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In numerical simulations of binary neutron star systems, the equation of state of the dense neutron star
matter is an important factor in determining both the physical realism and the numerical accuracy of the
simulations. Some equations of state used in simulations are C2 or smoother in the pressure/density
relationship function, such as a polytropic equation of state, but may not have the flexibility to model stars or
remnants of different masses while keeping their radii within known astrophysical constraints. Other
equations of state, such as tabular or piecewise polytropic, may be flexible enough to model additional
physics and multiple stars’ masses and radii within known constraints, but are not as smooth, resulting in
additional numerical error.Wewill study in this paper a recently developed family of equation of state, using a
spectral expansion with sufficient free parameters to allow for a larger flexibility than current polytropic
equations of state, and with sufficient smoothness to reduce numerical errors compared to tabulated or
piecewise polytropic equations of state. We perform simulations at three mass ratios with a common
chirp mass, using two distinct spectral equations of state, and at multiple numerical resolutions. We evaluate
the gravitational waves produced from these simulations, comparing the phase error between resolutions and
equations of state, as well as with respect to analytical models. From our simulations, we estimate that the
phase difference at the merger for binaries with a dimensionless weighted tidal deformability difference
greater than ΔΛ̃ ≈ 55 can be captured by the spectral Einstein code for these equations of state.
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I. INTRODUCTION

Great progress has been made in gravitational wave
astrophysics starting with the binary black hole (BBH)
merger event GW150914 [1] and the detection of the binary
neutron star merger event GW170817 by the LIGO/Virgo/
KAGRA collaboration [2]. Additional mergers of black
hole-neutron star (BHNS) and binary neutron star (BNS)
have been observed, such as GW190425 [3], GW200115
[4], and GW191219 [5]. We have also observed merger
events between objects with properties outside of what was
previously expected, such as GW190814 [6], which has
either the heaviest neutron star (NS) or lightest black hole
(BH) detected so far, with a mass of 2.50 − 2.67M⊙,
partnered with a 22.2 − 24.3M⊙ BH. Gravitational waves
from these mergers carry information about the system’s
chirp mass, as well as the angular momentum and mass of
each compact object. In the presence of a neutron star, they
also provide information on how matter behaves at den-
sities higher than nuclear saturation density.

To interpret this information, we need to quickly gen-
erate millions of theoretical gravitational wave signals.
Even with modern methods and technologies, however,
creating simulations that sample the available parameter
space densely enough to allow us to perform parameter
estimation on observed binaries remains prohibitive in time
and computational cost. As a result, simulations are instead
used to test and/or train analytical models. While analytical
models have high accuracy during the inspiral of a binary
even without including any information from merger
simulations, they can become inaccurate in the last few
orbits before the merger—which also happens to be when
the impact of the finite size of a neutron star is most
noticeable on the waveform. Numerical relativity simula-
tions are thus used to test or calibrate these models for
better accuracy during these critical stages of a merger
event. As the accuracy of these analytical models (or, at
the very least, our ability to test said accuracy) is then
dependent on the accuracy of merger simulations,
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a reduction of potential numerical errors below the
expected accuracy of current and future gravitational wave
detectors is highly desirable. For GW170817, the only
event so far to put meaningful constraints on the equation of
state (EOS) of dense matter, modeling errors were most
likely unimportant [2]. However, with planned improve-
ments to the sensitivity of current detectors and the
construction of new observatories, the frequency of gravi-
tational wave detections will increase, and modeling errors
will potentially become an important source of uncertainty.
In the case of BNS mergers, high-accuracy simulations

are still relatively new, and even the best simulations have a
lower accuracy and a higher computational cost than for
BBH mergers. BNS mergers require the evolution of the
equations of general relativistic hydrodynamics in addition
to Einstein’s equations. Beyond the cost of evolving this
additional system of equations, the presence of surface
discontinuities and/or shocks in the fluid makes it impos-
sible to use for neutron star mergers the high-order methods
that have allowed BBH simulations to produce high-
accuracy waveforms at a reasonable computational cost,
or at least impossible to consistently use such methods
across the entire computational domain.
There are at least two ways to limit the unphysical

impacts of discontinuities in the evolution of the fluid. One
is the use of numerical methods capable of maintaining
high-order accuracy while capturing shocks and surfaces.
Methods demonstrating third-order convergence (for com-
position-independent EOSs) [7] and fourth-order conver-
gence (for piecewise polytropes) [8] in the phase of the
gravitational wave signal have been published so far.1 The
other is to improve the smoothness of the EOS used
to describe high-density matter [9,10]. Smoother EOSs
typically lead to lower truncation errors. A simple Γ ¼ 2
polytropic EOS, for example, is much preferable in terms of
numerical accuracy to the more complex piecewise-
polytropic EOS, or to the tabulated, composition and
temperature-dependent EOS needed in simulations that
evolve neutrinos or that aim to capture changes in the
fluid composition. There is however a significant trade-off,
in that a simple polytropic EOS matching the desired mass
and radius of a specific neutron star will often not be
consistent with known physical constraints, for example,
the maximum mass of neutron stars, or the radius of
neutron stars of different masses. Additionally, these simple
EOSs are much farther from satisfying constraints on the
nuclear EOS derived from theoretical and experimental
nuclear physics results. With constraints on the neutron star
from studies such as [11–15], a smooth EOS that is more
consistent with at least the known physical constraints on

the macroscopic properties of cold neutron stars (mass-
radius relation, maximum mass) is desirable. Several other
methods have been developed to approach these issues.
O’ Boyle et al. (2020) [16] has modified a piecewise-
polytropic EOS to be smoothly differentiable. Legred et al.
(2023) [17] uses a flexible parameterized-enthalpy EOS,
demonstrating the ability to balance numerical cost with
accurate behavior. The latter EOSs are effectively an
extension of the EOS used here, aimed in large part at
improving the ability of smooth equations of state to
capture more rapid changes in the pressure-density relation.
Similarly, one advantage of smoothed piecewise-polytropes
over spectral equations of state would be the ability to use
relatively short smoothing lengths to capture rapid changes
in the pressure. When used in numerical simulations,
sharper features, even if mathematically smooth, are how-
ever likely to lead to a loss of accuracy if the smoothing
length is short compared to the numerical resolution. In this
manuscript, we limit ourselves to evaluate our ability to
perform high-accuracy simulations with the simple spectral
equations of state of [9]. Using these alternative models
would likely lead to similar accuracy for the subset of these
equations of state devoid of underresolved features.
We note that while this spectral equation of state allows

us to construct an EOS that more closely matches any
chosen set of constraints on the properties of cold matter in
beta equilibrium, the temperature dependence of our EOS
remains extremely simplified, and it does not include any
composition dependence [9]. A method to expand a cold,
beta-equilibrium EOS with a more physically motivated
temperature and composition dependence has been pro-
posed in [18,19], but is not currently implemented in the
spectral Einstein code (SpEC) used in this work. Our ability
to accurately evolve these spectral EOSs was first tested in
[9] over short simulations; this manuscript presents our first
full inspiral-merger simulations using these EOSs. As we
are in particular interested in estimating our ability to
capture tidal effects in waveforms, this manuscript includes
simulations of systems with identical neutron star masses
but performed with two EOSs with ∼20% differences in
their dimensionless tidal deformability (∼570 vs ∼710 for
GW170817-like systems). We will show that the phase
difference between the resulting waveforms at the merger is
resolved in our simulations.
In addition to our study of this spectral EOS, we

will in this manuscript evaluate the performance of a
new time stepping method for SpEC evolutions, where
the evolution of Einstein’s equations is permitted to take
smaller steps than the evolution of the fluid equations. For
the SpEC code, this offers reduced computational cost, as
these two systems of equations are evolved on different
numerical grids, with different time step constraints. The
fluid equations are typically more costly to solve in each
individual time step, while Einstein’s equations often
require a shorter step to reach a desired accuracy.

