GeV.
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therefore we use only the limits from visible decays. For the
right branch solutions, the dark photon can either decay
into SM particles or mostly invisibly, the latter occurs
typically in the region at large gx. Therefore, we take the
limits from both visible and invisible decay and rescale
them in proportion to their respective branching ratios.
For mϕ ¼ 200 MeV, (which implies mx ¼ 400 MeV),
the LHCb dimuon searches constrain ϵLHCb ∼ 5 × 10−4. In
addition, the displaced vertex searches from the proton
beam-dump such as ν − CAL [36,56,64] and CHARM [65]
constrain smaller values of ϵ, namely, 10−7 ≲ ϵ≲ 9 × 10−7.
In these searches, the dark photon is produced from the
meson decays such as ηðη0Þ → γA0 and is subsequently
decayed within the detector into a pair of displaced muons.
As mentioned above, the exclusion bands in Fig. 6 (left)
correspond to the visible decay limits alone. In Fig. 6
(right), the magenta-shaded upper band corresponds to the
region excluded by LHCb (for visible decay) and BABAR
(for invisible decays). When the branching ratios are
∼100%, the limits on ϵ correspond to ϵLHCb ∼ 5 × 10−4

and ϵBABAR ∼ 1 × 10−3. As obvious from the expressions
for the branching ratios above, we find that toward smaller
gx and larger ϵ, the visible decays dominate and as gx
increases, invisible decays gradually take over. Thus the
magenta band for smaller gx corresponds to the purely
visible decay limits from LHCb and large gx to the purely
invisible decay bounds from BABAR. For intermediate gx,
where we find substantial contribution for both decay
modes, the limits are rescaled with the respective branching
ratios as the number of signal events is ∝ ϵ2 × BR.
However, for the lower band, the only relevant limits are
for visible decays. Therefore, for the right branch solution,
the bound gradually weakens for larger gx where we find a
dominant invisible decay contribution. Figure 7 corre-
sponds to mx ∼ 2 GeV, which is best constrained by
BABAR for both visible and invisible searches. The allowed
upper limits of ϵ from both types of searches are compa-
rable, i.e., ϵ ∼ 10−3 for invisible limits and ∼9 × 10−4 for
visible limits. Therefore, the magenta exclusion band is
almost independent of gx. For Fig. 8, where the dark photon
has a mass of 10 GeV, the limit from BABAR corresponds to
ϵ ∼ 9 × 10−4 for the dark photon decaying visibly while
LEP constrains the invisible decays for ϵ ∼ 4 × 10−2. Thus
the limits for intermediate gx are rescaled for the right
branch solution and become weaker at large values of gx,
see Fig. 8 (right) plot.
In Figs. 6–8, we also show the projected sensitivities of

the upcoming accelerator searches with pink dashed lines.
For mx¼400MeV, (which corresponds to mϕ ¼ 200 MeV
here), DUNE is expected to provide the most stringent limits
among the near-future visible search experiments [66]. In
DUNE, a light dark photon is produced in the decays of
neutral mesons (π0 and η). We quote the projected sensitivity
of ϵ ∼ 3 × 10−8 when the dark photon decays 100% into
visible particles. On the other hand, LDMX [67], a proposed

electron beam dump experiment, is expected to constrain the
invisible searches at ϵ ∼ 6 × 10−5 when x mostly decays
invisibly. For a GeV scale dark matter, the best visible search
projections are obtained from Belle-II prompt searches into
dileptons [66]. In the figures, we have used the projected
upper limits of ϵ ∼ 2 × 10−4 for mx ¼ 2 GeV (correspond-
ing to mϕ ¼ 1 GeV) and ϵ ∼ 1.5 × 10−4 for mx ¼ 10 GeV
(for mϕ ¼ 5 GeV) from Belle-II. Projections for the invis-
ible searches are taken as ϵ ∼ 3 × 10−4 formx ¼ 2 GeV (for
mϕ ¼ 1 GeV) from Belle-II [68] when dark photon decays
100% into invisibles. While realizing the future limits,
we rescale the numbers according to the branching ratio
of dark photon decays, following the same strategy as with
the current constraints described before.

