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In this paper, we investigate the behavior of a massive scalar field dark matter scenarios in the large mass
limit around a central Reissner-Nordström black hole. This study is motivated by observations from the
Event Horizon Telescope collaboration, which does not exclude the possibility of the existence of such
black holes. Through these inquiries, we uncover that the electric charge may significantly impact the scalar
field profile and the density profile in the vicinity of the black hole. For the maximum electric charge
allowed by the constraints of the Event Horizon Telescope, the maximum accretion rate decreases by ∼50%
compared to the Schwarszchild case for marginally bound orbits. The maximum accretion rate of the
massive scalar field is approximately ṀSFDM ∼ 10−8M⊙ yr−1, which is significantly lower than the typical
baryonic accretion rate commonly found in the literature. This implies that the scalar cloud located at the
center of galaxies may have survived until present times.
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I. INTRODUCTION

There is robust evidence suggesting the presence of an
invisible component in the observable Universe, known as
dark matter (DM) [1–6]. The most accepted and successful
model to date is cold dark matter (CDM), which describes
DM as a nonrelativistic perfect fluid. However, CDM faces
challenges when trying to explain observations at galactic
and subgalactic scales. For instance, N-body simulations for
CDM indicate a pronounced increase in the density profile
(spike) as we approach the centers of galaxies. This is
referred to as the universal or Navarro-Frenk-White (NFW)
profile ρNFW [7]. In contrast, observations suggest constant
density profiles forming a core toward the center [8,9]. This
aspect is more evident in dwarf spheroidal and low-mass
spiral galaxies [10], as is the well-known discrepancy of 2–3
orders of magnitude in the number of satellite galaxies
between observations and theoretical predictions [11,12], or
the famous problem known as “too big to fail” [13,14].
However, some research suggests that taking into account
the effects of baryonic feedback [15–17] or even supernova
feedback [18] could help alleviate these tensions. Given all
this, the idea of exploring new concepts arises. Some

researchers propose modifying gravity in the low-acceler-
ation regime [19], while others suggest an alternative
approach by changing the DM model, i.e., going beyond
the pressureless CDM paradigm. In this work, we focus on
the latter proposal.
Scalar field dark matter (SFDM) is a well-grounded

candidate that arises as an extension of the standard model
of particle physics and proposes DM is composed of
ultralight bosonic particles with zero spin, spanning a mass
range from 10−22 to 1 eV. This model has gained promi-
nence recently due to its potential to address some of these
issues [20–22], as it possesses de Broglie wavelength on the
order ∼kpc. Within the SFDM model, there are various
subcategories, including examples such as fuzzy dark
matter (FDM) [20,21,23–29], where the particle is typically
associated with a mass on the order ∼10−22 eV, self-
interacting scalar field dark matter (SIDM) [30–39],
involving coupling between particles, the well-known
axions [40–44], originally proposed to address the CP
symmetry violation problem, and also axionlike particles
proposed in other theories [45]. The main distinction
among the aforementioned models lies in the mass range
or the associated coupling of these particles [46–50].
A fascinating aspect of SFDM models is that the sta-

tionary solutions of these classical bosonic fields, known as
solitons, could be present in galactic centers, providing a
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plausible explanation for the observed constant density
profiles [51–58]. These solitonic cores would form struc-
tures ranging from 1 to 20 kpc. In the case of FDM, it would
be attributed to quantum pressure, arising from the uncer-
tainty principle, while for SIDM, it would be due to self-
interaction (repulsive). However, these would not be the
only mechanisms for the formation of gravitationally bound
structures at the galactic level. In fact, galactic halos are
expected to be in equilibrium due to virialized motion [59].
Additionally, these models could also explain the observed
vortices in galaxies [36,60,61]. Although current measure-
ments [46,62–64] suggest a minimum mass limit of around
m≳ 10−22 eV for the FDM model.
The vast majority of galaxies in the Universe host super-

massive black holes (SMBHs) at their centers [65–67]. The
prevailing notion is that these black holes (BHs) are
surrounded by a solitonic core, which, in turn, is envel-
oped by a halo of DM. Some researches have suggested
the possibility that these BHs possess a nonzero value of
net electric charge [68,69]. Along the same lines, the
Event Horizon Telescope (EHT) collaboration has
recently provided constraints on the mass to charge ratio
q ¼ jQ=Mj [70,71]. Initially, they captured the shadow
image of M87⋆ [70] and later did the same for Sagittarius
A⋆ [71,72]. These studies indicate that the charge to mass
ratio for M87⋆ falls within the range of q∈ ½0; 0.9� [70],
while for Sagittarius A⋆ it is q∈ ½0; 0.84� [71]. Nevertheless,
it is widely disseminated in the community that BHs are
electrically neutral since the surrounding plasma would
rapidly discharge them. It is important to note that this
article will not delve into the origin of electric charge or the
timescales during which a BH might remain electrically
charged. Therefore, we strictly adhere to the observational
constraints from EHT.
The nature of DM remains unknown. However, with the

first detection of gravitational waves (GWs) [73], another
research frontier opened up in this field. It is possible that
within the signal of GWs, relevant information about the
medium in which BHs are immersed may be inferred,
making it a feasible probing option to explore the nature of
DM [74–83]. Nevertheless, the impact that DM has on the
GW signal depends on the its properties, such as the density
profile. Therefore, it is of vital importance to carry out
accurate and self-consistent modeling of DM around black
holes. For instance, density profiles could differ depending
on whether it is CDM [84,85] or SFDM [27,86–92], and to
this day, the discussion about the existence of “scalar hair”
continues [27,93–95].
Currently, there exists an extensive literature on the study

of scalar fields in Schwarzschild space-time (see, for
example, [27,96,97]); however, only a small handful of
studies delve into the realm of “nonstandard metrics” (see,
e.g., [98–101]). It is precisely within this context that our
research is aimed.