1We note that piecewise polytropic equations of state are
composition-independent EOSs, but the reverse is not necessarily
true. The methods used in [7] are applicable in any simulation in
which the composition of the fluid is not evolved, while those of
[8] make more restrictive assumptions for the form of the EOS.

ALEXANDER KNIGHT et al. PHYS. REV. D 110, 023034 (2024)

023034-2



Here, we demonstrate that uncoupling these time stepping
systems results in simulations equivalent (within expected
numerical errors) to those obtained when Einstein’s equa-
tions, and the equations of hydrodynamics use the same
time stepping algorithm. We note that this is largely due to
the fact that time stepping errors are subdominant in SpEC.
The time step size is determined by stability considerations
rather than to reach a specific accuracy target, and time
stepping errors are significantly smaller than spatial dis-
cretization errors in our simulations, for all time stepping
algorithms considered here.
We simulate six distinct physical configurations, using

two different EOSs each evolved at three mass ratios. For
two of these cases, we also use both time stepping methods.
We then extrapolate the gravitational waves to future null
infinity and compare these gravitational waves to analytical
models. All waveforms presented here will become public
as part of the next data release by the SxS collaboration.

II. METHODS

A. Evolution

For the simulations presented in this manuscript, we use
the Spectral Einstein Code (SpEC) [20], which evolves
Einstein’s equations using the generalized harmonic for-
malism [21] on a pseudospectral grid, with p-type adaptive
mesh refinement [22]. The general relativistic hydro-
dynamical equations are evolved on a separate grid using
the high-order shock capturing scheme described in Radice
and Rezzolla (2012) [23]. This scheme uses the fifth-order,
shock capturingMP5 reconstruction to interpolate from cell
centers to cell faces, and a Roe solver to calculate numerical
fluxes at cell faces. It has been shown to result in third-order
convergence of the solution when used in neutron star
merger simulations [23].
Einstein’s equations and the fluid equations are both

evolved in time using a third-order Runge-Kutta algorithm.
In the algorithm previously used in SpEC, both systems of
equations use the same time step, chosen to meet a target
time discretization error (see Appendix A, Sec. 3 of [24]).
Practically, this usually results in a time step that is just
small enough to match the stability condition of our time
stepping algorithm, as below that stability limit, the time
stepping error is much smaller than our target accuracy.
Coupling source terms are communicated between the
grids at the end of each time step. Linear extrapolation
from the current step and previous steps is used to
determine the values of the source terms during the
intermediate steps of the Runge-Kutta algorithm.
In previous SpEC simulations, the time steps on the two

grids were always identical, Δtf ¼ ΔtGR, where Δtf is the
time step increment of the fluid grid, and ΔtGR is the time
step increment of the grid evolving Einstein’s equations. In
the new algorithm used in some of the simulations
presented here, the fluid equations take a time step

Δtf ¼ αCFL minðΔxFDcmax
Þ, with ΔxFD the grid spacing on the

fluid grid, cmax the maximum characteristic speed of the
fluid equations in grid coordinates in a cell (in absolute
value), and αCFL ¼ 0.25 a constant chosen to maintain
stability of the evolution. The minimum is taken over all
cells in our computational domain. The time step used for
Einstein’s equations is again chosen to meet the time
discretization error, which practically sets ΔtGR at a value
appropriate for stability of the evolution on the pseudo-
spectral grid. In general, Δtf > ΔtGR, and ΔtGR is similar
to the time step used when both grids were required to take
identical time steps. In the new time stepping method, we
now allow the code to take multiple steps on the pseudo-
spectral grid for each step on the fluid grid. We require the
end of a time step on the fluid grid to match the end of a
time step of the metric evolution. The code thus takes
advantage of the fact that the stability condition on the time
step size is less restrictive on the finite difference grid than
on the pseudospectral grid.
In this new method, source terms are communicated

between the two grids at the end of each time step of the
fluid evolution. This results in less frequent communication
than in our previous algorithm and in a lower number of
time steps for the fluid equations. At intermediate times, we
again use extrapolation from previous time steps to
calculate the source terms. The order of extrapolation used
in this algorithm is freely specifiable. So far, we found no
significant impact on the accuracy of our simulations as
long as we use at least first-order extrapolation. In the rest
of this manuscript, we will refer to the simulations using the
same time step on both grids as shared time step (ShTS),
and the simulations using a different time step on each grid
as split time step (SpTS).
In order to test the impact of the time stepping algorithm

on accuracy, we evolved a BNS system for 0.35 ms starting
from the same simulation snapshot, but using either the
ShTS and SpTS algorithm. For each algorithm, we evolved
with our time step for medium resolution simulations, as
well as with time steps 2 and 4 times smaller. In all cases,
the observed time discretization errors were orders of
magnitude smaller than spatial discretization errors over
comparable time scales (relative errors in the phase of the
orbital trajectory≲10−8 in all cases and showing first-order
convergence, likely due to errors on the surface of the
neutron star or in the atmosphere that become dominant for
such small errors). In SpEC simulations of BHNS and BNS
systems, the time step is limited by stability considerations,
not by accuracy considerations. As a result, a time-stepping
algorithm such as ShTS, which slightly increases time-
stepping errors while reducing simulation cost, is desirable,
as the practical impact of the chosen algorithm on the
overall error budget remains negligible.
Interpolating from the spectral grid to the finite-

difference grid to communicate source terms is done by
refining the spectral grid by approximately a factor of 3 in
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each dimension and then using third-order polynomial
interpolation from the colocation points in the refined
spectral grid to the finite-difference grid. Interpolation from
the finite-difference grid to the spectral grid uses fifth-order
polynomial interpolation, limited so that interpolation does
not create any new extremum in the fluid variables.
The pseudospectral and finite difference grids both rotate

and contract to follow the binary system. The finite-
difference grid is rescaled when the grid spacing decreases
by a factor of 0.8 in the inertial frame, in order to keep a
consistent resolution during all phases of the evolution. The
finite-difference grid removes subdomains where no sig-
nificant matter [maxðρÞ < 6.2 × 109 g

cm3] is located and
adds back subdomains as higher density matter flows close
to the boundary of the removed subdomains over the course
of the simulation. These two methods result in a reduced
computational cost for our simulations.
For a full explanation on SpEC’s methods for the

evolution of the hydrodynamical and general relativistic
grids, we refer the reader to Duez et al. (2008) [25], as well
as Appendix A of Foucart et al. (2013) [24]. We will limit
ourselves here to a brief discussion of the methods most
relevant to the use of spectral EOSs in simulations aiming
to produce high-accuracy numerical waveforms.
We define the neutron star matter as a perfect fluid with

stress-energy tensor

Tμν ¼ ðρþ uþ PÞuμuν þ Pgνμ: ð1Þ

In this equation, we have the pressure P, baryon density ρ,
internal energy density u, four-velocity uμ, and the inverse
metric gμν. The evolution equations are derived from the
conservation of baryon number2

∇μðρuμÞ ¼ 0; ð2Þ

and the energy-momentum conservation

∇μTμν ¼ 0; ð3Þ

which give give equations for six independent variables
(e.g., ρ, u, P, and three independent components of the
velocity). We close the system of equations with an EOS,
which introduces two functions Pðρ; TÞ and uðρ; TÞ
(defined below), with temperature T. While such an
EOS introduces T as a new variable, the two equations,
Pðρ; TÞ and uðρ; TÞ, are sufficient to close the system of
equations.