3. Summary plots

The impact of the various constraints on the parameter
space of the dark photon model as displayed in Figs. 6–8
can be summarized as follows.

Left branch solutions—Σ2
0 < Σ̄2

min. For the left branch
solutions, large gx values are constrained both by CMB
and x-rays while accelerator searches for dark photons
constrain the region at large kinetic mixing. When the dark
photon is about 400 MeV, a constraint from decays of light
mesons into dark photons applies as well, the allowed
parameter space corresponds to a narrow region with ϵ
roughly between 10−6 < ϵ < 5 × 10−4 and gx < 10−4. This
allowed region shifts toward higher values of gx as the mass
of DM increases. In the cases where mϕ is equal to 1 and
5 GeV, there is an additional region that survives both x-ray
and CMB constraints in the ranges 8 × 10−3 < gx <
3 × 10−2 (1 GeV) and 2 × 10−2 < gx < 0.3 (5 GeV).
Finally note that the direct detection constraint does not
further restrict the parameter space.

Right branch solutions—Σ2
0 > Σ̄2

min. For the right branch
solutions which correspond to a larger Σ2

0, that is a larger
mass gap Δ ¼ mx − 2mϕ, it is the region at low values of ϵ
that is constrained by both CMB and x-rays while, as in the
previous case, larger values of ϵ are constrained by
accelerator searches for dark photons. Direct detection
constraints are relevant in the region of parameter space
where ϵ and gx are large, especially when mϕ ¼ 5 GeV.
In the future, direct detection experiments dedicated to

detecting low-energy threshold nuclear recoils provide prom-
ising limits to constrain DM interaction with SM particles
more efficiently. Experiments such as DARKSPHERE [53]
could reach a sensitivity of σSIN ≃ 10−43 cm2 [54] for DM
mass around 1 GeVand SBC 1 ton [54,55] could probe σSIN ≃
7 × 10−46 cm2 for a 5 GeV DM. This corresponds to more
than four (one) orders of magnitude improvement for a DM
mass of 1 (5) GeV, allowing direct detection to significantly
probe the allowed region.
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Again, for a DM mass mϕ of 1 and 5 GeV, a horizontal
band opens up in parameter space, which escapes CMB and
x-ray constraints, in the range 8 × 10−12 < ϵ < 8 × 10−11

(1 GeV) and 3 × 10−12 < ϵ < 10−9 (5 GeV). It is expected
that future CMB missions such as PIXIE or PRISM will
partially probe these regions.
In the future, various searches for dark photons through

their visible or invisible decay modes will be able to probe
the region with prompt decays for large values of ϵ and
displaced decays for small values of ϵ. Near-future prompt
and displaced visible decay search experiments [66] like
LHCb, Belle-II, DarkQuest and DUNE are proposed to
exclude the kinetic mixing parameter down to ϵ ∼ 3 × 10−8

for a 200–500 MeV dark photon. Moreover, the sensitivity
reach for the invisible decay searches from BABAR
is expected to improve by 2 orders of magnitude with
LDMX [37] in this mass range. For dark photons mass
around the GeV, Belle-II could probe a few 10−4 with
dilepton (visible) [56] and invisible searches [37].

V. CONCLUSION

In this work, we have explored a model where the DM
candidate is a GeV-scale scalar species ϕ charged under a
new local gauge group U0ð1Þ. The gauge boson associated
to this gauge group, dubbed throughout the article ‘dark
photon’, acts as a vector boson portal between the dark and
the SM sectors of the theory. DM annihilation into light SM
fermions proceeds through the exchange in the s-channel
of this dark photon. In these conditions, DM annihilation
has a p-wave behavior at low energy. However, it can be
significantly enhanced if two conditions are met. First, the
dark photon mass mx must be slightly larger than twice the
DM mass mϕ and, second, the decay width of the dark
photon must be smaller than twice the mass gap Δ between
mx and 2mϕ. If both conditions are met, a Breit-Wigner
resonance appears at a DM dispersion velocity directly
related to this mass gap, i.e., when the DM temperature is
equal to Δ. The smaller the mass gap, the smaller the DM
dispersion velocity at peak annihilation.
This has profound implications for the cosmological

