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Bosonic fields (within suitable mass range) may be collectively generated by rotating black holes
through the black hole superradiance process. The resulting black hole is surrounded by a “cloud” of
particles whose wave function populates the superradiant energy level of the black hole. For comparable
mass ratio binary black hole systems, it has been suggested that these clouds often deplete at large binary
separations because of level mixing effects. As a result, these clouds may not be dynamically relevant for
black hole and neutron star binaries that enter the LIGO-Virgo-KAGRA and LISA detection frequency
band. In this work, we point out that the common envelope process during a compact binary evolution may
bring the binary to ∼0.01 AU in hundreds to thousands of years, so that depletion caused by certain level
mixings are no longer important. We derive a relevant regime of binary parameters where the clouds are still
present for binary entering the LISA band, and show that common envelope process does enlarge such
parameter regime. When the binary separation further decreases due to gravitational wave radiation, we
discuss the impact of possible cloud mass transfer between the binary objects.
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I. INTRODUCTION

Ultralight bosons such as axionlike particles (ALPs)
are possible candidates for dark matter [1–6]. Their mass
and coupling strength to the Standard Model particles are
constrained by various cosmological, astrophysical, and
terrestrial observations and experiments [7–9]. In particu-
lar, because of the well-known black hole superradiance
mechanism, rotating astrophysical black holes ranging
from ∼10M⊙–10

9M⊙ could superradiantly excite such
bosons to form a macroscopic superradiant cloud if the
de Broglie wavelength of the bosons is comparable to the
size of the black hole. In this case, electromagnetic and
gravitational wave observations of properties, environ-
ments, and distributions of astrophysical black holes can
be used to probe/constrain ultralight bosons. For example,
recent gravitational wave observations with ground-based
detectors have made use of isolated black holes and binary
merger remnants are starting to constrain ALPs in the mass
range close to ∼10−12 eV [10–20].

On the other hand, it is interesting to consider black holes
or neutron stars in the inspiral stage, as the presence of
superradiant clouds around binary components may change
the binary orbital dynamics, in the frequency band relevant
for space-borne and/or ground-based gravitational wave
detectors. There are indeed both analytical and numerical
investigations of binary dynamics in related regimes
(e.g., [21–27]), assuming superradiant clouds are present.
However, it was suggested in Refs. [28,29] that, if a black
hole binary inspirals from large separation because of
gravitational wave radiation, the binary generically crosses
so-called resonant transitions so that the cloud switches
from a superradiant state to a decay state and dissipates in a
much shorter time. Although some resonant depletions are
shown to be negligible due to nonlinear effects [30,31], the
resulting amount of the cloud in the relevant detection band
for space-borne and ground-based detectors is often too
small to be detectable, at least for comparable mass ratio
binaries. Therefore, the clouds may be absent for premerger
stellar-mass binary black holes relevant for gravitational
wave observation.
In this work, we point out that, by considering the

astrophysical evolution history of stellar-mass binary black
holes, there is a significant chance that superradiant clouds
are still retained at least in the LISA band. This is because
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the relevant binaries often involve the common envelope
(CE) phase, during which the binary separations greatly
decrease to allow relatively short binary inspirals by
gravitational wave radiation. Depending on the mass of
the boson particles, it is possible that the binary rapidly
crosses a resonance during the CE evolution, suppressing
the corresponding depletion, and/or resides at a separation
that is smaller than some of the depletion bands. In the latter
case, the cloud of the less massive black hole may grow
and enter the LISA band without experiencing depletion
induced by level mixing. We shall consider two events
(GW150914 and GW151226) to illustrate these scenarios,
finding a range of particle mass where the superradiant
clouds are retained at smaller separations relevant for
gravitational wave observations. It is reasonable to expect
binary black holes with different component masses may be
used to probe/constrain ultralight bosons with different
masses. This also motivates further studies on the dynamics
of binary black holes with the presence of superradiant
clouds.
One interesting feature we find, as the binary black holes

inspiral towards each other, is that the superradiant clouds
may undergo resonant state transfer between two black
holes, so that the cloud organically populated near one
black hole may efficiently transfer to the other binary
companion at certain orbital frequencies. This type of cloud
transfer is different from Roche-Lobe mass transfer com-
monly studied in binary stars, as the cloud transfer requires
the orbital frequency to match level frequency difference
between the two binary components. We work out the
condition for such resonant cloud transfer and observe that
in a certain parameter regime it also leads to noticeable
backreaction on the orbit. Notice that even if one of the
binary components is a neutron star that cannot super-
radaintly generate the cloud efficiently by itself, the
resonant cloud transfer may be able to reshuffle some of
the cloud to the neutron star, offering a viable mechanism
of neutron stars carrying clouds in a binary. This is
interesting if the particles constituting the clouds weakly
couple to the Standard Model particles, in which case
additional electromagnetic signatures may be expected. We
shall leave discussion in this direction to future studies.
We work with the ð−;þ;þ;þÞ signature and take

ℏ ¼ c ¼ 1. For the notations, μ and ω denote the mass
and the frequency of the scalar field, respectively. M and a
denote the mass and the dimensionless spin of the super-
radiance black hole, while M�, θ�, and ϕ� are the mass,
elevation angle, and azimuth angle of the companion
star/black hole. When discussing binary evolution, we also
use M1 and M2 to denote the mass of the primary and
secondary black hole/star in the binary. R and Ω are the
orbital separation and the orbital frequency of the binary
system. f is the frequency of GWs emitted by the binary.
We further define the gravitational radius rg ¼ GM,
the total mass Mtot ¼ M1 þM2, and the dimensionless

reduced mass η ¼ M1M2=M2
tot for the binary, as well as the

fine structure constants α1 ¼ GμM1 and α2 ¼ GμM2 for
each black hole. We use jnlmi to denote the bound state of
superradiant cloud associated with a certain black hole.