Practically, we evolve the “conserved” variables

ρ� ¼ −
ffiffiffi
γ

p
nμuμρ; ð4Þ

τ ¼ ffiffiffi
γ

p
nμnνTμν − ρ�; ð5Þ

Sk ¼ −
ffiffiffi
γ

p
nμT

μ
k; ð6Þ

where γ is the determinant of the spacial metric
γij ¼ gij þ ninj, and nμ is the future directed unit normal
to a constant time slice. The integral of ρ� (“total baryonic
mass”) is conserved over the entire domain, up to losses at
the domain boundary. Recovering the “primitive” variables
ðρ0; T; uiÞ from the conserved variables requires multidi-
mensional root finding. We follow the 2D root-finding
method of Noble et al. [26], with corrections in low-density
and high-velocity regions where due to numerical errors
in the conservative variables, the inversion may not be
possible [24]. The evolution equations are written in
“conservative” form, i.e., as a set of five coupled equations
of the form

∂F0ðuÞ
∂t

þ
X3
i¼1

∂FiðuÞ
∂xi

¼ SðuÞ; ð7Þ

with the primitive variables u, vector of conserved varia-
bles F0ðuÞ, fluxes Fi, and source terms SðuÞ. These fluxes
and source terms are calculated at cell centers, and the
fluxes (as well as the physical variables ρ0, T, and ui) are
interpolated to cell faces. The calculation of the divergence
of the fluxes from the values of u at cell centers follows the
previously mentioned method of Radice and Rezzolla [23].

B. Numerical implementation
of the spectral equation of state

The EOS used in these simulations to describe matter
inside the neutron star was developed in Lindblom (2010)
[27], and modified in Foucart et al. (2019) [9] for computa-
tional use. As already mentioned, the choice of EOSs in
numerical simulations is often a trade-off between the
ability to capture more physics and a wider range of
possible models on one side, and the numerical accuracy
of the simulations on the other side. Spectral EOSs are
smoother than both tabulated and piecewise polytropic
EOSs, which results in higher accuracy simulations (as will
be seen in the results section). On the other hand, our
existing spectral EOSs are limited to matter in beta
equilibrium, use an extremely simplified model for the
thermal pressure, and are not suitable for coupling to
neutrino evolution. We consider this a reasonable trade-
off when attempting to generate high-accuracy gravita-
tional wave signals from the inspiral, merger, and early
postmerger evolution of BNS and BHNS binaries, but
acknowledge that spectral EOSs would be a poor choice

2The baryon density is defined as ρ ¼ mbn, with n the baryon
number density and mb an arbitrarily chosen reference mass for
baryons; accordingly, our evolution equation represents conser-
vation of baryon number, not conservation of mass.
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for simulations attempting, e.g., to model the outcome of
r-process nucleosynthesis in mergers. Single polytropic
EOSs, for their part, lead to higher accuracy simulations
than more complex spectral EOSs at a given resolution.3

However, their use to simulate asymmetric binaries
and/or the merger and postmerger phase of the evolution
of a binary may be problematic. Indeed, while it is possible
to construct a single polytropic EOS for which a neutron
star of a given mass has the desired radius, or the desired
tidal deformability, it is typically difficult to do this
for two neutron stars of distinct mass or to make sure that
the EOSs at the same time support massive neutron stars
MNS ≳ 2M⊙.
In this section, we give a reduced explanation of the

theory of spectral EOS. A full explanation can be found in
the previous work by Foucart et al. (2019) [9] and
Lindblom (2010) [27].
We choose the spectral expansion as in Foucart et al.

(2019) [9] by writing the pressure P and specific internal
energy ϵ as

Pðx;TÞ¼
(
P0 exp

�
Γ0xþη2

x3
3
þη3

x4
4

�
þρT x>0

P0 expðΓ0xÞþρT x≤0
; ð8Þ

and

ϵðx;TÞ¼
8<
:
ϵ0þ

R
x
0 dξ

Pðξ;0Þ
ρ0

e−ξþ T
Γth−1

x>0

Pðx;0Þ
ρðΓ0−1Þþ T

Γth−1
x≤0

; ð9Þ

with some reference density ρ0, reference adiabatic index
Γ0, reference pressure P0, temperature T, and where we
define x ¼ logð ρρ0Þ. We note that despite its name, used here
to match standard conventions, T does not scale linearly
with the physical temperature of the fluid; it is simply
defined so that the thermal pressure is Pthermal ¼ ρT.
These equations give free parameters of η2, η3, ρ0, P0,

and Γ0. Many possible sets of values for these would result
in sound waves in dense matter moving at superluminal
velocities and/or behavior that does not conform to known
nuclear physics. In Foucart et al. (2019) [9], a Marko-Chain
Monte Carlo method was used to determine values of these
parameters resulting in causal EOSs, and values of the
pressure at high-density within the range of values cur-
rently allowed by nuclear physics. We also found that the
choice Γ0 ¼ 2 led to higher accuracy than lower values of
Γ0, possibly due to the simple behavior of the density close
to the surface for that choice of Γ0. We make this choice
here as well, even though this results in values of the

pressure and internal energy at ρ ≪ ρ0 that are inconsistent
with the known behavior of dense neutron rich matter at
low density. This is reasonable for our purpose here
because the gravitational wave signal is mostly sensitive
to the EOS at high density. From [9], we choose two EOSs
with free parameters shown in Table I, with mass-radius
curves shown in Fig. 1. The first EOS parameter set
displays a higher maximum mass and lower maximum
radius (hMlR), while the second has a lower maximum
mass and a higher maximum radius (lMhR). The hMlR
EOS gives neutron stars with a maximum Schwartzschild
radius of 12.05 km and maximum baryonic mass of
2.719M⊙, while the lMhR EOS gives neutron stars with
a maximum Schwartzschild radius of 12.41 km and
maximum baryonic mass of 2.191M⊙.