behavior of our DM candidate. In most models in the
literature, the bulk of DM annihilation takes place during
the freeze-out process. Shortly after freeze-out, DM anni-
hilation stops and the cosmological abundance of DM
reaches rapidly its relic level. In our model, on the contrary,
the peak of DM annihilation may occur well after freeze-
out if the mass gap is very small. Moreover, the relic
abundance is always shaped at that particular moment.
Determining the evolution of the DM temperature during
the expansion of the universe turns out to be crucial,
insofar as DM annihilation mostly occurs when that
temperature is of order the mass gap Δ. That is why
kinetic decoupling between DM and the primordial
plasma must be dealt with. As we showed, failure to

do so results in a DM relic abundance being overestimated
by several orders of magnitude.
At fixed DM mass mϕ, dark charge gx and mixing angle

ϵ, we found in general two values for the dark photon mass
mx for which the DM relic abundance is equal to the
cosmological measurement [1]. The smallest value, for
which Σ2

0 < Σ̄2
min, is classified as the left branch solution

while the largest value, for which Σ2
0 > Σ̄2

min, is classified
as the right branch solution. For both possibilities, we
explored the ðgx; ϵÞ plane for a DM mass mϕ set equal to
200 MeV, 1 GeV and 5 GeV. For small values of gx and ϵ,
the scalar DM candidate overshoots the cosmological
observed value. For left branch solutions only, large values
of gx and ϵ are also excluded since in this case scalar DM
undershoots the measurement. We then applied several
constraints to the surviving regions. In the domains where ϵ
is small, the peak of DM annihilation occurs when the
CMB energy spectrum is most sensitive to energy injection.
We found μ and y-distortions exceeding by far the bounds
set by observations. For smaller values of gx (left branch)
and larger values of ϵ (right branch), the regions are
excluded by x-ray observations. These astrophysical con-
straints are complemented by the limits set by colliders and
direct detection experiments for large values of ϵ.
In all the cases which we investigated, we found regions

having successfully passed all the tests. In the left branch
case, this region lies at the upper-left corner of the band
where gx is small and ϵ is large. In the right branch case, the
surviving domain corresponds roughly to values of ϵ in
the range between 10−7 and 10−3. In these allowed regions,
the mass gap Δ is not too small and the peak of DM
annihilation occurs shortly after freeze-out.
Although energy injection at late cosmological times is

severely constrained, we found that new domains open up
in parameter space, all the more so when DM is heavy.
Vertical (horizontal) bands appear in the left (right) branch
plots of Figs. 7 and 8. We expect the future CMB missions
PIXIE (NASA) or PRISM (ESA) to partially close these
possibilities since the future instruments will reach a
sensitivity of 10−8 on both y and μ-distortions [69]. We
anticipate that these regions will nevertheless survive.
In the future, the region at large values of gx and ϵ could

be further probed with dedicated low-energy threshold
direct detection experiments such as DARKSPHERE [53]
and SBC [54,55] and improve the current limits by a few
orders in our mass range of interest. Moreover, several
planned searches for dark photons through their visible and
invisible decays at accelerators such as LHCb, Belle-II,
DUNE, DarkQuest or LDMX [56,66] are proposed to
improve the upper bound on ϵ by a few orders of magnitude
for a few hundreds of MeV and by an order of magnitude
for a few GeV dark photon. We have discussed this in
details in the text.
Our results should finally be taken with a grain of salt.