II. SUPERRADIANT CLOUDS IN PROGENITOR
EVOLUTION OF BLACK HOLE BINARIES

Black hole binaries could form through several evolu-
tionary channels. For demonstration, we shall first consider
the progenitor evolution of a GW151226-like binary [32],
and discuss the possible evolution of superradiant clouds
in such a binary. The evolutionary pathway of GW151226
has been investigated in Ref. [33], according to which the
binary is formed through the classical isolated binary
evolution channel. See Fig. 1 for a cartoon demonstration
of the formation history. Specifically, the binary initially
has two high-mass main-sequence O stars, a primary of
∼64M⊙ and a secondary of ∼28M⊙ with an initial orbital
separation of ∼730R⊙. At the end of its main sequence
evolution, the primary expands, filling its Roche lobe and
initiating mass transfer. Because of the mass transfer and
stellar winds, the primary loses ∼40M⊙ and eventually
forms a black hole of ∼19M⊙. The secondary, on the other
hand, grows to a star of ∼30M⊙, and is ∼690R⊙ away from
the primary at the formation of the primary black hole. As
evolution continues, the secondary also expands and forms
a CE enclosing the binary. The CE evolution would
significantly harden the orbital, reducing the orbital sep-
aration from ∼706R⊙ down to ∼5R⊙ in a very short time.
In the end, the secondary also forms a black hole of ∼6M⊙
after ∼3.39 Myrs evolution from the formation of the
primary black hole. Then the formed binary, consisting
of a ∼19M⊙ black hole and a ∼5.7M⊙ black hole at a
separation of ∼8.82R⊙, would merge and be detected by
LVK in ∼300 Myrs.
Now we discuss the possible evolution of superradiant

clouds in the above binary evolution. There are several
timescales that are relevant for the discussion. One is the
timescale of the superradiance growth, which can be
estimated by the inverse of the growth rate Γnlm. For free
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Time[Myr] M1[Msun] ST1
0.0 63.6 MS

4.1 60.4 HG

4.12 24.6 HeMS

4.49 19.1 BH

7.21 19.1 BH

7.42 19.1 BH

7.42 19.1 BH
7.88 19.1 BH

ST2 M2[Msun] a[Rsun]
MS 27.8 729.93

MS 27.7 757.5

MS 30.6 622.07

MS 30.6 692.7

CHeB 30.3 697.48

CHeB 29.7 706.33

HeMS 10.6 5.18
BH 5.7 8.82

FIG. 1. Classical isolated binary evolution of a GW151226-like
binary.
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scalar fields around an isolated rotating black hole, the
growth rate of the jnlmimode can be estimated by [34–36]

Γnlm ¼ 2rþ
GM

CnlmðαÞðmΩH − ωÞα4lþ5 ð1Þ

with

CnlmðαÞ≡ 24lþ1ðnþ lÞ!
n2lþ4ðn − l − 1Þ!

�
l!

ð2lÞ!ð2lþ 1Þ!
�
2

×
Yl
j¼1

�
j2
�
1 − a2

�þ �
am − 2r̃þα

�
2
�
;

for α ≪ 1.1 For rotating black holes in binaries, the growth
rate can be suppressed due to tidal interactions [39].
In Fig. 2, we show the critical separation Rcr where
superradiance of the j211i mode ceases in the presence
of a given companion. In particular, we improve the
formula in Ref. [39], and extend the results to a regime
where separation is smaller than the cloud radius (see
Appendix A for details). From Fig. 2, we find that for
comparable mass ratio binaries (q ¼ M�=M ∼ 1), super-
radiance is suppressed at ∼10rg=α2 for α ∼ 0.1 and at
∼100rg=α2 for α ∼ 0.01.
Once formed, a superradiant cloud will gradually lose

energy by radiating GWs and eventually deplete. Such GW
radiation defines the lifetime of an isolated cloud τGW. For
j211i mode, the lifetime can be estimated by [10,40–43]

τGW ≃ 107 years

�
M

3M⊙

	�
0.07
α

	
15

ð2Þ

for α≲ 0.1. In most of the paper, we consider the case
with α≲ 0.1 so that the above equation and the non-
relativistic approximation are valid. Besides GW radiation,
clouds in a binary system could also deplete due to level
mixing [28,29], resonantly and/or nonresonantly. For
corotating orbits, i.e., the spins of the host black hole
and the orbit align, there is hyperfine resonance, which
takes place at [28]

RH ¼ 1441=3α−4ð1þ qÞ1=3a−2=3rg; ð3Þ

assuming circular orbits. For comparable mass ratio bina-
ries, while the hyperfine resonance may not take place due
to nonlinearity [30], a cloud can still deplete nonresonantly
as the orbit approaching to RH [29]. In addition to the level
mixing discussed in Refs. [28,29], the tidal potential also
couples the superradiant mode to decay modes with the
l ¼ 0 and l ¼ 1 multipoles when the companion is within
the exponential tail of the cloud profile (see Appendix A for
details). These multipoles can lead to fine and Bohr reso-
nances that take place at RF ∼ α−10=3rg and RB ∼ α−2rg,
respectively, resulting in efficient depletion of the cloud.
Bohr resonance takes place at a separation comparable to
the cloud radius, in which case the companion is deeply
immersed in the superradiant cloud and the perturbation
analysis may not be justified at least for comparable mass
ratio binaries. Nevertheless, Bohr level mixing and the
corresponding nonresonant depletion start when the
companion dip in the exponential tail of the cloud, i.e.,
at a separation much larger than the cloud radius.
Having these scales in mind, we now discuss the possible

evolution of the cloud in the progenitor evolution of a
GW151226-like binary. We mainly consider the orbital
evolutionary pathway of the GW151226-like binaries
(similar component masses), and assume the black holes
formed with relatively high spins to allow cloud excitation.
We first focus on superradiance near the primary black
hole, which is ∼19M⊙ at formation and has a ∼30M⊙
companion with an initial separation Ri ∼ 690R⊙. A suffi-
cient growth of the cloud around the primary black hole
requires at least τorb > 1=Γ, where τorb is the lifetime of
orbital after the primary black hole formed. Assuming the
orbit decays by GW radiation, the orbital lifetime can be
estimated by

τGWorb ¼ 5

256

R4
i

qð1þ qÞG3M3
1

; ð4Þ

where Ri is the initial separation. In a realistic case, the
orbital lifetime can be altered by mechanisms such as CE
evolution. Take the GW151226-like binary, for example,
the CE evolution can reduce the separation from 706R⊙ to
5R⊙ in less than 0.01 Myrs, which could take 1010 Myrs
by purely GW radiation. In addition, we find that the
superradiance is not suppressed by the tidal interactions for

FIG. 2. Orbital separation where superradiance is suppressed
by tidal interactions. Here the mass ratio is defined as q≡M�=M.