In this study, we specifically focus on investigating the
behavior of a noninteracting massive scalar field DM in
the large-mass limit (m ≫ 10−22 eV) around a Reissner-
Nordström (RN) BH [102]. Throughout this work, we
ignore the backreaction effect of the SF on the metric.
Therefore, we adopt the test-fluid approximation for the
sake of simplicity. We establish a direct connection
between these results and our previous research [103],
following a similar path to that taken by [90]. We uncover
that the influence of the electric charge Q becomes
relevant in regions close to marginally bound orbits.1

Considering this argument [103–105], a maximum accre-
tion rate of the scalar field DM of ṀSFDM ∼ 10−8M⊙ yr−1

was obtained, with a decrease of approximately 50% when
Q becomes significant compared to the uncharged case.
Within the constraints allowed by the EHT, the accretion in
the noninteracting case, which corresponds to a free falling,
is higher compared to the SIDM case [103,106], since, in
the latter, the repulsive self-interaction slows down the DM
fall. This feature determines the lifetime and the mass of the
extended cloud and have critical consequences for the
observed shadow radius [107]. Furthermore, a scalar field
profile ϕ ∝ r−3=4 was observed, which coincides with the
same power law as other studies in the same regime of
interest [27,87,108]. Finally, a change in the power-law
exponents ρ ∝ r−3=2 and ρ ∝ r−1 for the density profile in
the noninteractive and interactive cases, respectively, was
observed. This behavior has also been documented in
previous studies [27,85,90,109]. Evidently, this change
originates from the nature of the studied fields. These
exponents fall within the usual range considered in various
power-law models for dark matter density profiles [22].
This paper is structured as follows. In Sec. II, we

describe the theoretical framework, including the DM
model, conditions of steady-state accretion, and the result-
ing scalar field profile. In Sec. III, we establish a direct
connection with our previous work [103], and compare our
main findings with other works. Finally, in Sec. IV, we
provide a detailed discussion of our results and their
potential implications.

II. DARK MATTER SCALAR FIELD

The relativistic action of a real scalar-field minimally
coupled to gravity is given by

S¼ SEH þ Sϕ ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
16π

−
1

2
gμν∂μϕ∂νϕ−VðϕÞ

�
:

ð1Þ

1More precisely, this zone extends from the marginally bound
radius rmb to the radius of the innermost stable circular orbit risco,
that is, rmb ≲ r ≲ risco.
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Here SEH represents the Einstein-Hilbert action, Sϕ corre-
sponds to the action for a single real SF ϕ, gμν represents the
metric, R denotes the Ricci scalar, g stands for the
determinant of the metric gμν, and VðϕÞ is the SF potential.
In this study, we adhere to metric signature conventions of
ð−;þ;þ;þÞ and use units where 4πϵ0 ¼ G ¼ c ¼ ℏ ¼ 1.
The equation of motion for the SF, derived from Eq. (1),

takes the following form:

δSϕ
δϕ

¼ 0 ⇒ □ϕ −
dV
dϕ

¼ 0; ð2Þ

where the covariant d’Alembertian □ is defined as □ ¼
∇μ∇μ ¼ gμν∇μ∇ν. For the potential VðϕÞ ¼ m2ϕ2=2,
we derive the well-known Klein-Gordon equation ð□−
m2Þϕ ¼ 0. Additionally, starting from Eq. (1), we can
calculate the energy-momentum tensor for the SF,
expressed as Tμν ¼ ð2= ffiffiffiffiffiffi−gp ÞδSϕ=δgμν.
In this article, we consider the large-mass limit [27,110]

given by

m ≫ 6.7 × 10−19
�

M
108M⊙

�
−1

eV; ð3Þ

where the characteristic length scale of the system sur-
passes the Compton wavelength λC ∼ 1=m ≪ rh. Here rh is
the radius of the event horizon. In this regime, we can
neglect the quantum pressureΦQ. This pressure stems from
Heisenberg’s uncertainty principle ΔxΔp ∼ 1 and is insig-
nificant at galactic and subgalactic scales within our
regime. Consequently, the SFDM cloud is governed by
self-gravity at these scales, reaching a virial equilibrium
state where the kinetic energy of the particles equals the
gravitational potential energy.
Before deriving the master equations, we outline the

primary physical assumptions made in this work, aiming to
enhance clarity:
(1) Radial accretion flows on static spherically sym-

metric BHs.
(2) Large scalar mass limit where the Compton wave-

length 1=m is smaller than the BH size.
(3) Test-fluid approximation where the backreaction of

the scalar cloud to the spacetime metric is neglected.