Our conclusions are based on the key assumption that DM
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is always in thermal equilibrium with itself. In the regions
having passed all our tests, kinetic decoupling occurs well
after DM has become nonrelativistic. Actually, before
kinetic decoupling happens, DM reaches a state of inner
thermal equilibrium through its close contact with the
primordial plasma, exactly like photons do with electrons
just before recombination. But, after kinetic decoupling,
our assumption that DM is still in thermal contact with
itself needs to be scrutinized. Such an investigation was
beyond the scope of this exploratory analysis. In a follow-
up study, we plan to investigate this point by solving, for
instance, the transport Boltzmann equation for DM species
and evolve in time the particle momentum distribution [70].
A more ambitious goal would be to embed the Lagrangian
(2.1) in a more general setup and to study the cosmological
consequences of the overall theory. This would allow to
determine whether or not the DM scalar ϕ is actually in
thermodynamical equilibrium with the primordial plasma
before it becomes nonrelativistic.
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APPENDIX A: DISCUSSION OF Jða;bÞ
AND hσannvi

We highlight some properties and approximations of
Jða; bÞ below
(1) The integral J has been normalized so that

Jð0; 0Þ ¼ 1.
(2) a > 0: With reference to Eq. (2.11), this corresponds

to mx < 2mϕ.
(a) If a and b are both smaller than or of order 1, i.e.,

if the dispersion velocity Σ is larger than
MaxðΣ0;Λ0Þ, the integral J is roughly equal
to 1 and the average cross section hσannvi scales
as Σ−2. It decreases as Σ increases. This behavior
is reminiscent of a Sommerfeld enhanced
annihilation.

(b) In the opposite situation where Σ is less than
MaxðΣ0;Λ0Þ, at least one of the parameters a
and b, if not both, is larger than 1 and the
denominator of the integrands in expressions
(2.13) is roughly approximated as a2 þ b2. This
yields a value of J equal to

J2ða; bÞ ¼
3=4

a2 þ b2
: ðA1Þ

The averaged cross section hσannvi scales this
time as Σ2. The annihilation is p-wave sup-
pressed at low velocities.

(3) a < 0: In this case, the dark photon is heavier than a
ϕ-ϕ̄ pair at rest. The annihilation can be enormously
enhanced if the velocities of the incoming DM
scalars can fill the gap Δ between 2mϕ and mx

and if the decay width of the dark photon that
mediates the process is very narrow. The annihilation
proceeds then through a Breit-Wigner resonance. The
smaller is Λ0 with respect to Σ0, the narrower and
higher the resonance. The peak is actually reached
when the one-dimensional dispersion velocity Σ of
the DM scalars is of order Σ0.
We remark with reference to Eq. (2.11) that when Σ

increases, both jaj and b decrease while the ratio
jaj=b remains fixed at Σ2

0=Λ2
0. The behavior of the

integral J is now more involved than when a was
positive. The left panel of Fig. 9 features the evolution
of J as a function of jaj for a fixed ratio b=jaj of 10−4.
Three regimes are clearly visible:
(a) When the parameter jaj goes to 0, the integral

converges toward 1 as it should, since Jð0; 0Þ ¼ 1.
(b) For small values of the ratio b=jaj, and as long as

jaj is not too large with respect to 1, the Breit-
Wigner resonance sets in. The region of inte-
gration which contributes most to J is centered
around t ¼ jaj. It corresponds to the annihilation
peak whose full width at half-maximum is
2b ≪ jaj. We can write the integral as

Jða; bÞ ¼ 1ffiffiffi
π

p
Z þ∞

0

t3=2e−t

ðt − jajÞ2 þ b2
dt

≃
jaj3=2e−jajffiffiffi

π
p

�Z þ∞

0

dt
ðt − jajÞ2 þ b2

≃
Z þ∞

−∞

du
u2 þ b2

¼ π

b

�
; ðA2Þ

where the variable u ¼ t − jaj. The integral J is
well approximated by the function

J1ða; bÞ ¼
ffiffiffi
π

p
b

jaj3=2e−jaj: ðA3Þ

It reaches its maximum at jaj ¼ 1=2. Beyond
that point, J decreases exponentially like e−jaj.