1Superradiance could be suppressed by self-interactions and
coupling to the other particles [37,38], which we shall not
consider in this paper.
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α > 0.008 given the relative large separation at the black
hole formation, cf. Fig. 2. In Fig. 3, we show the parameter
space for superradiance growth in a binary. In the upper
panel of Fig. 3, we consider a primary black hole of

19.1M⊙ formed in a binary with a separation of 692.7R⊙.
Assuming a general corotating orbit that decays purely by
GW radiation, the j211i mode could sufficiently grow on
the right-hand side of the blue line, and shall not deplete up
to merger due to its own GW radiation on the left-hand side
of the orange line. While in the presence of CE evolution,
the corresponding range in α1, for example denoted by the
red line for the GW151226-like binary, can be altered.
We shall focus on corotating systems in this work, as it is
natural to expect that field binaries are more likely to be
corotating.
After efficient growth, the cloud in a corotating system

can avoid hyperfine depletion if the initial separation is
deeply within the hyperfine resonance orbit, i.e., Ri ≪ RH.
While for Ri > RH, the cloud may still survive from the
hyperfine depletion, if the orbit sweeps through the hyper-
fine depletion band during the later CE evolution. Because
in this case, the orbit decays in a very short time, and the
nonresonant hyperfine level mixing may not cause efficient
depletion. As orbital separation continues decreasing, the
cloud can be further depleted due to the fine level mixing
induced by the l ¼ 1 multipole, and then the Bohr level
mixing and ionization [22,44]. A cloud can also deplete due
to Bohr resonance if the system is counterrotating [28,29].
To be concrete, we shall investigate cloud depletion in

the GW151226-like binary. In our calculation, we shall
consider contributions from j21–1i, j200i, and j100i
modes, as contributions from the other modes are sup-
pressed given the selection rules.2 We start from ti, i.e., the
time of the primary black hole formation, and divide the
orbital evolution into three stages: The pre-CE stage lasts
for 2.93 Myrs, in which the mass ratio is q ¼ 1.60 and the
orbit decays by purely GW radiation, i.e.,

Ω̇ ¼ 96

5

η

G2M2
tot
ðGMtotΩÞ11=3: ð5Þ

The CE stage lasts for 1000 years, in which the mass ratio is
q ¼ 1.55 and we assume Ω̇ ¼ Ω=1000 yrs. In the post-CE
stage, the mass ratio becomes q ¼ 0.55, and the orbit
decays following Eq. (5). We find that when outside the CE
stage, most of the clouds deplete nonresonantly, in which
case the mass of the superradiant cloud is approximately
proportional to e−2AðtÞ with

AðtÞ≡X
n;l

X
m≤0

jΓnlmj
Z

t

ti

dt0jcnlmðt0Þj2: ð6Þ

Here jcnlmðt0Þj2 is the amplitude of a certain decaying
mode jnlmi, the evolution of which can be found in

FIG. 3. Superradiance parameter space of the j211i mode in a
binary. We consider superradiance around a primary black hole of
19.1M⊙ which is initially 692.7R⊙ away from its companion in
the upper panel, and that around a secondary black hole of 5.7M⊙
which is initially 8.82R⊙ away from its companion in the lower
panel. Here q ¼ M�=M is defined as the mass ratio between the
companion and the superradiance black hole. Namely, q ¼
M2=M1 in the upper panel and q ¼ M1=M2 in the lower panel
with M1 and M2 being the mass of the primary and secondary
black hole/star, respectively. The dashed blue, solid blue, orange,
and green lines saturate the conditions τGWorb ≥ 1=Γ211, Ri ≥ Rcr,
τGWorb ≤ τGW, and Ri ≤ RH, respectively. Assuming a circular orbit
decaying purely by GW radiation, the blue regions show the
parameter space in which the cloud can efficiently grow and
survive up to merger before it depletes purely by its own GW
radiation. In particle, the orbit could decay faster due to CE
evolution, altering the correspond range in α1. For example, the
red segment denotes such range, considering the progenitor
evolution of the GW151226-like binary.

2In principle, the cloud can also deplete due to the ionization
process discussed in Ref. [28]. We expect that ionization only
becomes efficient at small orbital separations, say R≲ 10rg=α2,
and does not affect the scenario considered here.
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Appendix A as well as in Refs. [28,29]. In Fig. 4, we show
the cloud depletion for different α. For α ¼ 0.08, we find
the orbit sweeps the j21–1i resonance frequency during its
CE stage, and the cloud slightly depletes due to the mixing
to the j21–1i mode. After the CE stage, the cloud depletes
completely before the orbit enters the milli-Hz band due to
the mixing to the j200i mode. For α ¼ 0.04, the cloud
barely depletes as the orbit sweeps the j21–1i frequency
band in its CE stage. It only depletes slightly in the post-CE
stage due to the mixing to the j200i mode, and has about
80% of its mass left when the orbit enters the milli-Hz band.
For α ¼ 0.02, the cloud survives from the j200i depletion
due to CE evolution, but depletes completely due to the
mixing to the j100i mode. For comparison, we also show
cloud depletion without CE process (with dashed lines) in
Fig. 4. We can find that the CE process does save clouds
from depletion in certain parameter regimes as the orbit
passes the depletion band in a very short time during the
CE stage.
A superradiant cloud can also grow around the secon-

dary black hole that forms in the later binary evolution. The
same discussion applies, except that there is no CE
evolution in the following orbital evolution. The lower
panel in Fig. 3 shows the parameter space for the cloud
hosted by the secondary black hole. One may be careful
about whether superradiance is terminated by the tidal
interactions given the small initial separation. As another
example, we also consider the progenitor evolution of a
GW150914-like binary. In this case, the primary black hole

forms at 35M⊙ and with a companion of 80M⊙ at
3620.4R⊙. 0.35 Myrs after the primary black hole for-
mation, the binary undergoes a CE evolution, reducing the
orbital separation to 25.8R⊙. After another 0.4 Myrs
evolution, the secondary black hole of 30M⊙ forms and
the orbital separation is 25.8R⊙. The parameter space of
superradiance in such a binary is shown in Fig. 5.

III. IMPLICATIONS FOR BINARY BLACK HOLES
IN MILLI-HERTZ GW OBSERVATIONS

Stellar mass black hole binaries are one of the target sour-
ces for space-borne GW detectors, such as LISA, Tianqin,
and Taiji, which are sensitive to GWs of milli-Hertz.

FIG. 4. Depletion of the cloud around the primary black hole in
the GW151226-like binary. The solid gray lines denote the
beginning and the ending of the CE evolution, while the dashed
green, purple, and yellow lines show the resonance frequencies of
the j21–1i, j200i, and j100imodes, respectively. For comparison,
we also show cloud depletion in a similar binary in the absence of
CE evolution in blue dashed lines.