C. Initial conditions

For both the ShTS and SpTS time stepping algorithm, we
evolve binary neutron star systems with the same chirp
mass Mchirp ¼ 1.18M⊙, chosen to match the chirp mass of
GW170817. Our chosen configurations for the ShTS
method consist of two systems, with mass ratios of
q ¼ 1.1 and q ¼ 1.2 and the hMlR EOS, separated by a
distance of 53.1 km, and no initial neutron star spin. The
SpTS simulations have mass ratios of q ¼ 1.0, q ¼ 1.1,
and q ¼ 1.2, separated by 54.6 km, with no initial spin, and
are performed for both EOSs. We construct out initial data
utilizing our SPELLS code [28] adapted for binary neutron
star systems [29,30], which generates a binary system in
quasicircular orbit. From this, we iteratively adjust the
initial angular and radial velocity of the neutron stars to
reduce the initial eccentricity of the orbits to ≲0.002
utilizing the methods of Pfeiffer (2007) [31]. With these
methods, and initial separation distance, we reach the
merger at about 10.5 orbits for the ShTS and about 11.5
orbits for the SpTS. Parameters for all simulations can be
found in Table II.
With these EOSs, we have two systems with a mass

averaged dimensionless tidal deformability Λ̃ ≈ 570 for the
hMlR EOS and Λ̃ ≈ 710 for the lMhR EOS. For the hMlR
EOS, the dimensionless tidal deformabilities ranges are
Λ1 ¼ 319–588 and Λ2 ¼ 588–991, and the lMhR EOS
ranges from Λ1 ¼ 530–714 and Λ2 ¼ 714–1224. These
values rest comfortably within the 90% probability region
of low spin systems (and very close to the 50% region in
some cases) for the Λ1 and Λ2 relationship from the LIGO
and Virgo constraints [32]. We choose values of Λ at the
high end of those regions to maximize tidal effects.

D. Domain/grid setup

The initial finite-difference hydrodynamical domain
construction consists of a rectangular, bar-shaped Cartesian
grid space with the neutron stars located at each end. We
have three resolutions for the q ¼ 1.1 and q ¼ 1.2 hMlR

3Or at least than the spectral EOS used in this manuscript;
single polytropic EOSs are themselves a subset of the spectral
models but one that does not allow much flexibility on the
functional form of the EOS.
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ShTS and the q ¼ 1.0 lMhR SpTS simulations (i.e., the
first, second, and sixth simulations of Table II). For the
q ¼ 1.1 and q ¼ 1.2 simulations, we have grid spacings for
the finite difference domain of ΔxFD ¼ 298 m, 239 m,
191 m with number of grid points along the length of
each axis of ð369 × 185 × 185Þ, ð457 × 229 × 229Þ, and
ð577 × 289 × 289Þ, respectively. The q ¼ 1.0 simulation
has grid spacings of ΔxFD ¼ 273 m, 218 m, and 174 m,
with grid points of ð401 × 201 × 201Þ, ð505 × 253 × 253Þ,
and ð649 × 325 × 325Þ, respectively. For future ease, we
will refer to the lowest resolution of each simulation set as

LR, the middle MR, and the highest resolution HR. The
SpTS hMlR EOS simulations (third, fourth, and fifth
simulations of Table II) were run at the MR resolution,
while the SpTS lMhR q ¼ 1.1 and q ¼ 1.2 (last two
simulations of Table II) were run at the MR and HR
resolutions.
In the SpTS simulations, we no longer use the same grid

spacing for all simulations. Instead the grid spacing is
chosen so that we have N ¼ ð72; 90; 112Þ grid points
across the diameter of the neutron stars at LR, MR, and
HR respectively, averaging over both stars at t ¼ 0.4 The
domain then is the smallest box covering spheres of radius
0.75ðR1 þ R2Þ around each neutron star, with R1, R2 the
coordinate radii of the neutron stars. This domain is divided
into eight equal segments along the shorter axis and 16
segments along the long axis, resulting in 512 subdomains
of equal size. This method has the advantage of automati-
cally adapting the initial numerical resolution to the size of
the neutron star in the initial data. For the neutron stars
evolved in this manuscript, this results in higher numerical
resolution than in the equivalent ShTS simulations:
Effectively, the LR SpTS grids are halfway between the
LR and MR grids of the ShTS simulations. The lower cost
of the SpTS algorithms allows us to do this while still
reducing the cost of the simulations (see end of Sec. III).
The spectral grid construction consists of a ball and five

shells covering each of the neutron stars. A set of distorted
cylinders, with the rotational axis along the line between
the neutron stars, connects the sets of ball and shells around
the neutron stars. These cylinders also connect to 12 shells
covering the outer regions, which are centered on the center
of mass of the system. After the merger, the area interior to
the outer shells (the area previously covered by the balls,
accompanying shell sets, and distorted cylinders) is
replaced by distorted cubic subdomains. We refer the
reader to Foucart et al. (2013) [24] and Szilágyi (2014)
[22] for a more detailed explanation and graphics of the
pseudospectral grid construction. The number of basis
functions used in each subdomain is adaptively chosen
to reach a user-defined maximum error, which is estimated
from the spectral coefficients of the evolved variables.

TABLE I. Spectral EOS parameters used in this manuscript. Mass-radius curves for these EOS parameter sets can be seen in Fig. 1.

EOS Γ0 η2 η3 Γth ρ0
g

cm3 P0
dyn
cm2

hMlR 2.0 0.45872 −0.114849 1.75 5.07405 × 1013 1.637887436 × 1035

lMhR 2.0 0.435096 −0.111447 1.75 3.33533 × 1013 5.8481 × 1034

FIG. 1. Mass-radius and pressure-density curves for our EOS
parameter sets. We label these EOSs by their behavior on these
plots, with the blue curve having a higher maximum mass, but
lower maximum radius, and as such abbreviated as hMlR. We
label the orange curve to lMhR in a similar fashion. Both EOSs
behave similarly at densities lower than ∼1014 g cm−3 but
significantly differ above 1015 g cm−3.

4The grid spacing quoted above for the SpTS lMhR simulation
are the result of this choice. Note that our initial data is in a
coordinate system close to isotropic coordinates, in which the
neutron star radius is smaller than in Schwarzschild coordinates.
Hence, N × Δx ≠ 2RNS if RNS is the areal (Schwarzschild) radius
used, by convention, in our description of the neutron stars.

ALEXANDER KNIGHT et al. PHYS. REV. D 110, 023034 (2024)

023034-6



The user-defined accuracy on the pseudospectral grid is
chosen such that it scales as ðΔxFDÞ5, and as such errors on
this grid converge faster than those on the finite-difference
hydrodynamical grid.

E. Waveform extrapolation

The simulations evolve through the inspiral, plunge, and
merger and then continue until the peak of the gravitational
waves resulting from the merger event progress past the
outer edge of the pseudospectral grid at a radius of
2047.5 km for the ShTS simulations and 2074.7 km for
the SpTS simulations.
The method to extrapolate the gravitational wave signal

to null infinity from the metric at finite radii follows the
procedure outlined by Boyle and Mroue (2009) [33]. The
Newman-Penrose scalar Ψ4 and metric perturbation h are
estimated on spheres of constant inertial radii and decom-
posed into spin ¼ −2 spherical harmonics components. At
24 radii from Ri ¼ 211.2 km to R ¼ 2, 015.6 km equidis-
tant in 1=R, we compute a retarded time tretðt; RiÞ to
approximate the travel time for the wave from the merging
neutron stars to Ri. From here, we fit the ansatz

Almðtret; rÞ ¼
XN
j¼0

Alm;jðtretÞr−j; ð10Þ

ϕlmðtret; rÞ ¼
XN
j¼0

ϕlm;jðtretÞr−j; ð11Þ

to the amplitude Alm and phase ϕlm of the ðl; mÞ component
of the spherical harmonic decomposition of the gravita-
tional wave at fixed retarded times. We then estimate the
ðl; mÞ mode at infinite radius to be Alm;1eiϕlm;0 .

