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Analytical models of magnetized, geometrically thick disks are relevant to understand the physical
conditions of plasma around compact objects and to explore its emitting properties. This has become
increasingly important in recent years in the light of the Event Horizon Telescope observations of Sgr A�

and M87. Models of thick disks around black holes usually consider constant angular momentum
distributions and do not take into account the magnetic response of the fluid to applied magnetic fields. We
present a generalization of our previous work on stationary models of magnetized accretion disks with
magnetic polarization [O. M. Pimentel et al., Astron. Astrophys. 619, A57 (2018)]. This extension is
achieved by accounting for nonconstant specific angular momentum profiles, done through a two-
parameter ansatz for those distributions. We build a large number of new equilibrium solutions of thick
disks with magnetic polarization around Kerr black holes, selecting suitable parameter values within the
intrinsically substantial parameter space of the models. We study the morphology and the physical
properties of those solutions, finding qualitative changes with respect to the constant angular momentum
tori solutions [O. M. Pimentel et al., Astron. Astrophys. 619, A57 (2018)]. However, the dependencies
found on the angular momentum distribution or on the black hole spin do not seem to be strong. Some of
the new solutions, however, exhibit a local maximum of the magnetization function, absent in standard
magnetized tori. Due to the enhanced development of the magnetorotational instability as a result of
magnetic susceptibility, those models might be particularly well-suited to investigate jet formation through
general relativistic magnetohydronamical simulations. The new equilibrium solutions reported here can be
used as initial data in numerical codes to assess the impact of magnetic susceptibility in the dynamics and
observational properties of black hole–thick disk systems.

DOI: 10.1103/PhysRevD.110.023023

I. INTRODUCTION

The accretion of hot plasma onto black holes is of great
interest in relativistic astrophysics. At galactic scales this
process is associated with the growth of supermassive black
holes (SMBHs) and their emission of relativistic jets
and outflows, and, at stellar scales, with the appearance

of short-lived, highly energetic phenomena such as x-ray
transients and gamma-ray bursts (GRBs) [1–5]. Obser-
vations at distances close to SMBHs have recently become
possible thanks to the Event Horizon Telescope (EHT),
a Very Long Baseline Interferometry array consisting of
radio telescopes devoted to observing the immediate
environment of a black hole with an angular resolution
comparable to the compact object’s event horizon. The EHT
Collaboration has imaged for the first time the SMBHs at the
core of the galaxy M87 [6] and at the galactic center,
Sagittarius A* [7]. These scenarios are perfect laboratories to
test fundamental plasma and black hole physics, accretion
processes, and general relativity in the strong field regime,
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as well as alternative theories of gravity [8–11]. These recent
developments are opening a new window to perform direct
comparisons between theory and observations, further con-
straining existing and new models.
The accretion of matter onto a black hole leads to the

efficient conversion of gravitational energy into heated
plasma, particle acceleration and electromagnetic radia-
tion [12]. If the black hole rotates, the available energy in
the near-horizon region increases significantly. In astro-
physical accreting systems, the gravitational energy is
stored in a disk-shaped plasma which rotates around a
compact object, typically a Kerr black hole. For a max-
imally rotating Kerr black hole, the binding energy per unit
mass a test particle can reach is 0.42 c2 and the innermost
stable circular orbit shrinks to coincide with the horizon
(in areal coordinates) [13]. Accretion is regulated through
the (outward) transport of angular momentum in the disk
originated by dissipative processes triggered by turbulent
viscous stresses. It has long been recognized that magnetic
fields play a prominent role in the accretion process.
Indeed, random (seed) perturbations in a magnetized disk
can trigger the magnetorotational instability (MRI), which
destabilizes the delicate balance between magnetic and
rotational forces and initiates the energy conversion
process (see [14,15]).
The shape and extension of accretion disks are deter-

mined by their angular momentum distribution and the
pressure gradients. In particular, it is believed that geo-
metrically thick disks (or tori) are present in active galactic
nuclei and quasars, microquasars, x-ray binaries, and
in systems leading to GRBs, either through black-hole-
forming, collapsing massive stars or via mergers of com-
pact binaries comprising at least one neutron star [3,15–18].
Thick disks, which are the accretion model we adopt in this
paper, have been used in diverse astrophysical contexts
such as e.g. the central engine of short GRBs and kilo-
novae [19–21], in semianalytic studies of super-Eddington
accretion [22], or in calculations of low-amplitude quasi-
periodic oscillations in x-ray binaries [23–28]. Magnetized
thick disks have also been used to compute images of
SgrA* and to fit its millimeter and radio spectrum [29].
Within the geometrically thick disk formalism, models with
a Keplerian angular momentum distribution are infinitely
thin and have infinite extension, while disks with non-
Keplerian profiles have finite thickness and their radial
extent depends on the specific angular momentum
distribution.
First numerical models of geometrically thick disks

around black holes were developed by [30–32]. Those
models were constructed for both isentropic and barotropic
matter distributions supported by pressure gradients and
centrifugal forces. A constant specific angular momentum
law was adopted for the material in the disk as the main
simplifying assumption. These thick tori (also commonly
referred to as “Polish doughnuts”) are routinely used as

initial states for general relativistic magnetohydrodynam-
ical (GRMHD) simulations to study their nonlinear stability
and their dynamics in connection with investigations of
MRI-driven turbulence, angular momentum transport and
accretion (see [15,33] and references therein). Since the
original thick disk models are purely hydrodynamical, a
weak poloidal magnetic field needs to be superimposed on
top of this initial state to seed the MRI. A self-consistent
solution for a magnetized thick disk around a Kerr black
hole was derived by [34], assuming a purely toroidal (i.e.
azimuthal) magnetic field. This disk model has been shown
to be MRI-unstable under nonaxisymmetric perturbations
by [35], being otherwise stable in axisymmetry. Dynamical
differences between Komissarov’s self-consistent solution
and a standard Polish doughnut dressed with an ad hoc
magnetic field have been studied by [36] through GRMHD
simulations. Highly magnetized disks were found to be
unstable (and hence prone to be accreted or expelled)
unless the initial data incorporated the magnetic field in a
self-consistent way. More recently [37] have shown that a
purely toroidal initial field can generate a large-scale
poloidal flux, which is necessary to power jets.
In [38] we extended the Komissarov solution to include

the response of the fluid to an applied magnetic field,
considering the relativistic magnetic properties of the
plasma. This response, parametrized by the magnetic
susceptibility, χm, leads to equilibrium structures with
different sizes and distinct magnetic behavior. It was found
that paramagnetic disks (χm > 0) are smaller (and more
compact) but more strongly magnetized near the black hole
than the Komissarov solution (χm ¼ 0), and even more than
diamagnetic disks (χm < 0). Accounting for the magnetic
susceptibility in Komissarov’s solution leads to a number of
additional features worth mentioning: (a) Numerical sim-
ulations of paramagnetic disks show that small magnetic
stresses grow rapidly, especially near the black hole,
indicating that MRI seems to be more effective to drive
accretion in such disks [39]. MRI generates turbulence that
acts as an effective viscosity in the disk, producing the
dissipation of energy necessary for the accretion of matter.
(b) Models with a nonconstant profile of the magnetic
susceptibility, decreasing with radius, present a maximum
of the magnetization parameter βm ¼ p=pm (where p is the
thermal pressure and pm is the magnetic pressure) near the
inner edge of the disk. Interestingly, this particular radial
dependence of βm seems to be consistent with results from
numerical simulations [33,37,40]. (c) Magnetic field ampli-
fication through the Kelvin-Helmholtz instability is more
efficient and effective when the susceptibility of the matter
is included in the model [41]. (d) Finally, magnetic
polarization also induces effects on the physical properties
of the plasma that impact the radiation from the disks [42].
The susceptibility values used in this work are motivated

by the theory of Langevin, in which, for an electron gas, the
paramagnetism is associated with the intrinsic magnetic
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moment of electrons and the alignment of the spins due to
magnetic torques. In contrast, the diamagnetism is related
to the electron orbital motion around the magnetic field
lines. For a detailed description, see our recent paper [42].
Based on this work, diamagnetism depends only on particle
number. Hence, for hydrogen gas, we calculate the sus-
ceptibility in a range from densities in accretion disks
(105½kg=m3� − 107½kg=m3�, [43]) to densities in neutron
star densities (1019½kg=m3�, [44]). For accretion disks, the
scales for magnetic susceptibility are of the order of
10−3–10−1, while for more compact objects like neutron
stars, the theory would give values of the order of 109–1011.
These values for neutron stars may not be realistic.
However, it is important to note that there are alternative
theories, such as Landau diamagnetism and Pauli para-
magnetism and, in the specific case of neutron stars, other
theories may also need to be considered, including the
possibility of a ferromagnetic phase transition. On the
other hand, density, temperature, and magnetic field
affect the magnetic susceptibility of paramagnetic materi-
als. For accretion disks, temperatures for cool accretion
in some astrophysical scenarios are in the range of
102½K� − 104½K�, while hot gas can reach temperatures
of 107½K� − 109½K� [43]. For example, it is believed that
the nucleus of the x-ray source Cygnus X-1 is a stellar-
mass black hole surrounded by a gas with a temperature of
∼104½K�. Furthermore, we show the influence of the mag-
netic field considering scales from 10−2½T� − 10−1½T�. We
found that the magnetic field does not significantly affect
the magnitude of the magnetic susceptibility in the range
between 10−2½T� and 10½T�, but amplifies the range of
temperatures by which it is possible to calculate the
magnetic susceptibility. Nevertheless, if the magnetic field
is stronger, for example in the range of 102½T� − 103½T�, the
magnetic field modifies the magnitude of the susceptibility.
In general, for low temperatures, it is possible to obtain
susceptibilities in order of 101 − 10−1, but for high temper-
atures and densities we found orders of 10−1 − 10−2.
One of the main simplifications of the magnetically