FIG. 5. Superradiance parameter space of the j211i mode in a
binary. We consider superradiance around a primary black hole of
35M⊙ which is initially 3620.4R⊙ away from its companion in
the upper panel, and that around a secondary black hole of 30M⊙
which s initially 25.8R⊙ away from its companion in the lower
panel. The labels are the same as those in Fig. 3. The red segment
denotes range in which the cloud can efficiently grow and survive
up to merger before it depletes purely by its own GW radiation,
assuming the progenitor evolution of the GW150914-like binary.
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The dynamic signatures of black hole binaries with super-
radiant clouds have been extensively discussed [24,25,
27–29,45–47]. Therefore, it is interesting to know whether
superradiant clouds, if formed in black hole binaries, could
survive to the milli-Hertz band.
In Fig. 6, we investigate cloud depletion due to level

mixing caused by tidal interaction before the binary enters
the milli-Hertz band. We consider the progenitor evolution

of the GW151226-like binary, and perform the integral (6)
from the formation of the host black hole to the time when
the binary enters the milli-Hertz band, i.e.,Ω=π ¼ 10−3 Hz.
For a cloud around the primary black hole, we find that the
cloud can survive to the milli-Hz band when α1 ∼ 0.04. The
cloud will deplete due to nonresonant level mixing with
the j21–1i if α1 > 0.07, and will deplete due to the mixing
with j200i mode if α1 < 0.025. For a cloud around the
secondary black hole in the GW151226-like binary, the
cloud may survive to the LISA band if 0.015 < α2 < 0.04.
The cloud depletion in the GW150914-like binary is
shown in Fig. 7.
For stellar mass black hole binaries, the orbital separa-

tion is about 103–105rg when they are visible in the LISA
observation band. For α ∼ 0.1, the orbital separation is
typically much larger than the size of the cloud, and the

FIG. 7. Parameter space for cloud around the primary black
hole (upper panel) and secondary black hole (lower panel) in a
GW150914-like binary to survive to LISA band. The notation is
similar to that in Fig. 6.

FIG. 6. Parameter space for cloud around the primary black
hole (upper panel) and secondary black hole (lower panel) in a
GW151226-like binary to survive to LISA band. The cloud
depletion is calculated with Eq. (6), with ti being the formation
time of the host black hole and t being the time when the orbital
frequency is about 2π−3 Hz. We consider level mixing to the
j21–1i, j200i, and j100i modes, and find that for α1 < 0.025
(α2 < 0.015) the cloud depletes completely due to mixing with
the j200i mode, while for α1 > 0.05 (α2 < 0.04) the cloud
depletes significantly due to mixing with the j21–1i mode.
In order to show the effects from the l ¼ 0 modes, the dashed
lines show the results considering only level mixing with the
j21–1i mode.
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orbital dynamics can be affected by the finite size effects
of the clouds. In particular, the presence of a superradiant
cloud inevitably induces extra multipole moments in
addition to that of its host black hole. For the j211i mode,
the quadrupole moment of the cloud is

Q ¼ −6α−4McG2M2; ð7Þ

where Mc is the mass of the superradiant cloud. Such a
quadrupole moment affects the inspiralling waveform at the
second post-Newtonian (PN) order [48–52]. In order to
estimate the effects on the GW waveform, we consider
the number of cycles that GWs spend in a logarithmic
frequency interval,

dN
d ln f

¼ f2

ḟ
; ð8Þ

where we can write ḟ ¼ ḟBH þ ḟquad with [50]

ḟquad ¼ −
96ηQ

πG2M2
totM3

ðGMtotπfÞ5: ð9Þ

Then the additional cycles caused by the quadrupole
moment in a logarithmic frequency interval can be esti-
mated as

ΔNðfÞ ≃ 25Q
96πηMG2M2

tot
ðGMtotπfÞ−1=3: ð10Þ

On the other hand, the time spent in the a logarithmic
frequency interval is

TðfÞ ¼ 5GMtot

256η
ðπGMtotfÞ−8=3: ð11Þ

Assuming one year observation of LISA, the number of
additional cycles in GW phase caused by the cloud’s
quadrupole moment is

ΔNobs ≃ ΔNðfÞ Tobs

TðfÞ

≃
50

ð1þ qÞ2=3
�
Mc

αM

	�
M

30M⊙

	
7=3

×

�
f

10−3 Hz

	
7=3

�
α

0.05

	
−3

which is detectable even if Mc is relatively small. For
α ∼ 0.01, the orbital separation is typically comparable to
the size of the cloud, in which case the interplay between
binary and the cloud can be complex, and could be detected
through its imprints on the GWs emitted by binaries.

IV. BINARY MASS TRANSFER

A superradiant mode in a binary could not only couple to
the other modes of its host black hole due to the tidal
interaction, but also the modes of the second black hole and
the modes of the binary. While coupling to the modes of its
host black hole, bounded and unbounded, leading to level
mixing and ionization, we expect that coupling to the
modes of the second black hole and the binary could lead to
cloud mass transfer and formation of CE of the cloud. In
this section, we shall focus on the coupling to the modes of
the second black hole and discuss the possible cloud mass
transfer.3

A. Formalism

In the nonrelativistic limit, the cloud in a binary satisfies

i
∂

∂t
ψðr; tÞ ¼

�
−
∇2

2μ
−

α1
jr − r1j

−
α2

jr − r2j
	
ψðr; tÞ; ð12Þ

where r1 and r2 are the position of the primary and
secondary black hole, respectively. We make the following
ansatz:

ψðr; tÞ ¼ c1iðtÞψ1iðr; tÞ þ c2jðtÞψ2jðr; tÞ; ð13Þ

where we assumed summation on repeated subscriptions,
and ψai with a ¼ 1, 2 satisfying

i
∂

∂t
ψaðr; tÞ ¼

�
−
∇2

2μ
−

αa
jr − raj

	
ψaðr; tÞ ð14Þ

is the modes of each black hole, where i labels various
modes. Substituting ansatz (13) into Eq. (12) and considering
the normalization of ψai, we can solve the equations of cai:

iċ1kðδkj − hψ�
2iψ1kihψ�

1jψ2iiÞ
¼ −c1kðhψ�

1jV2ψ1ki − hψ�
1jψ2iihψ�

2iV2ψ1kiÞ
− c2kðhψ�

1jV1ψ2ki − hψ�
1jψ2iihψ�

2iV1ψ2kiÞ; ð15Þ

iċ2kðδkj − hψ�
1iψ2kihψ�

2jψ1iiÞ
¼ −c1kðhψ�

2jV2ψ1ki − hψ�
2jψ1iihψ�

1iV2ψ1kiÞ
− c2kðhψ�

2jV1ψ2ki − hψ�
2jψ1iihψ�

1iV1ψ2kiÞ; ð16Þ

where Va ¼ −αa=jr − raj þ αar · ra=R3 is the gravitational
potential of each black hole. The second line in Eqs. (15)
and (16) represents the level mixing between modes of the

3There is a related discussion presented in Ref. [53], which
considered equally populated clouds to start with, while here
we consider the more realistic scenario that a cloud is initially
excited around one of the black holes and discuss the following
evolution.
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same black hole, while the third line in each equation
represents the mass transfer between different black holes.