A. Spherically symmetric spacetimes

For a spherically symmetric spacetime the metric takes
the form

ds2 ¼ −fðrÞdt2 þ gðrÞdr2 þ r2dΩ⃗2; ð4Þ

where the metric functions fðrÞ and gðrÞ for a RN metric
are given by

fðrÞ ¼ 1

gðrÞ ¼ 1 −
2M
r

þQ2

r2
; ð5Þ

with the corresponding horizons

r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
: ð6Þ

M represents the mass of the BH, andQ denotes the electric
charge. The BH metric exhibits two event horizons: rþ
corresponds to the outer horizon (of primary interest in this
study), while r− corresponds to the Cauchy horizon. The
Schwarzschild solution is readily obtained when Q ¼ 0,
and the scenario Q ¼ M represents the extremal case. The
metric functions can be easily expressed as a function of
dimensionless quantities through the following variable
transformation

x ¼ r
M

≥ 1; and q ¼ Q
M

; ð7Þ

where x denotes the new radial coordinate, and q represents
the charge-to-mass ratio. Utilizing these variables, we can
describe the horizons in the following manner

x� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − q2

q
∶ 0 ≤ q ≤ 1: ð8Þ

It is important to note that for the sake of completeness,
there are two other possible cases in Eq. (8). The first one is
when q > 1, which describes a naked singularity2 without
an event horizon, and the second one is when q2 is negative.
However, in this work, we will not consider these two
cases, as we will focus solely on the constraints imposed by
the EHT [70–72,111].
In this scenario, we can divide the physical regions of

interest around the BH into three zones as follows:
(1) Region near the BH (rþ < r < rNL): This region

extends from the horizon rþ to a nonlinear radius
rNL. It is denoted as the strong-gravity regime, where
the metric functions in the vicinity of the BH are
defined by the Eq. (5).

(2) Intermediate region (rNL ≪ r ≪ rsg): This region
lies between the non-linear radius rNL and the
transition radius rsg. The latter is defined as the
radius at which the self-gravity of the DM scalar
cloud equals the BH gravitational potential. This
radius is very important because it marks the
position at which the scalar field profile is affected
by the BH gravity. For realistic DM models, we
expect this radius to be greater than the BH horizon.
Therefore, in this region, we are in the weak field
regime (rNL ≪ r), where the line element takes the

2It is important to mention that even if it were a naked
singularity, it could exhibit a photon sphere and therefore be an
indication of a shadow [72].
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form of ds2¼−ð1þ2ΦÞdt2þð1−2ΦÞdr2þ r2dΩ⃗2

with Φ ≪ 1. In this regime, the gravitational po-
tential of the BH is the usual Φ ¼ −M=r.

(3) Region far from the BH (r ≫ rsg): This region lies
beyond the transition radius rsg. Therefore, we are in
the weak-field regime, where the line element takes
the aforementioned form, but the contributions to the
metric potential are mostly due to the self-gravity of
the DM cloud. Consequently, the gravitational po-
tential Φ is governed by the scalar field’s Poisson
equation

∇2Φ ¼ 4πρϕ; ð9Þ

where ρϕ stands for the energy density of the SF. It is
important to note that, throughout this article, our
region of interest mainly lies in the vicinity and
intermediate region of the BH. The region far from
the BH plays a role in Sec. III A where the solution
must match the well-known hydrostatic equilibrium
configuration.

B. Free scalar field

We star by examining the profile of the free SF flow
around the RN-BH.

1. Equations of motion

The relativistic action of the SF (1) is expressed in terms
of the metric (4)

Sϕ ¼
Z

dtdrdθdφ
ffiffiffiffiffi
fg

p
r2 sin θ

�
1

2f

�
∂ϕ

∂t

�
2

−
1

2g

�
∂ϕ

∂r

�
2

−
1

2r2

�
∂ϕ

∂θ

�
2

−
1

2r2sin2θ

�
∂ϕ

∂φ

�
2

− VðϕÞ
�
: ð10Þ

It is useful to express the real SF ϕ in terms of a complex
SF ψ [110,112]

ϕ ¼ 1ffiffiffiffiffiffiffi
2m

p ðe−imtψ þ eimtψ�Þ; ð11Þ

where ψ� represents the complex conjugate of ψ . This
decomposition is particularly useful in the nonrelativistic
regime because it allows us to separate the fast oscillations
dominated by the frequency from the slower dynamics
described by the field ψ . Therefore, ψ is a slowly varying
function of time and space compared to the dominant
frequency of the system ω ∼m. Following the same idea
expressed in the previous paragraph, in the large mass
limit, we have ψ̇ ≪ mψ (slow evolution condition), where
the overdot denotes the time derivative. On the other hand,
we can observe that ψ exhibits a global symmetry of the
Uð1Þ group, signifying its invariance under continuous
phase rotations ξ. A relevant observation about the real

SF ϕ is that there is no conserved (Noether) charge, in
contrast to a complex SF ψ, by virtue of Noether’s
theorem.3 It is important to note that the global Uð1Þ
symmetry for ψ is the result of having ϕ invariant under
the transformation [110]

ψ → ψeiξ; t → tþ ξ=m

ψ� → ψ�e−iξ; t → tþ ξ=m

�
⇒ ϕ → ϕ: ð12Þ

Taking into account all mentioned above, we can bring
our problem into the large mass limit. We can express the
action of the complex SF ψ as follows:

Sψ ¼
Z

dtdrdθdφ
ffiffiffiffiffi
fg

p
r2 sinθ

�
1

2f
ðiψ̇ψ� − iψψ̇�

þmψψ�Þ− 1

2mg
∂ψ

∂r
∂ψ�

∂r

−
1

2mr2
∂ψ

∂θ

∂ψ�

∂θ
−

1

2mr2sin2θ
∂ψ

∂φ

∂ψ�

∂φ
−
m
2
ψψ�

�
: ð13Þ

Usually, rapid oscillations e�2imt are discarded, as their
average is approximately zero under the previously
described assumptions. Finally, we can derive the Euler-
Lagrange equations for the field ψ

iψ̇ ¼ −
f
2m

�
1ffiffiffiffiffi
fg

p ∇!r ·

 ffiffiffi
f
g

s
∇!rψ

!
þ∇2

θ;φψ

�
þm

f − 1

2
ψ :

ð14Þ

Here, ∇!r and ∇!θ;φ represent the radial and angular compo-
nents of the nabla operator, respectively. On the other hand,
we can recover the nonrelativistic version for ψ at large
distances, as the metric functions are recovered in the weak-
field limit (intermediate region in Sec. II A)

r ≫ rh∶ iψ̇ ¼ −
∇!2

ψ

2m
þmΦψ : ð15Þ

We can observe that the above expression is a
Schrödinger-type equation. It is possible to approach this
problem within the fluid description using the Mandelung
transformations [113]

ψ ¼
ffiffiffiffi
ρ

m

r
eis; ρ ¼ mjψ j2; ð16Þ

3In the nonrelativistic regime, one can see that the conserved
current associated with such a symmetry is proportional tomψψ�,
which corresponds to the conservation of matter density (see,
e.g., [110]).
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where
ffiffiffiffiffiffiffiffiffi
ρ=m

p
represents the amplitude and s is a phase, ρ

serves as the SF matter density, and the velocity field is
defined as follows

v⃗ ¼ ∇!s
m

; ð17Þ
in this description, the flow is defined as irrotational.
Furthermore, with the previously mentioned definitions,
we can express the real scalar field profile as follows4

ϕ ¼
ffiffiffiffiffi
2ρ

p
m

cosðmt − sÞ: ð18Þ

It is possible to express the action Sψ in terms of the new
quantities ρ and s through the Madelung transformations.
The new action now reads as follows:

Sρ;s ¼
Z

dtdrdθdφ
ffiffiffiffiffi
fg

p
r2 sin θ

�
−

ρṡ
mf

−
1

2m2g

�
1

4ρ

�
∂ρ

∂r

�
2

þ ρ

�
∂s
∂r

�
2
�

−
1

2m2r2

�
1

4ρ

�
∂ρ

∂θ

�
2

þ ρ

�
∂s
∂θ

�
2
�

−
1

2m2r2sin2θ

�
1

4ρ

�
∂ρ

∂φ

�
2

þ ρ

�
∂s
∂φ

�
2
�
þ ρ

2f
−
ρ

2

�
:

ð19Þ

As mentioned earlier, in the large-mass limit, neglecting

spatial gradients j∇!ρj ≪ mρ is equivalent. However, since
the phase s is of the order of m, the action is consequently
reduced to the following form

Sρ;s ¼
Z

dtdrdθdφ
ffiffiffiffiffi
fg

p
r2 sinθ

�
−

ρṡ
mf

−
ρ

2m2g

�
∂s
∂r

�
2

−
ρ

2m2r2

�
∂s
∂θ

�
2

−
ρ

2m2r2sin2θ

�
∂s
∂φ

�
2

þ ρð1− fÞ
2f

�
:

ð20Þ

We can obtain the equations of motion from action (20),
that is, δS=δs ¼ 0, resulting in

ρ̇þ f

�
1ffiffiffiffiffi
fg

p ∇!r ·

� ffiffiffi
f
g

s
ρ
∇!rs
m

�
þ ∇!θ;φ ·

�
ρ

m
∇!θ;φs

��
¼ 0:

ð21Þ

The same applies to δS=δρ ¼ 0:

ṡ
m
þ f

2

�
1

g
ð∇!rsÞ2
m2

þ ð∇θ;φsÞ2
m2

�
¼ 1 − f

2
: ð22Þ

By taking the gradient of Eq. (22) and using the definition
of the velocity field (17), in Eqs. (21) and (22) we have

ρ̇þ f

�
1ffiffiffiffiffi
fg

p ∇!r ·

 ffiffiffi
f
g

s
ρvr

!
þ ∇!θ;φ · ðρvθ;φÞ

�
¼ 0; ð23Þ

˙v⃗þ ∇!
�
f
2

�
v2r
g
þ v2θ;φ

��
¼ −

∇!f
2

: ð24Þ

For very large distances (r ≫ rh), the metric functions are
recovered in the weak-field limit, and by using vector
identities, we obtain

ρ̇þ ∇! · ðρv⃗Þ ¼ 0; ð25Þ

˙v⃗þ ðv⃗ · ∇!Þv⃗ ¼ −∇!Φ: ð26Þ

Equations (25) and (26) represent the continuity and Euler
equations, respectively. Both equations correspond to the
classical limit that governs fluid dynamics. It is important to
mention that Euler’s equation (26), which lacks a pressure
term, corresponds to the free motion of particles under the
influence of a gravitational potential Φ. It is important to
mention that, starting from Eq. (15) and using the Madelung
transformations Eqs. (16) and (17), when separating the real
and imaginary parts, we obtain the same equations (con-
tinuity and Euler) in the nonrelativistic limit. We neglect the
quantum pressure ΦQ ¼ −ð∇2 ffiffiffi

ρ
p Þ=ð2m2 ffiffiffi

ρ
p Þ, as we are in

the large-mass limit, where the momentum are considerably
smaller compared to the rest mass.