polarized disk solutions obtained by [38] is that they
assume a constant distribution of specific angular momen-
tum. While this choice facilitates the computation of the
models, it is, however, an academic choice. Moreover, this
choice may be even unsuitable to describe systems where
the black hole mass grows through accretion due to the
appearance of a runaway instability on dynamical time
scales, as shown by [45] for unmagnetized disks. A
possible solution to this problem is to include a nonconstant
distribution of angular momentum by e.g. considering that
the angular momentum in the equatorial plane increases
with the radial distance as a positive power law. This was
shown by [46,47] to have a highly stabilizing effect.
Another possibility was presented by [48] who combined
different distributions of angular momentum in the disks
(Keplerian and constant) to build sequences of purely

hydrodynamical thick disks. Magnetized thick disk models
with nonconstant angular momentum distributions have
been obtained by [35,49]. On the one hand, [35] extended
Komissarov’s original solution for the particular case
of a power-law distribution of angular momentum. On
the other hand, [49] combined the two approaches for the
angular momentum distribution considered in [34,48] to
build magnetized Polish doughnuts around Kerr black
holes. Additional stationary models of magnetized thick
disks have been constructed for hairy black hole space-
times [50,51], a Yukawa black hole potential [52], viscous
disks [53] and self-gravitating disks [54,55].
The present paper aims to build new sequences of

magnetically polarized disk solutions for nonconstant
angular momentum distributions. To this aim, we merge
the approach laid out in [38] with that of [51] and discuss
the modifications that the new rotation law introduces
on the properties of stationary magnetically polarized
disks. The paper is organized as follows: Sec. II presents
the mathematical and computational framework used
to construct the models. In particular, we discuss the
GRMHD equations with magnetic polarization and the
angular momentum distribution used in our models, as
well as the space of the parameters we span in our study.
The models and their main properties are discussed in
Sec. III. Finally, Sec. IV summarizes our conclusions.
The paper closes with two Appendices where the con-
ditions for the appearance of a local maximum in the
magnetization parameter are investigated. Geometrized
units (G ¼ c ¼ 1) are used throughout the paper. Addi-
tionally, this choice is complemented by μ0 ¼ ϵ0 ¼ 1 (i.e.
Heaviside-Lorentz units).

II. FRAMEWORK

A. General relativistic magnetohydrodynamics
equations with magnetic polarization

The dynamics of an ideal fluid with magnetic polariza-
tion in a magnetic field is described by the conserva-
tion laws

∇μTμν ¼ 0; ð1Þ

∇μðρuμÞ ¼ 0; ð2Þ

and by the relevant Maxwell equations in the ideal
GRMHD limit,

∇μ
�Fμν ¼ ∇μðuμbν − bμuνÞ ¼ 0: ð3Þ

In these equations Tμν is the energy-momentum tensor,
ρ is the rest-mass density, �Fμν is the dual of the Faraday
tensor, and bμ is the magnetic field measured in a reference
frame that moves with the same four-velocity of the
fluid, uμ. The magnetic polarization can be characterized
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macroscopically through the magnetization vector mμ,
which is defined as the magnetic dipole moment per unit
volume. From now on, we will concentrate on the physi-
cally important case in which mμ and bμ are related by
means of a linear constitutive equation, mμ ¼ χbμ, where
χ ¼ χm=ð1þ χmÞ, and χm is the magnetic susceptibility1

(see Fig. 2). When χm < 0 the fluid is diamagnetic and
when χm > 0 the fluid is paramagnetic. In the first case the
polarization results from induced orbital dipole moments in
a magnetic field [56], and in the second case the polari-
zation is generated by magnetic torques in substances
whose atoms have a nonzero spin dipole moment.
The total energy-momentum tensor, Tμν, for a magneti-

cally polarized fluid was computed in [57] and more
recently in [58] following a different approach. The
resulting tensor takes the form

Tμν ¼ ½wþ b2ð1 − χÞ�uμuν þ
�
pþ 1

2
b2ð1 − 2χÞ

�
gμν

− ð1 − χÞbμbν; ð4Þ

in the linear media approximation. Here, w≡ ρh is the
enthalpy density, h is the specific enthalpy, p is the thermo-
dynamic pressure, b2 ¼ bμbμ, and gμν is the metric tensor.
Following previous works [34,35,38,49], we assume

the test-fluid approximation (i.e. neglect the fluid’s self-
gravity) and the gravitational field as given by the Kerr
metric in Boyer-Lindquist coordinates ðt; R; θ;ϕÞ. We also
consider that the fluid is axisymmetric and stationary, so the
physical variables depend neither on the azimuthal angle ϕ
nor on the time t. Finally, we restrict the movement of the
fluid in such a way that uR ¼ uθ ¼ 0, and the magnetic
field topology to a purely toroidal one, so bR ¼ bθ ¼ 0.
With these assumptions, the equation for baryon number
conservation (2) and the relevant Maxwell equations (3) are
identically satisfied, and the equilibrium structure of the
tori is given by the Euler equation as follows:

ðln jutjÞ;i −
Ω

1− lΩ
l;i þ

p;i

w
−
ðχpmÞ;i

w
þ ½ð1− χÞLpm�;i

Lw
¼ 0;

ð5Þ

where pm ¼ b2=2 and L ¼ g2tϕ − gttgϕϕ. In this last
expression

Ω ¼ uϕ

ut
¼ −

gϕt þ lgtt
gϕϕ þ lgtϕ

; ð6Þ

and

l ¼ −
uϕ
ut

¼ −
gϕt þ Ωgϕϕ
gtt þ Ωgtϕ

ð7Þ

correspond to the angular velocity and specific angular
momentum, respectively. As it can be seen, Eq. (5) reduces
to the one obtained by [34] when χ ¼ 0.
Following the procedure presented in [34] and assuming

that χ ¼ χðLÞ, Euler’s equation can be solved in the form

ln jutj þ
Z

p

0

dp
w

−
Z

l

0

Ωdl
1− lΩ

þ ð1− 2χÞ η

η− 1

pm

w
¼ const;

ð8Þ

where, for the particular case where χ takes the form [38]

χ ¼ χ0 þ χ1Lσ; ð9Þ

the magnetic pressure can be expressed as follows:

pm ¼ KmLλ̃wηf̃; ð10Þ

with

λ̃ ¼ 1 − χ0
1 − 2χ0

ðη − 1Þ; f̃ ¼ ð1 − 2χÞ 1−η
2σð1−2χ0Þ−1 ð11Þ

Here χ0, χ1, and σ are constants and η is the exponent of the
magnetic equation of state in Komissarov’s model.
In the following we depart from the procedure followed

by Pimentel et al. [38] and introduce the same equation
of state as it was done in Montero et al. [25] and
GimenoSoler et al. [50],

p ¼ KρΓ ð12Þ

where K and Γ are constants. Integrating Eq. (8) as in
Pimentel et al. [38], we arrive at the final equation we will
need to solve,

W −Win þ ln

�
1þ ΓK

Γ − 1
ρΓ−1

�

þ ð1 − 2χÞ η

η − 1
KmLλ̃ðρhÞη−1f̃ ¼ 0; ð13Þ

where W −Win is the relativistic (gravitationalþ
centrifugal) potential and is defined as

WðR; θÞ −Win ¼ ln jutj − ln jut;inj −
Z

l

lin

Ωdl
1 − Ωl

; ð14Þ

where the subscript “in” means that the quantity is
evaluated at the inner edge of the disk Rin.