B. A two-mode model

For simplicity, we shall assume the binary black holes
moving in a circular orbit with their spins perpendicular to

the orbital plan, and consider a two-mode model with each
mode associated with different black holes. We choose the
coordinates centered on the primary black hole with the z
axis perpendicular to the orbital plan and the x axis pointing
to the secondary black hole at t ¼ 0. In this case, Eqs. (15)
and (16) can be written as

i

�
ċ1
ċ2

�
¼

�
A11 A12eiðϵ2−ϵ1Þtþiðm2−m1ÞΦ

A21e−iðϵ2−ϵ1Þt−iðm2−m1ÞΦ A22

��
c1
c2

�
; ð17Þ

where ϵa ¼ ωa − μ ≃ μ=2n2a and Φ is the azimuth angle
of the secondary black hole. Aab depends only on R ¼
jr1 − r2j, and is defined explicitly in Appendix B. The
diagonal terms are the corrections to the eigenfrequencies
ωa due to the presence of another black hole. Thus, we can
further define

c̃1 ¼ c1e−iA11t; c̃2 ¼
ffiffiffiffiffiffiffi
A12

A21

s
c2e−iA22t; ð18Þ

with which Eq. (17) becomes

i ˙̃c1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A12A21

p
eiϵ21tþiðm2−m1ÞΦc̃2;

i ˙̃c2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A12A21

p
e−iϵ21t−iðm2−m1ÞΦc̃1; ð19Þ

where ϵ21 ≡ ϵ2 þ A22 − ϵ1 − A11. As for initial conditions,
we assume the cloud is initially hosted by the primary black
hole, i.e., c1 ¼ 1 and c2 ¼ 0 as t → −∞. The orbital
azimuthal angle can be written in the adiabatic limit,

Φ ≃��
Ωtþ Ω̇t2

�
; ð20Þ

where the plus/minus sign corresponds to the corotation/
counterrotation case. If the orbit decays only by GW
radiation, Ω̇ is given by Eq. (5). Given Eq. (19), we expect
that a resonance may happen when the orbital frequency
near

Ωres ¼ ∓ ϵ21
m2 −m1

; ð21Þ

which is the resonance frequency. Given the positivity ofΩ,
we can have resonance only if ∓ ϵ21=ðm2 −m1Þ > 0. In
addition, due to the symmetry of spherical harmonics
Ylmðθ;ϕÞ, the couplings A12 and A21 are nonzero either
with m1 ¼ l1 − 2Z1 and m2 ¼ l2 − 2Z2, or with m1 ≠
l1 − 2Z1 and m2 ≠ l2 − 2Z2, where Z1;Z2 ¼ 0; 1; 2;….
For example, the cloud that is initially in the j211i mode
can only transfer to the certain modes of the companion,
such as j21–1i, j31–1i, j320i, j322i, j32–2i, etc.

Near the resonance, Eq. (19) can be approximated by

i
dc̃1
dt̃

¼ −Ac̃2e�it̃2 ; i
dc̃2
dt̃

¼ −Ac̃1e∓it̃2 ; ð22Þ

where we have defined t̃ ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −m1ÞΩ̇

p
and A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A21A12

ðm2−m1ÞΩ̇
q

. The general solution of Eq. (22) can be

written as

c̃1 ¼ C1H

�
−
iA2

2
; ð−1Þ1=4 t̃

�
þ C2F

�
iA2

4
;
1

2
; it̃2

	
; ð23Þ

c̃2 ¼ −C1ð−1Þ1=4Ae−it̃2H
�
−1 −

iA2

4
; ð−1Þ1=4 t̃

�

þ iC2Ae−it̃
2

t̃F

�
1þ iA2

4
;
3

2
; it̃2

	
; ð24Þ

where Hðn; xÞ is the Hermite polynomials and Fða; b; xÞ is
the Kummer confluent hypergeometric function. Given the
initial condition as t → −∞, we find

C1 ¼ −ei3π4−A2π
8 ;

C2 ¼ −
1

π
Γ
�
iA2

4

	
Γ
�
1 −

iA2

2

	
sinh

A2π

2
ei

π
4
−A2π

8 : ð25Þ

The cloud transfers to the secondary black hole after
resonance can be found in the t → ∞ limit,

jc∞2 j2 ¼
A21

A12

�
1 − e−πA

2� ≃ πA2
21

ðm2 −m1ÞΩ̇
; ð26Þ

where we considered πA2 ≪ 1.

C. Backreaction on orbital decay

In the presence of mass transfer, the binding energy of
the orbit evolves as

dEorb

dt
¼ GM1M2

2R

�
Ṙ
R
þ γðq − 1Þ

q

�
; ð27Þ
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where γ ≡ −Ṁ1=M1 denotes the efficiency of mass transfer
and we assumed Ṁ1 ¼ −Ṁ2. During the resonance, about
Mcjc∞2 j2 amount of cloud mass is transferred in a timescale

of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −m1ÞΩ̇

p
; thus the mass transfer efficiency can

be estimated as

γ ∼
Mc

M1

jc∞2 j2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −m1ÞΩ̇

q
≃
Mc

M1

πA2
21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðm2 −m1ÞΩ̇
p : ð28Þ

By balancing Eq. (27) with power of GW radiation, we find
the orbital frequency evolution Ω̇ satisfying

Ω̇ ¼ 96

5

η

G2M2
tot
ðGMtotΩÞ11=3 þ

3γðq − 1Þ
2q

Ω: ð29Þ

For q > 1, mass transfer of the cloud can accelerate the
orbital decay. For q < 1, the mass transfer can slow down
the orbital decay. In particular, we write Ω̇ ¼ Ω̇0 þ Ω̇γ with
Ω̇0 given by Eq. (5) being the frequency evolution without
mass transfer. For Ω̇γ ≪ Ω̇0 we have Ω̇γ=Ω̇0 ≃ B, while for
Ω̇γ ≫ Ω̇0 we have Ω̇γ=Ω̇0 ≃ B2=3, where

B≡ 5
ffiffiffi
5

p
πq−5=2ðq − 1Þ

256
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðm2 −m1Þ

p Mc

M1

ðGM1A21Þ2
ðGM1ΩÞ9=2

: ð30Þ

In order to illustrate the backreaction of mass transfer, we
evolve a GW150914-like system with its orbit sweeping
over the resonant orbit of mass transfer. Instead of assum-
ing Eq. (20), we numerically solve Eqs. (19) and (29) with
Φ̇ ¼ ΩðtÞ for c1;2ðtÞ,ΦðtÞ, and ΩðtÞ. The results are shown
in Fig. 8. As we expect, we find that the fractional mass
transferred to the second black hole increases significantly
when the orbital frequency matches the resonance fre-
quency defined in Eq. (21), and eventually approaches
to a value that agrees well with the analytical estimation,
Eq. (26). We also find the backreaction on the orbital
evolution, at least in the considered case, is small (cf. the
lower panel in Fig. 8). Moreover, we find mass transfer also
introduces sloshing oscillation in Ω̇ with a frequency given
by ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A21A12

p
near the resonance.