III. RESULTS

A. Error analysis

We begin the discussion of our results with an overview
of the methods used to verify the quality of the simulations

and a discussion of our methods to estimate errors. First, we
can consider diagnosis of the numerical dissipation in the
evolution of the fluid. The thermal energy is a good proxy
for the amount of dissipation during inspiral—while there
should be a small amount of physical heating due to tides in
the neutron stars, in current simulations, heating from
numerical dissipation is dominant. We can see the evolution
of the specific internal energy (as a fraction of the rest mass
energy) at three resolutions on Fig. 2. It shows clear
convergence toward zero before the merger, with an order
of convergence between second and third order. During and
after the merger, the heating is physical and thus does not
converge to zero. Other diagnosis of the evolution of the
fluid, not shown here but behaving as expected, include the

FIG. 2. Mass weighted average of the specific thermal energy
for the equal mass, SpTS simulation of the lMhR equation of state
[i.e., ϵth ¼ ϵðρ; TÞ − ϵðρ; 0Þ]. The dashed curves are rescaled
assuming convergence to zero with order n ¼ 2.5. Before the
merger, we see clear convergence of the numerical heating with
increased resolution.

TABLE II. From left to right, we have the time stepping method, mass ratio q, the EOS (see Table I), ADM mass in units of solar
masses M1 and M2, areal radii in km R1 and R2, initial separation in km d, initial angular velocity Ω0 in Hz, dimensionless tidal
deformability Λ1 and Λ2, and the weighted average tidal deformability Λ̃.

Time step q EOS M1 ðM⊙Þ M2 ðM⊙Þ R1 (km) R2 (km) d (km) Ω0 (Hz) Λ1 Λ2 Λ̃

ShTS 1.1 hMlR 1.4267 1.2970 12.0 12.0 53.1 225 424 766 573
ShTS 1.2 hMlR 1.4910 1.24254 12.1 12.0 53.1 225 319 989 572
SpTS 1.0 hMlR 1.3600 1.3600 12.0 12.0 54.6 216 588 588 588
SpTS 1.1 hMlR 1.4268 1.2971 12.0 12.0 54.6 216 424 767 573
SpTS 1.2 hMlR 1.4911 1.2426 12.1 12.0 54.6 216 319 991 573
SpTS 1.0 lMhR 1.3600 1.3600 12.4 12.4 54.6 216 714 714 714
SpTS 1.1 lMhR 1.4268 1.2971 12.4 12.3 54.6 216 530 950 713
SpTS 1.2 lMhR 1.4911 1.2426 12.4 12.3 54.6 216 399 1220 711

GRAVITATIONAL WAVES FROM BINARY NEUTRON STAR … PHYS. REV. D 110, 023034 (2024)

023034-7



evolution of the central density of the star (which
oscillates at a fixed frequency due to the initial data
being slightly out of hydrostatic equilibrium and addi-
tionally decreases over time due to dissipation) and the
conservation of baryon number.
For the evolution of the metric, we can look at constraint

violations in the evolution of Einstein’s equations. On
Fig. 3, we plot the normalized constraint defined in
Eq. (71) of [21], which effectively measures the level of
constraint violations across all constraints in the general-
ized harmonic formalism. Initially, small errors in the initial
conditions dominate the constraint violations, propagating
outward. After ∼7 ms, most of the constraint violating
modes reach the outer boundary of the domain and leave
the grid. At later times, the constraints are set in part by
numerical errors in the evolution of Einstein’s equations
and in part by reflection of the constraints at the outer
boundary. They then settle to a near constant value. Due to
the presence of constraint violations in the initial data, we
do not expect clean high-order convergence of the con-
straints to zero, but we do expect lower constraints at higher
resolution, as observed.
We can now move to estimates of the error on the

gravitational wave signal. We rely on a conservative error
estimate presented in Foucart et al. (2019) [9] and Foucart
et al. (2021) [34] that likely overestimates the potential
errors in order to account for the difficulty of exactly
measuring errors in dual-grid SpEC simulations. We take

into account three potential sources of error in our
simulations: finite resolution of our computational domain,
extrapolation of the gravitational wave to infinity, and mass
lost during the simulation at the boundaries—although the
former turns out to nearly always be the dominant source
of error. For a more detailed overview of how these error
sources are evaluated, we recommend Foucart (2019) [9],
but we will review the fundamentals here and show the
error estimates for the (2,2) mode of the extrapolated
waveforms.
We estimate the errors due to finite resolution by

comparing the three resolutions, LR, MR, and HR. First,
we use the phases of the LR and HR simulations in a
Richardson extrapolation to infinite resolution, assuming a
second-order convergence. We then take the difference
between the HR waveform and the extrapolated waveform
as a first estimate of the numerical error. We repeat this
process on the HR and MR resolutions and keep the worst
of these two error estimates. We note that this is typically
conservative because the methods used within the SpEC
code individually converge at better than second order.
However, the hybrid spectral/finite volume methods uti-
lized by SpEC causes different errors to dominate at
different phases of the simulation. In particular, finite
difference errors typically drive the system to inspiral
faster, while errors on the pseudospectral grid can lead
to slower inspiral [25] or impact the initial eccentricity
(which may cause the system to inspiral faster or slower).
As a result, when considering only two resolutions, it is not
uncommon for multiple sources of error to cancel each
other, especially as the simulation setup is chosen so that
neither the spectral error nor the finite difference error
dominates at all times and all resolution. This leads to a
more efficient use of computational resources, but also to
more complex behavior of the error as we increase
resolution, as during a simulation. Practically, we do not
have a single dominant source of error with a consistent
sign. This is in contrast to purely finite difference simu-
lations, where phase errors are dominated by numerical
dissipation that accelerates the inspiral, and which accord-
ingly usually converge monotonously to the correct answer,
allowing for cleaner error measurements. This is a clear
disadvantage of the hybrid methods used in SpEC. The
advantage of the hybrid spectral-finite difference method,
on the other hand, is that we benefit from the efficiency and
high accuracy of spectral methods in regions where the
solutions is smooth and only need to evolve with finite
difference methods the small regions covering the two
neutron stars.
Given the less robust nature of error estimates for the

hybrid method, we only consider those estimates reliable if
they are confirmed by multiple diagnosis. Part of this
process is the dependence of thermal heating and constraint
violations on resolution (see above), which more directly
tests the fluid and metric evolution. More importantly