(c) For large values of jaj, a new regime sets in
where J is well approximated by the function
J2ða; bÞ defined in (A1). In general, this
approximation is a good description of J for
values of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
much larger than 1, irre-

spective of the sign of a.
The evolution of J as a function of jaj is plotted in the

right panel of Fig. 9 for several values of the ratio b=jaj.
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When this ratio is small, i.e., when the Breit-Wigner
resonance through which the annihilation proceeds is
narrow, this translates into Λ0 being much smaller than
Σ0 and the integral J has the same behavior as in Fig. 9.
It features a bump whose highest point is reached at
jaj ¼ 1=2. On the contrary, when Λ0 is larger than Σ0,
i.e., for large values of the ratio b=jaj, the contribution from
J1 becomes subdominant and the integral J does not exhibit
any enhancement. It evolves smoothly from the constant
value of 1 to its asymptotic form J2. The transition between
these regimes takes place for jaj ∼ jaj=b. We recover the
same behavior as if a were positive.

APPENDIX B: SCALAR DARK MATTER
THERMALIZATION

In this section, we present a simplified analysis of the
thermalization of scalar DM with the SM plasma. A
complete treatment would require the knowledge of the
overall theory, which is beyond the scope of our explor-
atory work. We will concentrate here on the interactions
between scalar DM and SM fermions that are encoded in
Lagrangian (2.1), the starting point of our analysis.
We will also assume that scalar DM is thermalized with

itself, and that a DM temperature Tϕ can be defined at all
times. This is certainly true whenever collisions between
DM scalars and SM fermions are rapid enough to ensure
efficient energy exchange between these populations and to
establish thermalization. We will assume that DM reaches a
state of inner thermal equilibrium after kinetic decoupling

from the SM plasma has occured, allowing the DM
temperature Tϕ to be defined also in this situation. This
may appear as an oversimplification. Going beyond it
would make the problem orders of magnitude more
complicated. We would have to solve directly the
Boltzmann equation and study the evolution in time of
the DM distribution function in momentum space [70]. We
will defer such an investigation to a future work. Assuming
that DM reaches inner thermal equilibrium with temper-
ature Tϕ leads already to a particularly rich and complex
phenomenology, which could be the starting point for
further investigations.
The question of DM thermalizing with the primordial

plasma is paramount insofar as the annihilation cross
section (2.10) crucially depends on the DM dispersion
velocity Σ and DM temperature Tϕ ≡mϕΣ2. As encrypted
in Lagrangian (2.1), scalar DM exchanges energy with the
SM plasma through annihilations into, recreations from
and collisions upon SM light fermions. Our aim is to model
these processes to establish an equation that drives the
evolution of the DM temperature Tϕ with respect to the SM
plasma temperature T. Notice that the DM heat capacity is
small compared to that of the SM plasma. As it becomes
nonrelativistic, DM annihilates and its density actually
drops, hence a negligible contribution to the overall heat
capacity of the primordial plasma. The temperature of the
latter still evolves at constant entropy, decreasing approx-
imately like a−1, where a is the scale factor of the universe.
The SM plasma is not affected by its thermal contact with

FIG. 9. The integral Jða; bÞ is plotted as a function of jaj (a < 0) for a fixed ratio b=jaj of 10−4 (left) and several values of the ratio
b=jaj (right). In the left panel, three behaviors are clearly visible—(i) When the parameter jaj goes to zero, the integral J tends to 1.
(ii) The Breit-Wigner regime sits in the intermediate region where J steadily increases like

ffiffiffiffiffiffijajp
until jaj reaches 1=2. Beyond that point,

J drops exponentially until the third regime is reached. (iii) At large values of jaj, the integral J decreases actually as 1=a2. In the right
panel, the curves for which the ratio is small, exhibit a Breit-Wigner enhancement, while for larger values of the ratio, we observe the
smooth transition from the constant value of 1 to the asymptotic form.
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DM, or the breaking of it. This is not so for the DM
temperature which relaxes rapidly toward the SM temper-
ature at early times. At some point, called thermal or kinetic
decoupling, this relaxation slows down, and Tϕ cannot
follow T anymore. The DM temperature decreases after-
ward more rapidly than the plasma temperature.
In Sec. B 1, we show that DM can be thermalized

through its annihilation into and recreation from SM
fermions. We show that kinetic decoupling occurs always
after freeze-out. In Sec. B 2, we model the energy
exchanged between DM and the SM plasma through
collisions. We eventually establish the master equation
for Tϕ in Appendix B 3 and explain how we find the kinetic
decoupling point.