Assuming the cloud is initially in the j211i mode of its
host black hole in a corotating binary, we investigate its
transfer to the j21–1i and j32–2i modes of the companion
black hole, respectively, by calculating Eqs. (21), (29),
and (26) numerically. The results are shown in Fig. 9. We
find that the transfer efficiency, captured by jc∞2 j2, is
suppressed by large Ω̇ if the resonance happens at small
separation, and is suppressed by small A2

21 if the resonance
happens at large orbit.
Moreover, we find that the resonant transfer happens at

larger radii than the Roche Lobe transfer, i.e., at earlier
evolution time. In addition, for a given type of binary, the

FIG. 8. Mass transfer of cloud in a GW150914-like binary. We
consider α2 ¼ 0.04, and a cloud ofMc ¼ 0.1M1 that is initially in
the j211i mode of the primary black hole. The vertical gray line
denotes the resonance frequency of transfer to the j32–2imode of
the secondary black hole. The upper panel shows the fractional
mass transferred to the secondary black hole, where the solid blue
line is obtained by numerically solving Eqs. (19) and (29) with
Φ̇ ¼ ΩðtÞ, the dashed blue line shows the analytical solution (24),
and the gray dashed lines show the asymptotical value estimated
by Eq. (26). In the lower panel, the blue line shows Ω̇ given by the
numerical solution as in the upper panel, while the dotted blue
line is given by Eq. (5). The differences between two lines reflect
the backreaction of mass transfer on orbital evolution.

FIG. 9. Resonance orbits of mass transfer from the j211i mode
of one black hole to the j21–1i and j31–2i modes of another
black hole. Color on the curve reflects the square of the
probability amplitude of the transferred cloud. The gray dashed
line shows the Roche lobe [54]. Notice that q ¼ M�=M here is
defined as the mass ratio of the cloud receiver divided by the
cloud donor, and the result shown in the plot does not depend on
the cloud mass.
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transferred cloud mass is a function of the ALP wavelength,
which maximizes around certain values. Third, for a binary
with a given mass ratio, it is possible that we need to
consider resonant mode transfer to multiple target states.
Interestingly, the cloud receiver can be a neutron star as the
j211i → j21–1i channel is viable for small mass ratios. A
cloud can transfer from a black hole to a neutron star and
induce transient electromagnetic radiations if the cloud
consists of particles coupling with the electromagnetic
sector in the standard model. This is an interesting process
that is worth further studies.

In the end of this section, we would like to investigate the
parameter space for superradiant cloud mass transfer. In
particular, we would like to know, in typical binary
evolution, how much cloud can survive from level mixing
depletion so that they can undergo mass transfer. Again, we
consider the GW151226-like and the GW150914-like
binaries, and perform the integral (6) from the formation
of the host black hole to the time when the binary reaches
the mass transfer resonance orbit. The results are shown in
Figs. 10 and 11. We know that, when a GW151226-like
binary reaches the resonance orbit of mass transfer, the

FIG. 10. Parameter space for cloud around the primary black
hole (upper panel) and secondary black hole (lower panel) in a
GW151226-like binary to survive to mass transfer to the j21–1i
mode of their companions. We consider level mixing with the
j21–1i, j311i, j100i, and j200i modes. The solid lines show
the fractional cloud mass at the mass transfer. We also show the
results obtained by considering level mixing only to the j21–1i
mode, in dashed lines. In addition, we find that, for α1 < 0.009,
the binary will sweep the mass transfer orbit during the CE
evolution.

FIG. 11. Parameter space for cloud around the primary black
hole (upper panel) and secondary black hole (lower panel) in a
GW150914-like binary to survive to mass transfer to the j21–1i
mode of their companions. We consider level mixing with
the j21–1i, j311i, j100i, and j200i modes. The solid lines show
the fractional cloud mass at the mass transfer. We also show the
results obtained by considering level mixing only to the j21–1i
mode, in dashed lines. In addition, we find that, for α1 < 0.007,
the binary will sweep the mass transfer orbit during the CE
evolution.
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j211imode that grew around the primary black hole almost
depleted due to its mixing with the j21–1i mode if
α1 > 0.07 and almost depleted due its mixing to the
j200i mode if α1 < 0.02. For a cloud that grew around
the secondary black hole, it almost depleted due to its
mixing to the j21–1i if α2 > 0.05 when the binary reaches
the resonance orbit, otherwise the cloud can survive and
transfer to the other black hole in the binary. For a
GW150914-like binary, cloud that grew around the primary
black hole could avoid level mixing depletion and survive
to mass transfer if α1 < 0.05. The cloud that grew around
the secondary black hole can avoid level mixing and
transfer to another black hole if α2 < 0.06.

V. DISCUSSION AND CONCLUSION

This study provides a natural explanation for the coex-
istence of superradiant clouds and close compact binaries,
and highlights the importance of fully incorporating rel-
evant astrophysical processes when we design and perform
the tests for ultralight bosons beyond the standard model,
as the actual astrophysical environmental effects are often
nonperturbative with respect to purely gravitational con-
siderations. Here the key insight comes from the fact that in
the astrophysical evolution path of close compact binaries,
the gas-binary interaction during the CE phase brings the
binaries to much closer distances within thousands of years,
which is much shorter than the gravitational radiation
reaction timescale. As a result, some level mixings may
no longer act as an effective damper for the clouds as
previously considered. By including all the main damping
mechanisms of the clouds into the evolution model of the
compact binaries, for sample binary systems we have
computed the level of cloud growth and depletion for
various orbital frequencies and particle masses. It is evident
that the CE process does enlarge the parameter space that
clouds coexist with the compact binary within the detection
band of space-borne gravitational wave detectors such as
LISA. This is interesting because the compact binaries
carrying superradiant clouds may evolve differently from
those without, because of the quadrupole moment of the
clouds. This also means that the gravitational waveform
will be significantly modified and potentially detectable by
space-borne gravitational wave detectors, if some of them
were within the horizon of these detectors. For sources
within the band of ground-based detectors, however, the
level mixing may severely deplete the clouds before they
evolve to such a close distance due to gravitational wave
radiation. Additional studies are needed to analyze the
possibility of cloud transfer to circum-binary states, as
compared to the circum-single states considered here. The
circum-binary states are analogous to the molecule states,
within which the ultralight particles orbit around the binary
instead of mainly around the individual compact object. If
the transfer to the circum-binary state is effective before the
total depletion of the clouds due to level mixing, this may