1In our units, μr ¼ 1þ χm is the relative magnetic permeabil-
ity. Then, χ ¼ χm=μr. It is relevant to note that the magnetic field
bμ also includes the magnetization.
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B. Angular momentum distribution

Next, we turn to describe the specific angular momentum
distribution lðR; θÞ we use in this work. We will follow the
procedure described in Gimeno-Soler et al. [51] (see also
references therein for the full description) in which the
specific angular momentum distribution at the equatorial
plane, lðR; π=2Þ, is defined as

l

�
R;

π

2

�
¼

8<
:

l0
�

lKðRÞ
lKðRmsÞ

�
α

for R ≥ Rms

l0 for R < Rms

ð15Þ

where lKðRÞ is the Keplerian angular momentum function,
Rms is the radius of the innermost (marginally) stable
circular orbit (ISCO), l0 is the parameter that controls the
constant part of the distribution, and α changes the slope of
the angular momentum profile (from α ¼ 0 for a constant
profile to α ¼ 1 for a Keplerian profile).
The specific angular momentum outside the equatorial

plane is computed using the so-called von Zeipel cylinders
(see [47,51] for a detailed explanation of the exact
procedure2) where, once the specific angular momentum
distribution at the equatorial plane leqðRÞ ¼ lðR; π=2Þ is
prescribed, a value of l is assigned to each point outside the
equatorial plane by solving the following equation:

�
gttðR; θÞg̃tϕðR0Þ − g̃ttðR0ÞgtϕðR; θÞ

	
l2eqðR0Þ

þ �
gttðR; θÞg̃ϕϕðR0Þ − g̃ttðR0ÞgϕϕðR; θÞ

	
leqðR0Þ

þ �
gtϕðR; θÞg̃ϕϕðR0Þ − g̃tϕðR0ÞgϕϕðR; θÞ

	 ¼ 0; ð16Þ

where the tilde is a short-hand notation for metric compo-
nents evaluated at the equatorial plane. The von Zeipel
cylinders are surfaces of constant angular velocity Ω and
constant angular momentum l, so if a cylinder passing
through a generic point ðR; θÞ also passes through a point
ðR0; π=2Þ at the equatorial plane, then lðR; θÞ ¼ leqðR0Þ
and the potential at said point can be computed as

WðR; θÞ ¼ WeqðR0Þ þ ln

�
−utðR; θÞ

−utðR0; π=2Þ
�
: ð17Þ

C. Parameter space

The parameters defining our tori can be classified into
three groups: on the one hand, we have the parameters
related to the magnetic susceptibility such as the suscep-
tibility itself χm, and parameters χ0 and χ�1, which we
explain below. The values of those parameters are reported
in Table I. A second group comprises parameters l0 and α
characterizing the angular momentum distribution (which,

in our approach, is closely related to the potential well
depth ΔWc ¼ Wc −Win). Finally, a third group of param-
eters is the one related to the black hole properties (massM,
spin a, and sense of rotation) and disk properties [mag-
netization βmð¼ p=pmÞ, density ρ at the center of the disk3
(i.e. βm;c and ρc), and the exponents Γ and η].

1. Magnetic susceptibility

In the first place, regarding the magnetic susceptibility of
the disk, we follow an approach similar to that of Pimentel
et al. [38]. Therefore, we select five models with a constant
distribution of the magnetic susceptibility (two diamag-
netic, one nonmagnetic and two paramagnetic; see the top
rows of Table I for the exact values of the parameters) and
four models with nonconstant magnetic susceptibility. The
parameters χ0 and χ1 for the latter four models are chosen in
the following way: (i) two diamagnetic models, the first one
going from χm ¼ 0 at R ¼ Rin to χm ¼ −0.4 for R → ∞,
and the second one going from χm ¼ −0.4 at R ¼ Rin to
χm ¼ 0 for R → ∞; (ii) two paramagnetic models chosen in
a similar way, i.e. the first one going from χm ¼ 0.4 at
R ¼ Rin to χm ¼ 0 for R → ∞ and the second one going
from χm ¼ 0 at R ¼ Rin to χm ¼ 0.4 for R → ∞. The
specific values of χ0 and χ1 are obtained by using the
following procedure (note that the parameter σ is fixed to
σ ¼ −1 for the nonconstant magnetic susceptibility cases4):
First, for the cases with χmðRin; π=2Þ ¼ �0.4 and
limR→∞ χmðR; π=2Þ ¼ 0, we can use Eq. (9) and, employ-
ing the relation between χ and χm,

χðχmÞ ¼
χm

1þ χm
; ð18Þ

we can see that, at R ¼ Rin,

TABLE I. Values of the magnetic susceptibility χm and the
parameter χ0 for the constant models (top). Values of the
parameters χ0 and χ�1 for the nonconstant susceptibility models
(bottom).

C1 C2 0 C3 C4

χm −0.4 −0.2 0 0.2 0.4
χ0 −2=3 −1=4 0 1=6 2=7

M1 M2 0 M3 M4

χ0 −2=3 0 0 0 2=7
χ�1 2=3 −2=3 0 2=7 −2=7

2See also [59] for a different approach to the computation of
the von Zeipel cylinders applied to nonmagnetized disks around
parametrized spherically symmetric black holes.

3The center of the disk is defined as the location of the
minimum of the potential W.

4It is important to note that, even though it seems that σ is not
relevant for the constant χ cases, the parameter σ is present
through the definition of f̃ [see Eq. (11)] in the constant cases. To
arrive at the same results as in [38] we need to set σ → −∞.
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χðχm ¼ �0.4Þ ¼ χ0 þ χ1LσðRin; π=2Þ; ð19Þ

and, for R → ∞,

0 ¼ χ0 þ lim
R→∞

ðχ1LσðR; π=2ÞÞ ¼ χ0; ð20Þ

where we have used that σ ¼ −1 and
limR→∞ LðR; π=2Þ ¼ ∞. Then, it can be seen that for these
models

χ0 ¼ 0; χ1 ¼
χðχm ¼ �0.4Þ
LσðRin; π=2Þ

; ð21Þ

so the function χ can be written as

χ ¼ χðχm ¼ �0.4Þ
�
LðR; θÞ
Lin

�
σ

; ð22Þ

where Lin ¼ LðRin; π=2Þ. Following a similar procedure
we can derive the values of the parameters for the cases
χmðR ¼ RinÞ ¼ 0 and limR→∞ χmðR; π=2Þ ¼ �0.4. At
R ¼ Rin we can write

χ0 ¼ −χ1LσðRin; π=2Þ; ð23Þ

and at R → ∞

χðχm ¼ �0.4Þ ¼ χ0; ð24Þ

so the values of the χ0 and χ1 parameters are

χ0 ¼ χðχm ¼ �0.4Þ; χ1 ¼ −
χðχm ¼ �0.4Þ
LσðRin; π=2Þ

; ð25Þ

and the general form of the χ function is

χ ¼ χðχm ¼ �0.4Þ
�
1 −

�
LðR; θÞ
Lin

�
σ
�
: ð26Þ

We can see that the expression for the parameter χ1
depends on the function L, so its particular value for
different values of the parameters ðRin;M; aÞ will be
different. However, we can define a new dimensionless
parameter χ�1 as

χ�1 ¼ χ1Lσ
in; ð27Þ

and therefore we write χ as

χðR; θÞ ¼ χ0 þ χ�1

�
LðR; θÞ
Lin

�
σ

: ð28Þ

In this way, the values of the parameters χ0 and χ�1 are
independent of the parameters ðRin;M; aÞ and, therefore,
are the same for all the different Kerr spacetimes and
disk specific angular momentum distributions we are

considering, and only depend on the kind of magnetic
susceptibility model we are studying. The particular values
of ðχ0; χ�1Þ for all models we compute are reported in the
bottom rows of Table I. The actual values of the parameter
χ1 can be computed from the table using the definition (27)
and the values of Lin (which can be computed from the data
in Tables II–IV).
Additionally, it is worth discussing the allowed values

for our magnetic susceptibility parameters ðχ0; χ�1Þ. In the
left panel of Fig. 1, we show a diagram that depicts the
location of our set of values for ðχ0; χ�1Þ on the parameter
space. The symbols flag the specific models of our sample
reported in Table I. Some of these symbols are joined by
dotted lines which correspond to constant values of the
magnetic susceptibility χ (and thus, χm as well) evaluated at
the inner edge of the diskR ¼ Rin. The grey-shaded regions
in Fig. 1 correspond to forbidden regions of the parameter
space while the blue-shaded regions designate values of
ðχ0; χ�1Þ such that the corresponding disks attain a maxi-
mum of the magnetization function βm for some value of
the radial coordinate. The condition for a maximum of βm
to appear is discussed in detail in Appendix A. In addition,
in the right panel of Fig. 1 we depict the radial profiles of
χmðRÞ for our choice of nonconstant susceptibility models.
This is only shown for an illustrative combination of the
ða; α; l0Þ parameters. We note that the radial profiles are
similar for all the values of the parameters ða; α; l0Þwe have
considered in our study.
To better understand what regions of the parameter space