1. Thermalization through annihilations

We investigate here whether or not the thermalization of
ϕ and ϕ̄ particles with the SM plasma could be ensured
solely through their annihilation into, and production from,
standard model fermions

ϕþ ϕ̄⇌f þ f̄: ðB1Þ

We want to determine if DM species are thermalized, and
thermal contact is established with the SM plasma, should
this reaction be fast enough. We assume that DM particles
are thermalized with each other so that a DM temperature
Tϕ can be defined. We would like to determine how fast Tϕ

relaxes toward the plasma temperature T.
For this, let us consider a volume V of space. It is filled

with DM species ϕ and ϕ̄ whose densities nϕ and nϕ̄ are
equal insofar as no asymmetry is assumed. Let us define
n≡ nϕ ≡ nϕ̄. The number of DM particles inside the
volume V is

N ¼ ðnϕ þ nϕ̄ÞV ¼ 2nV: ðB2Þ

The DM energy stored inside that volume is

U ¼ N
�
mϕ þ

3

2
Tϕ

�
: ðB3Þ

WeassumeDMtobenonrelativistic aswearedealingwith the
freeze-out process at temperatures belowmϕ. The pressure of
the DM gas is P ¼ ðnϕ þ nϕ̄ÞTϕ ¼ 2nTϕ. During the lapse
of time dt, the number N of DM species inside volume V
varies according to the chemical reaction (B1)

dN
dt

¼ −2hσannviTϕ
n2V þ 2hσannviTn2eqV: ðB4Þ

Two DM species disappear or are created per reaction.
The creation term can be derived by noticing that it should

cancel the annihilation term at thermodynamical equilibrium.
The density neq corresponds to a population at temperature T
with vanishing chemical potential. In the nonrelativistic
regime under consideration, it is given by Eq. (3.9). On
the other hand, relation (B2) leads to

dN
dt

¼ 2
dn
dt

V þ 2n

�
dV
dt

¼ 3HV
�
; ðB5Þ

whereH ¼ ȧ=a is the expansion rate and a is the scale factor
of the universe at time t. Combining both equalities (B4)
and (B5) yields the well-known equation

dn
dt

¼ −3Hn − hσannviTϕ
n2 þ hσannviTn2eq: ðB6Þ

Alternatively, we can recast relation (B4) into

dN
dt

þ fhσannviTϕ
ngN ¼ fhσannviTneqgNeq: ðB7Þ

As long as the annihilation rate

Γann ≡ hσannviTϕ
n ðB8Þ

is larger than the rate with which the right hand side term
evolves, a dynamical equilibrium is reached and Ṅ can be
disregared in Eq. (B7). If both temperatures Tϕ and T are
furthermore equal, the DM density n is given by its chemical
equilibrium value (3.9).
During the lapse of time dt, the DM internal energy (B3)

varies by an amount

dU ¼ −PdV − 2hσannviTϕ
n2Vdt

�
mϕ þ

3

2
Tϕ

�

þ 2hσannviTn2eqVdt
�
mϕ þ

3

2
T

�
: ðB9Þ

We have also applied detailed balance, noticing that each
time a pair of DM scalars disappears, an average energy
twice equal to mϕ þ 3=2Tϕ is removed from the DM
population. The amount of energy given to DM each time a
pair of scalars ϕϕ̄ is created is twice equal to mϕ þ 3=2T,
with this time T instead of Tϕ. Actually when thermody-
namical equilibrium is reached between DM and the SM
plasma, the only change in the DM internal energy comes
from the pressure work −PdV. The variation of the DM
internal energy (B3) can also be written as

dU ¼ dN

�
mϕ þ

3

2
Tϕ

�
þ 3

2
NdTϕ: ðB10Þ
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Using expressions (B7), (B9), and (B10), we derive the
equation fulfilled by the DM temperature

dTϕ

dt
¼ −2HTϕ −

�
hσannviT

n2eq
n

�
ðTϕ − TÞ: ðB11Þ

At early times, before freeze-out starts, we can assume
DM to be in thermodynamical equilibrium with the rest of
the plasma so that n ¼ neq while Tϕ ¼ T. The annihilation
rate Γann is given by hσannviTneq and is equal to the rate ΓF