2. Steady state

We can find stationary solutions to Eqs. (23) and (24),
and restricting to spherical symmetry (4), we obtain the
following solution to the continuity equation (23)

ffiffiffi
f
g

s
r2ρvr ¼ F; ð27Þ

where F < 0 is defined as an inward flux per unit solid
angle; in other words, DM falls into the BH steadily.
From the Euler equation (24), we obtain

vr ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð1 − fÞ

f

s
; mvr ¼

∂s
∂r

: ð28Þ

4It is important to mention that many authors use complex
scalar fields instead. Nevertheless, adding a complex conjugate in
such solutions, one can obtain the corresponding real field and
vice versa. For instance, the density profiles between both fields
differ by a factor of 1=2. Then, our setup can safely cover
complex fields.
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In our case, we choose the negative sign solution, as DM
particles fall radially towards the BH. Near the horizon, we
observe a divergence when f → 0, which is caused by the
use of nonregular coordinates. Furthermore, we can see that
as the radius tends to infinity, the radial velocity tends to
zero, which sets the boundary condition of the problem.
We can obtain the matter density of the SF from

Eqs. (27) and (28). This expression is valid in the large-
mass limit, where we observe that massive particles fall
radially toward the BH, regardless of their mass. They start
at rest from infinity and free fall into the vicinity of the BH

ρ ¼ −
F

r2
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p : ð29Þ

When we approach the BH horizon, we notice that
f → 0. At this point, we observe that ρ is finite and equals
−F=r2h. In contrast, when we are at very large distances, f
approaches unity, and consequently, ρ → 0 because the
quadratic term decreases faster than the metric function f.

3. Scalar field profile

It is possible to rewrite the SF profile, considering the
stationary solutions imposed in the previous section. This is
achieved by substituting Eq. (29) into Eq. (18), and the
phase s is obtained from the expressions in (28). This gives

ϕ ¼ 1

2mM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−8F

x2
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
s

cosðmt − sÞ: ð30Þ

This expression represents a harmonic ingoing wave
propagating towards the BH, as shown in Fig. 1. The SF

profile exhibits then oscillatory behavior.5 As we approach
the BH, its amplitude increases or in the opposite case, it
decreases, primarily due to the denominator within the
square root. We can observe that the effects of q become
significant in the vicinity of the BH; indeed, as q increases,
an increase in amplitude is observed, mainly because a BH
with significant charge has a smaller event horizon com-
pared to the uncharged case. To further clarify this idea, it is
convenient to remove the temporal dependence of the SF
profile6 (30), as shown in Fig. 2. These curves essentially
represent the amplitude of the SF profile. Once more, it is
observed that as the charge q increases, the amplitude near
the black hole also increases. At this point, we bring up
Jacobson’s results [93], who obtained a nonvanishing
solution for a massless scalar field by imposing the
boundary condition of a nonzero time derivative far away
from the BH. He obtained SF profile that behaves as ϕ ∝
r−1 for large radii. In our case of large-mass limit framed on
DM scenarios, the decay behaves differently, specifically as
ϕ ∝ x−3=4 for large radii.

4. Density profile

From the relativistic action (1), it is possible to obtain the
energy-momentum tensor Tαβ ¼ ∂αϕ∂βϕþ gαβLϕ, where
Lϕ is the Lagrangian of the SF. Under the symmetry of our
problem (4), we can express the energy density of the SF

FIG. 1. Normalized scalar field profile ϕðxÞ=jFj1=2 as a
function of the radial coordinate x, for different values of the
charge-mass ratio q, as given by Eq. (30). The enlarged window
pertains to the region between the photon sphere xph and the
innermost stable circular orbit xisco, which uncovers the effect of
the BH charge on the scalar profile.

FIG. 2. Normalized time-averaging of the square scalar field
profile hϕ2i=jFj as a function of the radial coordinate x, for
different values of the charge-mass ratio q, as derived from
Eq. (30). The enlarged window pertains to the region between the
photon sphere xph and the innermost stable circular orbit xisco.

5This feature is found for both real and complex SFs: in the
latter case, we observe this behavior in the real part of the SF
profile. It is important to note that the oscillatory behavior is
affected by its mass (or equivalently its frequency), and in the
limit of light masses, the oscillation occurs at slightly larger
scales compared to heavier masses [27,87,108].

6When a field is oscillatory, the usual approach is to average it
over the oscillation cycles, i.e., hcos2i → 1=2.
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ρϕ, which is associated with the time-time component of
the energy-momentum tensor

ρϕ ≡ −Tt
t ¼

1

2f

�
∂ϕ

∂t

�
2

þ 1

2g

�
∂ϕ

∂r

�
2

þ VðϕÞ: ð31Þ

Replacing the SF profile (18) in the previous equation and
considering the large mass limit, we obtain