ðχ0; χ�1Þ are available to build our models it is useful to
discuss first the correspondence between values of the
function χ and the magnetic susceptibility χm. This is
plotted in Fig. 2. In this figure we can identify the following
regions: (i) χ ∈ ð−∞; 1Þ corresponds to χm ∈ ð−1;∞Þ and
(ii) χ ∈ ð1;∞Þ corresponds to χm ∈ ð−∞;−1Þ. Then, it is
apparent that χ ¼ 1 is an ill-defined value of the function χ,
so it must be excluded from our parameter space. Further
pathological regions come from the definitions of λ̃ and f̃
[Eq. (11)], namely χ0 ≠ 1=2 to avoid the denominator in
the definition of λ̃ from being zero, and χ < 1=2, since if
ð1 − 2χÞ < 0, then f̃ does not exist for fractional values of
the exponent. We can also exclude the region χ0 ≥ 1=2
taking into account that, in the constant case χ ¼ χ0 and in
the nonconstant case, if χ�1 > 0 and χ0 ≥ 1=2, then
χ > 1=2, and if χ�1 < 0, χ will approach 1=2 asymptotically
for R → ∞. For that reason, it is apparent that the χ > 1=2
restriction must be enforced at the inner edge of the disk
R ¼ Rin. Physically speaking, we can relate this limit to
the fact that χm ≥ 1 (1=2 ≤ χ < 1) no longer represents a
paramagnetic fluid. Using the same argument, we can
exclude the region for which χm ≤ 1 χ ∈ �1;∞½ as well. In
the left panel of Fig. 1, the lines χ0 ¼ 1=2 and χ ¼ 1=2 (i.e.
χ�1 ¼ −χ0 þ 1=2) are represented by black solid lines and
the regions χ0 ≥ 1=2 and χ ≥ 1=2 are shaded in grey.
Moreover, the region of the parameter space in which there
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is a maximum of the function βm in the disk is shaded in
blue. The critical line corresponds to the values of ðχ0; χ�1Þ
for which the maximum of the magnetization function is
located at the inner edge of the disk, and it is displayed as a
blue line. The constant χ (and χm) lines follow the equation
χ�1 ¼ ðL=LinÞ � ð−χ0 þ χÞ which corresponds to parallel
oblique lines (χ�1 ¼ −χ0 þ χ) for R ¼ Rin, and to parallel
vertical lines (χ ¼ χ0) when R → ∞.

2. Angular momentum

We turn next to discuss the second group of model para-
meters, that is, those related to the specific angular momen-
tum distribution at the equatorial plane, Eq. (15), namely
the constant part l0 and the exponent α. Following [51],
we focus on two values for the exponent α, namely α ¼ 0

(constant angular momentum) and α ¼ 0.75 (nearly
Keplerian rotation). The values of the parameter l0 are

TABLE II. Values of the relevant physical magnitudes of our results for a ¼ −0.9. From left to right, the columns correspond to the
particular model of magnetic polarization we are considering, the constant part of the specific angular momentum distribution l0 (for
each model, the first and third rows corresponds to l0 ¼ l0;2 and the second and fourth rows to l0 ¼ l0;3), the exponent of the angular
momentum distribution α, the depth of the potential well at the center ΔWc, the positions of the inner edge of the disk Rin, the center of
the disk Rc and the outer edge of the disk Rout

a, the maximum value of the magnetization parameter βm;max, the value of the
magnetization parameter at the inner edge of the disk βm;in, the maximum value of the rest-mass density ρmax, the location of the
maximum of the rest-mass density Rmax and the location of the maximum of the magnetic pressure Rm;max.

Model l0 α ΔWc Rin Rc Rout βm;maxð×10−2Þ βm;inð×10−2Þ ρmax Rmax Rm;max

C1 4.61 0 −1.43 × 10−2 6.09 13.74 45 1.55 1.55 1.12 11.96 12.33
6.21 0 −1.43 × 10−2 16.27 33.02 ∞ 1.42 1.42 1.16 27.46 28.42
4.44 0.75 −4.66 × 10−3 6.87 15.85 61.9 1.56 1.56 1.15 13.33 13.83
4.85 0.75 −4.66 × 10−3 16.61 40.60 ∞ 1.55 1.55 1.25 30.85 32.49

C2 4.61 0 −1.43 × 10−2 6.09 13.74 45 1.67 1.67 1.16 11.78 12.14
6.21 0 −1.43 × 10−2 16.27 33.02 ∞ 1.50 1.50 1.22 26.85 28.09
4.44 0.75 −4.66 × 10−3 6.87 15.85 61.9 1.67 1.67 1.20 13.03 13.58
4.85 0.75 −4.66 × 10−3 16.61 40.60 ∞ 1.67 1.67 1.34 30.00 31.65

0 4.61 0 −1.43 × 10−2 6.09 13.74 45 1.84 1.84 1.23 11.49 11.90
6.21 0 −1.43 × 10−2 16.27 33.02 ∞ 1.63 1.63 1.31 26.27 27.15
4.44 0.75 −4.66 × 10−3 6.87 15.85 61.9 1.86 1.86 1.29 12.65 13.25
4.85 0.75 −4.66 × 10−3 16.61 40.60 ∞ 1.85 1.85 1.49 28.93 30.66

C3 4.61 0 −1.43 × 10−2 6.09 13.74 45 2.15 2.15 1.37 11.10 11.60
6.21 0 −1.43 × 10−2 16.27 33.02 ∞ 1.84 1.84 1.49 25.18 26.56
4.44 0.75 −4.66 × 10−3 6.87 15.85 61.9 2.17 2.17 1.47 12.18 12.82
4.85 0.75 −4.66 × 10−3 16.61 40.60 ∞ 2.16 2.16 1.78 27.62 29.37

C4 4.61 0 −1.43 × 10−2 6.09 13.74 45 2.77 2.77 1.69 10.56 11.11
6.21 0 −1.43 × 10−2 16.27 33.02 ∞ 2.25 2.25 1.89 24.18 25.45
4.44 0.75 −4.66 × 10−3 6.87 15.85 61.9 2.80 2.80 1.88 11.54 12.22
4.85 0.75 −4.66 × 10−3 16.61 40.60 ∞ 2.80 2.80 2.49 26.00 27.78

M1 4.61 0 −1.43 × 10−2 6.09 13.74 45 1.07 0.78 1.13 11.90 12.08
6.21 0 −1.43 × 10−2 16.27 33.02 ∞ 1.03 0.75 1.18 27.15 27.25
4.44 0.75 −4.66 × 10−3 6.87 15.85 61.9 1.07 0.77 1.16 13.25 13.46
4.85 0.75 −4.66 × 10−3 16.61 40.60 ∞ 1.07 0.78 1.27 30.56 30.95

M2 4.61 0 −1.43 × 10−2 6.09 13.74 45 3.17 3.17 1.19 11.66 12.40
6.21 0 −1.43 × 10−2 16.27 33.02 ∞ 2.62 2.62 1.23 26.85 29.10
4.44 0.75 −4.66 × 10−3 6.87 15.85 61.9 3.21 3.21 1.24 12.93 13.93
4.85 0.75 −4.66 × 10−3 16.61 40.60 ∞ 3.20 3.20 1.38 29.82 33.15

M3 4.61 0 −1.43 × 10−2 6.09 13.74 45 1.20 1.00 1.27 11.32 11.60
6.21 0 −1.43 × 10−2 16.27 33.02 ∞ 1.10 0.92 1.38 25.71 25.99
4.44 0.75 −4.66 × 10−3 6.87 15.85 61.9 1.20 0.99 1.34 12.47 12.80
4.85 0.75 −4.66 × 10−3 16.61 40.60 ∞ 1.20 1.00 1.57 28.26 28.93

M4 4.61 0 −1.43 × 10−2 6.09 13.74 45 4.13 4.13 1.48 10.95 11.72
6.21 0 −1.43 × 10−2 16.27 33.02 ∞ 3.19 3.19 1.55 25.18 27.46
4.44 0.75 −4.66 × 10−3 6.87 15.85 61.9 4.19 4.19 1.60 12.02 13.03
4.85 0.75 −4.66 × 10−3 16.61 40.60 ∞ 4.18 4.18 1.97 27.39 30.37

aIt must be noted that the mass of the disk is finite even if the disk has an infinite value of Rout.
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chosen in the following way: First, we compute the value
of the depth of the potential well, ΔWc, which is defined
as the difference between the potential at the center
and the potential at the inner edge of the disk, ΔWc ≡
Wc −Win. This quantity achieves its maximum for a
particular value of l0, given a set of parameters ðM; a; αÞ
(note that for the said value of l0, WðRcuspÞ ¼ 0, where
Rcusp is the location of the cusp, i.e. the point in the
equatorial plane where the critical equipotential surface
crosses with itself). We will denote this particular value of
l0 as l0;1 and the corresponding value of ΔWc as ΔWmax. In
this work we are going to use two values of the parameter l0
(namely, l0;2 and l0;3) for each set of parameters ðM; a; αÞ.
These two values are chosen according to the following
criteria: (i) l0;2 is such that l0;2 < l0;1 and the corresponding

value of the depth of the potential well is ΔWc ¼ 1
2
ΔWmax;

(ii) l0;3 is such that l0;3 > l0;1 and the corresponding value
of the depth of the potential well is also ΔWc ¼ 1

2
ΔWmax.