rel

defined in Sec. III A. The DM temperature evolves as

dTϕ

dt
¼ −2HTϕ − ΓannðTϕ − TÞ: ðB12Þ

This equation can be recast into

dTϕ

dt
þ fΓann þ 2HgTϕ ¼ ΓannT; ðB13Þ

with the same structure as (B7) which boils down to

dN
dt

þ ΓannN ¼ ΓannNeq: ðB14Þ

As both Eqs. (B13) and (B14) are similar, we conclude that
freeze-out (also known as chemical decoupling) is con-
comitant with thermal decoupling (aka kinetic decoupling).
We can even guess that freeze-out occurs slightly before
kinetic decoupling. Actually, the codensity N relaxes
toward its dynamical equilibrium value Neq with rate Γann,
while the DM temperature Tϕ relaxes toward the plasma
temperature T with the slightly larger rate Γann þ 2H. We
also notice that the right-hand side term ΓannNeq of the
codensity equation (B14) drops much faster than ΓannT, its
temperature counterpart in Eq. (B13). The codensity Neq

has an exponential dependence expð−mϕ=TÞ and decreases
much faster than T.
To conclude, we have proved that DM annihilation into,

and production from, SM light fermions is able alone to
thermalize DM with the plasma. Kinetic decoupling in that
case occurs slightly after freeze-out. Reaction (B1) results
from the interaction Lagrangian (2.1) which also implies
the existence of collisions between DM and light fermions
discussed in the next section.

2. Thermalization through collisions with SM species

There are of course collisions between light SM fermions
and DM. These contribute to the thermalization of DM
since energy is exchanged between both populations. Let us
develop a simplified calculation of the energy transferred
from the fermions f to the DM species. The latter are
nonrelativistic since we are interested here in the period of
kinetic decoupling which occurs after freeze-out, for a

plasma temperature below mϕ. We can safely treat the DM
scalars as if they were at rest in the cosmological frame
and compute their recoil energy as they are impacted by
incident fermions. We focus on the collision

f þ ϕ ⟶ f þ ϕ: ðB15Þ

A dark photon is exchanged in the t-channel between
the fermionic line and the scalar line. The fermion f is
ultrarelativistic as we are interested this time in plasma
temperatures T above the mass mf. In the opposite
situation, pair annihilation drives the population of fer-
mions f to extinction, with number density nf dropping
like expð−mf=TÞ, and energy transfer stops. The incident
fermion in reaction (B15) has energy ϵf and is scattered
through the angle θ with respect to its initial direction.
The scalar ϕ, initially at rest, recoils with kinetic energy ER.
A straightforward but exact calculation yields

ER ¼
�

u
1þ u

�
ϵf where u ¼ ϵf

mϕ
ð1 − cos θÞ: ðB16Þ

We recover the well-known relation of the Compton effect.
In the regime where the plasma temperature T is signifi-
cantly smaller than the DM mass mϕ, so is the average
fermion energy. The parameter u is small with respect to 1
and the recoil energy boils down to

ER ≃
ϵ2f
mϕ

ð1 − cos θÞ: ðB17Þ

The collisions of the fermions f and f̄ on the scalars ϕ and
ϕ̄ result in the increase of the DM internal energy contained
in volume V with rate

dUcol

dt
¼ N

Z
dnfvf

Z
4π
dΩ

dσcol
dΩ

ERðΩÞ; ðB18Þ

where ERðΩÞ is given by (B17). As fermions are ultra-
relativistic, their velocity vf is equal to the speed of light.
Their number density obeys Fermi-Dirac statistics

dnf ¼
4πϵ2fdϵf
8π3

�
fðϵfÞ ¼

gf
expðϵf=TÞ þ 1

�
; ðB19Þ

where gf denotes the spin degeneracy factor. The Feynman
diagram associated to reaction (B15) yields the differential
collision cross section