FIG. 3. Normalized constraints for the first ∼13 ms of evolu-
tion, for the q ¼ 1.1 configuration, lMhR equation of state, and
SpTS time stepping. Simulations were run until the constraints
leveled out, as original simulations performed at three resolutions
did not archive constraint violation information. The first ∼7 ms
of evolution is dominated by the constraint violation from the
initial conditions propagating out.
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however is the fact that similar errors are consistently
predicted for multiple simulations using a range of initial
configurations but similar numerical methods and that
simulations performed with different numerical methods
provide results consistent within our predicted numerical
errors (as estimated using the method described earlier in
this section). Tests along both of those axes are performed
in this manuscript. We will see additionally that waveforms
matched at the time of the merger show second-order
convergence for the phase of the waveform, most likely
because numerical dissipation is the dominant source of
error at late times (see, e.g., Fig. 10). This is a particularly
important diagnostic considering that waveforms matched
at late times are also what we rely on to compare
simulations and models.
The errors from extrapolation to null infinity are esti-

mated by comparing the phase difference between the
second- and third-order extrapolation in r−1, between t ¼ 0
and tpeak, where the (2, 2) mode of the waveform reaches its
maximum amplitude. The maximum phase difference is
conservatively chosen to be the associated error. This error
is typically smaller than the finite resolution error, except at
the very beginning of a simulation.
Finally, mass lost during the evolution results in gravi-

tational waves emitted from a system different from the
initially intended system. Here, we use an estimate of the
resulting error in the phase of the waveform derived in
Boyle (2007) [35]. In our simulations, mass loss was
minimal and resulted in a negligible phase error compar-
ative to the error from finite resolution. The q ¼ 1.1 ShTS
simulation lost approximately 5.42 × 10−6M⊙ while the
q ¼ 1.2 simulation lost approximately 8.71 × 10−6M⊙.
The lMhR q ¼ 1.0 SpTS simulation lost 1.52 × 10−5M⊙.
The other SpTS simulations were performed at either one
or two resolutions, as opposed to the three required for the
previous error analysis. The simulations with two resolu-
tions demonstrated similar phase difference between res-
olutions as the q ¼ 1.0 lMhR SpTS.
In Fig. 4, we can see the three sources of error, as well as

the total error ϕT. In all of these figures, clearly the finite
resolution error (ϕdis) of the simulation dominates ϕT from

a few hundred t=M after the start of the simulation to past
the merger. At the time of the merger, the hMlR ShTS
q ¼ 1.1 and q ¼ 1.2 simulations have approximately one
to two radians of phase error, but the longer lMhR SpTS
q ¼ 1.0 simulation peaks at approximately four radians at
the time of the merger. Overall, we find consistent error
estimates for all configurations, with the length of the
simulation being the main determinant of the total error, as
expected when using similar numerical methods and
equations of state. The extrapolation error (ϕext) provides
a constant error estimate at approximately 0.01 radians,
2 orders of magnitude smaller than the discretization error
at the time of the merger, and is the only significant error
for the first few hundred t=M. The error estimate from the
loss of mass during the simulation is negligible, even at its
maximum value, which occurs after tpeak (the time of the
merger), indicated in the plots by the vertical dashed line.
In Fig. 5, we compare the phase difference between

different resolutions for the hMlR q ¼ 1.2 systems using
the ShTS time stepping. In Fig. 6, we do the same for the
lMhR q ¼ 1.0 case using the SpTS algorithm. As men-
tioned in the methods section, we note that time stepping
errors are not significant in these simulations; the SpTS
simulations however take advantage of their reduced cost to
use different definitions of low, mid, and high spatial
resolutions, which leads to different behaviors of the phase
error. Specifically, the LR SpTS is about halfway between
the LR and MR ShTS resolutions on the finite difference
grid (but the same accuracy requirements on the pseudo-
spectral grid). These figures illustrate the two potential
impact of partial error cancellations in SpEC and the need
to use the fairly conservative error estimates described
above. Figure 5 shows what appears to be far better than
third-order convergence of the solution, while Fig. 6
appears to show poor convergence of the solution. This
is because in the first case, error cancellation affects the
comparison between the MR and HR simulations (as can be
seen from the times at which the phase difference between
these simulations goes to zero), while in the second, it
likely affects (more subtly) the difference between the LR
and MR simulations (although the lack of zero crossing

FIG. 4. Phase error estimates for the (2, 2) mode of the q ¼ 1.0 SpTS, q ¼ 1.1 ShTS, and q ¼ 1.2 ShTS binaries, broken down by
sources: finite resolution (ϕdis), extrapolation error (ϕex), and error from mass loss (ϕdM), with the vertical dashed line indicating the
peak of the gravitational wave amplitude (merger).
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makes it impossible to fully verify this interpretation of the
errors in this case). The overall outcome for our error
estimates remains the same however: We base our estimates
on the pair of simulations predicting the largest error
(which we interpret as the simulations with the least error
cancellation) and assuming an order of convergence slower
than that of any part of our algorithm. We then check that
this method provides reasonable results by verifying that
error estimates for simulations of different lengths (the

SpTS and ShTS simulations), different mass ratios, and
different spectral equations of state are consistent.

B. Discussion

Given the relatively minimal database of similar BNS
simulations, we compare the accuracy of our simulations to
the BNS simulations in Foucart et al. (2019) [36]. We note
that this comparison is provided mostly for context, as
we have to consider simulations with different initial
separations—an apples-to-apples comparison of the accu-
racy of the spectral equation of state with piecewise
polytropic equations of state and single polytropes was
however performed in [9] over shorter timescales and
offered similar conclusions. The simplest points of com-
parisons are the equal mass systems from this manuscript
and the two equal mass BNS systems from [36]: a 12.5
orbit long simulation using a Γ ¼ 2 polytrope and an 8.5
orbit long simulation using the piecewise polytropic MS1b
equation of state. All simulations have the same mass ratio
and, in addition, the Γ ¼ 2 case of [36] and the lMhR
simulation from this work have similar tidal deformabilities
(10% difference). The Γ ¼ 2 simulation has a resolution
nearly identical to that used in this manuscript, while the
MS1b equation of state uses a 20% coarser resolution. We
can see that our total error at the merger here is comparable
to the q ¼ 1.0 simulations performed with the piecewise
polytropic EOS MS1b and slightly higher than for the
single polytrope with Γ ¼ 2 case. However, the MS1b
evolved for 8.5 orbits, significantly shorter than our present
simulations of about 10.5 for the ShTS and 11.5 for the
SpTS, which themselves are shorter than the 12.5 orbits of
the single polytrope simulation. This is consistent with
expectations that the spectral EOS accumulates errors slower
than the MS1b EOS and faster than the polytropic EOS.
More interestingly, we can use our simulations to test the

agreement between numerical results and semianalytical
waveforms. Here, we compare our two ShTS systems
against two analytical models, IMRPhenomD_NRTidalv2
and SEOBNRv4Tidal, generated using the LALSuite [37].
Both analytical models were generated using our simu-
lations’ parameters (ADM mass, tidal deformability, etc.)
and show a high level of agreement in waveforms during
inspiral, and some deviations beyond estimated numerical
errors at the time of the merger (see Figs. 7 and 8, discussed
below). In order to perform meaningful comparisons with
analytical models and between simulations of different
lengths or using different equations of state, the gravita-
tional waves from our simulations are time and phase
matched to the HR resolution simulations by choosing two
set times in the reference waveform and minimizing the
phase difference within that time frame among all trans-
formations t0 ¼ tþ δt, ϕ0 ¼ ϕþ δϕ. We do this after
interpolating all waveforms to a common set of retarded
times using a cubic 1D interpolator.