We chose these two criteria to be able to perform
a comparison between models with different disk geo-
metries, but eliminating the dependence that the thermo-
dynamic quantities have on the potential well depth ΔWc.
In Fig. 3 we show the morphology of the potential
distribution at the equatorial plane for these two l0
prescriptions (fixing the spin of the black hole and the
exponent of the angular momentum distribution to a ¼ 0.9
and α ¼ 0.75).
Finally, we discuss the third group of model parameters,

those corresponding to properties of the black hole and of
the disk. These parameters are fixed in the following way:

TABLE III. Same as in Table II but for a ¼ 0.

Model l0 α ΔWc Rin Rc Rout βm;maxð×10−2Þ βm;inð×10−2Þ ρmax Rmax Rm;max

C1 3.88 0 −2.14 × 10−2 4.28 9.30 30 1.58 1.58 1.13 8.09 8.33
5.18 0 −2.14 × 10−2 11.02 22.21 ∞ 1.42 1.42 1.16 18.41 19.18
3.76 0.75 −6.84 × 10−3 4.79 10.65 41 1.58 1.58 1.16 8.95 9.29
4.08 0.75 −6.84 × 10−3 11.15 26.74 ∞ 1.55 1.55 1.24 20.36 21.50

C2 3.88 0 −2.14 × 10−2 4.28 9.30 30 1.71 1.71 1.17 7.94 8.21
5.18 0 −2.14 × 10−2 11.02 22.21 ∞ 1.51 1.51 1.22 17.98 18.71
3.76 0.75 −6.84 × 10−3 4.79 10.65 41 1.70 1.70 1.21 8.77 9.14
4.08 0.75 −6.84 × 10−3 11.15 26.74 ∞ 1.70 1.70 1.33 19.84 20.91

0 3.88 0 −2.14 × 10−2 4.28 9.30 30 1.90 1.90 1.25 7.74 8.06
5.18 0 −2.14 × 10−2 11.02 22.21 ∞ 1.64 1.64 1.31 17.56 18.26
3.76 0.75 −6.84 × 10−3 4.79 10.65 41 1.90 1.90 1.31 8.53 8.91
4.08 0.75 −6.84 × 10−3 11.15 26.74 ∞ 1.85 1.85 1.48 19.18 20.36

C3 3.88 0 −2.14 × 10−2 4.28 9.30 30 2.24 2.24 1.40 7.47 7.82
5.18 0 −2.14 × 10−2 11.02 22.21 ∞ 1.85 1.85 1.49 16.91 17.70
3.76 0.75 −6.84 × 10−3 4.79 10.65 41 2.23 2.23 1.50 8.21 8.63
4.08 0.75 −6.84 × 10−3 11.15 26.74 ∞ 2.16 2.16 1.77 18.26 19.50

C4 3.88 0 −2.14 × 10−2 4.28 9.30 30 2.92 2.92 1.74 7.13 7.50
5.18 0 −2.14 × 10−2 11.02 22.21 ∞ 2.27 2.27 1.89 16.19 17.04
3.76 0.75 −6.84 × 10−3 4.79 10.65 41 2.91 2.91 1.94 7.77 8.24
4.08 0.75 −6.84 × 10−3 11.15 26.74 ∞ 2.79 2.79 2.47 17.30 18.41

M1 3.88 0 −2.14 × 10−2 4.28 9.30 30 1.09 0.79 1.13 8.06 8.18
5.18 0 −2.14 × 10−2 11.02 22.21 ∞ 1.03 0.75 1.18 18.26 18.34
3.76 0.75 −6.84 × 10−3 4.79 10.65 41 1.09 0.79 1.17 8.91 9.06
4.08 0.75 −6.84 × 10−3 11.15 26.74 ∞ 1.08 0.79 1.26 20.18 20.54

M2 3.88 0 −2.14 × 10−2 4.28 9.30 30 3.32 3.32 1.20 7.85 8.37
5.18 0 −2.14 × 10−2 11.02 22.21 ∞ 2.64 2.64 1.23 17.98 19.50
3.76 0.75 −6.84 × 10−3 4.79 10.65 41 3.30 3.30 1.25 8.70 9.33
4.08 0.75 −6.84 × 10−3 11.15 26.74 ∞ 3.17 3.17 1.38 19.67 21.90

M3 3.88 0 −2.14 × 10−2 4.28 9.30 30 1.23 1.02 1.28 7.66 7.85
5.18 0 −2.14 × 10−2 11.02 22.21 ∞ 1.11 0.93 1.38 17.17 17.43
3.76 0.75 −6.84 × 10−3 4.79 10.65 41 1.23 1.02 1.35 8.40 8.63
4.08 0.75 −6.84 × 10−3 11.15 26.74 ∞ 1.21 1.01 1.56 18.71 19.18

M4 3.88 0 −2.14 × 10−2 4.28 9.30 30 4.39 4.39 1.53 7.37 7.88
5.18 0 −2.14 × 10−2 11.02 22.21 ∞ 3.23 3.23 1.55 16.91 18.41
3.76 0.75 −6.84 × 10−3 4.79 10.65 41 4.36 4.36 1.65 8.09 8.74
4.08 0.75 −6.84 × 10−3 11.15 26.74 ∞ 4.14 4.14 1.96 18.12 20.18
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We select three different values for the spin parameter of the
black hole, namely a highly spinning counterrotating Kerr
black hole (a ¼ −0.9), a Schwarzschild black hole (a ¼ 0)
and a highly spinning corotating Kerr black hole (a ¼ 0.9).
The mass parameter of the black hole, M, is fixed at 1.
Furthermore, in most of this work we will focus on a
particular value of the magnetization parameter at the
center of the disk, namely βm;c ¼ 10−2, which corresponds
to a strongly magnetized disk.5 Lastly, we fix the polytropic
exponents Γ ¼ η ¼ 4=3 and the rest-mass density at the

center of the disk to ρc ¼ 1 (which fixes the polytropic
constant K).

III. RESULTS

Taking into account our six-dimensional parameter space
ða; α; l0; χ0; χ1; βm;cÞ, we build in this work a total of 108
different accretion disk models (36 for each value of the
black hole spin parameter considered). The most relevant
physical information for each model is presented in
Tables II–IV for spins a ¼ −0.9, a ¼ 0 and a ¼ 0.9,
respectively. Looking at these tables we can observe, in
the first place, some generic trends that also appear when
considering nonpolarized magnetized accretion disks,
namely: (i) The value of the constant part of the angular

TABLE IV. Same as in Table II but for a ¼ 0.9.

Model l0 α ΔWc Rin Rc Rout βm;maxð×10−2Þ βm;inð×10−2Þ ρmax Rmax Rm;max

C1 2.58 0 −6.44 × 10−2 1.81 3.30 10.83 1.77 1.77 1.18 2.86 2.95
3.27 0 −6.44 × 10−2 3.90 7.51 ∞ 1.47 1.47 1.20 6.18 6.43
2.53 0.75 −2.03 × 10−2 1.95 3.73 14.18 1.73 1.73 1.21 3.13 3.25
2.71 0.75 −2.03 × 10−3 3.99 9.13 ∞ 1.62 1.62 1.29 6.94 7.29

C2 2.58 0 −6.44 × 10−2 1.81 3.30 10.83 1.95 1.95 1.25 2.80 2.90
3.27 0 −6.44 × 10−2 3.90 7.51 ∞ 1.57 1.57 1.27 6.07 6.30
2.53 0.75 −2.03 × 10−2 1.95 3.73 14.18 1.90 1.90 1.29 3.07 3.19
2.71 0.75 −2.03 × 10−3 3.99 9.13 ∞ 1.75 1.75 1.39 6.73 7.11

0 2.58 0 −6.44 × 10−2 1.81 3.30 10.83 2.23 2.23 1.37 2.74 2.85
3.27 0 −6.44 × 10−2 3.90 7.51 ∞ 1.72 1.72 1.38 5.89 6.17
2.53 0.75 −2.03 × 10−2 1.95 3.73 14.18 2.16 2.16 1.43 2.98 3.12
2.71 0.75 −2.03 × 10−3 3.99 9.13 ∞ 1.96 1.96 1.57 6.50 6.90

C3 2.58 0 −6.44 × 10−2 1.81 3.30 10.83 2.72 2.72 1.59 2.66 2.77
3.27 0 −6.44 × 10−2 3.90 7.51 ∞ 1.97 1.97 1.60 5.70 5.97
2.53 0.75 −2.03 × 10−2 1.95 3.73 14.18 2.62 2.62 1.70 2.88 3.02
2.71 0.75 −2.03 × 10−3 3.99 9.13 ∞ 2.32 2.32 1.92 6.22 6.62