also lead to the possibility of close compact binaries in the
LIGO-Virgo-KAGRA band while the interaction with clouds
is still dynamically important. This scenario is certainly
worth more exploration given the rapid growing catalog of
compact binaries observed by Advanced LIGO and Virgo.
The resonance starts when the binary orbital frequency

matches the frequency difference between these two states.
This happens because the circum-single cloud states around
two different objects may have a small overlap with each
other. The resonance takes place when the binary orbital
frequency matches the frequency difference between these
two states. This mass transfer mechanism relies crucially on
the wave nature of the clouds, so that it is clearly different
from the Roche-Lobe filling mass transfer, which generally
occurs at different orbital separations. Interestingly, when the
receiver is a neutron star, the received particles such as ALPs
may interact with the strong magnetic field of the neutron
star if their coupling strength is nonzero, and produce
electromagnetic counterparts, even if the neutron star cannot
superradiantly excite the axion cloud efficiently.4 A similar
effect in terms of dark photon interacting with electromag-
netic fields around black holes has been considered in
Ref. [56]. The detailed observational signatures depend
on the nature of the ALPs, the coupling to the Standard
Model sector, and the environment. Understanding the
detailed electromagnetic signatures and developing associ-
ated searching strategies will be another interesting direction
to explore. While focusing on clouds of scalar fields in this
work, we expect that the common envelop process as well as
the cloudmass transfer process are also relevant for clouds of
vector fields. The details require further investigation and
this is left for future study.
For compact binaries detectable by ground-based detec-

tors, another viable formation channel is through dyna-
mical few-body interaction in dense stellar environments,
e.g., globular clusters and nuclear star clusters [57–60].
Recently, there was also extensive exploration of stellar-
mass compact object evolution and binary formation in
active Galactic nucleus, which are viable sources for both
ground-based and space-borne gravitational-wave detec-
tion [61–71] and possible origin of environmental signals in
the gravitational waveform [72–76]. For these dynamically
formed binaries, the vastly different evolution path likely
lead to distinct cloud evolution histories as well, as the
depletion due to hyperfine resonance may be alleviated
by the fast dynamical evolution of orbital separation. It is
important to track the detailed evolution in each dynamical
channel, accounting for the relevant cloud damping mech-
anisms and address whether the dynamical channels also
lead to significant cloud presence in the gravitational
wave bands.

4Superradiant generation of ALPs by neutron stars is possible
with additional coupling to the electromagnetic sector [55].
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APPENDIX A: LEVEL MIXING
IN GRAVITATIONAL ATOM

In this Appendix, we review the level mixing of a cloud
induced by the gravitational potential of the companion
object. While previous studies usually assume the compa-
nion object is far away from the cloud, i.e., R ≫ rg=α2, we
extend the calculation to the case that the companion
immerses in the cloud. In particular, we emphasize the
mixing via the l ¼ 0, 1 multipoles, as well as nonresonant
cloud depletion.
In the frame centered at the superradiance black hole, the

Hamiltonian of the system is

H ¼
�
p2

2μ
−
GμM
r

�

þ
�
p2�
2M�

−
GM�M

R
−

GM�μ
jr� − rj þ

GM�μ
R3

r · r�

�
; ðA1Þ

where p ¼ μṙ and p� ¼ M�ṙ� with r and r� being the
positions of the cloud and the star relative to the black
hole [28]. Therefore, the companion provides an additional
gravitational potential,

V� ¼ −
GM�μ
jr� − rj þ

GM�μ
R3

r · r�; ðA2Þ

where the second term appears because the frame centered
at the superradiance black hole is not an inertial frame. For
simplicity, we shall consider the two-mode toy model, in
which the wave function of the cloud can be written as

ψ ¼ cdðtÞψd þ cgðtÞψg ðA3Þ

with ψg and ψd being the growing and decaying modes,
respectively. Specifically, ψg and ψd take the form of

ψnlm ¼ RnlðrÞYlmðθ;ϕÞe−iðωnlm−μÞt; ðA4Þ

with

ωnlm ≃ μ

�
1 −

α2

2n2
−

α4

8n4
þ ð2l − 3nþ 1Þα4

n4ðlþ 1=2Þ

þ 2amα5

n3lðlþ 1=2Þðlþ 1Þ
�
: ðA5Þ

The coefficients satisfy

i
d
dt

�
cgðtÞ
cdðtÞ

�
¼
�

0 hψgjV�jψdi
hψdjV�jψgi 0

��
cgðtÞ
cdðtÞ

�
; ðA6Þ

where we have absorbed the diagonal terms hψgjV�jψgi and
hψdjV�jψdi in ωg and ωd. Given the off-diagonal terms, we
can define the resonant orbital frequency,

Ω0 ≡ ωg − ωd

mg −md
; ðA7Þ

and the coupling strength η by

hψgjV�jψdi≡ ηe−iðmd−mgÞðΩ0∓ΩÞt; ðA8Þ

where the minus and plus signs correspond to corotating
and counterrotating orbits, respectively.
The coupling strength can be calculated by performing

the multipole expansion of V�. For r < R, we have

1

jr� − rj ¼
1

R
þ r cosΔθ

R2
þ
X
l≥2

X
jmj≤l

4π

2lþ 1

rl

Rlþ1

× Y�
lmðθ�;ϕ�ÞYlmðθ;ϕÞ; ðA9Þ

where Δθ is the angle between r and r�. The first term on
the rhs of Eq. (A9) does change the eigenstate of the cloud
as it is a constant for r < R. Its contribution would be clear
when we calculate Ir defined later. The second term cancels
with the last term in Eq. (A1). For r > R, we have