FIG. 6. Difference of phases for the extrapolated gravitational
waves of the lMhR SpTS q ¼ 1.0 waveforms. Given the error
cancellation observed in Fig. 5, the change in slope of the phase
difference between the LR and MR simulations likely indicate
partial cancellation of errors between these simulations at late
times—although the lack of zero-crossing makes it impossible to
fully confirm this interpretation here.

FIG. 5. Comparison of phases for the extrapolated gravitational
waves at three resolutions for the q ¼ 1.2 hMlR ShTS wave-
forms. There is minimal difference between the MR and HR
phases during the simulation. This is clearly due to cancellation
of errors, with a Δϕ ¼ 0 crossing at t ∼ 1300M (a similar
behavior is seen in the q ¼ 1.1 case). There is exact error
cancellation at t ∼ 1300M and thus presumably partial error
cancellations at other times.
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We can see in Figs. 7 and 8 the analytical and numerical
relativity waveforms overlaid, and, for waveforms using the
same equation of state, the close agreement between them
during the inspiral and plunge phases of the simulation.
Differences between simulations and models are most
apparent near the merger, but this is not unexpected as
analytical models often do not accurately predict the
merger portion of simulations. Simulations using different
equations of state are clearly distinguishable at the merger
on these plots. Using the peak amplitude of the extrapolated
and analytical waveforms as the merger time, we can see in
Fig. 9 that the SEOBNRv4Tidal analytical model has an
oscillatory amplitude before the merger and reaches the
merger before the other hMlR q ¼ 1.1 systems. We see
similar behavior for the q ¼ 1.2 systems.

As an additional avenue of waveform analysis, we use a
new method from Read (2023) [38]. Gravitational waves
are Fourier transformed using the stationary phase approxi-
mation and matched in time and phase at a reference
coalescence frequency fc (chosen to be the minimum peak
frequency among our simulations and analytical models in
our analysis). We then compare the resulting phase
differences of the Fourier transform. This matching pro-
cedure can be better understood if we note that applying a
time and phase shift on these waveforms allows us to
change the Fourier phase according to ϕðfÞ → ϕðfÞ þ
Af þ B for any constant A, B; i.e., from a practical point of
view, the spectral phases of two waveforms ϕðfÞ are only
distinguishable if they differ in their curvature d2ϕ=df2;
any difference of the type δϕ ¼ Af þ B can be removed by

FIG. 8. Gravitational wave signals for the q ¼ 1.2 simulations. We show three resolutions from the hMlR ShTS, one from the hMlR
SpTS simulation, two from lMhR SpTS, and finally two from the analytical models IMRPhenomD_NRTidalv2 and SEOBNRv4
generated for the hMlR EOS. We see a clear difference between the hMlR EOS and the lMhR EOS, as in the q ¼ 1.1 case above. The
analytical models also closely match our simulations, until the merger.

FIG. 7. Gravitational wave signals for the q ¼ 1.1 simulations. We show three resolutions for the hMlR ShTS q ¼ 1.1 simulations,
one from the hMlR SpTS q ¼ 1.1, two from the lMhR SpTS q ¼ 1.1 simulations, and two from the analytical models
IMRPhenomD_NRTidalv2 and SEOBNRv4 generated for the hMlR EOS. The dashed gray square indicates the zoomed in plot to
the right. It can be seen at the merger a clear distinction between the lMhR EOS and the hMlR EOS. Even the LR system with a relatively
large error is still visibly distinct from the lMhR systems. This demonstrates that we are able to distinguish between two closely related
EOSs (numerically, this does not mean that such a difference is observable by current GW detectors). We can also see close matching to
the analytical models until just before the merger, when slightly larger differences arise.
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applying an appropriate phase and/or time shift. When
matching the time and phase of two waveforms at a specific
frequency fc, we effectively match the values of ϕðfcÞ,
dϕ=dfðfcÞ for these waveforms.
Quite importantly, the method is constructed so that the

phase difference is fairly insensitive to numerical noise in
the calculation of frequencies and of their derivatives and
relies on the choice of a single reference frequency for
matching waveforms. In [38], a variation of this method is
also used to assess whether waveforms are distinguishable
in various gravitational wave detectors—however, this
requires knowledge of the waveforms over the entire
frequency range accessible to the detector, while our
numerical waveforms only provide data for f ≳ 400 Hz.
Another important advantage of this method is that it is
relatively insensitive to errors in the early phase of the
evolution, when simulations can have a hard time resolving
high-frequency noise and instead provide a more direct
comparison of waveforms in the range in which finite size
effects are the largest.
The results of this analysis are shown on Fig. 10. Here,

we show spectral phase differences with respect to the
analytical SEOBNRv4Tidal model of the lMhR system
after matching at fc ¼ 1514 Hz, the lowest peak frequency
among all the plotted waveforms. We emphasize again that
waveforms are only distinct on this plot if they differ in

their second derivative d2ϕ
df2—any difference linear in f could

be removed with an appropriate time and phase shift. In this
case, the waveforms only clearly differ at high fre-
quency (f ≳ 900 Hz).
Looking at this figure in more detail, the bottom solid

green line shows the high resolution hMlR ShTS simu-
lation, with the surrounding gray and green filled-in area
indicating two levels of estimated error, obtained by
assuming second-order convergence between the HR and
LR simulations (�Δϕ2−0) or the HR and MR simulations
(Δϕ2−1). The top “dash-dot” green line is the HR lMhR

simulation, with its own error estimate �Δϕ2−1. We see
that after matching the waveforms at late times, the results
show cleaner convergence than for the “raw” numerical
error. More specifically, in this figure, the fact that both
error estimates agree when assuming second-order con-
vergence (especially for f ≳ ð500–600Þ Hz) means that all
three simulations are indeed consistent with second-order
convergence of the results in that frequency range. The
hMlR SEOBNRv4Tidal model, lying within the filled in
area around the hMlR HR line, is consistent with the hMlR
numerical simulations. This is not the case for the lMhR
simulation, for which the SEOBNRv4Tidal model lies well

FIG. 9. Amplitude of the gravitational waves of the hMlR ShTS q ¼ 1.1 systems, the hMlR SpTS q ¼ 1.1 system, two lMhR SpTS
q ¼ 1.1 simulations, and the q ¼ 1.1 hMlR SEOBNRv4Tidal and IMRPhenomD_NRTidalv2 models, after allowing for a time and
phase shift minimizing differences at early times. The dashed gray square indicates the area covered by the plot to the right, which
focuses on the merger.