C4 2.58 0 −6.44 × 10−2 1.81 3.30 10.83 3.80 3.80 2.16 2.54 2.66
3.27 0 −6.44 × 10−2 3.90 7.51 ∞ 2.47 2.47 2.11 5.45 5.73
2.53 0.75 −2.03 × 10−2 1.95 3.73 14.18 3.61 3.61 2.37 2.75 2.89
2.71 0.75 −2.03 × 10−3 3.99 9.13 ∞ 3.07 3.07 2.80 5.88 6.25

M1 2.58 0 −6.44 × 10−2 1.81 3.30 10.83 1.18 0.85 1.19 2.85 2.91
3.27 0 −6.44 × 10−2 3.90 7.51 ∞ 1.04 0.76 1.22 6.13 6.17
2.53 0.75 −2.03 × 10−2 1.95 3.73 14.18 1.16 0.84 1.22 3.12 3.19
2.71 0.75 −2.03 × 10−3 3.99 9.13 ∞ 1.10 0.80 1.31 6.88 7.00

M2 2.58 0 −6.44 × 10−2 1.81 3.30 10.83 4.09 4.09 1.31 2.77 2.93
3.27 0 −6.44 × 10−2 3.90 7.51 ∞ 2.86 2.86 1.29 6.05 6.56
2.53 0.75 −2.03 × 10−2 1.95 3.73 14.18 3.94 3.94 1.36 3.03 3.23
2.71 0.75 −2.03 × 10−3 3.99 9.13 ∞ 3.45 3.45 1.46 6.69 7.41

M3 2.58 0 −6.44 × 10−2 1.81 3.30 10.83 1.40 1.16 1.40 2.72 2.80
3.27 0 −6.44 × 10−2 3.90 7.51 ∞ 1.14 0.95 1.46 5.79 5.88
2.53 0.75 −2.03 × 10−2 1.95 3.73 14.18 1.36 1.13 1.47 2.95 3.05
2.71 0.75 −2.03 × 10−3 3.99 9.13 ∞ 1.26 1.04 1.66 6.37 6.54

M4 2.58 0 −6.44 × 10−2 1.81 3.30 10.83 5.93 5.93 1.88 2.60 2.76
3.27 0 −6.44 × 10−2 3.90 7.51 ∞ 3.58 3.58 1.71 5.68 6.15
2.53 0.75 −2.03 × 10−2 1.95 3.73 14.18 5.61 5.61 2.01 2.83 3.03
2.71 0.75 −2.03 × 10−3 3.99 9.13 ∞ 4.65 4.65 2.20 6.17 6.79

5This degree of magnetization may be too high for it to be
realistic, but as we will see later, the most relevant conclusions of
this work are unaffected by the particular value of βm;c.

MAGNETIZED TORI WITH MAGNETIC POLARIZATION AROUND … PHYS. REV. D 110, 023023 (2024)

023023-9



momentum ansatz l0 is smaller when the exponent is
α ¼ 0.75 (in contrast to the case α ¼ 0). This happens
for both of the ways we use to prescribe the constant part of
the specific angular momentum law (i.e. l0;2 and l0;3) and it
is irrespective of the value of the spin parameter of the black
hole. (ii) The value of the depth of the potential wellΔWc is
always greater for the models with α ¼ 0 (while keeping
the other parameters constant) and its value increases
with the black hole spin parameter a. This is in agreement
with the fact that the quantity ΔWc achieves its maximum
value (for the Kerr spacetime) when a → 1, l ¼ lmb and

Win ¼ 0, that value being ΔWc ¼ 1
2
log 3 [31]. (iii) Disks

with nonzero values of the exponent α are, in general,
slimmer but more radially extended in the sense that their
characteristic radii Rin and Rc are greater than their
corresponding values for the constant angular momentum
models.
Moving on to the quantities affected by the magnetic

susceptibility of the disk χm, we observe that for the models
with a constant value of χm, the magnetization parameter at
the inner edge of the disk βm;in (which also corresponds
with its maximum value) is, in general, smaller for the
models with l0 ¼ l0;3 when compared to the corresponding
values for l0 ¼ l0;2 (the only exception being model C1 for
a ¼ −0.9 and α ¼ 0.75). It is also relevant to mention that
this difference between the two values is significantly
smaller for the models with α ¼ 0.75 and is globally
greater for greater values of the spin parameter a. A similar
trend is observed for the nonconstant susceptibility models,
with the particularity that, for models M1 and M3 (the
models which are in the blue-shaded region of the left panel
of Fig. 1) the value of the magnetization function at the
inner edge of the disk βin does not correspond to the
maximum of βm and it is achieved for a radial coordinate
larger than Rin. It can also be seen (especially for the case
a ¼ 0.9) that the models with l0 ¼ l0;2 increase the
magnetization at their inner region for increasing α, when
it is the opposite for the models with l0 ¼ l0;3.
If we now turn our attention to the behavior of the

maximum of the rest-mass density ρmax, we can see that it
is, in general, greater for models with l0;3 than for models

FIG. 2. Dependence of the magnetic susceptibility χm as a
function of χ.

FIG. 1. Left panel: existence diagram for our different magnetic susceptibility models evaluated at R ¼ Rin. In red, blue, brown and
green circles we show the constant models, namely C1, C2, C3, and C4. In the same colors, but in triangles, we show the nonconstant
susceptibility models, namely M1, M2, M3, and M4. The black circle marks the model with χm ¼ 0. The grey-shaded regions mark the
forbidden regions of the parameter space (see discussions in Sec. II C 1). The blue-shaded area represents the region of the parameter
space that allows the existence of a maximum of the magnetization function βmðRÞ for some value of the radial coordinate R (see
Appendix A) and the dashed lines represent the values of the parameters χ0 and χ�1 that yield the same value of the magnetic
susceptibility χm. Right panel: radial profiles of χmðRÞ for the nonconstant susceptibility models we have considered for a ¼ 0.9,
α ¼ 0.75 and l0 ¼ l0;2. The χm radial profiles are similar for all the values of ða; α; l0Þ we have considered.
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with l0;2 and it is also greater for models with α ¼ 0.75
when compared with the same models with constant
specific angular momentum. Moreover, ρmax has a positive
correlation with the difference ðRmax − RcÞ=Rc for varying
magnetic susceptibility ðχ0; χ1Þ (keeping constant the other
parameters) and for varying values of the angular momen-
tum parameters ðl0; αÞ (also keeping constant the other
parameters). Finally, looking at the locations of the maxi-
mum of the rest-mass density, Rmax, and of the magnetic
pressure, Rm;max, we can observe that the disks become less
radially extended for increasing value of χm. This happens
for both constant and nonconstant χm distributions because
at Rc, χm decreases from model M4 to model M1 (see right
panel of Fig. 1).
In Figs. 4 and 5 we show the two-dimensional distri-

butions of the rest-mass density ρ of the disk (top half of
each panel) and magnetization parameter βm (in logarith-
mic scale; bottom half) for a constant value of the exponent
of the angular momentum ansatz α ¼ 0.75 and a black hole
spin parameter of a ¼ 0.9. The morphology for different
values of α and a is qualitatively the same. The color code
is normalized to the maximum of each plot for the rest-mass
density. Correspondingly, for the magnetization parameter,
the deep green color corresponds to the greatest value of βm
of each row, the white color corresponds to βm ¼ βm;c and
the deep purple color corresponds to the minimum value of
βm achieved in each row. These figures show that the high-
density region of the disks moves towards the inner edge
of the disks when χm increases. This happens for all the
magnetic susceptibility and angular momentum models we
have considered. Moreover, looking at the distribution of
βm, we can notice that the isocontours are almost vertical
(as the vertical structure of the βmðR; θÞ function is
dominated by the function L) and we observe that the
models with greater χm are less magnetized at the inner
edge of the disk (higher values of βm). A nonmonotonic
behavior can also be observed for models M1 and M3 for
both values of the angular momentum of the disk (the color
of the inner region of the disk is whiter).