1

jr� − rj ¼
1

r
þ r · r�

r3
þ
X
l≥2

X
jmj≤l

4π

2lþ 1

Rl

rlþ1

× Y�
lmðθ�;ϕ�ÞYlmðθ;ϕÞ; ðA10Þ

in which case the monopole and dipole terms contribute.
With the multipole expansion, The inner product can be
written as

hψ ijV�jψ ji ¼ −GM�μ
X
l;m

4π

2lþ 1
IΩIrðRÞYlmðθ�; 0Þ

× exp
�
iðωi − ωjÞt ∓ imϕ�

�
;
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where i; j∈ fg; dg and

IΩ ¼
Z

dΩY�
ljmj

ðθ;ϕÞYlimi
ðθ;ϕÞYlmðθ;ϕÞ: ðA11Þ

The upper/lower sign in front of mϕ� corresponds to
corotating/counterrotating orbits. For l ¼ 0 and l ≥ 2,
we have

Ir ¼
Z

∞

0

drr2
rl<
rlþ1
>

RniliðrÞRnjljðrÞ; ðA12Þ

where r< is the smaller of r and R and r> is the larger of r
and R. For l� ¼ 1, we have

Ir ¼
Z

∞

R
drR

�
1 −

r3

R3

	
RniliðrÞRnjljðrÞ: ðA13Þ

Therefore, we find that terms with l ¼ 0, 1 will be expo-
nentially suppressed by the radial function if R ≫ r=α2, but
could contribute significantly if R≲ r=α2. Moreover, the
integral IΩ implies the following selection rules:

8><
>:

−mþmi þmj ¼ 0;

jli − ljj ≤ l ≤ li þ lj;

lþ li þ lj ¼ 2k; for k∈Z:

ðA14Þ

Based on the rules above, inner products between the
growing mode j211i and decaying modes with l ¼ m ¼ 0
give nonzero, and can lead to depletion channels in addition
to the hyperfine and Bohr mixing studied in Ref. [28].
Now we discuss cloud depletion induced by level

mixing. Near the resonant orbit, i.e., Ω ∼ Ω0, the orbit
decay should be described by Ω ¼ Ω0 þ γt, and we can
find a resonant solution known as the Landau-Zener
transition [77]. While away from the resonant orbit, e.g.,
Ω ≪ Ω0, we can take the adiabatic approximation and
consider Ω to be a constant, then we have

jcdðtÞj2 ¼ sin2
�Z

t

t0

dt0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η2 þ ðΩ0 ∓ Ωðt0ÞÞ2

q �

×

�
1 −

ðΩ0 ∓ ΩðtÞÞ2
η2 þ ðΩ0 ∓ ΩðtÞÞ2

�
: ðA15Þ

In this case, cloud depletion can be estimated with Eq. (6).
We replace the oscillating term in Eq. (A15) with a factor of
1=2 for simplicity when performing the numerical integra-
tion. We find that the nonresonant solution also leads to a
significant depletion of the cloud.
Level mixing also modifies ωg and ωd. Under the WKB

approximation, the modifications are [39]

δωg ¼
jhψgjV�jψdij2

ωg −ωd
þ i

�
Γg −

Γg − Γd

ðωg −ωdÞ2
jhψgjV�jψdij2

�
;

δωd ¼
jhψgjV�jψdij2

ωd −ωg
þ i

�
Γd −

Γd − Γg

ðωg −ωdÞ2
jhψgjV�jψdij2

�
:

As a result, the superradiance rate of a growing mode
coupled to a decaying mode acquires a suppression

Γ0
g ¼ Γg þ ΔΓg ≃ Γg −

Γg − Γd

ðωg − ωdÞ2
jhψgjV�jψdij2 < Γg;

ðA16Þ

where Γg is the original growth rate defined in Eq. (1). In
particular, the superradiance rate Γd could become negative
even at maximal black hole spin when the orbital separation
reaches to some critical value Rcr. By considering the case
of r > R when calculating hψgjV�jψdi, we find that modes
with l ¼ 0 also contribute to Rcr, and extend the results in
Ref. [39] to the region with Rcr ≲ rg=α2.

APPENDIX B: COUPLING STRENGTH
BETWEEN BOUND STATES ASSOCIATED

WITH DIFFERENT BLACK HOLES

In the two-modes toy investigated in Sec. IV B, Eqs. (15)
and (16) reduce to Eq. (17) with matrix elements defined by

A0 ¼ 1− hψ�
2ψ1ihψ�

1ψ2i;

A11 ¼
hψ�

1V2ψ1i− hψ�
1ψ2ihψ�

2V2ψ1i
A0

;

A22 ¼
hψ�

2V1ψ2i− hψ�
2ψ1ihψ�

1V1ψ2i
A0

;

A12 ¼
hψ�

1V1ψ2i− hψ�
1ψ2ihψ�

2V1ψ2i
A0

e−iðϵ2−ϵ1Þt−iðm2−m1Þϕ�
;

A21 ¼
hψ�

2V2ψ1i− hψ�
2ψ1ihψ�

1V2ψ1i
A0

e−ið−ϵ2−ϵ1Þtþiðm2−m1Þϕ�
:

In this Appendix, we calculate the coupling strength
between bound states associated with different black holes.
We shall work in a coordinate frame fr; θ̄; ϕ̄g, which is
centered at the primary black hole with the z axis aligning
with the spin of the primary black hole and the x axis
always pointing to the secondary black hole. Considering
the coordinate frames centered at the two black holes,
respectively, say fr1; θ1;ϕ1g and fr2; θ2;ϕ2g, with their z
axes aligning with the black hole spin (here we only
consider the case with parallel black hole spins), then
we have

fr1; θ1;ϕ1g ¼ fr̄; θ̄; ϕ̄þ ϕ�g; ðB1Þ

and
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fr2; θ2;ϕ2g

¼
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r̄2sin2θ̄sin2ϕ̄þ r2cos2θ̄ þ ðR − r sin θ̄ cos ϕ̄Þ2
q

;

tan−1
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 − 2r̄R cos ϕ̄ sin θ̄ þ r̄2sin2θ̄
q

=r̄ cos θ̄
i
;

tan−1
�
r̄ sin θ̄ sin ϕ̄=ðr̄ sin θ̄ cos ϕ̄ − RÞ�þ ϕ�

o
; ðB2Þ

where ϕ� ¼ � R
ΩðtÞdt ≃�Ωt with � corresponding to

the corotating and the counterrotating system, respectively.

Then we can calculate the coupling strength in fr̄; θ̄; ϕ̄g.
For example,

hψ�
1ψ2i ¼ eiðϵ2−ϵ1Þt

Z
dr̄dθ̄dϕ̄r̄2 sin θ̄R�

nlðr1ÞY�
lmðθ1;ϕ1Þ

× Rn0l0 ðr2ÞYl0m0 ðθ2;ϕ2Þ; ðB3Þ

which can be calculated numerically.
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