vf
dσcol
dΩ

¼ 1

8π2
g2xϵ2e2Q2

f

m4
x

ϵ2fð1þ cos θÞ: ðB20Þ
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Plugging the two last relations into the rate of collisional energy transfer (B18) yields

dUcol

dt
¼ N

gf
8π3

g2xϵ2e2Q2
f

m4
xmϕ

�Z
∞

0

ϵ6fdϵf
expðϵf=TÞ þ 1

¼ Γð7Þζð7Þ
�
1 −

1

26

	
T7

��Z
π

0

dð− cos θÞð1 − cos2θÞ ¼ 4

3

�
: ðB21Þ

We can apply detailed balance to describe now the energy
flowing from scalar DM to fermions as a result of
collisions. This boils down to replacing T7 by T7

ϕ in the
previous expression. Going a step further by linearizing the
net gain of DM internal energy per unit time with respect to
the temperature difference Tϕ − T, we get

dUcol

dt
¼ 3

2
NCcolT6ðT − TϕÞ: ðB22Þ

The coefficient Ccol is given by

Ccol ¼ AcolQ2
eff

g2xϵ2e2

m4
xmϕ

; ðB23Þ

where

Acol ¼
2205

4π3
ζð7Þ ≃ 17.9271 while Q2

eff ≡
X
mf≤T

gfQ2
f:

ðB24Þ

We have summed over all fermionic populations which are
ultrarelativistic when the plasma temperature is T, hence
the effective charge Q2

eff .
Notice that we have so far concentrated on fermions but

we might be in the situation where charged pions also
collide on DM scalars. This may happen at the end of the
quark-hadron phase transition, although pions are not
strictly ultrarelativistic at that time. We can slightly modify
the definition of Q2

eff to include these charged scalar
species. Their collision cross section is enhanced by a
factor of 3 with respect to fermions and the statistical factor
must also be modified. We describe nowQ2

eff as the smooth
function of the plasma temperature T

Q2
eff ≡

X
f

gfQ2
f expð−mf=TÞ þ

192

63
gπQ2

π expð−mπ=TÞ;

ðB25Þ

where gπ ¼ 2 and Q2
π ¼ 1.

3. Kinetic decoupling

Taking into account both annihilations and collisions, the
evolution of the scalar DM temperature becomes

dTϕ

dt
¼−2HTϕ−

�
hσannviT

n2eq
n
þCcolT6

�
ðTϕ−TÞ: ðB26Þ

For numerical resolution purposes, this equation can be
recast into a form similar to relation (3.4)

dTϕ

dt
þ fΓann þ Γcol þ 2HgTϕ ¼ fΓann þ ΓcolgT; ðB27Þ

where

Γann ¼ hσannviT
n2eq
n

≃ hσannviTneq ¼ ΓF
rel while

Γcol ¼ CcolT6 ¼ AcolQ2
eff

g2xϵ2e2

m4
xmϕ

T6: ðB28Þ

The DM temperature Tϕ relaxes toward the plasma temper-
ature T with rate

ΓKD
rel ¼ Γann þ Γcol þ 2H; ðB29Þ

while the rate of evolution of kinetic equilibrium can be
defined as in (3.6) through the identity

ΓKD
eq ≡

���� ddt ln fðΓann þ ΓcolÞTg
����: ðB30Þ

At early times, ΓKD
rel exceeds ΓKD

eq by orders of magnitude
and DM is thermally connected to the SM plasma. But as
time goes on, Γann drops exponentially like expð−mϕ=TÞ
while Γcol drops like T6. The relaxation rate ΓKD

rel decreases
faster than the rate ΓKD

eq at which the kinetic equilibrium
evolves. Kinetic decoupling occurs when both rates are
equal

ΓKD
rel ðxKDÞ ¼ ΓKD

eq ðxKDÞ; ðB31Þ

where the kinetic-decoupling point xKD is defined as the
ratio mϕ=TKD. Afterward, the DM temperature follows the
equation

dTϕ

dt
þ 2HTϕ ¼ 0; ðB32Þ

and Tϕ decreases like a−2, where a is the scale factor of the
universe. DM behaves then like a nonrelativistic gas
undergoing adiabatic expansion.
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