Figure 6 depicts the quotient βm=βm;c versus the radial
coordinate for our 54 models with α ¼ 0.75 (the results for
the constant angular momentum solutions are qualitatively
very similar). In the left part of the figure we show the
constant χm models (C1 to C4) and in the right part, the
nonconstant χm models (M1 to M4). It is apparent that,
as we noted before, models with higher values of the
susceptibility are less magnetized in the inner regions of the
disk. In addition, we can also observe in this figure that they
are more magnetized in the outer regions of the disk (which
also could be observed in Figs. 4 and 5 to a lesser extent).
Both for the constant and nonconstant susceptibility cases,
models with l0 ¼ l0;2 are less magnetized than models with
l0 ¼ l0;3 in the inner region of the disk. It also can be seen
that increasing the spin parameter of the black hole yields
potentially higher values of the magnetization at the inner
edge of the disk. Focusing on the models with nonconstant
χm, we see that models M1 and M3 show a local maximum
of the magnetization parameter at the inner part of the disk.
We also observe that the slope of the βm function is steeper
than in the constant χm cases. In the outer regions of the
disk, as expected, models M1 and M3 depart more from the
χm ¼ 0 case than models M2 and M4 (which almost overlap
with the χm ¼ 0 curve) because for these two models,
χm → 0 when R → ∞. It is very relevant to remark that
the qualitative behavior of the magnetization function βm for
the different magnetic susceptibility χm models is indepen-
dent of the value of the magnetization at the center βm;c (as it
can be seen in the radial profiles for βm;c ¼ 1 and βm;c ¼ 100

shown in shown in Appendix B, Figs. 9 and 10).
In Fig. 7 we plot the logarithm of the rest-mass density

versus the logarithm of the normalized radial coordinate
R=Rc. The models selected are the same as in Fig. 6 and
the profiles are shown at the equatorial plane. Focusing on
the constant magnetic susceptibility models (leftmost two
columns), we see that, as previously noted, the disks with
l0 ¼ l0;3 are more radially extended than their l0;2 counter-
parts. Moreover, the diamagnetic models (C1 and C2) are
less dense in the inner region of the disk, but are denser in

FIG. 3. Radial profiles of the potentialWðRÞ at the equatorial plane for the two models of the constant part of the angular momentum
distribution l0;2 and l0;3, in this case for a ¼ 0.9 and α ¼ 0. The blue-shaded region shows the region of the potential well that our disks
fill. It must be noted that the depth of the potential well ΔWcð≡Win −WcÞ is the same for both models.
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FIG. 5. Same as in Fig. 4 but for l0 ¼ l0;3. We also observe here the same trends that appear in Fig. 4.

FIG. 4. Normalized rest-mass density profiles (top part of each panel) and log10 βm profiles (bottom half) for our different constant (top
row) and nonconstant (bottom row) susceptibility models. The columns show, from left to right, models C1 (M1) to C4 (M4) in the top
(bottom) row. In this figure, we fix the black hole spin parameter to a ¼ 0.9, the exponent of the angular momentum distribution to
α ¼ 0.75, the constant part of the specific angular momentum distribution to l0 ¼ l0;2 and the magnetization parameter at the center of
the disk to βm;c ¼ 10−2. The color code is explained in the main text (see Sec. III). The black isocontours represent: (i) in the top part of
each panel the density isocontours corresponding to ρ=ρmax ¼ ð0.91; 0.5; 0.33; 0.25; 0.1Þ and (ii) in the bottom part the isocontours
corresponding to the values of log10 βm ¼ ð−0.45;−0.3;−0.15; 0; 0.15Þ. We can observe here, that, from left to right, the rest-mass
distribution is more concentrated in the inner region of the disk. It also can be seen that the distribution of the magnetization is almost
vertical.
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the outer regions. The exact opposite happens for the
paramagnetic models (C3 and C4), where matter is more
concentrated in the inner regions of the disk. It is also
apparent that the dependence of the rest-mass distributions
on χm is qualitatively the same for all values of a and α.
Turning now to the nonconstant susceptibility models
(rightmost two columns), we see that models M1 and
M4 behave in a very similar way compared with their
constant χm (diamagnetic and paramagnetic, respectively)
counterparts. This happens because, for these two models,
χm → �0.4 (i.e. a nonzero value of χm) for increasing R,
while models M2 and M3 (which have a significant value
of χm only in the regions close to the inner edge of the disk)
have a radial rest-mass density distribution very close to the
one of a χm ¼ 0 model, even in the inner region where
the magnetic susceptibility is most relevant for these two
models. We also note that the presence of a relative
maximum in the magnetization parameter βm (cf. Fig. 6)
does not seem to affect the radial distribution of rest-mass
density in a significant way. It is also worth highlighting
the similarity between the rest-mass density distributions
presented here and the same kind of plots but for χm ¼ 0
and different values of the magnetization parameter at

the center of the disk βm;c (see, for instance Gimeno-
Soler et al. [50,51]), with the paramagnetic models being
similar to more strongly magnetized models, and the
diamagnetic models being similar to more weakly mag-
netized models.
In Fig. 8 we show how variations of the magnetic

susceptibility affect the value of the relative thickness of
the disk H=R, which is defined as [40]

�
H
R

�
ðrÞ ≔

R
π
0 ρjπ=2 − θjdθR

π
0 ρdθ

: ð29Þ

Note that in this equation the radial coordinate is repre-
sented by r. The rows of Fig. 8 correspond to the two
different values for the exponent of the specific angular
momentum ansatz (namely 0 and 0.75) while the columns
indicate different values of the spin parameter a (−0.9, 0,
and 0.9, from left to right). In each plot, the dotted, dashed
and solid (horizontal) grey lines join models with the same
value of the magnetization parameter at the center of the
disk βm;c (respectively, 102, 1 and 10−2) and the solid and
dashed (vertical) lines join models with the same kind of χm
distribution. Moreover, the data points located in the top

FIG. 6. Normalized radial profiles of the magnetization function at the equatorial plane, βmðRÞ, for magnetization parameter at the
center βm;c ¼ 10−2. In the first and second columns we show the constant susceptibility models, while in the third and fourth columns we
show the nonconstant susceptibility models. Moreover, the first and third columns correspond to models with the constant part of the
specific angular momentum distribution l0 equal to l0;2, and the second and fourth columns to models with l0 ¼ l0;3. From top to bottom
the rows depict models with values of the spin parameter of the black hole of −0.9, 0 and 0.9. The radial coordinate is normalized with
respect to the radius of the center of the disk Rc for each model and the exponent of the specific angular momentum law is fixed to
α ¼ 0.75. The vertical dotted line in each plot indicates the inner edge of the torus.
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FIG. 8. Values of the relative thickness H=R evaluated at the point of maximum rest-mass density ρmax as a function of the magnetic
susceptibility χm evaluated at the same point. In the rows, we show models with a different value of the exponent of the angular
momentum ansatz, namely α ¼ 0 (top row) and α ¼ 0.75 (bottom row). In the columns, we show models with different values of the
spin parameter of the black hole (namely, from left to right, a ¼ −0.9, 0 and 0.9). In each panel we show, at the top part, models with
l0 ¼ l0;3 and at the bottom part, the models for l0 ¼ l0;2. Departing from the rest of the paper, here we computed models for three
different values of the magnetization parameter at the center of the disk, namely βm;c ¼ 102, 1 and 10−2. The points representing models
with the same value of βm;c are denoted by circular, square and triangular markers respectively and are joined by dotted dashed and solid
grey lines. In addition, the models built following the constant magnetic susceptibility prescriptions C1, C2, 0, C3 and C4 are denoted by
red, blue, black, brown and green markers respectively (and joined by solid lines of the same colors) and the nonconstant magnetic
susceptibility models (M1 to M4) are denoted by red, blue, brown and green markers respectively and joined by dashed lines of the
same colors.

FIG. 7. Radial profiles of the rest-mass density ρ in double logarithmic scale at the equatorial plane. The layout of this figure is the
same as in Fig. 6.
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part of each plot represent the models with l0 ¼ l0;3 while
those at the bottom part correspond to the models with
l0 ¼ l0;2. The relative thickness of the disk shown in Fig. 8
is evaluated at the location of the maximum rest-mass
density of each model. As expected, the relative thickness
at such maximum density is almost constant for weakly
and mildly magnetized disks i.e. if the magnetic field is not
strong enough, and the contribution of the magnetic
polarization does not affect the disk. Dependence on the
magnetic susceptibility can only be seen for strongly
magnetized disks (βm;c ¼ 10−2). Moreover, as we already
noticed in Figs. 4 and 5, the models with l0 ¼ l0;3 are
consistently thicker than those with l0 ¼ l0;2. It can also be
seen that increasing the magnetization of the disk yields
thinner disks. Finally, the relative thickness of the disk
slightly decreases for increasing values of the spin param-
eter and, as expected, it depends strongly on the value of the
exponent α: models with a constant value of the specific
angular momentum are significantly thicker than those
with α ¼ 0.75.
In summary, in the case of constant angular momentum

disks our models have values of the relative thickness H=R
in the range (0.1, 0.22) while, in the case of nonconstant
angular momentum disks, the values are in the range (0.06,
0.15). We note that these upper values could be increased if
we considered greater values of l0. Conversely, the lower
limit of the range could be further reduced considering
values of the exponent α closer to 1.