ρϕ ¼ ρ

�ð2 − fÞ
f

sin2ðmt − sÞ þ cos2ðmt − sÞ
�
: ð32Þ

Finally, expressing it in terms of the flux F and averaging
over the rapid oscillations with a period of 2π=m, we obtain

hρϕi ¼ −
4F

ð2MÞ2x2f ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p : ð33Þ

It is important to note that q is constrained between 0 and
0.9 according to the EHT [70–72,111]. With all of this in
mind, we can study the behavior of the density profile of
this massive SF around a RN-BH. The average energy
density hρϕi diverges as we approach the horizon. This
divergence is caused by the term 1=f, as f → 0, as a result
of using nonregular coordinates.7 At large distances, we
have hρϕi ∝ x−3=2 and jvj ∝ x−1=2. This can be interpreted
as a free particle falling from infinity with a velocity ∝
r−1=2 due to the conservation of energy, similar to virialized
DM halos v2r ∼Φ ∼M=r.
To provide a clearer understanding of the behavior

of the massive SF around an RN-BH, Fig. 3 displays
the normalized energy density of the SF, referred to as
hρϕi=jF=ð2MÞ2j, for various values of q. It can be
observed that, at larger distances, the influence of q
becomes imperceptible. This fact arises, not surprisingly,
because the term ðq=xÞ2 within the metric function
rapidly diminishes with increasing distance. However,
the enlarged window suggests that q has an impact on the
region located between the photon sphere xph and the
innermost stable circular orbit xisco—a region where
marginally bound orbits xmb are typically located, making
it inevitable to fall into the RN-BH. As the charge is turned
on, the density profile becomes less cuspy compared to the
Schwarzschild case at small radii. At such distances, the
profile no longer follows the simple scaling: ρ ∝ x−3=2.
This is mainly because as q increases, the horizon radius
becomes smaller, reducing its effective cross section for
capturing DM particles. The region mentioned above
is particularly of interest for current and upcoming
BHs experiments in the strong field regime that could

potentially reveal deviations from standard geometries,
shedding light on “scalar hair” phenomena.

5. Accretion

We compute the mass accretion rate around a RN-BH.
The mass accretion can be obtained from the continuity
equation is associated with the component ν ¼ t of the
conservation equations ∇μT

μ
ν ¼ 0. For a steady state, the

mass accretion rate is defined as the energy flow through a
closed surface of a sphere, given by

ṀðrÞ ¼
I

Tr
t
ffiffiffiffiffiffi
−g

p
dθdφ; ð34Þ

where

Tr
t ¼

1

g
∂ϕ

∂r
∂ϕ

∂t
: ð35Þ

Using the SF profile (18) and considering the large-mass
limit, we can calculate the mass accretion of DM8

ṀSFDM ¼ 4πr2ρ
ffiffiffiffiffiffiffiffiffiffiffi
1 − f

p
; ð36Þ

We can observe that the above expression is regular at the
horizon. Typically, risco is identified as the region where

FIG. 3. Normalized energy density of the scalar field
hρϕi=jF=ð2MÞ2j as a function of the radial coordinate x, for
different charge-mass ratios q, as given by Eq. (33). The abrupt
density spike around the respective horizon is a result of
employing nonregular coordinates at the horizon. The enlarged
window pertains to the region between the radius horizon xh and
the innermost stable circular orbit xisco.

7We can easily manage this using Eddington coordinates
instead. However, for astrophysical purposes, we keep the use
of Schwarzschild coordinates throughout this paper.

8Notice that the mass accretion rate does not depend on the
initial DM distribution because the mass that has fallen into the
BH over time is balanced by the decrease of the DM distribution.
In this sense, we can choose to work from the current time (t ¼ 0),
which represents the remaining mass in the scalar cloud.
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the maximum accretion rate is experienced [114–116].
However, other studies [103–105] suggest that accretion
occurs in the region where marginally bound orbits
(rmb ≲ r≲ risco) are located. Indeed, it is in this region
where particle capture occurs. Hence, we shall restrict our
analysis to such scales. To better visualize this situation,
we show in Fig. 4 various orbits of interest. In particular,
we assume that the maximum rate is attained at rmb. Our
previous study [103], in the case of a self-interacting scalar
field, supports this possibility by indicating that the
maximum rate occurs on marginally bound orbits.
We observe a decrease of approximately 50% and 42%

in the accretion rate for the maximum allowed charge q ¼
0.9 at rmb and risco, respectively, compared to the
uncharged case. To get an idea of the order of magnitude
of accretion in this scenario, we considered a Milky Way–
like galaxy. Some studies [84,85] suggest that the dark
matter density ρDM in the vicinity of these BHs could be of
the order of ρDM ∼ 106M⊙ pc−3. Based on this argument,
we obtained an accretion rate of the order of ṀSFDM ∼
10−8M⊙ yr−1 in our region of interest. It is important to
note that this result is sensitive to ρDM, that is, the type of
model being considered. However, this result is consistent
with our previous research [103], in which we found that in
the repulsive SIDM model, the accretion obtained was of
the order of ṀSIDM ∼ 10−10M⊙ yr−1 [103,106]. This result
makes sense, as the existence of repulsion between
particles suggests that the number of particles falling into
the BH should be lower. However, all these estimations are

small compared to baryonic matter accretion, suggesting
the possibility that gravitationally bound structures com-
posed of DM remain present in the galaxy. In fact, these
structures should have a critical mass that surpasses
millions of solar masses to reach the Bondi-like pres-
sure-regulated infall [107].