FIG. 10. Phase error between the lMhR SEOBNRv4Tidal
analytical model and other simulations/models as a function of
frequency. In this plot, we use the methods of analysis from [38],
Eq. 19(b) in particular. The filled-in areas are defined byΔϕ2−1 ¼
1.77jϕHR − ϕMRj and Δϕ2−0 ¼ 0.7jϕHR − ϕLRj, i.e., errors as-
suming second-order convergence of the simulations. In this
analysis, we choose as reference frequency fc ¼ 1514 Hz, the
lowest value of maximum frequency among our simulations and
analytical models (the analysis effectively assumes that all
simulations are at the same time and phase when reaching that
frequency).
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outside of estimated numerical errors (i.e., the filled in red
area around the lMhR HR line). We note however that this
should not be interpreted as a better agreement between
SEOBNRv4Tidal and numerical relativity for the
hMlR equation of state. Rather, this is due to the fact that,
in this plot, we are matching waveforms at the peak
frequency of the lMhR configuration, which is about
100 Hz below the peak frequency of the hMlR
configuration. As a result, we excluded from our analysis
the portion of the hMlR waveform where differences
between SEOBNRv4Tidal and numerical relativity are
the largest. A similar comparison matching waveforms at
the peak frequency of the hMlR configuration shows the
SEOBNRv4Tidal model to be inconsistent with the
numerical simulations at late times for the hMlR equation
of state as well. This is another clear indication that any
difference between the SEOBNRv4Tidal model and
the numerical result is due to the behavior of the
SEOBNRv4Tidal model close to the merger. Additionally
we see that our simulations can clearly distinguish between
the hMlR and lMhR EOSs. However, we must note that the
difference between the two EOSs mostly comes from the
behavior of the waveform above∼800 Hz, outside the most
sensitive range of LIGO and Virgo. Accordingly, these
results do not indicate anything about the detectability of
these differences by current gravitational wave detectors.
They only tell us that the numerical relativity waveforms
are distinguishable well outside of their numerical errors.
Similarly, in Figs. 7 and 8, we are clearly able to see a

distinct phase difference between our hMlR EOS and the
lMhR EOS within our estimated numerical error. Assuming
a linear dependence of the phase at the merger in Λ̃, and for
the specific EOS and mass ratios simulated in this manu-
script, we estimate that we are able to distinguish with
SpEC the phase of the gravitational waveforms at the
merger for different spectral equations of state down to a
dimensionless tidal deformability difference of ΔΛ̃ ≈ 55,
well below current constraints from the observation of
GW170817 [32]. This shows that the spectral EOS is a
promising option to train analytical models. This is of
course a rough approximation, as we have only considered
a narrow range of tidal deformabilities. Anecdotally, we
have seen higher accuracy in SpEC simulations for which
tidal effects were small (e.g., in the older BHNS simu-
lations of [39], where tides are entirely negligible), but this
is likely a small effect over the narrower range of effective
tidal deformabilities probed by near equal mass BNS
systems.
In Figs. 7 and 8, we also compare results with both time

stepping methods. We see a very close agreement in the
extrapolated waveforms using the ShTS method and the
SpTS method for simulations with otherwise identical mass
ratios and equations of state. In both the q ¼ 1.1 and
q ¼ 1.2 cases, the SpTS and ShTS simulations behave
nearly identically in waveform and peak amplitude at the

merger, with differences well below our estimated numeri-
cal errors. This is reassuring considering that these simu-
lations were performed from different initial separations,
with different time stepping methods, and with different
grid resolutions.
The ShTS and SpTS simulations were run on different

clusters, specifically the University of Texas’ Frontera
cluster and the University of New Hampshire’s Plasma
cluster. From standardized speed tests performed on both
machines for BNS evolutions, we have determined that
Frontera is roughly 12% faster than Plasma, but a direct
comparison of computational cost is nontrivial.
We therefore compare two main components to estimate

computational cost: the number of time steps the grid
evolving Einstein’s equations took and the CPU hours
spent during the Δt ¼ 5000 (about 0.025 seconds) preced-
ing the merger. Using this time period will avoid the initial
numerical errors and junk radiation at simulation start
from affecting the computational time, as well as the extra
orbit in the SpTS case. We compared the MR q ¼ 1.1
simulations.
We found the ShTS simulation to have taken 251823

steps during this Δt ¼ 5000 period and cost 60341 CPU
hours. In comparison, the SpTS took 357506 steps, with
only a cost of 42707 CPU hours. We also must note that the
SpTS simulation had an approximately 10% increase in
resolution compared to the ShTS case, which should result,
everything else being equal, in approximately 40%
increased computational expense for the fluid evolution.
Despite this additional cost and approximately 42% addi-
tional time steps for the evolution of Einstein’s equations,
we can see an approximately 30% reduction in computa-
tional time cost in the SpTS case. Taking into account that
the ShTS simulations were run on the faster Frontera
cluster, and the SpTS simulations on the slower Plasma
cluster, this is a strong indication that the SpTS method
does indeed have a significant beneficial impact on
simulation costs. While this comparison is relatively rough,
we find it sufficient to state that the SpTS method does save
on computational resources in simulations such as the ones
used in this paper.

IV. CONCLUSION

From our work, we have found the spectral EOS to
be a promising option for numerical BHNS or BNS
waveform studies. It is capable in our systems to generate
gravitational waves from BNS that agree within expected
error with state-of-the-art analytical models up to the
merger event, where analytical models become less
accurate. The defining parameters of spectral EOSs can
be adjusted to produce a range of neutron star EOS
candidates, offering a large amount of flexibility for future
systems as we further refine the constraints on the EOS of
a neutron star. It offers an improved ability to generate
stars with appropriate macroscopic properties when

GRAVITATIONAL WAVES FROM BINARY NEUTRON STAR … PHYS. REV. D 110, 023034 (2024)

023034-13



compared with a polytropic EOS and provides better
numerical accuracy compared to a discontinuous EOS, at
least in the SpEC code.
We find in particular that, for two distinct methods of

matching the waveforms in time and phase, we are capable
of clearly capturing differences in the gravitational wave
signals produced by binaries with tidal deformabilities of
Λ̃ ≈ 550 and Λ̃ ¼ 700. Assuming a linear dependence of
the phase differences with Λ̃, our results indicate that
variations of ΔΛ̃ ≈ 55 could lead to numerical waveforms
whose behavior close to the merger differ by more than our
current finite-resolution errors.
As for numerical methods, our preliminary comparison

between the SpTS and ShTS methods indicates potential
computational cost savings by uncoupling the finite differ-
ence and spectral grid time steps. In this manuscript, we
measured a greater than 30% decrease in CPU hours used
for a simulation with ≈10% increased resolution on a
cluster with slower hardware. Clearly, further testing on
simulations conducted on the same cluster, utilizing the
same simulation parameters such as resolution and initial
conditions, is required for a definitive answer, but our test
here has shown the comparison to be worth closer inspec-
tion of a method that could potentially have significant
savings in computational cost. We note that this is largely
possible because the time step in our simulations is limited
by stability considerations, and discretization in time is
generally a subdominant source of error.
There is still a great deal of experimentation that can be

done with the spectral EOS, including higher resolution
simulations to verify the accuracy of our current error
estimates. Additionally, generating NS with varying radii,
mass, and tidal deformability by adjusting the Γ0, η2, η3,
Γth, ρ0, and P0 may prove useful in determining its viability

in a range of systems, allowing for a smooth EOS for SpEC
and other codes sensitive to discontinuous EOSs. The
spectral EOS offers a new avenue for simulations, expand-
ing our potential tools for more accurate and better resolved
simulations, to aid in eventually better understanding the
detected gravitational waves from merger events between
compact objects.
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