IV. CONCLUSIONS AND OUTLOOK

In this work we have computed equilibrium solutions of
magnetized, geometrically thick accretion disks with mag-
netic polarization endowed with a nonconstant specific
angular momentum distribution around Kerr black holes.
Our study is a generalization of the previous work on
magnetized accretion disks with magnetic polarization
carried out by Pimentel et al. [38] in which only a constant
angular momentum distribution (a “Polish doughnut”)
was inspected. The new disk solutions reported in this
paper have been obtained by combining the two app-
roaches reported by Pimentel et al. [38] and Gimeno-Soler
et al. [51]. On the one hand, we have followed the work of
Pimentel et al. [38] to consider a magnetically polarized
fluid in the linear media approximation in which the
magnetic susceptibility takes a specific functional form
in order to fulfil the integrability conditions for Euler’s
equation. On the other hand, the specific angular momen-
tum distribution of the fluid has been prescribed following
the ansatz introduced by Gimeno-Soler et al. [51] in which
the angular momentum at the equatorial plane is computed
as a two-parameter function of the Keplerian angular
momentum function which is, in turn, a function of the
radial coordinate. From this solution the angular momen-
tum distribution outside the equatorial plane is obtained by

computing the so-called von Zeipel cylinders (following
the approach employed in Daigne and Font [47]).
We have studied the morphology and physical properties

of a large number of equilibrium solutions which were
obtained by selecting suitable parameter values within the
substantial parameter space spanned by the models. Those
include the spin of the black hole, the two parameters of
the specific angular momentum distribution, the two
parameters of the magnetic susceptibility of the fluid,
and the magnetization parameter at the center of the disk.
The latter was fixed to βm;c ¼ 10−2 for most of our models
since the effects on the disk morphology induced by
changes in the magnetic susceptibility of the disk are very
small if the magnetization of the disk is weak. Our results
show that the qualitative changes introduced in the mor-
phology of the disks and in its physical quantities do not
depend strongly on the angular momentum distribution.
Despite our new set of models having an increased degree
of realism as compared with those of [38] the differences
found are not large. We have also observed that the
morphological changes do not seem to depend much on
the black hole spin.
Focusing on the effects of the magnetic susceptibility, we

have seen that for constant χm, disks tend to be thicker and
more radially extended for the case of diamagnetic models
(i.e. χm < 0). Moreover, the magnetization in such models
is stronger in the inner part of the disk (R < Rc) and weaker
in the outer region (R > Rc). The exact opposite happens
when the disk is paramagnetic (i.e. χm > 0). On the other
hand, models with a nonconstant distribution of magnetic
susceptibility attain a qualitatively similar morphological
appearance. However, for these models the distribution of
the magnetization behaves in a different way: those with a
positive value of the slope (and independently on the sign)
of the χmðRÞ distribution are less magnetized in the inner
region and more magnetized in the outer part. The opposite
happens for models with a negative slope of χmðRÞ. In
addition, for such models the magnetization function
exhibits a local maximum, which cannot happen in stan-
dard Komissarov’s disks [34,38]. The conditions for a
maximum of βm;c to appear are derived in Appendix A and
only depend on the particular values of the susceptibility
parameters χ0 and χ�1. In particular, it must be highlighted
that the qualitative behavior of the βmðR; θÞ function does
not depend on the particular value of βm;c, which means
that the effects due to the magnetic susceptibility in the
magnetization distribution of the disk are a feature present
for all values of the magnetization, even in the cases when
this does not impact the disk morphology. In summary,
we have shown that the effects due to the magnetic
polarization of the disk observed in [38] are a robust
feature of equilibrium configurations of magnetized thick
accretion disks around Kerr black holes (BHs) regardless
of the spin parameter of the BH and the specific angular
momentum distribution.
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We close this paper by pointing out two immediate
applications we plan to carry out as a result of the results
reported here. On the one hand, the new behavior of the
magnetization function in disks with dχm=dR < 0 is
consistent with the stationary state of accretion found in
numerical simulations [40] (i.e. the radial profile of βm at
the equatorial plane) and could be potentially relevant in the
context of jet generation. The main reason for this is
because magnetic susceptibility enhances the development
of the MRI, resulting in an accretion state with higher
vertical stresses and a value of the alpha viscosity parameter
close to the observed values [60]. Observations suggest that
αvisc should have a value around 0.1 [60] but magneto-
hydronamical (MHD) disk simulations yield typical values
close to 0.02 [61]. Recently, a first effort to understand this
problem has shown that paramagnetic disks reach values
of this parameter close to 0.12 [62]. Therefore, it is
interesting to perform numerical simulations of the initial
data reported here (considering weaker magnetic fields) for
models with dχm=dR < 0 to explore the possibility of
obtaining jets from accretion disks with nonconstant
magnetic susceptibility.
On the other hand, analytical solutions of a torus in

hydrostatic equilibrium are commonly used to produce
jets by introducing an ad hoc, weak poloidal magnetic
field [33,63,64]. One of the issues with this approach is
that the initial state is not self-consistent (see discussion
in [36]). A possible solution to this question is to start from
magnetized disks with toroidal fields (i.e. the Komissarov
solution). There are already some indications of the appea-
rance of outflows in such conditions but those are chal-
lenging to obtain due to numerical resolution limitations
and computational requirements [37]. It is worth inves-
tigating whether nonconstant magnetic susceptibility disks
as the ones reported in this work, characterized by a more
magnetized inner edge, could facilitate jet launching and
reduce the computational requirements to produce it. Our
findings on those two topics of research will be reported
elsewhere.
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APPENDIX A: CONDITIONS FOR THE
APPEARANCE OF A LOCAL MAXIMUM OF βm

As we observed, some of our models possess a maxi-
mum on the magnetization parameter function at the
equatorial plane, βmðR; π=2Þ. In this appendix, we analyze
the conditions required for that maximum to appear. For
this derivation, we use the equation of state for the fluid
p ¼ KwΓ instead of p ¼ KρΓ used in the main body of this
paper. This choice greatly simplifies the proof and it is
supported by the fact that it is a good approximation to
p ¼ KρΓ for magnetized disks in the Kerr spacetime (see
Gimeno-Soler et al. [50]). We start from

∂βmðRÞ
∂R

¼ ∂

∂R

�
p
pm

�
¼ ∂R

�
KwΓ

KmLλ̃wηf̃

�
¼ 0: ðA1Þ

Taking into account that we consider Γ ¼ η and that w ≠ 0
in the disk, we can simplify the previous expression to

∂R

�
1

Lλ̃f̃

�
¼ 0: ðA2Þ

If we expand this expression, use Eq. (9) and take into
account that, inside the disk,L ≠ 0, ∂RL ≠ 0 and f̃ ≠ 0, we
arrive at

ð−1þ ηÞð1 − χ0Þ þ Lσχ1ð1þ 2σ − ηÞ ¼ 0: ðA3Þ

Then, if we consider that σ ¼ −1 and solve for L we obtain

L ¼ −ð1þ ηÞχ1
ð−1þ ηÞð−1þ χ0Þ

; ðA4Þ

and inserting Lin in both sides and using the definition of
χ�1, Eq. (27), yields

L
Lin

¼ −ð1þ ηÞχ�1
ð−1þ ηÞð−1þ χ0Þ

: ðA5Þ

Since we are looking for extrema of the functions inside the
disk (i.e. R > Rin, L=Lin ≥ 1), we choose Γ ¼ η ¼ 4=3 to
arrive at the following inequality:

χ�1 ≥
1 − χ0

7
: ðA6Þ
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This equation defines the region of the parameter space
that allows for the existence of a local extremum of the
magnetization function βm within the disk. To show that
the previous expression yields indeed a maximum of the
function, we can write the radial derivative of βm as

∂Rβm ∝ ð−1þ χ0Þ þ 7χ�1
Lin

L
; ðA7Þ

where we have substituted the values of η and σ and we are
omitting all positive multiplicative factors. It is relevant to
mention that we are using here the fact that χ > 1=2 and
χ0 > 1=2 (see discussion in the main text). Considering
these restrictions on the value of χ, that Lin=LðRÞ ≤ 1 (and
strictly decreasing), and that the first term of Eq. (A7) is
always negative, it is apparent that, if χ�1 < ð1 − χ0Þ=7, then
∂Rβm < 0 for R ≥ Rin, as in the standard Komissarov

solution [34]. In contrast, if χ�1 > ð1 − χ0Þ=7, then the
derivative will be positive until the radial coordinate
reaches a value such that Lin=L ¼ ð−1þ χ0Þ=ð7χ�1Þ
and then it will become negative again. Therefore, the
extremum we found is a maximum.

APPENDIX B: RADIAL PROFILES
OF THE MAGNETIZATION FUNCTION

FOR βm;c = 100 AND βm;c = 1

We include here the radial profiles of the magnetization
function βmðRÞ at the equatorial plane for βm; c ¼ 100

and βm;c ¼ 1 (Figs. 9 and 10) to complement the results
shown in Fig. 6. It can be seen here that, apart from some
slight changes in the values of βm=βm;c for the different
values of βm;c, the qualitative behavior of βmðRÞ is the same.

FIG. 9. Normalized radial profiles of the magnetization function at the equatorial plane, βmðRÞ, for magnetization parameter at the
center βm;c ¼ 1. The layout of this is the same as Fig. 6.
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