III. COMPARISON WITH PREVIOUS RESULTS

A. Self-interacting scalar field dark matter

We present a brief summary of our previous work [103]
and highlight how this new work connects with it. When a
quartic self-interaction potential is included in Eq. (2), the
nonlinear Klein-Gordon equation is obtained. In the large
scalar-mass limit (3), this equation can be identified as a
Duffing-type equation [120], which describes a nonlinear
harmonic oscillator, and its analytical solution can be
expressed in terms of Jacobi elliptic functions [90,121]. It
is important to note that at distances beyond the transition
radius rsg, we enter the domain where the self-gravity of
scalar cloud turns out to be important. This arises from
the hydrostatic equilibrium between the repulsive self-
interaction and the self-gravity of the scalar cloud, unlike
in the FDM case where the balance occurs between the
self-gravity of the scalar cloud and the quantum pressure
arising from the uncertainty principle.
In Fig. 5, we present a comparison between the case of

repulsive self-interaction [see Eq. (32) in [103] ] and the
noninteracting case (33). The first thing we notice is a
significant change in slope between both cases. This
difference lies in that the repulsive self-interaction stabil-
izes the self-gravity of the SF cloud. In the noninteracting
scenario, the density decreases as hρϕi ∝ r−3=2, while in the
self-interacting scenario, it decreases as hρϕi ∝ r−1, at radii

FIG. 4. The image displays various orbits and regions of
interest in the vicinity of a RN-BH. We can distinguish the
horizon rh=M (dashed red line) [117], the photon sphere rph=M
(green line) [117,118], the marginally bound radius rmb=M
(blue line) [104], the shadow radius rsh=M of the RN-BH (black
line) [72], and the innermost stable circular orbit risco=M (red
line) [117,119]. Additionally, the sky blue region 4.55≲
rsh=M ≲ 5.21 corresponds to the 1σ constraint, while the light
blue region 4.21≲ rsh=M ≲ 5.56 corresponds to the 2σ con-
straint, set by Keck and VLTI telescopes, respectively [72]. The
EHT provides the constraint Q=M∈ ½0; 0.9� [70–72,111].

FIG. 5. Comparison between the normalized energy density of
the self-interacting scalar field [see Eq. (32) in [103] ] in red and
the noninteracting one (33) in blue, as a function of the radial
coordinate x for q ¼ 0, 0.6, 0.9. Here λ represents the self-
interaction of the SF. The small inset corresponds to the region
between xh and xisco.
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between rh ≪ r ≪ rsg.
9 Such behaviors strictly hold when

the effect of the charge becomes unimportant, which
happens at radii larger than the xisco, as can be seen in
the figure.
More importantly, in the small inset of the image, we

can see the impact of q in the regions delimited by xph and
xisco. This region is known as the marginally bound orbit
xmb, where the fall into the BH is inevitable for any
massive particle. As we explained earlier, this fact is linked
to the decrease in the cross section due to the modification
of the horizon caused by the effect of q. At small radii, and
as the charge increases in both cases, the density profile
becomes then less cuspy compared to the Schwarzschild
case, as can be inferred from Eq. (33). As a consequence of
the charge, the profile no longer follows the simple scaling
found in the uncharged case: ρ ∝ r−3=2 or ρ ∝ r−1 at
small radii.
On the other hand, we notice that both curves approach

each other as we get closer to the BH. The reason for this is
that self-interactions cannot counteract the gravitational
effects near the horizon (see Appendix in [103] for an
explicit demonstration). This is because in the strong field
regime, self-interactions become negligible. In the opposite
scale, we observe that the effect of the charge is practically
negligible, as the metric function decreases as ðq=xÞ2 at
large distances. The effect of the charge is barely appreci-
able for the self-interacting case.
As a final remark, we have verified that the radial

velocities also differ, being vr ∝ r−1 [90] and vr ∝ r−1=2

[see Eq. (28)] for the interactive and noninteractive cases,
respectively. This is due to the need to satisfy the condition
of constant energy flux, that is, independent of radii r.

B. Axionlike dark matter particles

As a proof of concept, we compare the SF profile in
different particle mass regimes, covering a wide class of SF
dark matter scenarios. We pay particular attention to the
large mass limit. Unfortunately, since the charged case has
not been examined in such cases, we must restrict this
comparison to the Schwarzschild BH. Within our
approach, such a comparison makes sense at large radii
when the term Q2=r2 can be safely ignored. Several
authors have previously examined the massive Klein-
Gordon equation [96,97]. The exact solutions to this
equation can be expressed in terms of the confluent
Heun function [122–127]. This problem has been revisited
by [27] and recently extended by [108], including the
effects of angular momentum in the SF.

In the context of a BH immersed in DM, there is a
possibility of developing a “scalar hair.” For a massive and
oscillating noninteracting SF, the authors of [27] have
identified different mass regimes (see Table 1 in [27]) that
can distinctly impact the scalar field profile. Regime IV
corresponds to m > r−1h , while regime III is identified with
ðrsgrhÞ−1=2 ≲m≲ r−1h . Furthermore, they divided the sur-
roundings of the BH into two clearly defined regions: the
first region is dominated by the BH’s geometry, extending
up to the transition radius rsg, while the second region lies
beyond this point. Our large-mass regime (rh ≫ 1=m)
corresponds indeed to the particle limit (regime IV in their
prescription). Accordingly, they obtained the following
expression for the SF profile

rh ≲ r≲ rsg∶ ϕ ∼ r−3=4e−imte−i2m
ffiffiffiffiffi
rrh

p
: ð37Þ

We can observe that the amplitude of the SF profile behaves
in the same way as in our case Eq. (30), as it follows the
same power law ϕ ∝ r−3=4. The regime III is particularly
interesting because it encompasses both particlelike and
wavelike behavior

m−2r−1h ≲ r≲ rsg∶ϕ∼ r−3=4e−imt cosð2m ffiffiffiffiffiffiffi
rrh

p
− 3π=4Þ:

ð38Þ

In fact, its amplitude exhibits the same behavior
as ϕ ∝ r−3=4, but with an additional modulation. They
obtained a density profile ρ ∝ r−3=2. This profile is inter-
preted as a constant and steady energy flow falling into the
BH at a velocity vr ∝ r−1=2, which aligns with the behavior
identified in Eq. (33). As an aside, in the regime of small
mass, the aforementioned author asserts that the SF profile
behaves according to the power law ϕ ∝ r−1, as in the
Jacobson’s preliminary result [93].
As noted in [108], in the large mass regime and for

distances far from the BH, the SF profile is independent of
the angular momentum, as it follows the same power law
ϕ ∝ r−3=4 [see Eq. (2.19) in [108] ]. In the same direction,
the authors of [87] numerically calculated the SF profile in
the large mass regime, considering the backreaction of the
SF, and found that at significant distances from the BH, the
envelopes of the SF profile follow the same power law
ϕ ∝ r−3=4 (see Fig. 1 in [87]).

IV. DISCUSSION AND CONCLUSION

The last decade has been thrilling in terms of astro-
physical observations, reaching unprecedented resolutions,
even on the order of the event horizon. These observations,
conducted in the strong field regime, have the potential to
provide unique insights not only into the intrinsic proper-
ties of BHs but also into the environments they inhabit. A
key assumption in this context is the potential influence of

9The density profile in the self-interacting case exhibits a
behavior similar to the NFW profile ρNFW ∝ r−1 [7] on scales
smaller than the transition radius. This behavior has also been
observed in previous studies [90,109]. We remind that the change
in slope for ρNFW occurs around 1 kpc or less in Milky Way–like
galaxies.
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DM on these observations, leaving distinctive signatures
that could contribute to unveiling its elusive nature.
Therefore, it is of vital importance to develop models

that deviate from the Schwarzschild paradigm. In this line
of thinking, our study is situated, addressing the non-
interactive case of the SF model and exploring the impact
of electric charge Q on the behavior of SF around a
RN-BH. All of this is coupled with the results obtained by
the EHT collaboration, which leaves open the possibility
that BHs may have a nonzero electric charge. In general
terms, with a 2σ confidence level, this electric charge is
found in an approximate range of q ¼ Q=M∈ ½0; 0.9�.
Therefore, we limit ourselves to considering these
constraints and connect these results with our previous
research [103].
The effect of Q becomes relevant in the vicinity of the

BH, especially in the region where marginally bound orbits
are located, as shown in Figs. 1 and 3. As expected, this
effect diminishes due to the r−2 term present in the metric
function f and becomes less relevant as we move away
from the RN-BH. At such distances, the scalar field profile
decreases as ϕ ∝ r−3=4, while the density profile decreases
as ρ ∝ r−3=2 and the radial velocity as vr ∝ r−1=2.
A notable fact is the change in slope in the density

profile between the noninteractive and interactive cases,
with the behavior of the latter being proportional to r−1,
and its radial velocity also following suit. This change is
due to the nature of the fields, as the repulsive self-
interaction slows down the fall of DM. Additionally, we
require a steady-state behavior for the flow of the fields, so
it must be independent of r. These values fall within the
range typically considered by different models of power-
law exponents for DM density profiles ρDM ∝ r−γ for
γ ∈ ½0; 5� [22].
An interesting inference is uncovered from Fig. 5: the

charge has a nontrivial impact on the density profile within
marginally bound orbits. This leads us to the following
question: is it possible to extract information about the DM
properties from BH observations within a beyond the
Schwarzschild geometry? At first glance, it seems very
challenging, but with the upcoming high-resolution BH
experiments in the strong-field scale, we expect to detect
the famous “scalar hair” and characterize the spacetime
geometry unprecedentedly.
We found that the maximum accretion rate of the SF in

marginally bound orbits, i.e., between rmb and risco,
decreases by up to 50% in the case of maximum allowed

charge compared to the uncharged scenario. The choice of
rmb as the upper limit is based on the premise that, with the
SF having a nonzero mass, the capture of particles in these
orbits is more probable and the fall into the BH seems
inevitable, as there is no point of return once entering that
radius. We also obtained an order of magnitude estimate for
the accretion of SF dark matter ṀSFDM ∼ 10−8M⊙ yr−1,
which is higher compared to the self-interacting case
ṀSIDM ∼ 10−10M⊙ yr−1 [103]. In both cases, the value is
small compared to the usual accretion of baryons (Bondi or
Eddington) reported in previous research [111,128–131].
This relatively small number leaves open the possibility that
structures at the subgalactic or galactic level composed of
DM continue to exist at present times, as these structures are
typically estimated to have hundreds of thousands or
millions of solar masses.
In summary, current and future observations of BHs

provide a unique opportunity to investigate the role that
DM plays in the dynamics of these cosmic objects and their
surroundings. These observations, supported by theoretical
advances, have the potential to shed light on the nature of
DM and its interactions with BHs. Although our study is
modest, it has provided a different perspective, often
overlooked, on the impact of electric charge on BHs and
its secular effect in the vicinity. We hope that our findings
open new avenues for future research in this fascinating
field, contributing to the understanding of this elusive
component of our Universe.
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